|
--- |
|
annotations_creators: |
|
- expert-generated |
|
language_creators: |
|
- other |
|
language: |
|
- sv |
|
license: |
|
- cc-by-4.0 |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- unknown |
|
source_datasets: |
|
- original |
|
task_categories: |
|
- other |
|
task_ids: |
|
- named-entity-recognition |
|
- part-of-speech |
|
pretty_name: sucx3_ner |
|
tags: |
|
- structure-prediction |
|
--- |
|
# Dataset Card for _SUCX 3.0 - NER_ |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [https://spraakbanken.gu.se/en/resources/suc3](https://spraakbanken.gu.se/en/resources/suc3) |
|
- **Repository:** [https://github.com/kb-labb/sucx3_ner](https://github.com/kb-labb/sucx3_ner) |
|
- **Paper:** [SUC 2.0 manual](http://spraakbanken.gu.se/parole/Docs/SUC2.0-manual.pdf) |
|
- **Point of Contact:** |
|
|
|
### Dataset Summary |
|
|
|
The dataset is a conversion of the venerable SUC 3.0 dataset into the |
|
huggingface ecosystem. |
|
The original dataset does not contain an official train-dev-test split, which is |
|
introduced here; the tag distribution for the NER tags between the three splits |
|
is mostly the same. |
|
|
|
The dataset has three different types of tagsets: manually annotated POS, |
|
manually annotated NER, and automatically annotated NER. |
|
For the automatically annotated NER tags, only sentences were chosen, where the |
|
automatic and manual annotations would match (with their respective categories). |
|
|
|
Additionally we provide remixes of the same data with some or all sentences |
|
being lowercased. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
- Part-of-Speech tagging |
|
- Named-Entity-Recognition |
|
|
|
### Languages |
|
|
|
Swedish |
|
|
|
## Dataset Structure |
|
|
|
### Data Remixes |
|
|
|
- `original_tags` contain the manual NER annotations |
|
- `lower` the whole dataset uncased |
|
- `lower_mix` some of the dataset uncased |
|
- `lower_both` every instance both cased and uncased |
|
- `simple_tags` contain the automatic NER annotations |
|
- `lower` the whole dataset uncased |
|
- `lower_mix` some of the dataset uncased |
|
- `lower_both` every instance both cased and uncased |
|
|
|
### Data Instances |
|
|
|
For each instance, there is an `id`, with an optional `_lower` suffix to mark |
|
that it has been modified, a `tokens` list of strings containing tokens, a |
|
`pos_tags` list of strings containing POS-tags, and a `ner_tags` list of strings |
|
containing NER-tags. |
|
|
|
```json |
|
{"id": "e24d782c-e2475603_lower", |
|
"tokens": ["-", "dels", "har", "vi", "inget", "index", "att", "g\u00e5", "efter", ",", "vi", "kr\u00e4ver", "allts\u00e5", "ers\u00e4ttning", "i", "40-talets", "penningv\u00e4rde", "."], |
|
"pos_tags": ["MID", "KN", "VB", "PN", "DT", "NN", "IE", "VB", "PP", "MID", "PN", "VB", "AB", "NN", "PP", "NN", "NN", "MAD"], |
|
"ner_tags": ["O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"]} |
|
``` |
|
|
|
### Data Fields |
|
|
|
- `id`: a string containing the sentence-id |
|
- `tokens`: a list of strings containing the sentence's tokens |
|
- `pos_tags`: a list of strings containing the tokens' POS annotations |
|
- `ner_tags`: a list of strings containing the tokens' NER annotations |
|
|
|
### Data Splits |
|
|
|
| Dataset Split | Size Percentage of Total Dataset Size | Number of Instances for the Original Tags | |
|
| ------------- | ------------------------------------- | ----------------------------------------- | |
|
| train | 64% | 46\,026 | |
|
| dev | 16% | 11\,506 | |
|
| test | 20% | 14\,383 | |
|
|
|
The `simple_tags` remix has fewer instances due to the requirement to match |
|
tags. |
|
|
|
## Dataset Creation |
|
|
|
See the [original webpage](https://spraakbanken.gu.se/en/resources/suc3) |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
[Språkbanken](sb-info@svenska.gu.se) |
|
|
|
### Licensing Information |
|
|
|
CC BY 4.0 (attribution) |
|
|
|
### Citation Information |
|
|
|
[SUC 2.0 manual](http://spraakbanken.gu.se/parole/Docs/SUC2.0-manual.pdf) |
|
|
|
### Contributions |
|
|
|
Thanks to [@robinqrtz](https://github.com/robinqrtz) for adding this dataset. |
|
|