text
stringlengths
23
44.3k
id
stringlengths
8
82
metadata
stringclasses
1 value
# List of targets and their descriptions .PHONY: help help: @echo "Note: The following commands will change the status of 'cloud_whisper' database.\n" @echo "Available targets:" @echo " migrate Create a new Migration File." @echo " upgrade Upgrade to a later version." @echo " downgrade Revert to a previous version." @echo " head View current revision/version." migrate: @echo "Populate revision script with candidate migration operations, based on comparison of database to model." @docker exec cloud_whisper_web bash -c "alembic revision --autogenerate" upgrade: echo "Upgrade to a later version." @docker exec cloud_whisper_web bash -c "alembic upgrade head" downgrade: echo "Revert to a previous version." @docker exec cloud_whisper_web bash -c "alembic downgrade -1" head: echo "View current revision/version" @docker exec cloud_whisper_web bash -c "alembic current"
Makefile
CloudWhisperCustomBot
# Dockerfile FROM python:3.11-slim-bullseye # Set the working directory WORKDIR /CloudWhisperCustomBot COPY requirements.txt . RUN apt-get update RUN apt-get install -y build-essential RUN apt-get install -y dumb-init RUN apt-get install -y curl RUN apt-get install -y lsb-release RUN apt-get install -y wget RUN apt-get install -y cmake RUN apt-get install -y libpq-dev gcc python3-dev RUN pip3 install --upgrade pip && pip3 install -r requirements.txt # Copy the app source code COPY . /CloudWhisperCustomBot RUN chmod 755 /CloudWhisperCustomBot/scripts/dev.sh RUN chmod 755 /CloudWhisperCustomBot/scripts/dev.sh ENV PYTHONPATH=/CloudWhisperCustomBot ENTRYPOINT ["dumb-init", "--"] CMD ["/bin/bash", "-c", "/CloudWhisperCustomBot/scripts/dev.sh"]
Dockerfile
CloudWhisperCustomBot
services: cloud_whisper_fe: container_name: cloud_whisper_fe build: ../cloud-whisper-frontend command: npm run build environment: REACT_APP_API_URL: https://cloudwhisper-stage.wanclouds.ai/ REACT_APP_AUTH_REDIRECT_URI: https://cloudwhisper-stage.wanclouds.ai/users/wc/callback REACT_APP_WEBSOCKETS_STATUS: enabled REACT_APP_WEBSOCKETS_URL: wss://cloudwhisper-stage.wanclouds.ai/v1/whisper/websockets/whisper-inference REACT_APP_GOOGLE_AUTH_SSO_REDIRECTION_URI: https://cloudwhisper-stage.wanclouds.ai/ REACT_APP_GOOGLE_AUTH_SSO_STATUS: enabled REACT_APP_WANCLOUDS_AUTH_SSO_STATUS: disabled REACT_APP_PAYMENT_CALLBACK_URI_PATH: https://cloudwhisper-stage.wanclouds.ai REACT_APP_DRAAS_BOT_STATUS: 'enabled' REACT_APP_DRAAS_BOT_URI: https://cloudwhisper-stage.wanclouds.ai/ #THIS IS THE MAIN PAGE COMMENT OUT IF NOT NEEDED REACT_APP_AUTH_URL: https://accounts-stage.wanclouds.net/ ports: - "3000:3000" networks: - cloud_whisper_custom_bot cloud_whisper_web: container_name: cloud_whisper_web env_file: - "./.env.web" - "./.env.aws_configurations" - "./.env.anthropic_apikey" - "./.env.postgres" - "./.env.groq_apikey" - "./.env.base_bot_secrets" - "./.env.neo4j" restart: always build: context: . dockerfile: Dockerfile image: cloud_whisper_custom_web environment: BASE_BOT_URL: "https://wanclouds.ai/v1/whisper/bots/{BASE_BOT_ID}/qna_chats" AUTH_LINK: https://vpc-stage.wanclouds.net BACKEND_URI: https://cloudwhisper-stage.wanclouds.ai ports: - "8008:8008" expose: - "8008" depends_on: - postgresdb volumes: - ./app:/CloudWhisperCustomBot/app - ./migrations:/CloudWhisperCustomBot/migrations - ./cache:/CloudWhisperCustomBot/cache - ./cache/huggingface:/root/.cache/huggingface networks: - cloud_whisper_custom_bot nginx: image: wancloudsinc/doosra-vpc-nginx:latest container_name: nginx ports: - "80:80" - "443:443" volumes: - ./nginx/nginx.conf:/etc/nginx/nginx.conf networks: - cloud_whisper_custom_bot qdrant: image: qdrant/qdrant:v1.11.3 container_name: qdrant ports: - "6333:6333" - "6334:6334" volumes: - ./qdrant_data:/qdrant/storage networks: - cloud_whisper_custom_bot neo4j: image: neo4j:5.19.0 container_name: neo4j ports: - "7474:7474" - "7687:7687" volumes: - ./app:/CloudWhisperCustomBot/app/neo4jdata environment: - NEO4J_AUTH=neo4j/72054321 - NEO4J_PLUGINS=["apoc"] - NEO4J_apoc_export_file_enabled='true' - NEO4J_apoc_import_file_enabled='true' - NEO4J_apoc_import_file_use__neo4j__config='true' networks: - cloud_whisper_custom_bot discovery_worker: env_file: - "./.env.postgres" build: context: . dockerfile: ./Dockerfile image: cloud_whisper_custom_web entrypoint: ./scripts/discovery_worker.sh container_name: discovery_worker links: - redis depends_on: - redis - cloud_whisper_web - postgresdb environment: - NEO4J_URI=bolt://neo4j:7687 volumes: - .:/CloudWhisperCustomBot restart: always networks: - cloud_whisper_custom_bot cloud_whisper_worker: build: context: . dockerfile: ./Dockerfile image: cloud_whisper_custom_web entrypoint: ./scripts/worker.sh container_name: cloud_whisper_worker links: - redis - postgresdb depends_on: - redis volumes: - .:/CloudWhisperCustomBot restart: always networks: - cloud_whisper_custom_bot beat: build: context: . dockerfile: ./Dockerfile image: cloud_whisper_custom_web entrypoint: ./scripts/beat.sh container_name: beat links: - redis depends_on: - redis - cloud_whisper_web volumes: - .:/app/redis_data restart: always networks: - cloud_whisper_custom_bot redis: image: redis:latest container_name: redis networks: - cloud_whisper_custom_bot postgresdb: image: postgres:16 env_file: - "./.env.postgres" container_name: postgresdb environment: POSTGRES_USER: admin POSTGRES_PASSWORD: admin123 POSTGRES_DB: cloud_whisper PGDATA: /data/postgres ports: - "5432:5432" volumes: - dbdata:/data/postgres networks: - cloud_whisper_custom_bot pgadmin: image: dpage/pgadmin4 container_name: pgadmin4 restart: always ports: - "8888:80" environment: PGADMIN_DEFAULT_EMAIL: admin@wanclouds.net PGADMIN_DEFAULT_PASSWORD: admin123 PGADMIN_CONFIG_SERVER_MODE: 'False' volumes: - pgadmin-data:/var/lib/pgadmin networks: - cloud_whisper_custom_bot volumes: dbdata: driver: local pgadmin-data: driver: local redis_data: driver: local neo4jdata: driver: local networks: cloud_whisper_custom_bot:
docker-compose.yml
CloudWhisperCustomBot
# A generic, single database configuration. [alembic] # path to migration scripts. # Use forward slashes (/) also on windows to provide an os agnostic path script_location = migrations # template used to generate migration file names; The default value is %%(rev)s_%%(slug)s # Uncomment the line below if you want the files to be prepended with date and time # file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s # sys.path path, will be prepended to sys.path if present. # defaults to the current working directory. prepend_sys_path = . # timezone to use when rendering the date within the migration file # as well as the filename. # If specified, requires the python>=3.9 or backports.zoneinfo library. # Any required deps can installed by adding `alembic[tz]` to the pip requirements # string value is passed to ZoneInfo() # leave blank for localtime # timezone = # max length of characters to apply to the "slug" field # truncate_slug_length = 40 # set to 'true' to run the environment during # the 'revision' command, regardless of autogenerate # revision_environment = false # set to 'true' to allow .pyc and .pyo files without # a source .py file to be detected as revisions in the # versions/ directory # sourceless = false # version location specification; This defaults # to migrations/versions. When using multiple version # directories, initial revisions must be specified with --version-path. # The path separator used here should be the separator specified by "version_path_separator" below. # version_locations = %(here)s/bar:%(here)s/bat:migrations/versions # version path separator; As mentioned above, this is the character used to split # version_locations. The default within new alembic.ini files is "os", which uses os.pathsep. # If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas. # Valid values for version_path_separator are: # # version_path_separator = : # version_path_separator = ; # version_path_separator = space version_path_separator = os # Use os.pathsep. Default configuration used for new projects. # set to 'true' to search source files recursively # in each "version_locations" directory # new in Alembic version 1.10 # recursive_version_locations = false # the output encoding used when revision files # are written from script.py.mako # output_encoding = utf-8 sqlalchemy.url = driver://user:pass@localhost/dbname [post_write_hooks] # post_write_hooks defines scripts or Python functions that are run # on newly generated revision scripts. See the documentation for further # detail and examples # format using "black" - use the console_scripts runner, against the "black" entrypoint # hooks = black # black.type = console_scripts # black.entrypoint = black # black.options = -l 79 REVISION_SCRIPT_FILENAME # lint with attempts to fix using "ruff" - use the exec runner, execute a binary # hooks = ruff # ruff.type = exec # ruff.executable = %(here)s/.venv/bin/ruff # ruff.options = --fix REVISION_SCRIPT_FILENAME # Logging configuration [loggers] keys = root,sqlalchemy,alembic [handlers] keys = console [formatters] keys = generic [logger_root] level = WARN handlers = console qualname = [logger_sqlalchemy] level = WARN handlers = qualname = sqlalchemy.engine [logger_alembic] level = INFO handlers = qualname = alembic [handler_console] class = StreamHandler args = (sys.stderr,) level = NOTSET formatter = generic [formatter_generic] format = %(levelname)-5.5s [%(name)s] %(message)s datefmt = %H:%M:%S
alembic.ini
CloudWhisperCustomBot
[tool.ruff] line-length = 120 target-version = "py311" [tool.ruff.format] indent-style = "tab" quote-style = "double" [tool.poetry] name = "CloudWhisperCustomBot" version = "0.1.0" description = "Chat with your API in Natural Language" authors = ["syedfurqan <syedfurqan@wanclouds.net>"] [build-system] requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry.dependencies] python = "^3.9" aiohttp = "^3.9.1" urllib3 = "^2.1.0" transformers = "^4.36.2" langchain-community = "^0.0.12" loguru = "^0.7.2" fastapi = "^0.109.0" uvicorn = "^0.25.0" edgedb = "^1.8.0" python-dotenv = "^1.0.0" openapi-pydantic = "^0.4.0" torch = "^2.1.2" peft = "^0.7.1" langchain = "^0.1.0" [tool.poetry.group.dev.dependencies] pytest = "^7.4.4" ruff = "^0.1.13"
pyproject.toml
CloudWhisperCustomBot
aiohttp==3.9.0 alembic==1.9.0 alembic_postgresql_enum==1.3.0 anthropic==0.34.2 asyncpg==0.27.0 bcrypt==4.1.3 celery==5.3.1 celery-singleton==0.3.1 faiss-cpu==1.7.4 fastapi==0.104.1 httpx==0.27.0 langchain==0.0.351 langchain-community==0.0.3 langchain-core==0.1.1 loguru==0.7.2 llama-index==0.10.58 llama-index-vector-stores-qdrant==0.2.8 mailchimp-transactional==1.0.46 neo4j==5.21.0 openai==1.37.0 openapi-schema-pydantic==1.2.4 boto3==1.35.34 openapi_pydantic==0.3.2 pydantic==1.10.13 pydantic_core==2.4.0 python-dotenv==1.0.0 python-multipart==0.0.9 pycryptodome==3.20.0 qdrant-client==1.8.0 redis==4.5.4 scipy==1.11.1 sentence-transformers==2.3.1 sse-starlette==1.6.5 sqlalchemy-utils==0.41.2 sqlalchemy[asyncio]==2.0.31 uvicorn==0.24.0.post1 uvicorn[standard]==0.24.0.post1 groq==0.11.0
requirements.txt
CloudWhisperCustomBot
# CloudWhisperCustomBot
README.md
CloudWhisperCustomBot
from contextlib import asynccontextmanager from fastapi import APIRouter, FastAPI from fastapi.middleware.cors import CORSMiddleware from loguru import logger from qdrant_client import models from qdrant_client.http.exceptions import UnexpectedResponse from app.core.config import settings, setup_app_logging, neo4j_driver from app.web import api_router from app.worker.cypher_store import create_qdrant_client # Define root API router root_router = APIRouter() async def get_neo4j_session(driver): session = driver.session() return session async def check_qdrant_collection(): qd_client = create_qdrant_client(location=settings.qdrant.QDRANT_LOCATION, api_key=settings.qdrant.QDRANT_API_KEY, url=settings.qdrant.QDRANT_URL) collection_name = 'cypher_queries' try: qd_client.get_collection(collection_name) logger.info(f"Collection '{collection_name}' exists.") except UnexpectedResponse as e: logger.info(e) qd_client.create_collection( collection_name=collection_name, vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE), ) logger.info('qdrant collection successfully made') # Validate configuration on startup try: settings.base_bot.validate() except ValueError as e: logger.error(f"Configuration error: {e}") exit(1) # Asynchronous context manager for application startup @asynccontextmanager async def startup(app: FastAPI): setup_app_logging(config=settings) app.state.vector_store_index = settings.vector_store.create_vector_store_index() app.state.neo4j_session = await get_neo4j_session(driver=neo4j_driver) app.state.qdrant_collection = await check_qdrant_collection() yield # Create FastAPI application instance app = FastAPI( lifespan=startup, title="Cloud Whisper API", openapi_url=f"{settings.URL_PREFIX}/openapi.json", docs_url=settings.DOCS_URL ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Include routers app.include_router(api_router, prefix=settings.URL_PREFIX) app.include_router(root_router)
app/main.py
CloudWhisperCustomBot
from app.api_discovery.discovery import discover_api_data from app.worker.cypher_store import qdrant from app.worker.scheduled_tasks import track_and_update_activity_status __all__ = ["discover_api_data", "qdrant", "track_and_update_activity_status"]
app/__init__.py
CloudWhisperCustomBot
from datetime import timedelta from celery import Celery from celery.signals import worker_ready from celery_singleton import clear_locks from app.core.config import settings broker = settings.redis.REDIS_URL celery_app = Celery( 'whisper-celery', broker=broker, include=[ 'app.api_discovery', 'app.worker.cypher_store', 'app.worker' ], broker_connection_retry_on_startup=True ) celery_app.conf.beat_schedule = { 'run_discovery': { 'task': 'discover_api_data', 'schedule': timedelta(minutes=1), 'options': {'queue': 'redis_queue'} }, 'track_and_update_activity_task': { 'task': 'track_and_update_activity_status', 'schedule': timedelta(seconds=10), 'options': {'queue': 'redis_queue'} }, } @worker_ready.connect def unlock_all(**kwargs): clear_locks(celery_app)
app/redis_scheduler.py
CloudWhisperCustomBot
