ceyhunemreozturk
commited on
Commit
•
7aa68c7
1
Parent(s):
710bceb
Data splits (compatible with LEXTREME benchmark) are uploaded
Browse files- convert_to_hf_dataset.py +221 -0
- test.jsonl +0 -0
- train.jsonl +0 -0
- validation.jsonl +0 -0
convert_to_hf_dataset.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
import pickle
|
7 |
+
import math
|
8 |
+
import random
|
9 |
+
|
10 |
+
"""
|
11 |
+
Dataset url: https://github.com/koc-lab/law-turk/tree/main/data/constitutional/deep
|
12 |
+
Paper url: https://www.sciencedirect.com/science/article/abs/pii/S0306457321001692
|
13 |
+
"""
|
14 |
+
|
15 |
+
def prepare_data():
|
16 |
+
label_dict = {' İhlal' : 0, ' İhlal Olmadığı' : 1}
|
17 |
+
|
18 |
+
### Load data
|
19 |
+
with open('old_dataset/constitutional_tokenized.law' ,'rb') as pickle_file:
|
20 |
+
tokenized = pickle.load(pickle_file)
|
21 |
+
with open('old_dataset/constitutional_labels.law' ,'rb') as pickle_file:
|
22 |
+
labels = pickle.load(pickle_file)
|
23 |
+
|
24 |
+
tokenized_lower = []
|
25 |
+
|
26 |
+
for text in tokenized:
|
27 |
+
temp_text = ""
|
28 |
+
for word in text:
|
29 |
+
temp_text += word.lower() + " "
|
30 |
+
|
31 |
+
tokenized_lower.append(temp_text)
|
32 |
+
|
33 |
+
### Split the data
|
34 |
+
|
35 |
+
train_ratio = 0.70
|
36 |
+
val_ratio = 0.15
|
37 |
+
|
38 |
+
list_indices = []
|
39 |
+
|
40 |
+
for i, lbl in enumerate(labels):
|
41 |
+
if lbl in label_dict:
|
42 |
+
list_indices.append(i)
|
43 |
+
|
44 |
+
random.Random(13).shuffle(list_indices)
|
45 |
+
|
46 |
+
new_length = len(list_indices)
|
47 |
+
|
48 |
+
train_idx = math.floor(new_length * train_ratio)
|
49 |
+
val_idx = math.floor(new_length * (train_ratio + val_ratio))
|
50 |
+
|
51 |
+
train_indices = list_indices[0:train_idx]
|
52 |
+
val_indices = list_indices[train_idx : val_idx]
|
53 |
+
test_indices = list_indices[val_idx:]
|
54 |
+
|
55 |
+
train_list = []
|
56 |
+
val_list = []
|
57 |
+
test_list = []
|
58 |
+
|
59 |
+
for ind in train_indices:
|
60 |
+
train_list.append(tokenized_lower[ind])
|
61 |
+
|
62 |
+
for ind in val_indices:
|
63 |
+
val_list.append(tokenized_lower[ind])
|
64 |
+
|
65 |
+
for ind in test_indices:
|
66 |
+
test_list.append(tokenized_lower[ind])
|
67 |
+
|
68 |
+
train_labels = []
|
69 |
+
val_labels = []
|
70 |
+
test_labels = []
|
71 |
+
|
72 |
+
for ind in train_indices:
|
73 |
+
if label_dict[labels[ind]] == " İhlal":
|
74 |
+
train_labels.append("Violation")
|
75 |
+
else:
|
76 |
+
train_labels.append("No violation")
|
77 |
+
|
78 |
+
for ind in val_indices:
|
79 |
+
if label_dict[labels[ind]] == " İhlal":
|
80 |
+
val_labels.append("Violation")
|
81 |
+
else:
|
82 |
+
val_labels.append("No violation")
|
83 |
+
|
84 |
+
for ind in test_indices:
|
85 |
+
if label_dict[labels[ind]] == " İhlal":
|
86 |
+
test_labels.append("Violation")
|
87 |
+
else:
|
88 |
+
test_labels.append("No violation")
|
89 |
+
|
90 |
+
train_split = np.concatenate((np.expand_dims(train_list, axis=1), np.expand_dims(train_labels, axis=1)), axis=1)
|
91 |
+
val_split = np.concatenate((np.expand_dims(val_list, axis=1), np.expand_dims(val_labels, axis=1)), axis=1)
|
92 |
+
test_split = np.concatenate((np.expand_dims(test_list, axis=1), np.expand_dims(test_labels, axis=1)), axis=1)
|
93 |
+
|
94 |
+
return pd.DataFrame(train_split, columns=["Text", "Label"]), pd.DataFrame(val_split, columns=["Text", "Label"]), pd.DataFrame(test_split, columns=["Text", "Label"])
|
95 |
+
|
96 |
+
train_split, val_split, test_split = prepare_data()
|
97 |
+
train_split.to_json(os.path.join("train.jsonl"), lines=True, orient="records", force_ascii=False)
|
98 |
+
val_split.to_json(os.path.join("validation.jsonl"), lines=True, orient="records", force_ascii=False)
