Datasets:

DOI:
License:
etrop commited on
Commit
d09ca16
1 Parent(s): aa368ec

feat: adapt loading script

Browse files
Files changed (1) hide show
  1. agro_nt_tasks.py +78 -112
agro_nt_tasks.py CHANGED
@@ -1,14 +1,3 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
  # TODO: Address all TODOs and remove all explanatory comments
@@ -18,133 +7,114 @@
18
  import csv
19
  import json
20
  import os
 
 
21
 
22
  import datasets
23
 
24
 
25
  # TODO: Add BibTeX citation
26
- # Find for instance the citation on arxiv or on the dataset repo/website
27
- _CITATION = """\
28
- @InProceedings{huggingface:dataset,
29
- title = {A great new dataset},
30
- author={huggingface, Inc.
31
- },
32
- year={2020}
33
- }
34
- """
35
 
36
- # TODO: Add description of the dataset here
37
- # You can copy an official description
38
  _DESCRIPTION = """\
39
- This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
 
 
 
40
  """
41
 
42
- # TODO: Add a link to an official homepage for the dataset here
43
- _HOMEPAGE = ""
44
 
45
  # TODO: Add the licence for the dataset here if you can find it
46
  _LICENSE = ""
47
 
48
- # TODO: Add link to the official dataset URLs here
49
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
- _URLS = {
52
- "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
53
- "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
54
- }
55
-
56
-
57
- # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
58
- class NewDataset(datasets.GeneratorBasedBuilder):
59
- """TODO: Short description of my dataset."""
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
- VERSION = datasets.Version("1.1.0")
 
62
 
63
- # This is an example of a dataset with multiple configurations.
64
- # If you don't want/need to define several sub-sets in your dataset,
65
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
66
 
67
- # If you need to make complex sub-parts in the datasets with configurable options
68
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
69
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
70
 
71
- # You will be able to load one or the other configurations in the following list with
72
- # data = datasets.load_dataset('my_dataset', 'first_domain')
73
- # data = datasets.load_dataset('my_dataset', 'second_domain')
74
- BUILDER_CONFIGS = [
75
- datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
76
- datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
77
- ]
78
 
79
- DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
 
 
 
 
 
 
80
 
81
- def _info(self):
82
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
83
- if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
84
- features = datasets.Features(
85
- {
86
- "sentence": datasets.Value("string"),
87
- "option1": datasets.Value("string"),
88
- "answer": datasets.Value("string")
89
- # These are the features of your dataset like images, labels ...
90
- }
91
- )
92
- else: # This is an example to show how to have different features for "first_domain" and "second_domain"
93
- features = datasets.Features(
94
- {
95
- "sentence": datasets.Value("string"),
96
- "option2": datasets.Value("string"),
97
- "second_domain_answer": datasets.Value("string")
98
- # These are the features of your dataset like images, labels ...
99
- }
100
- )
101
  return datasets.DatasetInfo(
102
  # This is the description that will appear on the datasets page.
103
  description=_DESCRIPTION,
104
  # This defines the different columns of the dataset and their types
105
- features=features, # Here we define them above because they are different between the two configurations
106
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
107
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
108
- # supervised_keys=("sentence", "label"),
109
- # Homepage of the dataset for documentation
110
- homepage=_HOMEPAGE,
111
  # License for the dataset if available
112
  license=_LICENSE,
113
  # Citation for the dataset
114
  citation=_CITATION,
115
  )
116
 
117
- def _split_generators(self, dl_manager):
118
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
119
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
 
120
 
121
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
122
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
123
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
124
- urls = _URLS[self.config.name]
125
- data_dir = dl_manager.download_and_extract(urls)
126
  return [
127
  datasets.SplitGenerator(
128
  name=datasets.Split.TRAIN,
129
  # These kwargs will be passed to _generate_examples
130
  gen_kwargs={
131
- "filepath": os.path.join(data_dir, "train.jsonl"),
132
  "split": "train",
133
  },
134
  ),
135
- datasets.SplitGenerator(
136
- name=datasets.Split.VALIDATION,
137
- # These kwargs will be passed to _generate_examples
138
- gen_kwargs={
139
- "filepath": os.path.join(data_dir, "dev.jsonl"),
140
- "split": "dev",
141
- },
142
- ),
143
  datasets.SplitGenerator(
144
  name=datasets.Split.TEST,
145
  # These kwargs will be passed to _generate_examples
146
  gen_kwargs={
147
- "filepath": os.path.join(data_dir, "test.jsonl"),
148
  "split": "test"
149
  },
150
  ),
@@ -152,21 +122,17 @@ class NewDataset(datasets.GeneratorBasedBuilder):
152
 
153
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
154
  def _generate_examples(self, filepath, split):
155
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
156
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
157
- with open(filepath, encoding="utf-8") as f:
158
- for key, row in enumerate(f):
159
- data = json.loads(row)
160
- if self.config.name == "first_domain":
161
  # Yields examples as (key, example) tuples
 
 
 
 
 