import asyncio import httpx import mailchimp_transactional as MailchimpTransactional from celery_singleton import Singleton from loguru import logger from mailchimp_transactional.api_client import ApiClientError from sqlalchemy import select from app.models import Profile, ActivityTracking from app.redis_scheduler import celery_app from app.redis_scheduler import celery_app as celery from app.web.common.db_deps import AsyncSessionLocal, get_db_session_async_context from ..api_discovery.utils import decrypt_api_key from ..core.config import settings from ..web.common.utils import update_activity_status def run_async(coro): loop = asyncio.get_event_loop() return loop.run_until_complete(coro) @celery_app.task(name="track_and_update_activity_status", base=Singleton, queue='redis_queue') def track_and_update_activity_status(): logger.info("<==============================================================================================>") logger.info("<==================================== INITIATING ACTIVITY TRACKING ====================================>") logger.info("<==============================================================================================>") async def async_operation(query): async with AsyncSessionLocal() as session: result = await session.execute(query) activities = result.scalars().all() activities = [{'status': activity.status, 'email': activity.email, 'resource_name': activity.resource_name, 'activity_type': activity.activity_type, "id": activity.id, "resource_type": activity.resource_type, "workflow_id": activity.workflow_id, "action_id": activity.action_id} for activity in activities] return activities async def profile_async_operation(query): async with AsyncSessionLocal() as session: result = await session.execute(query) users = result.scalars().all() users = [{'user_id': user.user_id, 'api_key': user.api_key, 'email': user.email, 'name': user.name, 'api_key_status': user.api_key_status or ''} for user in users] return users async def run_task(): query = select(ActivityTracking) user_query = select(Profile) activities = await async_operation(query) users = await profile_async_operation(user_query) if activities and users: for activity in activities: for user in users: if not user['api_key']: continue if user.get('api_key_status') == settings.api_key_status.STATUS_INVALID: continue logger.info(f"apikey: {user['api_key']}, user_id: {user['user_id']}") decrypted_api_key = decrypt_api_key(user['api_key']['API-KEY']) headers = {"API-KEY": decrypted_api_key} if activity["status"] in ActivityTracking.poling_statuses_list: async with httpx.AsyncClient() as http_client: if activity["activity_type"] == ActivityTracking.RESTORE and activity["resource_type"] in ActivityTracking.resource_types_list: resp = await http_client.get( f"{settings.web.AUTH_LINK}/v1/ibm/workspaces/{activity['workflow_id']}", headers=headers) else: resp = await http_client.get( f"{settings.web.AUTH_LINK}/v1/ibm/workflows/{activity['workflow_id']}", headers=headers) if resp and resp.status_code == 200: async with get_db_session_async_context() as db_session: await update_activity_status(activity_response=resp.json(), activity_id=activity["id"]) updated_activity= (await db_session.scalars(select(ActivityTracking).filter( ActivityTracking.workflow_id == activity['workflow_id']))).one_or_none() recipients = [{"email": activity["email"], "type": "to"}] if updated_activity.status == ActivityTracking.STATUS_C_SUCCESSFULLY: send_activity_email.delay(email_to=recipients, user_name=user['name'], resource_type=activity["resource_type"], resource_name=activity["resource_name"], activity_type=activity["activity_type"], success=True, whisper_url=settings.web.BACKEND_URI) if updated_activity.status in ActivityTracking.failure_statues: send_activity_email.delay(email_to=recipients, user_name=user['name'], resource_type=activity["resource_type"], resource_name=activity["resource_name"], activity_type=activity["activity_type"], success=False, whisper_url=settings.web.BACKEND_URI) else: logger.info("NO ACTIVITY FOUND IN DATABASE") asyncio.run(run_task()) @celery.task(name="send_activity_email", base=Singleton, queue='redis_queue') def send_activity_email(email_to: list, user_name: str = "", resource_type: str = "", resource_name: str = "", whisper_url: str = "", activity_type: str = "", success: bool = None) -> None: """ This function initializes the Mailchimp client and sends an email. """ # Handle special cases for activity type if activity_type.lower() == "backup": action_verb = "backed up" elif activity_type.lower() == "restore": action_verb = "restored" else: action_verb = f"{activity_type.lower()}ed" # default for other actions if success: subject = f"{activity_type.capitalize()} completed: {resource_type}" text = (f"Hey {user_name},\n\nYour {resource_type} ({resource_name}) has successfully been {action_verb}. " f"Please visit the following link for further details:\n{whisper_url}\n\nThanks,\nWanclouds Inc.") else: subject = f"{activity_type.capitalize()} failed: {resource_type}" text = ( f"Hey {user_name},\n\nUnfortunately, there was an issue with your {activity_type} attempt for" f" {resource_name}." f"Please check the details and retry or contact support for further assistance.\n" f"Visit {whisper_url} for more information.\n\nThanks,\nWanclouds Inc.") mailchimp = MailchimpTransactional.Client(settings.email.MANDRILL_API_KEY) message = { "from_email": settings.email.MAIL_USERNAME, "subject": subject, "text": text, "to": email_to } try: response = mailchimp.messages.send({"message": message}) logger.info('Email sent successfully: {}'.format(response)) except ApiClientError as error: logger.error('An exception occurred: {}'.format(error.text))
app/worker/scheduled_tasks.py
CloudWhisperCustomBot
import time from llama_index.core import VectorStoreIndex, ServiceContext from llama_index.core.ingestion import IngestionPipeline from llama_index.core.schema import TextNode from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.vector_stores.qdrant import QdrantVectorStore from loguru import logger from qdrant_client import QdrantClient from app.core.config import settings from app.redis_scheduler import celery_app def get_qdrant_pipeline(): qd_client = create_qdrant_client(location=settings.qdrant.QDRANT_LOCATION, api_key=settings.qdrant.QDRANT_API_KEY, url=settings.qdrant.QDRANT_URL) collection_name = "cypher_queries" vector_store = QdrantVectorStore( client=qd_client, collection_name=collection_name ) pipeline = IngestionPipeline( transformations=[ OpenAIEmbedding(api_key=settings.openai.OPENAI_API_KEY, embed_batch_size=10, model="text-embedding-3-small") ], vector_store=vector_store ) return pipeline def create_qdrant_client(location=None, url=None, api_key=None, timeout=None): # Use the provided arguments or fall back to the default configuration location = location or settings.qdrant.QDRANT_LOCATION url = url or settings.qdrant.QDRANT_URL api_key = api_key or settings.qdrant.QDRANT_API_KEY timeout = timeout or settings.qdrant.QDRANT_TIME_OUT # Directly instantiate the QdrantClient with the appropriate parameters return QdrantClient(url=url, api_key=api_key, timeout=timeout) if url and api_key else QdrantClient(location, timeout=timeout) def qdrant_retrieval(query, k): q_client = create_qdrant_client(location=settings.qdrant.QDRANT_LOCATION, api_key=settings.qdrant.QDRANT_API_KEY, url=settings.qdrant.QDRANT_URL) vector_store = QdrantVectorStore( client=q_client, collection_name='cypher_queries' ) llm = OpenAI(api_key=settings.openai.OPENAI_API_KEY) service_context = ServiceContext.from_defaults(llm=llm, embed_model=OpenAIEmbedding( api_key=settings.openai.OPENAI_API_KEY, embed_batch_size=10, model="text-embedding-3-small")) index = VectorStoreIndex.from_vector_store(vector_store=vector_store, service_context=service_context) retriever = index.as_retriever(similarity_top_k=k, **{"vector_store_query_mode": "text_search"}) docs_with_scores = retriever.retrieve(query) return docs_with_scores @celery_app.task(name="qdrant") def qdrant(question, cypher): nodes = [TextNode(text=question, metadata={"cypher": str(cypher.strip())}, text_template='{content}')] logger.info('<<<<<<<<<<<<<<<cypher and query>>>>>>>>>>>>>>>>>>>>') logger.info(nodes) logger.info('<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>') start_time = time.time() docs_with_scores = qdrant_retrieval(question, 1) end_time = time.time() execution_time = end_time - start_time logger.info('<<<<<<<<<<<<<<getting time>>>>>>>>>>>>>>>>>>>>') logger.info(execution_time) logger.info('<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>') logger.info('<<<<<<<<<<<<<<<docs_with_scores>>>>>>>>>>>>>>>>>>>>') logger.info(docs_with_scores) logger.info('<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>') if not docs_with_scores: logger.info('No similar documents found.') pipeline = get_qdrant_pipeline() pipeline.run(nodes=nodes) else: score = docs_with_scores[0].score logger.info('<<<<<<<<<<<<<<<SCORE>>>>>>>>>>>>>>>>>>>>') logger.info(score) logger.info('<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>') # Check if the similarity score is below the threshold if score < 0.9: logger.info("Similarity score below threshold. Adding new document to the vector store.") start_time1 = time.time() pipeline = get_qdrant_pipeline() pipeline.run(nodes=nodes) end_time1 = time.time() execution_time1 = end_time1 - start_time1 logger.info('<<<<<<<<<<<<<<<Time taken to store the query>>>>>>>>>>>>>>>>>>>>') logger.info(execution_time1) logger.info('<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>') else: logger.info("Similar cypher and query already exists in the vector database. Skipping save.")
app/worker/cypher_store.py
CloudWhisperCustomBot
from fastapi import APIRouter from app.web.chats import whisper_chats from app.web.clouds import whisper_clouds # from app.web.knowledge_graphs import whisper_knowledge_graphs from app.web.profiles import whisper_profiles from app.web.profiles import router from app.web.websockets import websockets_chats from app.web.activity_tracking import activity_tracking_n_recommendations api_router = APIRouter() api_router.include_router(whisper_chats, prefix="/chats", tags=["Chat"]) api_router.include_router(whisper_profiles, prefix="/profiles", tags=["Profile"]) api_router.include_router(router, prefix="/user/profile", tags=["Profile"]) # api_router.include_router(whisper_knowledge_graphs, prefix="/knowledge_graph", tags=["Knowledge Graph"]) api_router.include_router(websockets_chats, prefix="/websockets", tags=["Websockets Chat"]) api_router.include_router(whisper_clouds, prefix="/clouds", tags=["Clouds"]) api_router.include_router(activity_tracking_n_recommendations, prefix="/activity-tracking-n-recommendations", tags=["Activity Tracking & Recommendations"])
app/web/__init__.py
CloudWhisperCustomBot
from typing import Optional, Dict from pydantic import BaseModel from enum import Enum class UpdateAppearanceRequest(BaseModel): appearance: Optional[Dict] = None class OnboardingStatus(str, Enum): app_tour = "app_tour" action_tour = "action_tour" onboarded = "onboarded" class UpdateOnboardingStatusRequest(BaseModel): onboarding_status: OnboardingStatus profile_id: str
app/web/profiles/schemas.py
CloudWhisperCustomBot
from .api import whisper_profiles, router __all__ = ["whisper_profiles", "router"]
app/web/profiles/__init__.py
CloudWhisperCustomBot
from http import HTTPStatus import httpx from loguru import logger from fastapi import APIRouter, Depends, HTTPException from fastapi.responses import JSONResponse from sqlalchemy import select from app import models from app.api_discovery.utils import update_profile_with_vpcplus_api_key, decrypt_api_key from app.web.common.utils import update_appearance_in_db from app.web.profiles.schemas import UpdateAppearanceRequest, UpdateOnboardingStatusRequest from app.core.config import settings from app.web.common import db_deps, deps whisper_profiles = APIRouter() router = APIRouter() @whisper_profiles.post("/api-key", name="Add or Update VPC+ API Key") async def add_api_key(api_key: str, user=Depends(deps.authenticate_user)): headers = {"API-KEY": api_key} with httpx.Client() as http_client: resp = http_client.get(f"{settings.web.AUTH_LINK}/v1/users/api_key", headers=headers) if not resp or resp.status_code == 401: raise HTTPException( status_code=HTTPStatus.BAD_REQUEST, detail={"error": f"Invalid or Expired API Key '{api_key}' found."} ) api_key_json = resp.json() api_key_name = api_key_json.get("name") api_key_expiry = api_key_json.get("expires_at") profile = await update_profile_with_vpcplus_api_key( profile_id=user['id'], api_key=api_key, api_key_name=api_key_name, api_key_expiry=api_key_expiry ) api_key = profile.api_key return JSONResponse(content={"name": api_key['name'] or '', "expires_at": api_key['expires_at'] or ''}, status_code=200) @whisper_profiles.get("/api-key", name="Get VPC+ API Key details") async def get_api_key(user=Depends(deps.authenticate_user)): from app.models import Profile async with db_deps.get_db_session_async_context() as db_session: profile = (await db_session.scalars(select(Profile).filter(Profile.user_id == user["id"]))).one_or_none() if not profile: raise HTTPException(status_code=404, detail=f"User with ID {profile.user_id} not found") api_key = profile.api_key if not api_key: raise HTTPException(status_code=204, detail="API Key not found") decrypted_api_key = decrypt_api_key(api_key.get('API-KEY') or '') return JSONResponse(content={"name": api_key['name'] or '', "key": decrypted_api_key or '', "expires_at": api_key['expires_at'] or '', "last_updated_at": profile.last_updated_at.isoformat() if profile.last_updated_at else None }, status_code=200) @router.get("") async def get_user_details(profile=Depends(deps.authenticate_user)): return profile @router.patch("/appearance") async def update_user_appearance( setting: UpdateAppearanceRequest, profile=Depends(deps.authenticate_user) ): updated_profile = await update_appearance_in_db( profile=profile, appearance=setting.appearance ) if not updated_profile: raise HTTPException( status_code=HTTPStatus.BAD_REQUEST, detail=f"No User Profile with id {profile['uuid']} found" ) return updated_profile.to_json() @whisper_profiles.post("/onboarding", name="Update Onboarding Status") async def add_onboarding_status(request: UpdateOnboardingStatusRequest): profile_id = request.profile_id onboarding_status = request.onboarding_status async with db_deps.get_db_session_async_context() as db_session: profile = (await db_session.scalars(select(models.Profile).filter( models.Profile.user_id == profile_id))).one_or_none() if not profile: raise HTTPException(status_code=404, detail=f"Profile not found with id {profile_id}") profile.onboarding = onboarding_status await db_session.commit() logger.info(f"Updated profile with ID {profile_id} to onboarding status {profile.onboarding}.") return { "detail": "Onboarding status updated successfully.", "profile": profile.to_reference_json() }
app/web/profiles/api.py
CloudWhisperCustomBot
CREATED_AT_FORMAT_WITH_MILLI_SECONDS = '%Y-%m-%dT%H:%M:%S.%fZ'
app/web/common/consts.py
CloudWhisperCustomBot
ROUTE_TEMPLATE = """You are a team member of the 'Cloud Whisperer' project by Wanclouds, an expert Cloud Support Engineer specializing in cloud backups, disaster recovery, and migrations. Your expertise covers major public clouds (IBM Cloud, AWS, Google Cloud, Microsoft Azure) and Wanclouds' offerings. You assist potential customers with insights, queries, and guidance on backup, disaster recovery, and migration setups across these platforms. Your task is to analyze the user's latest query along with the chat history to select the appropriate tool(s) for handling the request. <available-tools> Below you have the description of the available tools, You always have to use one of the listed tools. 1. QnA_or_Schedule_a_call: Use this tool for all general inquiries, questions, and requests for information regarding the VPC+ product, cloud services, or migration topics. This includes inquiries about migration alerts, requirements, procedures, or general datacenter updates. Additionally, use this tool when the user wants to schedule a call with the Wanclouds team.. Examples: - "What is DRaaS?" - "Tell me about your migration offerings." - "How does cloud migration work?" - "What are the benefits of migrating to the cloud?" - "I received a notification about migrating from a specific datacenter, is this true?" - "Do I need to migrate my resources from a particular IBM datacenter?" - "What's the timeline for datacenter migrations?" - "How do I initiate the migration process for my classic infrastructure?" - "Can you help me move my workloads from the legacy datacenter to the new MZR?" - "I want to migrate from dal09 dc, can you help me move my workloads" - "I would like to schedule a call" - "I want to setup a meeting with wanclouds team" - "Can i discuss this over a call?" - "I need a call to discuss my migration requirements" - "How can i schedule a call with Wanclouds?" 2. Action: Use when the user intends to perform actions on the VPC+ product, such as creating, modifying, or deleting resources. Examples: - "Create a new VPC" - "Delete my cloud account" - "Modify my backup settings" - "I want to create a one-time backup of my IBM VPC." - "I want to set up scheduled backups for my IBM VPC." - "I want to back up my Cloud Object Storage (COS) bucket once." - "I want to schedule regular backups for my Cloud Object Storage (COS) bucket." - "I want to restore a VSI backup in the same region and VPC." - "I want to schedule backups for my IBM instance (VSI)." - "I want to restore a backup for my Cloud Object Storage (COS) bucket." - "I want to restore a backup for my IBM VPC." - "I want to create a one-time backup for my IBM IKS cluster." - "I want to set up scheduled backups for my IBM IKS clusters." 