|
99 |
+
test_split.to_json(os.path.join("test.jsonl"), lines=True, orient="records", force_ascii=False)
|
100 |
+
|
101 |
+
'''
|
102 |
+
pd.set_option('display.max_colwidth', None)
|
103 |
+
pd.set_option('display.max_columns', None)
|
104 |
+
|
105 |
+
|
106 |
+
def perform_original_preprocessing():
|
107 |
+
# Original Preprocessing from: https://github.com/lagefreitas/predicting-brazilian-court-decisions/blob/main/predicting-brazilian-court-decisions.py#L81
|
108 |
+
# Loading the labeled decisions
|
109 |
+
data = pd.read_csv("dataset.csv", sep='<=>', header=0)
|
110 |
+
print('data.shape=' + str(data.shape) + ' full data set')
|
111 |
+
# Removing NA values
|
112 |
+
data = data.dropna(subset=[data.columns[9]]) # decision_description
|
113 |
+
data = data.dropna(subset=[data.columns[11]]) # decision_label
|
114 |
+
print('data.shape=' + str(data.shape) + ' dropna')
|
115 |
+
# Removing duplicated samples
|
116 |
+
data = data.drop_duplicates(subset=[data.columns[1]]) # process_number
|
117 |
+
print('data.shape=' + str(data.shape) + ' removed duplicated samples by process_number')
|
118 |
+
data = data.drop_duplicates(subset=[data.columns[9]]) # decision_description
|
119 |
+
print('data.shape=' + str(data.shape) + ' removed duplicated samples by decision_description')
|
120 |
+
# Removing not relevant decision labels and decision not properly labeled
|
121 |
+
data = data.query('decision_label != "conflito-competencia"')
|
122 |
+
print('data.shape=' + str(data.shape) + ' removed decisions labeled as conflito-competencia')
|
123 |
+
data = data.query('decision_label != "prejudicada"')
|
124 |
+
print('data.shape=' + str(data.shape) + ' removed decisions labeled as prejudicada')
|
125 |
+
data = data.query('decision_label != "not-cognized"')
|
126 |
+
print('data.shape=' + str(data.shape) + ' removed decisions labeled as not-cognized')
|
127 |
+
data_no = data.query('decision_label == "no"')
|
128 |
+
print('data_no.shape=' + str(data_no.shape))
|
129 |
+
data_yes = data.query('decision_label == "yes"')
|
130 |
+
print('data_yes.shape=' + str(data_yes.shape))
|
131 |
+
data_partial = data.query('decision_label == "partial"')
|
132 |
+
print('data_partial.shape=' + str(data_partial.shape))
|
133 |
+
# Merging decisions whose labels are yes, no, and partial to build the final data set
|
134 |
+
data_merged = data_no.merge(data_yes, how='outer')
|
135 |
+
data = data_merged.merge(data_partial, how='outer')
|
136 |
+
print('data.shape=' + str(data.shape) + ' merged decisions whose labels are yes, no, and partial')
|
137 |
+
# Removing decision_description and decision_labels whose values are -1 and -2
|
138 |
+
indexNames = data[(data['decision_description'] == str(-1)) | (data['decision_description'] == str(-2)) | (
|
139 |
+
data['decision_label'] == str(-1)) | (data['decision_label'] == str(-2))].index
|
140 |
+
data.drop(indexNames, inplace=True)
|
141 |
+
print('data.shape=' + str(data.shape) + ' removed -1 and -2 decision descriptions and labels')
|
142 |
+
|
143 |
+
data.to_csv("dataset_processed_original.csv", index=False)
|
144 |
+
|
145 |
+
|
146 |
+
def perform_additional_processing():
|
147 |
+
df = pd.read_csv("dataset_processed_original.csv")
|
148 |
+
|
149 |
+
# remove strange " characters sometimes occurring in the beginning and at the end of a line
|
150 |
+
df.ementa_filepath = df.ementa_filepath.str.replace('^"', '')
|
151 |
+
df.decision_unanimity = df.decision_unanimity.str.replace('"$', '')
|
152 |
+
|
153 |
+
# removing process_type and judgment_date, since they are the same everywhere (-)
|
154 |
+
# decisions only contains 'None', nan and '-2'
|
155 |
+