162
  yield key, {
163
- "sentence": data["sentence"],
164
- "option1": data["option1"],
165
- "answer": "" if split == "test" else data["answer"],
166
- }
167
- else:
168
- yield key, {
169
- "sentence": data["sentence"],
170
- "option2": data["option2"],
171
- "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
172
- }
 
 
 
 
 
 
 
 
 
 
 
 
1
  # See the License for the specific language governing permissions and
2
  # limitations under the License.
3
  # TODO: Address all TODOs and remove all explanatory comments
 
7
  import csv
8
  import json
9
  import os
10
+ from typing import List
11
+ from Bio import SeqIO
12
 
13
  import datasets
14
 
15
 
16
  # TODO: Add BibTeX citation
17
+ _CITATION = ''
18
+ # """\
19
+ # @InProceedings{huggingface:dataset,
20
+ # title = {A great new dataset},
21
+ # author={huggingface, Inc.
22
+ # },
23
+ # year={2020}
24
+ # }
25
+ # """
26
 
 
 
27
  _DESCRIPTION = """\
28
+ This dataset comprises the various supervised learning tasks considered in the agro-nt
29
+ paper. The task types include binary classification,multi-label classification,
30
+ regression,and multi-output regression. The actual underlying genomic tasks range from
31
+ predicting regulatory features, RNA processing sites, and gene expression values.
32
  """
33
 
 
 
34
 
35
  # TODO: Add the licence for the dataset here if you can find it
36
  _LICENSE = ""
37
 
38
+ _TASKS = ['poly_a',
39
+ 'splice_site'
40
+ 'lncrna',
41
+ 'chromatin_access'
42
+ 'promoter_strength',
43
+ 'gene_expression',
44
+ ]
45
+
46
+
47
+ class AgroNtTasksConfig(datasets.BuilderConfig):
48
+ """BuilderConfig for the Agro NT supervised learning tasks dataset."""
49
+
50
+ def __init__(self, *args, task: str, **kwargs):
51
+ """BuilderConfig downstream tasks dataset.
52
+ Args:
53
+ task (:obj:`str`): Task name.
54
+ **kwargs: keyword arguments forwarded to super.
55
+ """
56
+ super().__init__(
57
+ *args,
58
+ name=f"{task}",
59
+ **kwargs,
60
+ )
61
+ self.task = task
62
 
63
+ class AgroNtTasks(datasets.GeneratorBasedBuilder):
64
+ """GeneratorBasedBuilder for the Agro NT supervised learning tasks dataset."""
65
 
66
+ BUILDER_CONFIGS = [AgroNtTasksConfig(task=TASK) for TASK in _TASKS]
 
 
67
 
68
+ DEFAULT_CONFIG_NAME = _TASKS[0]
 
 
69
 
70
+ def _info(self):
 
 
 
 
 
 
71
 
72
+ features = datasets.Features(
73
+ {
74
+ "sequence": datasets.Value("string"),
75
+ "name": datasets.Value("string"),
76
+ "labels": datasets.Value("int8"),
77
+ }
78
+ )
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  return datasets.DatasetInfo(
81
  # This is the description that will appear on the datasets page.
82
  description=_DESCRIPTION,
83
  # This defines the different columns of the dataset and their types
84
+ features=features,
 
 
 
 
 
85
  # License for the dataset if available
86
  license=_LICENSE,
87
  # Citation for the dataset
88
  citation=_CITATION,
89
  )
90
 
91
+ def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
92
+
93
+ train_file = dl_manager.download_and_extract(self.config.task + "/train.fa")
94
+ test_file = dl_manager.download_and_extract(self.config.task + "/test.fa")
95
 
 
 
 
 
 
96
  return [
97
  datasets.SplitGenerator(
98
  name=datasets.Split.TRAIN,
99
  # These kwargs will be passed to _generate_examples
100
  gen_kwargs={
101
+ "filepath": train_file,
102
  "split": "train",
103
  },
104
  ),
105
+ # datasets.SplitGenerator(
106
+ # name=datasets.Split.VALIDATION,
107
+ # # These kwargs will be passed to _generate_examples
108
+ # gen_kwargs={
109
+ # "filepath": test_file,
110
+ # "split": "dev",
111
+ # },
112
+ # ),
113
  datasets.SplitGenerator(
114
  name=datasets.Split.TEST,
115
  # These kwargs will be passed to _generate_examples
116
  gen_kwargs={
117
+ "filepath": test_file,
118
  "split": "test"
119
  },
120
  ),
 
122
 
123
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
124
  def _generate_examples(self, filepath, split):
125
+ key = 0
126
+ with open(filepath, 'r') as f:
127
+ for record in SeqIO.parse(f,'fasta'):
 
 
 
128
  # Yields examples as (key, example) tuples
129
+
130
+ split_name = record.name.split("|")
131
+ name = split_name[0]
132
+ labels = split_name[1:]
133
+
134
  yield key, {
135
+ "sequence": str(record.seq),
136
+ "name": name,
137
+ "label": labels,
138
+ }