3. ClassicMigration: This tool SHOULD ONLY BE USED WHEN THE USER INTENDS TO PERFORM THE MIGRATION. This tool should not be used when the user is asking general help or wants to schedule a call related to migration. Examples: - "I want to migrate my resources from dal09 to dal10" - "I want to migrate my workloads from data center dal9" 4. DataExplorer: Use when retrieving or analyzing specific data that that includes resources that are idle or need rightsizing from the user's VPC+ deployment across supported cloud platforms. Examples: - "How many VPCs do I have?" - "Show my cloud accounts" - "show me my snapshots" - "show me my resources that are not backed up" - "show me the snapshots that are idle" - What are my idle resources? - Which services are costing me? - I want a report in my monthly spending. - What are the instance names that need to be rightsized? - Show me my recommendations. - What idle resource do I have? - What is the total cloud spending for the analyzed month? - How many cost optimization recommendations were identified? - What is the potential savings amount if the recommendations are implemented? - What are the top 5 services contributing to the cloud spending? - Which service category accounts for the largest portion of the total spending? - What percentage of total costs do Kubernetes and Bare Metal services combined represent? - How does the current month's spending compare to the previous month? - What is the percentage difference between the current month's spending and the 12-month average? - What types of older resources continue to incur costs? - What are the main recommendations for cost optimization? - Which service has the highest percentage of total spending? - What is the cost for Log Analysis services? - What is the overall trend in cloud spending over the past year? - What percentage of total spending is attributed to database services? - How many months of data are considered in the 12-month average? - What areas are suggested for potential cost savings without compromising operational efficiency? - "Backup recommendations." - "Give me a recommendation for backing up my infrastructure." - "Recommend which resources need backup in my IBM cloud." - "Show me my backup recommendations." - "I need a backup suggestion for my IBM resources." - "Can you identify any resources that should be backed up immediately?" </available-tools> <tool-selection-process> Use these instruction for the Tool Selection Process: 1. Analyze the complete user query (chat history + latest query). 2. Identify key phrases or intentions that align with specific tools. 3. For ANY migration-related queries that involve questions, notifications, or general information, always use QnA_or_Schedule_a_call. 5. Consider the user's expertise level based on their language and questions. 6. If multiple tools seem applicable, prioritize based on the primary intention of the query. 7. For complex queries, consider breaking them down into subtasks and selecting tools for each. 9. Always select one tool from the tools provided to you. </tool-selection-process> <chat_history> {chat_history} </chat_history> <user_query> {query} </user_query> Please provide your response in the following format: complete_user_query: [Combine the chat history and the user's latest query to form a standalone user query including all the information provided by the user in user tone like user is saying] Tool: [Select 'QnA_or_Schedule_a_call', 'DataExplorer', 'Schedule_call' or 'Action' after determining the latest intent of the user from the chat history and user's latest response] Explanation: [Provide a clear explanation for your tool selection, referencing specific parts of the user's query and chat history that led to your decision] 1. Specific keywords or phrases from the user's query that influenced your decision 2. How the selected tool(s) best address the user's primary intention 3. If applicable, why you chose one tool over another for similar use cases 4. How you considered the user's expertise level in your selection] If the query is ambiguous or requires clarification, state this in your explanation and suggest what additional information would be helpful to make a more accurate tool selection.""" NARROW_DOWN_INTENT = """You are a team member of the 'Cloud Whisperer' project by Wanclouds, your job is to detects intent from user queries. Your task is to classify the user's intent based on their query. Below are the possible intents with brief descriptions. Use these to accurately determine the user's goal, and output only the intent topic. When a user starts a conversation or asks a question, follow these steps: <instructions> 1. Greet new users warmly to establish rapport if this is user first message and chat history is empty. 2. Review the user's chat history and latest request thoroughly. 3. Determine if the request matches any specific actions in the "available actions" section. 4. If the request is unclear or could match multiple actions: - Acknowledge any ambiguity politely. - Engage with the user to gather more details. - Present potential matching options from the actions list. 5. If the user's request seems to be outside the scope of the available actions: - Politely inform the user that the requested action is not currently available. - Offer to assist with any of the actions from the existing list. 6. Maintain clear, concise, and professional communication throughout. 7. When a single intent is found, set 'Task Finished' to true and do not ask any further questions. 8. Only set 'Task Finished' to true when a single, specific action is identified. 9. Ensure 'Task Finished' remains False if multiple actions could potentially match the user's intent, prompting further clarification. 10. When a request could match multiple actions, list all potential options and ask the user to specify. 11. Do not ask for additional details beyond what's needed to identify the action. 12. Before finalizing an intent, check the Coming Soon actions for any similar or related intents. 13. If a user's query could match both an available action and a Coming Soon action, do not narrow down to a single intent. Instead, list both possibilities and set 'Task Finished' to false. 14. When a user's query is ambiguous (e.g., doesn't specify between one-time or scheduled actions), do not assume. List all relevant intents and set 'Task Finished' to false. 15. Be cautious about inferring details not explicitly stated by the user. When in doubt, it's better to ask for clarification than to narrow down incorrectly. </instructions> <cloud_whisperer_introduction> 'Cloud Whisperer', by Wanclouds, is an expert Cloud Support Engineer specializing in cloud backups, disaster recovery, and migrations. Your expertise covers major public clouds (IBM Cloud, AWS, Google Cloud, Microsoft Azure) and Wanclouds' offerings. You assist potential customers with insights, queries, and guidance on backup, disaster recovery, and migration setups across these platforms. </cloud_whisperer_introduction> <actions> Available actions: 1. IBM Classic or Legacy Data Center Migration: As part of IBM Datacenter Modernization initiative, IBM is closing older and classic legacy datacenters and migrating customers to the new data centers or multi-zone regions (also called MZR). Dal09 or Dal9 or Dallas 9 is currently affected and customers will have to move to another datacenter or VPC. IBM Cloud has partnered with Wanclouds to assist with these migrations. Customers will need to migrate servers including both Bare Metal or physical servers, virtual servers or machines called VSIs or VMs, Firewalls, Loadbalancers. 2. Create one-time IBM VPC backup: One-time backup of an IBM VPC blueprint, including all configurations and architecture details. 3. Create scheduled IBM VPC backup: Set up periodic backups of an IBM VPC blueprint, including all configurations and architecture details with customizable backup policies policies. 4. Restore IBM VPC backup: Restore IBM VPC backups. 5. Create one-time Cloud Object Storage (COS) bucket backup: One-time backup of Cloud Object Storage (COS) buckets. 6. Create scheduled Cloud Object Storage (COS) bucket backup: Set up periodic backups for IBM COS buckets with customizable policies. 7. Restore Cloud Object Storage (COS) bucket backup: Restore IBM Cloud Object Storage (COS) bucket backups. 8. Create one-time IBM IKS cluster backup: One-time backup of IBM Kubernetes Service (IKS) clusters. 9. Create scheduled IBM IKS cluster backup: Set up periodic backups for IBM IKS clusters with customizable policies. 10. Create scheduled IBM instance (VSI) backup: Set up periodic backups for an IBM instance with policies. 11. Restore IBM VSI backup in same region and VPC: Restore IBM VSI backup in same region and VPC. 12. Restore IBM VSI backup in different region and VPC: Restore IBM VSI backup in different region and VPC 13. Restore IKS backup in an existing cluster: Restore IKS backup in an existing IKS cluster. 14. Restore IBM IKS Cluster backup in existing vpc: Restore IBM IKS Cluster backup in existing VPC. </actions> <coming soon actions> Coming soon actions: 1. Restore VSI backup using custom template: Restore VSI backup using custom template meaning the user can restore VSI backup in different vpc in same or different region. 2. Create one-time IBM Virtual Server Instance (VSI) Backup: One-time backup of IBM Virtual Server instances. </coming soon actions> <chat_history> {chat_history} </chat_history> <user_query> {query} </user_query> Please strictly adhere to the following template format: Thought: [Take a moment to relax and start analyzing the chat history and the latest user query. Find out user request matches to which Actions and Coming Soon Actions. Do not make assumptions] Intent Narrowed: [Action(s) from action list, coming soon list that can be narrowed down based on the user chat] Task Analysis: [Analyze "Intent Narrowed" section carefully if there are more than one action narrowed down then mark task as false, if there is only action narrowed down and its from coming soon then again mark task as false otherwise plan out yourself] Task Finished: [Mark it True/False only if action narrowed down to one of the ActionsList] Response: {response}""" CONFIDENCE_SCORING_BOT = """You are a confidence scoring assistant for intent classification, a team member of the 'Cloud Whisperer' project by Wanclouds. Your job is to analyze the conversation, the single narrowed-down intent provided by the intent narrowing bot, along with the intents list and coming soon actions. You will assign a confidence score based on how well the query and context match the intent. <Instructions> 1. Carefully read the conversation, list of Intents, coming soon actions, and the narrowed-down intent. 2. Analyze the semantic similarity between the query, chat context, and the intent description. 3. Consider any specific keywords or phrases that strongly indicate the particular intent. 4. Assess how well the intent aligns with the overall conversation context. 5. Check if there are any similar or conflicting actions in the Coming Soon list. 6. Assign a confidence score between 0 and 100 for the narrowed-down intent. 7. Provide a brief explanation for your scoring. 8. Use the following confidence levels: - High: 90-100 - Moderate: 70-89 - Low: 0-69 9. If there's a similar action in Coming Soon, reduce the confidence score appropriately and highlight this in your explanation. 10. If the user's query is ambiguous or could match multiple intents (including Coming Soon actions), assign a lower confidence score and recommend clarification. </Instructions> <cloud_whisperer_introduction> 'Cloud Whisperer', by Wanclouds, is an expert Cloud Support Engineer specializing in cloud backups, disaster recovery, and migrations. Your expertise covers major public clouds (IBM Cloud, AWS, Google Cloud, Microsoft Azure) and Wanclouds' offerings. You assist potential customers with insights, queries, and guidance on backup, disaster recovery, and migration setups across these platforms. </cloud_whisperer_introduction> <conversation> Convertion: {chat_history}<conversation <intents_list> List of Intents that were provided to narrowing down bot: 1. IBM Classic or Legacy Data Center Migration: As part of IBM Datacenter Modernization initiative, IBM is closing older and classic legacy datacenters and migrating customers to the new data centers or multi-zone regions (also called MZR). Dal09 or Dal9 or Dallas 9 is currently affected and customers will have to move to another datacenter or VPC. IBM Cloud has partnered with Wanclouds to assist with these migrations. Customers will need to migrate servers including both Bare Metal or physical servers, virtual servers or machines called VSIs or VMs, Firewalls, Loadbalancers. 2. Create one-time IBM VPC backup: One-time backup of an IBM VPC, including all configurations and resources. 3. Create scheduled IBM VPC backup: Set up periodic backups for an IBM VPC with customizable policies. 4. Restore IBM VPC backup: Restore IBM VPC backups. 5. Create one-time Cloud Object Storage (COS) bucket backup: One-time backup of Cloud Object Storage (COS) buckets. 6. Create scheduled Cloud Object Storage (COS) bucket backup: Set up periodic backups for IBM COS buckets with customizable policies. 7. Restore Cloud Object Storage (COS) bucket backup: Restore IBM Cloud Object Storage (COS) bucket backups. 8. Create one-time IBM IKS cluster backup: One-time backup of IBM Kubernetes Service (IKS) clusters. 9. Create scheduled IBM IKS cluster backup: Set up periodic backups for IBM IKS clusters with customizable policies. 10. Create scheduled IBM instance (VSI) backup: Set up periodic backups for an IBM instance with policies. 11. Restore IBM VSI backup in same region and VPC: Restore IBM VSI backup in same region and VPC. 12. Restore IBM VSI backup in different region and VPC: Restore IBM VSI backup in different region and VPC 13. Restore IKS backup in an existing cluster: Restore IKS backup in an existing IKS cluster. 14. Restore IBM IKS Cluster backup in existing vpc: Restore IBM IKS Cluster backup in existing VPC. </intents_list> <coming soon actions> Coming soon actions: 1. Restore VSI backup using custom template: Restore VSI backup using custom template meaning the user can restore VSI backup in different vpc in same or different region. 2. Create one-time IBM Virtual Server Instance (VSI) Backup: One-time backup of IBM Virtual Server instances. </coming soon actions> <intent_narrowed_down> Narrowed Intent: {narrowed_intent} </intent_narrowed_down> Please respond in the following format: Analysis: [Take a moment to relax and start carefully analyzing the conversation, intent narrowed, intent list and coming soon actions. Highlight any ambiguities or conflicts with Coming Soon actions. If the user's query is ambiguous or could match multiple intents like (Restore VPC Backup & Restore IKS Cluster in existing VPC), assign a lower confidence score and recommend clarification] Confidence Score: [Score] - [Brief explanation, including any impact from Coming Soon actions] Overall Confidence: [High/Moderate/Low] Recommendation: [Whether to proceed without confirmation, use implicit confirmation, ask for explicit confirmation, or seek clarification on specific points]""" NARROW_DOWN_MIGRATION_INTENT = """ You are a team member of the 'Cloud Whisperer' project by Wanclouds, your job is to detects intent from user queries. Your task is to classify the user's intent based on their query. Below are the possible intents with brief descriptions. Use these to accurately determine the user's goal, and output only the intent topic. When a user starts a conversation or asks a question, follow these steps: <instructions> 1. Greet new users warmly to establish rapport if this is user first message and chat history is empty. 