metadata
license:
- unknown
task_categories:
- object-detection
language:
- en
pretty_name: FriutDetection
size_categories:
- n<1K
dataset_info:
features:
- name: image_id
dtype: int64
- name: image
dtype: image
- name: width
dtype: int32
- name: height
dtype: int32
- name: objects
sequence:
- name: bbox
sequence: float32
length: 4
- name: category
dtype:
class_label:
names:
'0': Apple
'1': Banana
'2': Orange
splits:
- name: train
num_examples: 240
- name: test
num_examples: 60
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
Fruit Images for Object Detection
Download from Kaggle datasets.
About Dataset
Project
This dataset is the data used in this project.
Context
A different dataset for object detection. 240 images in train folder. 60 images in test folder.
Content
3 different fruits:
- Apple
- Banana
- Orange
Acknowledgements
.xml
files were created with LabelImg. It is super easy to label objects in images.