# ementa_filepath refers to the name of file in the filesystem that we created when we scraped the data from the Court. It is temporary data and can be removed
|
156 |
+
# decision_description = ementa_text - decision_text - decision_unanimity_text
|
157 |
+
df = df.drop(['process_type', 'judgment_date', 'decisions', 'ementa_filepath'], axis=1)
|
158 |
+
|
159 |
+
# some rows are somehow not read correctly. With this, we can filter them
|
160 |
+
df = df[df.decision_text.str.len() > 1]
|
161 |
+
|
162 |
+
# rename "-2" to more descriptive name ==> -2 means, that they were not able to determine it
|
163 |
+
df.decision_unanimity = df.decision_unanimity.replace('-2', 'not_determined')
|
164 |
+
|
165 |
+
# rename cols for more clarity
|
166 |
+
df = df.rename(columns={"decision_unanimity": "unanimity_label"})
|
167 |
+
df = df.rename(columns={"decision_unanimity_text": "unanimity_text"})
|
168 |
+
df = df.rename(columns={"decision_text": "judgment_text"})
|
169 |
+
df = df.rename(columns={"decision_label": "judgment_label"})
|
170 |
+
|
171 |
+
df.to_csv("dataset_processed_additional.csv", index=False)
|
172 |
+
|
173 |
+
return df
|
174 |
+
|
175 |
+
|
176 |
+
perform_original_preprocessing()
|
177 |
+
df = perform_additional_processing()
|
178 |
+
|
179 |
+
# perform random split 80% train (3234), 10% validation (404), 10% test (405)
|
180 |
+
train, validation, test = np.split(df.sample(frac=1, random_state=42), [int(.8 * len(df)), int(.9 * len(df))])
|
181 |
+
|
182 |
+
|
183 |
+
def save_splits_to_jsonl(config_name):
|
184 |
+
# save to jsonl files for huggingface
|
185 |
+
if config_name: os.makedirs(config_name, exist_ok=True)
|
186 |
+
train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
|
187 |
+
validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
|
188 |
+
test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)
|
189 |
+
|
190 |
+
|
191 |
+
def print_split_table_single_label(train, validation, test, label_name):
|
192 |
+
train_counts = train[label_name].value_counts().to_frame().rename(columns={label_name: "train"})
|
193 |
+
validation_counts = validation[label_name].value_counts().to_frame().rename(columns={label_name: "validation"})
|
194 |
+
test_counts = test[label_name].value_counts().to_frame().rename(columns={label_name: "test"})
|
195 |
+
|
196 |
+
table = train_counts.join(validation_counts)
|
197 |
+
table = table.join(test_counts)
|
198 |
+
table[label_name] = table.index
|
199 |
+
total_row = {label_name: "total",
|
200 |
+
"train": len(train.index),
|
201 |
+
"validation": len(validation.index),
|
202 |
+
"test": len(test.index)}
|
203 |
+
table = table.append(total_row, ignore_index=True)
|
204 |
+
table = table[[label_name, "train", "validation", "test"]] # reorder columns
|
205 |
+
print(table.to_markdown(index=False))
|
206 |
+
|
207 |
+
|
208 |
+
save_splits_to_jsonl("")
|
209 |
+
|
210 |
+
print_split_table_single_label(train, validation, test, "judgment_label")
|
211 |
+
print_split_table_single_label(train, validation, test, "unanimity_label")
|
212 |
+
|
213 |
+
# create second config by filtering out rows with unanimity label == not_determined, while keeping the same splits
|
214 |
+
# train = train[train.unanimity_label != "not_determined"]
|
215 |
+
# validation = validation[validation.unanimity_label != "not_determined"]
|
216 |
+
# test = test[test.unanimity_label != "not_determined"]
|
217 |
+
|
218 |
+
|
219 |
+
# it is a very small dataset and very imbalanced (only very few not-unanimity labels)
|
220 |
+
# save_splits_to_jsonl("unanimity")
|
221 |
+
'''
|
test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
validation.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|