2. Review the user's chat history and latest request thoroughly. 3. Determine if the request matches any specific actions in the "available actions" section. 4. If the request is unclear or could match multiple actions: - Acknowledge any ambiguity politely. - Engage with the user to gather more details. - Present potential matching options from the actions list. 5. If the user's request seems to be outside the scope of the available actions: - Politely inform the user that the requested action is not currently available. - Offer to assist with any of the actions from the existing list. 6. Maintain clear, concise, and professional communication throughout. 7. When a single intent is found, set 'Task Finished' to true and do not ask any further questions. 8. Only set 'Task Finished' to true when a single, specific action is identified. 9. Ensure 'Task Finished' remains False if multiple actions could potentially match the user's intent, prompting further clarification. 10. When a request could match multiple actions, list all potential options and ask the user to specify. 11. Do not ask for additional details beyond what's needed to identify the action. </instructions> <cloud_whisperer_introduction> 'Cloud Whisperer', by Wanclouds, is an expert Cloud Support Engineer specializing in cloud backups, disaster recovery, and migrations. Your expertise covers major public clouds (IBM Cloud, AWS, Google Cloud, Microsoft Azure) and Wanclouds' offerings. You assist potential customers with insights, queries, and guidance on backup, disaster recovery, and migration setups across these platforms. </cloud_whisperer_introduction> <actions> Available actions: 1. START IBM Classic or Legacy Data Center Migration: In this the user can start the pre migration step of selecting their workloads and then scheduling a call with the Wanclouds Migration Team. 2. Schedule a meeting for IBM Classic or Legacy Data Center Migration: In this the user can directly schedule a meeting and then discuss everything related to migration on call with the Wanclouds Migration Team. </actions> <examples> Suppose the Actions are: 1. Enable email notifications: This Action enables email notification of your alerts. As soon as you there is an alert, you'll get email. 2. Enable SMS notifications: This Action enables sms notification of your alerts. As soon as you there is an alert, you'll get sms. 3. Disable email notifications: This Action disables email notification of your alerts. 4. Disable SMS notifications: This Action disables sms notification of your alerts. and coming soon actions are 1. change email password <example0> <chat_history> </chat_history> <user_query> I want to change my email password. </user_query> You should respond as: Thought: This is the user's first message and chat history is empty, so a greeting is appropriate. The user query doesn't match any existing actions in the available list. It is categorized under "Coming Soon" actions. Intent Narrowed: - Change Email Password Task Analysis: This task is currently under development and is not available at the moment. Task Finished: False Response: Hello and welcome! I'm here to assist you. Regarding your request to change your email password, this feature is currently being developed and will be available soon. Please check back later for updates. In the meantime, if you need any assistance with other features, feel free to ask! <example1> <chat_history> </chat_history> <user_query> I want to turn on notifications. </user_query> You should respond as: Thought: This is the user's first message and chat history is empty, so a greeting is appropriate. The user wants to enable notifications, but it's not clear if they want email or SMS notifications. Intent Narrowed: - Enable email notifications - Enable SMS notifications Task Analysis: The task is not finished as we have more than one intent Task Finished: False Response: Hello and welcome! I'm here to help you with turning on notifications. Could you please specify whether you'd like to enable email notifications or SMS notifications? <example2> <chat_history> <user>I want to turn on notifications.</user> <assistant>Hello and welcome! I'm here to help you with turning on notifications. Could you please specify whether you'd like to enable email notifications or SMS notifications?</assistant> </chat_history> <user_query> I prefer email notifications. </user_query> You should respond as: Thought: The user has clarified that they want to enable email notifications. This is not their first message, so no greeting is needed. Intent Narrowed: Enable email notifications Task Analysis: The task can now be marked as finished as there is a single intent in the Narrow Down section Task Finished: True Response: Sure, I can help you with that. <example3> <chat_history> <user>How do I manage my account settings?</user> <assistant>I'd be happy to help you with managing your account settings. Could you please specify which particular setting you'd like to adjust? For example, we can help with notification preferences.</assistant> <user>Oh, I see. In that case, I'd like to adjust my notifications.</user> <assistant>Certainly! I can help you with adjusting your notifications. Would you like to enable or disable notifications? And do you prefer email or SMS notifications?</assistant> </chat_history> <user_query> Hello, I want to turn on notifications. Turn on notifications for sms service </user_query> You should respond as: Thought: The user wants to enable SMS notifications. This is not their first message, so no greeting is needed. Intent Narrowed: Enable SMS notifications Task Analysis: The task can now be marked as finished as there is a single intent in the Narrow Down section Task Finished: True Response: Certainly, I can help you enable SMS notifications for your alerts. <example4> <chat_history> <user>Tell me about your product</user> <assistant>Hello, I'm your support agent for ABC product....</assistant> </chat_history> <user_query> Can you send an email to Ali that you need to attend a meeting with customer </user_query> You should respond as: Thought: The user wants to send an email which is not in actionslist or coming soon, so it's out of context. This is not their first message, so no greeting is needed. Intent Narrowed: [] Task Analysis: Task should be marked as False as user query is out of context Task Finished: False Response: I apologize, but I'm not able to send emails on your behalf. My capabilities are limited to helping with specific actions related to our product, such as managing notifications. Is there anything related to our product that I can assist you with? </example4> </examples> <chat_history> {chat_history} </chat_history> <user_query> {query} </user_query> Please strictly adhere to the following template format: Thought: [Analyze the chat history and the latest user query in relation to the Actions/ComingSoon. Do not make assumptions] Intent Narrowed: [Action(s) from action list that are narrowed down based on the user chat] Task Analysis: [Analyze "Intent Narrowed" section carefully] Task Finished: [Mark it True/False only if action narrowed down to one of the ActionsList] Response: [Your response to the user, including any necessary questions or confirmations] """ KNOWLEDGE_GRAPH_PROMPT = """ You are a helpful assistant tasked with extracting 'NEW' Nodes and relationships from the Open API spec of API responses for the neo4j knowledge graph. It's crucial to avoid duplicates from the existing nodes. ###Example1: ``` "Existing Nodes":["CarVault": "A mix of cars gathered from our database"] *existing node description is same as vehicleCollection thats why it was not included in list of nodes in response. input :"200": { "content": { "application/json": { "schema": { "properties": { "vehicleCollection": { "type": "array", "items": { "type": "object", "properties": { "vehicleId": { "type": "string", "description": "Unique identifier for the vehicle." }, "make": { "type": "string", "description": "Manufacturer of the vehicle." }, "model": { "type": "string", "description": "Model of the vehicle." }, "year": { "type": "integer", "description": "Manufacturing year of the vehicle." }, "owner": { "type": "object", "properties": { "userId": { "type": "string", "description": "Identifier for the owner of the vehicle." }, "name": { "type": "string", "description": "Name of the vehicle owner." }, "contactDetails": { "type": "object", "properties": { "emailAddress": { "type": "string", "description": "Email address of the owner." }, "phoneNumber": { "type": "string", "description": "Phone number of the owner." } }, "required": ["emailAddress", "phoneNumber"] } }, "required": ["userId", "name", "contactDetails"] } }, "required": ["vehicleId", "make", "model", "year", "owner"] } }, "pagination": { "type": "object", "properties": { "current": { "type": "integer", "description": "Current page of the vehicle collection." }, "perPage": { "type": "integer", "description": "Number of vehicle records per page." }, "total": { "type": "integer", "description": "Total number of vehicle records available." } }, "required": ["current", "perPage", "total"] } }, "required": ["vehicleCollection", "pagination"] } } }, "description": "Successful response" } } Response should be: "Nodes": { "Vehicle": "A single vehicle, typically associated with an owner.", "Owner": "The individual or entity that legally possesses the vehicle.", "ContactDetails": "Contact information of the vehicle owner, including email and phone number.", "Pagination": "Information about the pagination of the vehicle list." }, "Relationships": [ {"source": "Vehicle", "target": "Owner", "relationship": "OWNED_BY"}, {"source": "Owner", "target": "ContactDetails", "relationship": "HAS_CONTACT_INFO"} ], "Location": { "VehicleCollection": "vehicleCollection[*]", "Vehicle": "vehicleCollection[*]", "Owner": "vehicleCollection[*].owner", "ContactDetails": "vehicleCollection[*].owner.contactDetails", "Pagination": "pagination" }, "Attribute": { "Vehicle": ["vehicleId","make","model","year"] "Owner": ["userId","name"] "ContactDetails": ["emailAddress","PhoneNumber"] "Pagination": ["current","perPage","total"] } } ``` "Existing Nodes": {nodes} Instructions: 1. Begin by analyzing previously used nodes and successful responses in the API spec. 2. Examine existing node descriptions. If the node already exists, utilize it without creating a duplicate in your response. 3. Do not create any aliases nodes in your response that already exist in "Existing Nodes". 3. Only append new nodes found in the API spec. 4. Ensure CamelCase naming convention for new nodes. 5. Do not omit any nodes. 6. It's crucial to ensure that the descriptions for each parameter highlight their intrinsic properties rather than just their relation to the resources. Response Format: - Nodes: [Python dictionary listing all significant nodes in the Open API spec response payload with their brief descriptions. Do not omit any node.] - Relationships: [Python List containing all meaningful relationships in the Open API specs. Use dictionaries with 'source', 'target', and 'relationship' keys.] - Location: {Python dictionary mapping nodes to their locations in the JSON structure of the API's successful response schema. Use '[*]' if the location is a list. Separate location keys with '.'} - Attribute: {Python dictionary associating nodes with their attribute keys.} Failure to include any node, relationship, or location will result in missing connections in the data. """ VPC_COST_OPTIMIZATION_TEMPLATE = """ The tool response has returned json data having information of: 1) Cloud service cost: per service cost details of the selected cloud account 2) Cost trends: actions taken from the recommendation and cost saved from those recommendations <tool_response> <cost-by-services-json> Here is the cloud service cost json: {service_cost} </cost-by-services-json> <cost-trends> Here are the cost trends from last 12 months: {cost_trend_payload} </cost-trends> </tool_response> Now take a moment to relax. Understand the user and find out required answer from response returned""" SOFTLAYER_INFRA_ASSESSMENT_PROMPT = """ The tool response has returned json data having information of: 1) IBM Softlayer Cloud Resources assessment data: include the high-level assessments of classic infrastructures and identifying potential cost optimization opportunities for migration to IBM Cloud VPC. Provided IBM Softlayer Infrastructure Data: <ibm-softlayer-cloud-resources-assessment> The report should be based on the following IBM Softlayer Cloud Resources assessment data: {ibm_softlayer_cloud_payload} </ibm-softlayer-cloud-resources-assessment> Analyzing the user query: '{query}' analyze the JSON data above and generate a response accordingly. Important: All necessary data has already been provided, so please proceed with analyzing and generating the report without requesting further details. """
app/web/common/templates.py
CloudWhisperCustomBot
import aiohttp import asyncio import httpx import json from fastapi import HTTPException from loguru import logger from sqlalchemy import select, update from sqlalchemy.orm import selectinload from app.api_discovery.utils import update_profile_with_vpcplus_api_key from app.core.config import settings from app.web.common import db_deps from app import models from app.models.activity_tracking import ActivityTracking async def api_key_msg_event_generator(api_key_msg, chat_id): from app.models import Message, Chat lines = api_key_msg.split("\n") assistant_message = "" for line in lines: chunk = line assistant_message += chunk + "\n" yield {"event": "message", "data": line} async with db_deps.get_db_session_async_context() as db_session: chat = (await db_session.scalars(select(Chat).filter(Chat.id == chat_id))).one_or_none() chat_message = Message(msg_type=Message.TYPE_ASSISTANT, content=assistant_message, msg_category=Message.TYPE_QNA) chat_message.chat = chat db_session.add(chat_message) await db_session.commit() yield {"event": "chat_info", "data": json.dumps(chat.to_reference_json())} async def user_msg_event_generator(response_for_user, chat_id): from app.models import Message, Chat lines = response_for_user.split("\n") assistant_message = "" for line in lines: chunk = line.lstrip() assistant_message += chunk + "\n" yield {"event": "message", "data": line} async with db_deps.get_db_session_async_context() as db_client: chat = (await db_client.scalars(select(Chat).filter(Chat.id == chat_id))).one_or_none() chat_message = Message(msg_type=Message.TYPE_ASSISTANT, content=assistant_message, msg_category=Message.TYPE_QNA) chat_message.chat = chat db_client.add(chat_message) await db_client.commit() yield {"event": "chat_info", "data": json.dumps(chat.to_reference_json())} async def fetch_and_update_vpcplus_api_key(authorization, user_id): headers = {"Authorization": f"Bearer {authorization.credentials}"} try: async with httpx.AsyncClient(timeout=60.0) as http_client: resp = await http_client.get(f"{settings.web.AUTH_LINK}/v1/users/api_key", headers=headers) if resp.status_code == 200: api_key_json = resp.json() api_key = api_key_json.get("key") api_key_name = api_key_json.get("name") api_key_expiry = api_key_json.get("expires_at") await update_profile_with_vpcplus_api_key( profile_id=user_id, api_key=api_key, api_key_name=api_key_name, api_key_expiry=api_key_expiry if api_key_expiry else None ) else: logger.error(f"Failed to fetch API key: {resp.status_code} {resp.text}") except httpx.HTTPStatusError as e: logger.error(f"HTTP error occurred: {str(e)}") except httpx.RequestError as e: logger.error(f"Request error occurred: {str(e)}") except httpx.TimeoutException as e: logger.error(f"Request timed out: {str(e)}") except Exception as e: logger.error(f"An unexpected error occurred: {str(e)}") async def update_appearance_in_db(profile, appearance): async with db_deps.get_db_session_async_context() as db_session: query = select(models.Profile).options(selectinload(models.Profile.chats)).filter_by(id=profile['uuid']) result = await db_session.execute(query) profile_setting = result.scalars().first() if profile_setting is None: profile_setting = models.Profile(appearance=appearance, user_id=profile["id"], name=profile["name"], email=profile["email"]) profile_setting.profile_id = profile['uuid'] db_session.add(profile_setting) if appearance is not None: profile_setting.appearance = appearance await db_session.commit() return profile_setting async def update_activity_tracking(activity_response, chat_id, action_id, user_id=None): import json logger.info(f"Activity Response: {activity_response}") # Parse the activity_response string into a dictionary try: activity_response = json.loads(activity_response) except json.JSONDecodeError as e: logger.error(f"Failed to parse activity_response: {e}") return try: async with db_deps.get_db_session_async_context() as db_session: result = await db_session.scalars(select(models.Profile).filter(models.Profile.user_id == user_id)) profile = result.one_or_none() try: if activity_response.get("reporting_type") == "WorkflowsWorkspace": resource_type = activity_response.get("fe_request_data").get("resource_type") resource_name = activity_response.get("fe_request_data").get("backup_name") status = activity_response["status"] activity_type = activity_response.get("workspace_type") if activity_response.get("workspace_type") == "TYPE_RESTORE": activity_type = "RESTORE" activity_tracking = ActivityTracking( workflow_id=activity_response["id"], user_id=user_id, resource_name=resource_name, fe_request_data=activity_response.get("fe_request_data"), resource_type=resource_type, activity_type=activity_type, created_at=activity_response["created_at"], summary=f"Restoration of {resource_name} is {status}", email=profile.email, status=status, started_at=activity_response.get("started_at"), completed_at=activity_response.get("completed_at"), action_id=action_id, chat_id=chat_id ) else: activity_type = activity_response["workflow_nature"] resource_type = activity_response["resource_type"] if resource_type == "IBMKubernetesCluster" and activity_type == "CREATE": activity_type = "RESTORE" else: activity_type = activity_response["workflow_nature"] activity_tracking = ActivityTracking( workflow_id=activity_response["id"], user_id=user_id, resource_name=activity_response["workflow_name"], fe_request_data=activity_response.get("fe_request_data"), resource_type=activity_response["resource_type"], activity_type=activity_type, created_at=activity_response["created_at"], summary=activity_response["summary"], email=activity_response.get("email") or profile.email, status=activity_response["status"], started_at=activity_response.get("started_at"), completed_at=activity_response.get("completed_at"), action_id=action_id, chat_id=chat_id ) except KeyError as e: logger.error(f"Missing key in activity_response: {e}") return except Exception as e: logger.error(f"Error while constructing activity_tracking: {e}") return activity_tracking.profile = profile db_session.add(activity_tracking) await db_session.commit() logger.info("Activity Tracked Successfully") except Exception as e: logger.error(f"Unexpected error in update_activity_tracking: {e}") async def update_activity_status(activity_response, activity_id): from app.models import ActivityTracking logger.info(f"Activity Response: {activity_response}") async with db_deps.get_db_session_async_context() as db_session: activity = (await db_session.scalars( select(models.ActivityTracking) .filter(models.ActivityTracking.id == activity_id) )).one_or_none() if not activity: return status = activity_response["status"] activity_query = await db_session.execute( update(ActivityTracking) .where(ActivityTracking.id == activity_id) .values(status=status, completed_at=activity_response.get('completed_at'), summary=activity_response.get("summary") or f"Restoration of {activity.resource_name} is {status}") .returning(ActivityTracking) ) updated_activity = activity_query.scalars().first() await db_session.commit() return updated_activity # Custom context manager for making requests and handling errors class HttpRequestHandler: def __init__(self, session): self.session = session async def post(self, url, headers): try: async with self.session.post(url, headers=headers) as response: if response.status != 202: raise HTTPException(status_code=response.status, detail=f"Error: {await response.text()}") return await response.json() except aiohttp.ClientError as e: raise HTTPException(status_code=500, detail=f"HTTP request failed: {str(e)}") async def get(self, url, headers): try: async with self.session.get(url, headers=headers) as response: if response.status != 200: raise HTTPException(status_code=response.status, detail=f"Error: {await response.text()}") return await response.json() except aiohttp.ClientError as e: raise HTTPException(status_code=500, detail=f"HTTP request failed: {str(e)}") # Async function to start the workflow async def start_workflow(headers, cloud_account_id, session): COST_OPTIMIZATION_REPORT_URL = settings.web.AUTH_LINK + f"/v1/softlayer/recommendations/{cloud_account_id}" # Make POST request to start the workflow handler = HttpRequestHandler(session) response = await handler.post(COST_OPTIMIZATION_REPORT_URL, headers) # Extract and return workflow ID workflow_id = response.get("id") if not workflow_id: raise HTTPException(status_code=404, detail="Workflow ID not found in response.") return workflow_id # Async function to poll workflow status with retry mechanism and timeout async def poll_workflow_status(workflow_id, headers, session, max_poll_time=60, polling_interval=5, max_retries=5): WORKFLOW_STATUS_URL = settings.web.AUTH_LINK + f"/v1/ibm/workflows/{workflow_id}" handler = HttpRequestHandler(session) retries = 0 while retries <= max_retries: try: # Poll workflow status workflow_data = await handler.get(WORKFLOW_STATUS_URL, headers) # Check if workflow is completed if workflow_data.get("status") == "COMPLETED_SUCCESSFULLY": return workflow_data.get("resource_json", {}) except HTTPException as e: # Retry logic with exponential backoff retries += 1 if retries > max_retries: raise HTTPException(status_code=500, detail=f"Failed after {max_retries} retries: {str(e)}") await asyncio.sleep(2 ** retries) # Exponential backoff # Wait for polling interval await asyncio.sleep(polling_interval) # If the polling timed out, return in-progress status return {"status": "in progress", "message": "Workflow is still running. Check back later.", "workflow_id": workflow_id} # Main function to execute workflow and retrieve cost response async def get_softlayer_cloud_cost_response(headers, cloud_account_id, max_poll_time=60, polling_interval=5, max_retries=5): async with aiohttp.ClientSession() as session: try: # Step 1: Start the workflow workflow_id = await start_workflow(headers, cloud_account_id, session) # Step 2: Poll for workflow completion workflow_result = await asyncio.wait_for( poll_workflow_status(workflow_id, headers, session, max_poll_time=max_poll_time, polling_interval=polling_interval, max_retries=max_retries), timeout=max_poll_time ) # Return workflow result return workflow_result except asyncio.TimeoutError: return {"status": "in progress", "message": "Workflow polling timed out.", "workflow_id": workflow_id} except HTTPException as e: raise HTTPException(status_code=500, detail=f"Error during workflow execution: {str(e)}")
app/web/common/utils.py
CloudWhisperCustomBot
from types import AsyncGeneratorType import aiohttp import types import asyncio import httpx import json import re from datetime import datetime from fastapi import HTTPException from fastapi.security import HTTPAuthorizationCredentials from loguru import logger from sqlalchemy import asc from sqlalchemy.future import select from sqlalchemy.orm import selectinload from sse_starlette import EventSourceResponse from app.core.config import settings from app.web.common import db_deps from app.web.common.cloud_setup_instruction_messages import (IBM_CLOUD_ACCOUNT_MESSAGE, GENERAL_CLOUD_ACCOUNT_MESSAGE, IBM_CLASSIC_CLOUD_ACCOUNT_MESSAGE) from app.web.common.templates import (ROUTE_TEMPLATE, NARROW_DOWN_INTENT, NARROW_DOWN_MIGRATION_INTENT, CONFIDENCE_SCORING_BOT) from app.web.common.utils import api_key_msg_event_generator from app.whisper.consts import WHISPER_USER_ROLE, WHISPER_ASSISTANT_ROLE from app.whisper.llms.anthropic import AnthropicLLM from app.whisper.utils.action_engine import ActionPhaseClaude, ComplexActionPhaseClaude from app.whisper.utils.migration_action_engine import MigrationActionPhaseClaude async def process_routing(chat_id): """ Determines from chat history if latest user query should be routed to which tool. Parameters: chat_history (list): A list of previous chat messages and user latest query. It is dictionary of message type and content. Like [{'type': 'Human', 'text': 'content'}, {'type': 'assistant', 'text': 'content'}] Returns: string: one of the following tool: QnA, Action """ from app.models import Message try: async with db_deps.get_db_session_async_context() as db_session: messages_obj = (await db_session.scalars(select(Message).options( selectinload(Message.chat)).filter_by(chat_id=chat_id).order_by(asc(Message.sent_at)))).all() if not messages_obj: raise ValueError("No messages found for the given chat_id") chat_json = [message.to_reference_json() for message in messages_obj] while len(chat_json) >= 6 and chat_json[-6]['type'] == 'Assistant': chat_json.pop(0) chat_json_last_5 = chat_json[-6:] # limit chat history to last 5 messages query = chat_json_last_5[-1]['text'] # query that user just asked chat_history_str = '' for chat_ in chat_json_last_5[:-1]: # don't add user latest query in chat history chat_history_str += f"<{chat_['type'].lower()}>: {chat_['text'].strip()}</{chat_['type'].lower()}>\n" client = AnthropicLLM() prompt = ROUTE_TEMPLATE.format(query=query, chat_history=chat_history_str.strip()) response = '' feedback_sent = False for attempt in range(2): if not feedback_sent: client.add_message(role=WHISPER_USER_ROLE, content=prompt) try: async for text in client.process_stream(): response += text if "complete_user_query:" in response: if "Tool: Action" in response: user_query = response.split("Tool: Action")[0] user_query = user_query.split("complete_user_query:")[1].strip() logger.info(response) return user_query, "Action" elif "Tool: QnA_or_Schedule_a_call" in response: user_query = response.split("Tool: QnA_or_Schedule_a_call")[0] user_query = user_query.split("complete_user_query:")[1].strip() logger.info(response) return user_query, "QnA_or_Schedule_a_call" elif "Tool: DataExplorer" in response: user_query = response.split("Tool: DataExplorer")[0] user_query = user_query.split("complete_user_query:")[1].strip() logger.info(response) return user_query, "InformationRetrieval" elif "Tool: ClassicMigration" in response: user_query = response.split("Tool: ClassicMigration")[0] user_query = user_query.split("complete_user_query:")[1].strip() logger.info(response) return user_query, "ClassicMigration" if attempt == 0: logger.info("Retrying with feedback...") feedback = "Internal feedback: The response you generated seems to be in an incorrect format. Please review the response and ensure it adheres to the expected format, such as 'Tool: Action', 'Tool: QnA', 'Tool: ClassicMigration' or 'Tool: DataExplorer'. Additionally, the response should contain 'complete_user_query' with the full query entered by the user." client.add_message(role=WHISPER_ASSISTANT_ROLE, content=feedback) feedback_sent = True continue else: logger.warning(f"Retry failed. Defaulting to QnA. Response: {response}") return query, "QnA_or_Schedule_a_call" except Exception as e: logger.error(f"Unexpected error during response processing: {e}") return None, None except Exception as e: logger.error(f"An error occurred while processing routing: {e}") return None, None async def execute_qna(user_name, question, chat_id): from app.whisper.utils.qna_bot.base import QnABot from app.models import Message error = None import traceback try: async with db_deps.get_db_session_async_context() as db_client: messages_obj = (await db_client.scalars(select(Message).options( selectinload(Message.chat)).filter_by(chat_id=chat_id).order_by(asc(Message.sent_at)))).all() if not messages_obj: raise ValueError("No messages found for the given chat_id") chat_json = [message.to_reference_json() for message in messages_obj] chat = messages_obj[0].chat while len(chat_json) >= 6 and chat_json[-6]['type'] == 'Assistant': chat_json.pop(0) chat_json_last_5 = chat_json[-7:-1] # limit chat history to last 5 messages retrieval_client = QnABot(chat_history=chat_json_last_5, user_name=user_name) response = await retrieval_client.start(question) response = format_response(response) if not response.strip(): raise ValueError("Received an empty response from the assistant") yield {"event": "message", "data": response} chat_message = Message(msg_type=Message.TYPE_ASSISTANT, content=response, msg_category=Message.TYPE_QNA) chat_message.chat = chat db_client.add(chat_message) await db_client.commit() logger.info(response) except ValueError as e: logger.error(f"An error occurred in get_information_from_db: {str(e)}") error = {"event": "error", "data": json.dumps({"detail": str(e)})} except Exception as e: logger.info(e) logger.error(f"An error occurred while retrieving information: {traceback.format_exc()}") error = {"event": "error", "data": json.dumps({"detail": "Internal server error"})} finally: if error: yield error yield {"event": "chat_info", "data": json.dumps(chat.to_reference_json())} yield {"event": "close"} async def get_base_bot_response(payload): headers = {"Content-Type": "application/json", "X-API-KEY": settings.base_bot.X_API_KEY} timeout = aiohttp.ClientTimeout(total=50) async with aiohttp.ClientSession(timeout=timeout) as session: try: async with session.post(settings.base_bot.BASE_BOT_URL, headers=headers, json=payload) as response: if response.status != 200: response_text = await response.text() logger.error(f"Base Bot API Error: status code '{response.status}', response: {response_text}") raise HTTPException(status_code=response.status, detail="Error contacting QnA API") async for chunk in response.content.iter_any(): yield chunk.decode('utf-8') except asyncio.TimeoutError: logger.error("Timeout error while contacting Base Bot API") raise HTTPException(status_code=504, detail="Timeout contacting QnA API") async def narrow_down_intent(chat_id, user_dict, standalone_query, action_id=None, cloud_id=None): from app.models import Message, Action logger.info(f"Narrow down intent for chat_id: {chat_id}") async with db_deps.get_db_session_async_context() as db_client: messages_obj = (await db_client.scalars(select(Message).options( selectinload(Message.chat)).filter_by(chat_id=chat_id).order_by(asc(Message.sent_at)))).all() if not messages_obj: raise ValueError("No messages found for the given chat_id") chat_json = [message.to_reference_json() for message in messages_obj] chat = messages_obj[0].chat while len(chat_json) >= 6 and chat_json[-6]['type'] == 'Assistant': chat_json.pop(0) chat_json_last_5 = chat_json[-6:] # limit chat history to last 5 messages query = chat_json_last_5[-1]['text'] # query that user just asked chat_history_str = '' for chat_ in chat_json_last_5[:-1]: # don't add user latest query in chat history chat_history_str = ( chat_history_str + f"<{chat_['type'].lower()}>: {chat_['text'].strip()}</{chat_['type'].lower()}>\n") logger.debug("<<<<<<<<<<<<<<<<<<<<<Chat History>>>>>>>>>>>>>>>>>>>>") logger.debug(chat_history_str) logger.debug("<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>") start_time = datetime.now() llm_client = AnthropicLLM() # logger.info(NARROW_DOWN_INTENT.format(chat_history=chat_history_str.strip(), query=query)) logger.info(chat_json) if len(chat_json) == 1: response = "[Craft a precise and professional response to the user as a support agent from Wanclouds. Greet user as well as its users first message]" llm_client.add_message(role=WHISPER_USER_ROLE, content=NARROW_DOWN_INTENT.format(chat_history=chat_history_str.strip(), query=query, response=response)) else: response = "[Craft a precise and professional response to the user as a support agent from Wanclouds. Don't add greetings. Follow previous flow of conversation from chat history]" llm_client.add_message(role=WHISPER_USER_ROLE, content=NARROW_DOWN_INTENT.format(chat_history=chat_history_str.strip(), query=query, response=response)) logger.info(llm_client.messages) complete_response = '' action = '' stream_started = False try: async for chunk in llm_client.process_stream(): complete_response += chunk if 'Task Finished: True' in complete_response: action = complete_response.split('Intent Narrowed:')[1] action = action.split('Task Analysis:')[0] action = action.strip('\n').strip() if action.startswith('\n') else action pattern = r'^\d+' match = re.match(pattern, action) if match: action = action[match.end():] logger.info(f"ACTION ---->{action}") logger.info(f"{complete_response}") break if "Response:" in complete_response and not stream_started: stream_started = True buffer = complete_response.split("Response:", 1)[1] # Keep only the content after "Response:" if buffer: yield {"event": "message", "data": buffer} continue if stream_started: if chunk.startswith('\n'): yield {"event": "message", "data": "\n"} if chunk.startswith('\n\n'): yield {"event": "message", "data": "\n\n"} yield {"event": "message", "data": chunk} if chunk.endswith('\n'): yield {"event": "message", "data": "\n"} if chunk.endswith('\n\n'): yield {"event": "message", "data": "\n\n"} except Exception as e: logger.error(f"Error during intent narrowing: {e}") yield {"event": "error", "data": json.dumps({"detail": "Error during intent narrowing"})} return logger.info(complete_response) if not complete_response.strip(): yield {"event": "error", "data": json.dumps({"detail": "Received an empty response from the assistant"})} return if action: chat_history_str = '' for chat_ in chat_json_last_5[:]: # don't add user latest query in chat history chat_history_str = ( chat_history_str + f"<{chat_['type'].lower()}>: {chat_['text'].strip()}</{chat_['type'].lower()}>\n") try: confidence_scoring_bot = AnthropicLLM() confidence_scoring_bot.add_message(role=WHISPER_USER_ROLE, content=CONFIDENCE_SCORING_BOT.format( chat_history=chat_history_str.strip(), narrowed_intent=action)) confidence_response = confidence_scoring_bot.process() logger.info(confidence_response) confirmation, recommendation = False, None if 'Overall Confidence: High' in confidence_response: confirmation = False else: confirmation = True recommendation = confidence_response.split('Recommendation:')[1] except Exception as e: logger.error(f"Error during intent narrowing: {e}") yield {"event": "error", "data": json.dumps({"detail": "Error during intent narrowing"})} return action = action.lstrip("- ") if action.startswith("- ") else action action_tool = similarity_search_api_desc(action) messages_obj_metadata = json.dumps({ 'searched_intent': action_tool, 'task_finished': False, 'stage': 1, 'history': [] }) if confirmation: chat.confirmation_stage = True llm_client.add_message(role='assistant', content=complete_response) if len(chat_json) == 1: llm_client.add_message(role='user', content=f'Internal Feedback: Got this feedback from confidence scoring bot whose analyze conversation history and list of intent and provided feedback \n \"{recommendation}\" \n Add greetings, start with a polite greeting. Then, without mentioning the word intent or any internal processes, please ask the user to confirm their specific request or goal. Ensure you only seek confirmation of what they want to do, and do not collect any additional requirements or information. Remember, the user is not aware of our internal workings, so keep the language user-friendly and focused on their needs.') else: llm_client.add_message(role='user', content=f'Internal Feedback: Got this feedback from confidence scoring bot whose analyze conversation history and list of intent and provided feedback \n \"{recommendation}\" \nNow Without mentioning the word intent or any internal processes, please ask the user to confirm their specific request or goal. Ensure you only seek confirmation of what they want to do, and do not collect any additional requirements or information. Remember, the user is not aware of our internal workings, so keep the language user-friendly and focused on their needs.') llm_client.add_message(role='assistant', content='Response:') complete_response = llm_client.process() if 'Response:' in complete_response: yield {"event": "message", "data": complete_response.split('Response:', 1)[1]} else: yield {"event": "message", "data": complete_response} else: async with db_deps.get_db_session_async_context() as db_client: messages_obj = (await db_client.scalars(select(Message).options( selectinload(Message.chat)).filter_by(chat_id=chat_id).order_by(asc(Message.sent_at)))).all() messages_obj[-1].json_metadata = messages_obj_metadata metadata = json.loads(messages_obj[-1].json_metadata) metadata['initial_query'] = standalone_query logger.info(metadata["searched_intent"][0]) action_obj = Action(name=metadata["searched_intent"][0], metadata=json.dumps(metadata)) action_id = action_obj.id dummy_message_content = "This action is performed by another bot. You can start with a fresh conversation or continue with a new context." dummy_message = Message( msg_type=Message.TYPE_ASSISTANT, content=dummy_message_content, msg_category=Message.TYPE_ACTION, is_visible=False, ) dummy_message.chat = messages_obj[0].chat db_client.add(dummy_message) messages_obj[-1].action_id = action_obj.id db_client.add(action_obj) messages_obj[-1].msg_category = Message.TYPE_ACTION await db_client.commit() logger.info("hereeeee1") yield {"event": "action", "data": json.dumps(action_obj.to_reference_json())} logger.info(standalone_query) stream = execute_stage_1(initial_query=standalone_query, user_dict=user_dict, chat_id=chat_id, action_id=action_id, cloud_id=cloud_id) async for chunk in stream: yield chunk logger.info(chunk) return yield {"event": "chat_info", "data": json.dumps(chat.to_reference_json())} yield {"event": "close"} end_time = datetime.now() if 'Response:' in complete_response: response = complete_response.split('Response:')[1] else: response = complete_response async with db_deps.get_db_session_async_context() as db_client: chat_message = Message(msg_type=Message.TYPE_ASSISTANT, content=response, msg_category=Message.TYPE_QNA) chat_message.chat = chat db_client.add(chat_message) await db_client.commit() logger.debug("<<<<<<<<<<<<<<<<<<<<<Intent Phase Response>>>>>>>>>>>>>>>>>>>>") logger.debug(complete_response) logger.debug("<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>") logger.info(f"Total Seconds=>{(end_time - start_time).total_seconds()}") async def narrow_down_migration_intent(chat_id, user_dict, standalone_query, action_id=None): from app.models import Message logger.info(chat_id) async with db_deps.get_db_session_async_context() as db_client: messages_obj = (await db_client.scalars(select(Message).options( selectinload(Message.chat)).filter_by(chat_id=chat_id).order_by(asc(Message.sent_at)))).all() logger.info(messages_obj) if not messages_obj: raise ValueError("No messages found for the given chat_id") chat_json = [message.to_reference_json() for message in messages_obj] while len(chat_json) >= 6 and chat_json[-6]['type'] == 'Assistant': chat_json.pop(0) chat_json_last_5 = chat_json[-6:] # limit chat history to last 5 messages query = chat_json_last_5[-1]['text'] # query that user just asked chat_history_str = '' for chat_ in chat_json_last_5[:-1]: # don't add user latest query in chat history chat_history_str = ( chat_history_str + f"<{chat_['type'].lower()}>: {chat_['text'].strip()}</{chat_['type'].lower()}>\n") logger.info("<<<<<<<<<<<<<<<<<<<<<Chat History>>>>>>>>>>>>>>>>>>>>") logger.info(chat_history_str) logger.info("<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>") llm_client = AnthropicLLM() llm_client.add_message(role=WHISPER_USER_ROLE, content=NARROW_DOWN_MIGRATION_INTENT.format(chat_history=chat_history_str.strip(), query=query)) complete_response = '' response_content = '' action = '' complete_response = llm_client.process() if 'Task Finished: True' in complete_response: action = complete_response.split('Intent Narrowed:')[1] action = action.split('Task Analysis:')[0] action = action.strip('\n').strip() if action.startswith('\n') else action pattern = r'^\d+' match = re.match(pattern, action) if match: action = action[match.end():] action = action.lstrip("- ") if action.startswith("- ") else action else: # if "Response:" in complete_response: response_content = complete_response.split("Response:", 1)[1] # Keep only the content after "Response:" return action, response_content, complete_response async def confirmation_bot(chat_id): from app.models import Message logger.info(chat_id) async with db_deps.get_db_session_async_context() as db_client: messages_obj = (await db_client.scalars(select(Message).options( selectinload(Message.chat)).filter_by(chat_id=chat_id).order_by(asc(Message.sent_at)))).all() if not messages_obj: raise ValueError("No messages found for the given chat_id") chat_json = [message.to_reference_json() for message in messages_obj] while len(chat_json) >= 6 and chat_json[-6]['type'] == 'Assistant': chat_json.pop(0) chat_json_last_5 = chat_json[-6:] # limit chat history to last 5 messages chat_history_str = '' for chat_ in chat_json_last_5[:-1]: # don't add user latest query in chat history chat_history_str = ( chat_history_str + f"<{chat_['type'].lower()}>: {chat_['text'].strip()}</{chat_['type'].lower()}>\n") logger.debug("<<<<<<<<<<<<<<<<<<<<<Chat History>>>>>>>>>>>>>>>>>>>>") logger.debug(chat_history_str) logger.debug("<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>") llm_client = AnthropicLLM() if len(chat_json) == 1: llm_client.add_message(role='user', content='Internal Feedback: Add greetings, start with a polite greeting. Then, without mentioning the word intent or any internal processes, please ask the user to confirm their specific request or goal. Ensure you only seek confirmation of what they want to do, and do not collect any additional requirements or information. Remember, the user is not aware of our internal workings, so keep the language user-friendly and focused on their needs.') else: llm_client.add_message(role='user', content='Internal Feedback: Now Without mentioning the word intent or any internal processes, please ask the user to confirm their specific request or goal. Ensure you only seek confirmation of what they want to do, and do not collect any additional requirements or information. Remember, the user is not aware of our internal workings, so keep the language user-friendly and focused on their needs.') confirmation_tool = { "name": "confirmation_tool", "description": "This tool reviews users latest reply to confirmation of the values selected by a tool that has recently completed the payload. If the user confirms or agrees with the choices in the summary displayed, the Confirmation is true, but if user doesn't approve then summary then Confirmation is false." "else False", "input_schema": { "type": "object", "properties": { "Confirmation": { "type": "boolean", "description": "Confirmation flag that is only True when user confirms the details and is ready to move forward. Analyze user last response. Don't get hallucinated by history" }, "standalone_query": { "type": "string", "description": "Analyze user latest query and chat history to create standalone query in tone like user is saying" } }, "required": [ "Confirmation", "standalone_query" ] } } chat_response = llm_client.process( system="You are expert whose job is to analyze user current reply to confirmation and decide if user wants to proceed or not", tools=[confirmation_tool], force_tool=True, tool_name="confirmation_tool") logger.info("*" * 20) logger.info(chat_response) logger.info("*" * 20) confirmation = chat_response['content'][-1]['input'].get("Confirmation") standalone = chat_response['content'][-1]['input'].get('standalone_query') if "Confirmation" not in chat_response['content'][-1]['input']: llm_client.add_message(role=WHISPER_ASSISTANT_ROLE, content=chat_response['content']) llm_client.add_message(role=WHISPER_USER_ROLE, content=[{ "type": "tool_result", "tool_use_id": chat_response[-1]['id'], "content": 'Please generate confirmation field', "is_error": True }]) chat_response = llm_client.process( system="You are expert whose job is to analyze user current reply to confirmation and decide if user wants to proceed or not. Think step in step in <thinking> tags", tools=[confirmation_tool], force_tool=True, tool_name="confirmation_tool") confirmation = chat_response['content'][-1]['input']["Confirmation"] standalone = chat_response['content'][-1]['input'].get('standalone_query') if chat_response['content'][-1][ 'input'].get('standalone_query') else standalone if "standalone_query" not in chat_response['content'][-1]['input']: llm_client.add_message(role=WHISPER_ASSISTANT_ROLE, content=chat_response['content']) llm_client.add_message(role=WHISPER_USER_ROLE, content=[{ "type": "tool_result", "tool_use_id": chat_response[-1]['id'], "content": 'Please generate confirmation field', "is_error": True }]) chat_response = llm_client.process(tools=[confirmation_tool], force_tool=True, tool_name="confirmation_tool") confirmation = chat_response['content'][-1]['input'].get("Confirmation") if chat_response['content'][-1][ 'input'].get("Confirmation") else confirmation standalone = chat_response['content'][-1]['input'].get('standalone_query') if chat_response['content'][-1][ 'input'].get('standalone_query') else standalone logger.info(confirmation) if confirmation: return True, standalone return False, '' def similarity_search_api_desc(query: str, k=1): from app.main import app retrieved_docs = app.state.vector_store_index.similarity_search(query, k=k) method = [retrieved_docs[i].page_content for i in range(k)] metadata = [retrieved_docs[i].metadata for i in range(k)] return [method[0], metadata[0]] # This is where action begins async def execute_stage_1(initial_query, chat_id, user_dict, action_id, cloud_type=None, cloud_id=None): """ Executes the first stage of an action task based on the user's initial query. This function is called when a bot finalizes user intent, such as "create a VPC backup" or "delete a COS instance", which was initially queried from a vector database. Parameters: - initial_query (str): The initial query or command from the user. - db_client (DatabaseClient): The database client used to interact with the database. - chat_id (str): The ID of the chat session. - bearer (str): The bearer token for authentication. - action_id (str): The ID of the action to be executed. Steps: 1. Retrieve the conversation history for the given chat session using `chat_history_qry.get_chat_history`. 2. Parse the metadata from the conversation history to extract the searched intent and message history. 3. Construct a JSON object representing the chat without including messages. 4. Record the start time for execution timing purposes. 5. Initialize the `ActionPhase` bot with the searched intent and message history. 6. Execute the intent using `intent_execution_bot.start` with the initial query. 7. Parse the bot's response to determine if the task has been finished. 8. Update the metadata based on the task's completion status. If finished, reset the stage, history, and searched intent. 9. Save the updated metadata back to the database. 10. Record the end time and log the total execution duration. 11. Create a new message request object with the bot's response and add it to the chat. 12. Yield the bot's response and chat information as events for the client. Yields: - A message event with the bot's response. - A chat_info event with the updated chat JSON. - A close event indicating the end of the process. """ from app.models import Message, Action, Chat, ActivityTracking try: async with db_deps.get_db_session_async_context() as db_session: result = await db_session.scalars( select(Action).filter(Action.id == action_id).options(selectinload(Action.messages))) action = result.unique().one_or_none() if not action: raise ValueError("Action not found") logger.info(action) action_json = [message.to_reference_json() for message in action.messages[:-1]] logger.info(action_json) metadata_dict = json.loads(action.json_metadata) if not metadata_dict: raise ValueError("Metadata is empty or invalid") logger.info(metadata_dict) logger.info(metadata_dict.get('history')) searched_intent = metadata_dict["searched_intent"] if not searched_intent: raise ValueError("Searched intent not found in metadata") yield {"event": "action", "data": json.dumps(action.to_reference_json())} logger.info(user_dict) complex_bot_action = isinstance(searched_intent[-1]['method']['tool'], list) if complex_bot_action: intent_execution_bot = ComplexActionPhaseClaude(intent=searched_intent, chat_history=metadata_dict.get('history'), user_id=user_dict['id'], bearer=user_dict['bearer'], metadata=metadata_dict, cloud_id=cloud_id) elif searched_intent[-1]['method']['tool']['name'] == 'post_migration_request': intent_execution_bot = MigrationActionPhaseClaude(intent=searched_intent, chat_history=metadata_dict.get('history'), user_dict=user_dict, bearer=user_dict['bearer'], metadata_dict=metadata_dict, action_id=action_id, cloud_id=cloud_id) else: intent_execution_bot = ActionPhaseClaude(intent=searched_intent, chat_history=metadata_dict.get('history'), user_id=user_dict['id'], bearer=user_dict['bearer'], metadata_dict=metadata_dict, cloud_id=cloud_id ) start_time = datetime.now() response_obj = await intent_execution_bot.start(initial_query, chat_id=chat_id, action_id=action_id) if complex_bot_action: metadata_dict.update(intent_execution_bot.get_metadata()) complete_response = "" if isinstance(response_obj, AsyncGeneratorType): async for chunk in response_obj: try: data = "\n" if not chunk else chunk yield {"event": "message", "data": data} complete_response += data except Exception as e: logger.error(f"Error processing chunk: {str(e)}") continue else: # If response is a string response_obj1 = response_obj.replace('```','') logger.info('printing type of response_obj') logger.info(type(response_obj1)) marker = "Output Formatted Result:" if marker in response_obj1: response_obj1 = response_obj1.split(marker, 1)[-1].strip() yield {"event": "message", "data": response_obj1} complete_response = response_obj1 end_time = datetime.now() logger.info(f"Total Seconds=>{(end_time - start_time).total_seconds()}") #TODO: Handle the formatting incase of error # intent_execution_bot.base_llm.messages[-1]["content"]= complete_response logger.info("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>") metadata_dict['history'] = intent_execution_bot.base_llm.messages logger.info(metadata_dict['history']) async with db_deps.get_db_session_async_context() as db_client: action.json_metadata = json.dumps(metadata_dict) await db_client.commit() action_message = Message(msg_type=Message.TYPE_ASSISTANT, content=complete_response.replace('Response:', ''), msg_category=Message.TYPE_ACTION) action_message.action = action db_client.add(action_message) action_message.action = action db_client.add(action_message) await db_client.commit() except ValueError as e: logger.error(f"An error occurred in execute_stage_1: {str(e)}") yield {"event": "error", "data": json.dumps({"detail": str(e)})} finally: async with db_deps.get_db_session_async_context() as db_client: activities = (await db_client.scalars(select(ActivityTracking).filter( ActivityTracking.action_id == action_id))).all() if activities: for activity in activities: if not activity.is_polled: yield {"event": "task", "data": json.dumps(await activity.to_event_json(db_client))} activity.is_polled = True yield {"event": "action", "data": json.dumps(action.to_reference_json())} async with db_deps.get_db_session_async_context() as db_client: chat = (await db_client.scalars(select(Chat).filter(Chat.id == chat_id))).one_or_none() if chat: yield {"event": "chat_info", "data": json.dumps(chat.to_reference_json())} else: logger.warning(f"Chat with ID {chat_id} not found.") yield {"event": "close"} async def get_information_from_db(user_id, question, chat_id, cloud_id=None, cloud_type=None): from app.whisper.utils.information_retrieval_engine.base import RetrievalPhaseClaude from app.models import Message error = None import traceback try: async with db_deps.get_db_session_async_context() as db_client: messages_obj = (await db_client.scalars(select(Message).options( selectinload(Message.chat)).filter_by(chat_id=chat_id).order_by(asc(Message.sent_at)))).all() if not messages_obj: raise ValueError("No messages found for the given chat_id") chat_json = [message.to_reference_json() for message in messages_obj] chat = messages_obj[0].chat while len(chat_json) >= 6 and chat_json[-6]['type'] == 'Assistant': chat_json.pop(0) chat_json_last_5 = chat_json[-7:-1] # limit chat history to last 5 messages retrieval_client = RetrievalPhaseClaude(chat_history=chat_json_last_5, user_id=user_id['id'], llm_chat_history=chat.json_metadata, bearer=user_id['bearer'], chat_id=chat_id, cloud_id=cloud_id, cloud_type=cloud_type ) response_obj = await retrieval_client.start(question) complete_response = "" logger.info('printing response obj') logger.info(response_obj) if isinstance(response_obj, types.AsyncGeneratorType): logger.info('in the async generator') async for chunk in response_obj: try: # data = "" if not chunk else chunk # data.replace('\n', '<br>') logger.info(chunk) yield {"event": "message", "data": chunk} complete_response += chunk except Exception as e: logger.error(f"Error processing chunk: {str(e)}") continue else: # If response is a string response_obj1 = response_obj.replace('```','') logger.info('printing type of response_obj') logger.info(type(response_obj1)) marker = "Output Formatted Result:" if marker in response_obj1: response_obj1 = response_obj1.split(marker, 1)[-1].strip() yield {"event": "message", "data": response_obj1} complete_response = response_obj1 logger.info("*******************************FORMATTED CONTENT**************") logger.info(complete_response) logger.info("*******************************FORMATTED CONTENT**************") async with db_deps.get_db_session_async_context() as db_client: chat_message = Message( msg_type=Message.TYPE_ASSISTANT, content=complete_response, msg_category=Message.TYPE_QNA ) chat_message.chat = chat chat.json_metadata = retrieval_client.base_llm.messages logger.info(retrieval_client.base_llm.messages) db_client.add(chat_message) await db_client.commit() except ValueError as e: logger.error(f"An error occurred in get_information_from_db: {str(e)}") error = {"event": "error", "data": json.dumps({"detail": str(e)})} except Exception as e: logger.error(f"An error occurred while retrieving information: {traceback.format_exc()} ->{str(e)}") error = {"event": "error", "data": json.dumps({"detail": "Internal server error"})} finally: if error: yield error yield {"event": "chat_info", "data": json.dumps(chat.to_reference_json())} yield {"event": "close"} def format_response(response: str): if response is not None: return response.replace('|', '| ') else: return '' async def check_cloud_account_status(chat_id, api_endpoint, tool, authorization: HTTPAuthorizationCredentials): headers = { "Accept": "application/json", "Content-Type": "application/json", "Authorization": f"Bearer {authorization.credentials.strip('')}" } base_url = f'{settings.web.AUTH_LINK}{api_endpoint}' try: async with httpx.AsyncClient() as client: response = await client.get( f'{base_url}', headers=headers, timeout=10 ) response.raise_for_status() logger.info(f"Response Status Code: {response.status_code}") payload = response.json() if response.content else None if tool == "ClassicMigration": cloud_message = IBM_CLASSIC_CLOUD_ACCOUNT_MESSAGE elif tool == "Action": cloud_message = IBM_CLOUD_ACCOUNT_MESSAGE elif tool == "ScheduleCall": cloud_message = GENERAL_CLOUD_ACCOUNT_MESSAGE elif tool == "InformationRetrievalClassic": cloud_message = IBM_CLASSIC_CLOUD_ACCOUNT_MESSAGE elif tool == "InformationRetrievalAction": cloud_message = IBM_CLOUD_ACCOUNT_MESSAGE else: cloud_message = "Please check your cloud accounts to ensure they are properly configured and valid." return cloud_message if not payload: if tool in ["InformationRetrievalClassic", "InformationRetrievalAction"]: return cloud_message else: return EventSourceResponse(api_key_msg_event_generator( api_key_msg=cloud_message.format( vpcplus_url=f"{base_url}", cloud_whisper_url=f"{settings.web.BACKEND_URI}{api_endpoint}" ), chat_id=chat_id )) cloud_accounts = payload.get('items', []) logger.info(f"Retrieved cloud accounts: {cloud_accounts}") is_cloud_account_valid = any(account.get('status') == 'VALID' for account in cloud_accounts) if not is_cloud_account_valid: logger.info("No valid cloud accounts found.") return EventSourceResponse(api_key_msg_event_generator( api_key_msg="The cloud account status is currently invalid. Please check your cloud account and ensure it is properly configured and valid.", chat_id=chat_id, )) except httpx.RequestError as e: logger.error(f"Error fetching cloud accounts: {str(e)}") raise HTTPException(status_code=500, detail=f"Error fetching cloud accounts: {str(e)}") return None
app/web/common/chats_websockets_utils.py
CloudWhisperCustomBot
import asyncio from typing import AsyncGenerator from contextlib import asynccontextmanager from loguru import logger from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession from sqlalchemy.orm import sessionmaker from app.core.config import settings AsyncSessionLocal = sessionmaker( bind=create_async_engine( settings.db.SQLALCHEMY_DATABASE_URI, pool_recycle=settings.db.SQLALCHEMY_POOL_RECYCLE, pool_timeout=settings.db.SQLALCHEMY_POOL_TIMEOUT, pool_size=settings.db.SQLALCHEMY_POOL_SIZE, max_overflow=settings.db.SQLALCHEMY_MAX_OVERFLOW, ), class_=AsyncSession, expire_on_commit=False, autocommit=False, autoflush=False ) async def get_db_session_async() -> AsyncGenerator[AsyncSession, None]: try: async with AsyncSessionLocal() as session: logger.success("Success: connection to the database") yield session except Exception: await session.rollback() raise finally: logger.info("Closing connection to the database") await session.close() @asynccontextmanager async def get_db_session_async_context() -> AsyncGenerator[AsyncSession, None]: try: async with AsyncSessionLocal() as session: logger.success("Success: connection to the database") yield session except Exception: await session.rollback() raise finally: logger.info("Closing connection to the database") await session.close() def get_sync_session(): loop = asyncio.get_event_loop() async_session = AsyncSessionLocal() return loop.run_until_complete(async_session.__aenter__())
app/web/common/db_deps.py
CloudWhisperCustomBot
import httpx from datetime import datetime, timezone from fastapi import Depends, Header, HTTPException, WebSocketException from fastapi.security import HTTPAuthorizationCredentials, HTTPBearer from httpx import Response from loguru import logger from app.api_discovery.utils import update_profile_with_vpcplus_api_key from app.core.config import settings from app.web.common import db_deps from sqlalchemy import select, update from app import models security = HTTPBearer() async def authenticate_user( project_id: str = Header(None, convert_underscores=False), authorization: HTTPAuthorizationCredentials = Depends(security) ) -> Response | dict: from app.web.profiles.schemas import OnboardingStatus if authorization.scheme != "Bearer": raise HTTPException(status_code=401, detail="Invalid authentication scheme") headers = {'Authorization': f"Bearer {authorization.credentials}"} if project_id: headers["project_id"] = project_id async with httpx.AsyncClient(timeout=30.0) as http_client: resp = await http_client.get(f"{settings.web.AUTH_LINK}/v1/users/verify", headers=headers, timeout=60) if not resp or resp.status_code != 200: raise HTTPException(status_code=401) if project_id: data = resp.json() data["project_id"] = project_id return data user_json = resp.json() async with db_deps.get_db_session_async_context() as session: result = await session.execute(select(models.Profile).filter_by(user_id=user_json['id']).limit(1)) profile = result.scalar_one_or_none() logger.info(f"user: {profile}") if not profile: profile = models.Profile( user_id=user_json["id"], name=user_json["name"], project_id=user_json.get("project_id", ""), is_admin=bool(user_json.get("is_admin") or False), email=user_json["email"], onboarding=OnboardingStatus.app_tour ) logger.info(profile.to_json()) session.add(profile) await session.commit() result = await session.execute(select(models.Profile).filter_by(user_id=user_json['id']).limit(1)) profile = result.scalar_one_or_none() logger.info(f"{dir(profile)}") user_json["uuid"] = profile.id user_json["id"] = profile.user_id user_json["onboarding"] = profile.onboarding # If User has already VPC+ API Key created, fetch it from Auth Service and store it in order to run discovery headers = {"Authorization": f"Bearer {authorization.credentials}"} with httpx.Client() as http_client: resp = http_client.get(f"{settings.web.AUTH_LINK}/v1/users/api_key", headers=headers) if resp.status_code == 200: api_key_json = resp.json() api_key = api_key_json.get("key") api_key_name = api_key_json.get("name") api_key_expiry = api_key_json.get("expires_at") if api_key_expiry: api_key_expiry_date = datetime.fromisoformat(api_key_expiry) if api_key_expiry_date <= datetime.now(timezone.utc): async with db_deps.get_db_session_async_context() as session: await session.execute( update(models.Profile) .where(models.Profile.user_id == user_json["id"]) .values(api_key_status=settings.api_key_status.STATUS_INVALID) ) await session.commit() else: await update_profile_with_vpcplus_api_key( profile_id=user_json["id"], api_key=api_key, api_key_name=api_key_name, api_key_expiry=api_key_expiry if api_key_expiry else None ) else: await update_profile_with_vpcplus_api_key( profile_id=user_json["id"], api_key=api_key, api_key_name=api_key_name, api_key_expiry=api_key_expiry if api_key_expiry else None ) user_json["bearer"] = f"Bearer {authorization.credentials}" user_json["appearance"] = profile.appearance if profile.appearance else None return user_json async def first_message_handler(websocket) -> Response | dict: from app.web.profiles.schemas import OnboardingStatus token = await websocket.receive_text() headers = {'Authorization': f"Bearer {token}"} async with httpx.AsyncClient() as http_client: resp = await http_client.get(f"{settings.web.AUTH_LINK}/v1/users/verify", headers=headers) # if user is None: if not resp or resp.status_code != 200: raise WebSocketException(code=1008, reason="Policy Violation, User not found") #returns the control and closes the connection user_json = resp.json() async with db_deps.get_db_session_async_context() as session: result = await session.execute(select(models.Profile).filter_by(user_id=user_json['id']).limit(1)) profile = result.scalar_one_or_none() logger.info(f"user: {profile}") if not profile: profile = models.Profile( user_id=user_json["id"], name=user_json["name"], project_id=user_json.get("project_id", ""), is_admin=bool(user_json["is_admin"]), email=user_json["email"], onboarding=OnboardingStatus.app_tour ) logger.info(profile.to_json()) session.add(profile) await session.commit() result = await session.execute(select(models.Profile).filter_by(user_id=user_json['id']).limit(1)) profile = result.scalar_one_or_none() logger.info(f"{dir(profile)}") user_json["uuid"] = profile.id user_json["id"] = profile.user_id user_json["onboarding"] = profile.onboarding # If User has already VPC+ API Key created, fetch it from Auth Service and store it in order to run discovery with httpx.Client() as http_client: resp = http_client.get(f"{settings.web.AUTH_LINK}/v1/users/api_key", headers=headers) if resp.status_code == 200: api_key_json = resp.json() api_key = api_key_json.get("key") api_key_name = api_key_json.get("name") api_key_expiry = api_key_json.get("expires_at") await update_profile_with_vpcplus_api_key( profile_id=user_json["id"], api_key=api_key, api_key_name=api_key_name, api_key_expiry=api_key_expiry if api_key_expiry else None ) user_json["bearer"] = f"Bearer {token}" return user_json
app/web/common/deps.py
CloudWhisperCustomBot
{ "Create IBM VPC backup": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/vpcs": { "GET": { "fields": [ "id", "name" ] } } }, "List IBM Clouds": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } } }, "List IBM VPC Networks": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/vpcs": { "GET": { "fields": [ "id", "name" ] } } }, "List IBM Regions": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } } }, "List IBM Draas backups": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/draas_blueprints": { "GET": { "fields": [ "id", "name", "backups" ], "nested_fields": { "backups": [ "id", "name" ] } } } }, "Create IBM COS bucket backup": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/cloud_object_storages/buckets": { "GET": { "fields": [ "id", "name", "cloud_object_storage", "cos_bucket_versioning", "regions" ] } }, "v1/ibm/cloud_object_storages": { "GET": { "fields": [ "id", "name" ] } } }, "List IBM COS buckets": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/cloud_object_storages/buckets": { "GET": { "fields": [ "id", "name" ] } } }, "list IBM COS bucket instances": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/cloud_object_storages": { "GET": { "fields": [ "id", "name" ] } } }, "List IBM Kubernetes Clusters": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/cloud_object_storages": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/kubernetes_clusters": { "GET": { "fields": [ "id", "name" ] } } }, "Create IBM IKS Cluster backup": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/cloud_object_storages": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/kubernetes_clusters": { "GET": { "fields": [ "id", "name", "master_kube_version" ] } }, "v1/ibm/kubernetes_clusters/temp": { "GET": { "fields": [ "id", "workloads" ] } }, "v1/ibm/cloud_object_storages/buckets": { "GET": { "fields": [ "id", "name", "cloud_object_storage", "cos_bucket_versioning", "regions" ] } }, "v1/ibm/cloud_object_storages/keys": { "GET": { "fields": [ "id", "name", "is_hmac" ] } } }, "List IBM COS bucket credential keys": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/cloud_object_storages/keys": { "GET": { "fields": [ "id", "name", "is_hmac" ] } }, "v1/ibm/cloud_object_storages": { "GET": { "fields": [ "id", "name" ] } } }, "List a single IBM Kubernetes Cluster": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name", "zones" ] } }, "v1/ibm/kubernetes_clusters": { "GET": { "fields": [ "id", "name", "master_kube_version" ] } }, "v1/ibm/kubernetes_clusters/temp": { "GET": { "fields": [ "id", "workloads" ] } } }, "List all IBM VSI Instances": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name", "zones" ] } }, "v1/ibm/instances": { "GET": { "fields": [ "id", "name" ] } } }, "Create IBM VSI backup": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name", "zones" ] } }, "v1/ibm/instances": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/backup_policies": { "GET": { "fields": [ "id", "name" ] } } }, "List all IBM Backup Policies": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/backup_policies": { "GET": { "fields": [ "id", "name" ] } } }, "List a single IBM VSI": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name", "zones" ] } }, "v1/ibm/instances": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/instances/temp": { "GET": { "fields": [ "id", "name" ] } } }, "Create scheduled IBM VSI backup": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/instances": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/backup_policies": { "GET": { "fields": [ "id", "name" ] } } }, "Restore IBM IKS Cluster backup": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/draas_blueprints": { "GET": { "fields": [ "id", "name", "backups", "resource_metadata" ], "nested_fields": { "backups": [ "id", "name" ] } } }, "v1/ibm/kubernetes_clusters": { "GET": { "fields": [ "id", "name", "master_kube_version" ] } } }, "Restore IBM IKS Cluster backup in existing IBM VPC": { "v1/ibm/clouds": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/geography/regions": { "GET": { "fields": [ "id", "name", "display_name" ] } }, "v1/ibm/draas_blueprints": { "GET": { "fields": [ "id", "name", "backups" ], "nested_fields": { "backups": [ "id", "name" ], "resource_metadata": [ "cluster_id", "blueprint_name" ] } } }, "v1/ibm/vpcs": { "GET": { "fields": [ "id", "name" ], "nested_fields": { "associated_resources": [ "subnets" ] } } }, "v1/ibm/resource_groups": { "GET": { "fields": [ "id", "name" ] } }, "v1/ibm/subnets": { "GET": { "fields": [ "id", "name", "zone" ] } } } }
app/web/common/api_path_to_fields.json
CloudWhisperCustomBot
API_KEY_MESSAGE ="""Cloud Whisper requires a VPC+ API key to discover data and perform actions. Please follow these steps to create your API key:\n 1. Create your VPC+ API Key: \n \t \n a. Click on User name in the bottom left corner and select Settings \n \t \n b. Navigate to the "API Key" section \n \t \n c. Create a new API key:\n \t \n - Provide a name for your key\n \t \n - Add a description\n \t \n - Set an expiration time (optional)\n\n Once completed, Cloud Whisper will be able to access the necessary VPC+ data for its operations.\n\n If you encounter any issues during this process, please don't hesitate to contact our support team. """ IBM_CLASSIC_CLOUD_ACCOUNT_MESSAGE = """Cloud Whisper requires a connected IBM Classic Cloud account to discover data and perform actions. Please follow these steps to add your IBM Classic Cloud account:\n 1. Add your IBM Classic Cloud Account: \n \t \n a. Select IBM Classic Cloud Accounts on the left bottom corner of the interface.\n \t \n b. Click on Add Account.\n \t \n c. Fill in the Name, Username and API key.\n \t \n d. Click Add to create and save your IBM Classic Cloud account.\n\n Once completed, Cloud Whisper will be able to access the necessary data for its operations.\n\n If you encounter any issues during this process, please contact our support team for assistance. """ IBM_CLOUD_ACCOUNT_MESSAGE = """Cloud Whisper requires a connected IBM Cloud account to discover data and perform actions. Please follow these steps to add your IBM Cloud account:\n 1. Add your IBM Cloud Account:\n \t \n a. Select IBM Cloud Accounts on the left bottom corner of the interface.\n \t \n b. Click on Add Account.\n \t \n c. Fill in the Name and API key.\n \t \n d. Click Add to create and save your cloud account.\n\n Once completed, Cloud Whisper will be able to access the necessary data for its operations.\n\n If you encounter any issues during this process, please contact our support team for assistance. """ GENERAL_CLOUD_ACCOUNT_MESSAGE = """Cloud Whisper requires a connected IBM Cloud and IBM Classic Cloud account to discover data and perform actions. Please follow these steps to add your account:\n 1. Add your IBM Cloud and IBM Classic Cloud Account: \n \t \n a. Select IBM Cloud Accounts and IBM Classic Cloud Accounts from the bottom left corner of the interface.\n \t \n b. Click on Add Account.\n \t \n c. For IBM Cloud accounts, fill in the Name and API key. For IBM Classic Cloud accounts, fill in the Name, Username, and API key.\n \t \n d. Click Add to create and save your account.\n\n Once completed, Cloud Whisper will be able to access the necessary data for its operations.\n\n If you encounter any issues during this process, please contact our support team for assistance. """
app/web/common/cloud_setup_instruction_messages.py
CloudWhisperCustomBot
get_vpc_backups_query = """ MATCH (v:VPC) OPTIONAL MATCH (b:VPCBackup {name: v.name}) WITH v, b WHERE b IS NULL AND v.cloud_id = '{cloud_id}' RETURN v.cloud_id, v.name """ get_iks_backups_query = """ MATCH (v:KubernetesCluster) OPTIONAL MATCH (b:IKSBackupDetails {name: v.name}) WITH v, b WHERE b IS NULL AND v.cloud_id = '{cloud_id}' RETURN v.cloud_id, v.name """ get_cos_backups_query = """ MATCH (v:COSBucket) OPTIONAL MATCH (b:COSBucketBackupDetails {name: v.name}) WITH v, b WHERE b IS NULL AND v.cloud_id = '{cloud_id}' RETURN v.cloud_id, v.name """ get_vsi_backups_query = """ MATCH (v:VirtualServerInstance) OPTIONAL MATCH (b:VirtualServerInstanceBackup {name: v.name}) WITH v, b WHERE b IS NULL AND v.cloud_id = '{cloud_id}' RETURN v.cloud_id, v.name """
app/web/activity_tracking/neo4j_query.py
CloudWhisperCustomBot
from .api import activity_tracking_n_recommendations __all__ = ["activity_tracking_n_recommendations"]
app/web/activity_tracking/__init__.py
CloudWhisperCustomBot
from math import ceil from typing import Annotated from fastapi import APIRouter, Depends, HTTPException, Query from loguru import logger from sqlalchemy import select from pydantic import conint from sqlalchemy.orm import undefer from sqlalchemy import desc, func from app import models from app.core.config import settings from app.web.activity_tracking.neo4j_query import get_vpc_backups_query, get_iks_backups_query, get_cos_backups_query, \ get_vsi_backups_query from app.web.common import deps, db_deps from app.whisper.utils.neo4j.client import Neo4j activity_tracking_n_recommendations = APIRouter() @activity_tracking_n_recommendations.get("", name="Get Activities (Backup and Restore) Performed & Recommendations") async def get_activity_n_recommendations( cloud_id: str, user=Depends(deps.authenticate_user), recommendation: bool = None, status: Annotated[list[str] | None, Query()] = None, cloud: Annotated[list[str] | None, Query()] = None, start: conint(ge=1) = 1, limit: conint(ge=1, le=settings.pagination_config.MAX_PAGE_LIMIT) = settings.pagination_config.DEFAULT_LIMIT ): from app.main import app response = [] # Only add recommendations if it's the first page if start == 1 and recommendation: neo4j_client = Neo4j(db_session=app.state.neo4j_session, user_id=user["id"]) # Add VPC backup recommendation vpc_query = get_vpc_backups_query.replace("{cloud_id}", cloud_id) vpc_result = neo4j_client.query_database(vpc_query) if vpc_result: vpc_backup_recommendation_dict = { 'type': 'recommendation', 'cloud': 'ibm', 'status': 'info', 'title': 'You have multiple VPCs which are not backed up, would you like to back them up?', 'prompt': 'How many VPCs do I have which are not backed up? I need to back them up', } response.append(vpc_backup_recommendation_dict) # Add IKS backup recommendation iks_query = get_iks_backups_query.replace("{cloud_id}", cloud_id) iks_result = neo4j_client.query_database(iks_query) if iks_result: iks_backup_recommendation = { 'type': 'recommendation', 'cloud': 'ibm', 'status': 'info', 'title': 'You have multiple IKS clusters which are not backed up, would you like to back them up?', 'prompt': 'How many IKS clusters do I have which are not backed up? I need to back them up', } response.append(iks_backup_recommendation) # Add COS Buckets backup recommendation cos_buckets_query = get_cos_backups_query.replace("{cloud_id}", cloud_id) cos_result = neo4j_client.query_database(cos_buckets_query) if cos_result: cos_buckets_backup_recommendation = { 'type': 'recommendation', 'cloud': 'ibm', 'status': 'info', 'title': 'You have multiple COS Buckets which are not backed up, would you like to back them up?', 'prompt': 'How many COS Buckets do I have which are not backed up? Can you show them?', } response.append(cos_buckets_backup_recommendation) # Add VSI backup recommendation vsi_query = get_vsi_backups_query.replace("{cloud_id}", cloud_id) vsi_result = neo4j_client.query_database(vsi_query) if vsi_result: vsi_backup_recommendation = { 'type': 'recommendation', 'cloud': 'ibm', 'status': 'info', 'title': 'You have multiple Virtual Server Instances (VSIs) which are not backed up, would you like to back them up?', 'prompt': 'How many Virtual Server Instances (VSIs) do I have which are not backed up? I need to back them up', } response.append(vsi_backup_recommendation) async with db_deps.get_db_session_async_context() as db_session: # Pagination logic for activities total = await db_session.scalar(select(func.count(models.ActivityTracking.id)).filter_by(user_id=user["id"])) pages = ceil(total / limit) if start > pages: start = 1 offset = (start - 1) * limit filters = {"user_id": user["id"]} # TODO: Will have to add the cloud filter as well when other cloud like (Softlayer or AWS etc.) comes in if status: activities = (await db_session.scalars( select(models.ActivityTracking).filter(models.ActivityTracking.status.in_(status)).filter_by(**filters) .options(undefer(models.ActivityTracking.fe_request_data)) .order_by(desc(models.ActivityTracking.created_at)).offset(offset).limit(limit) )).all() else: activities = (await db_session.scalars( select(models.ActivityTracking).filter_by(**filters) .options(undefer(models.ActivityTracking.fe_request_data)) .order_by(desc(models.ActivityTracking.created_at)).offset(offset).limit(limit) )).all() if activities: for activity in activities: action = ( await db_session.scalars( select(models.Action).filter(models.Action.id == activity.action_id))).one_or_none() activity_dict = { 'type': 'action', 'cloud': 'ibm', 'status': activity.status, 'title': f"{action.name} of {activity.resource_name}", 'json': await activity.to_json(db_session) } response.append(activity_dict) return { "items": response, "previous": start - 1 if start > 1 else None, "next": start + 1 if start < pages else None, "pages": pages, "total": total } @activity_tracking_n_recommendations.get("/{workflow_id}", name="Get a Workflow by ID") async def get_activity( workflow_id: str, user=Depends(deps.authenticate_user), ): async with db_deps.get_db_session_async_context() as db_session: activity = (await db_session.scalars(select(models.ActivityTracking).filter( models.ActivityTracking.workflow_id == workflow_id).options(undefer(models.ActivityTracking.fe_request_data))) ).one_or_none() if not activity: logger.error(f"No activity found with ID: {workflow_id}") raise HTTPException(status_code=404, detail=f"No activity found with ID: {workflow_id}") return await activity.to_json(db_session)
app/web/activity_tracking/api.py
CloudWhisperCustomBot
import datetime import typing as t import uuid from enum import Enum from pydantic import BaseModel, Field class MessageTypeEnum(str, Enum): Human = 'Human' Assistant = 'Assistant' class ChatTypeEnum(str, Enum): QnA = 'QnA' Action = 'Action' class MessageType(BaseModel): type: MessageTypeEnum class MessageRequest(BaseModel): text: str type: t.Optional[str] = "Human" class MessageResponse(BaseModel): id: uuid.UUID sent_at: datetime.datetime text: str type: MessageType class ChatRequest(BaseModel): question: str chat_id: t.Optional[str] = Field(default=None, max_length=32, min_length=32, regex="^[0-9a-fA-F]+$") action_id: t.Optional[str] = Field(default=None, max_length=32, min_length=32, regex="^[0-9a-fA-F]+$") regenerate: t.Optional[bool] = Field(default=False) cloud_account_id: t.Optional[str] = Field(default=None) cloud_type: t.Optional[str] = Field(default=None) class GenerateTitleRequest(BaseModel): message_id: uuid.UUID class UpdateChatRequest(BaseModel): is_visible: t.Optional[bool] title: t.Optional[str] metadata: t.Optional[dict] class StreamConversationRequest(BaseModel): message_id: uuid.UUID
app/web/chats/schemas.py
CloudWhisperCustomBot
from .api import whisper_chats __all__ = ["whisper_chats"]
app/web/chats/__init__.py
CloudWhisperCustomBot
README.md exists but content is empty.
Downloads last month
40