ceyhunemreozturk commited on
Commit
814d3d1
1 Parent(s): 7aa68c7

Upload convert_to_hf_dataset.py

Browse files
Files changed (1) hide show
  1. convert_to_hf_dataset.py +1 -123
convert_to_hf_dataset.py CHANGED
@@ -96,126 +96,4 @@ def prepare_data():
96
  train_split, val_split, test_split = prepare_data()
97
  train_split.to_json(os.path.join("train.jsonl"), lines=True, orient="records", force_ascii=False)
98
  val_split.to_json(os.path.join("validation.jsonl"), lines=True, orient="records", force_ascii=False)
99
- test_split.to_json(os.path.join("test.jsonl"), lines=True, orient="records", force_ascii=False)
100
-
101
- '''
102
- pd.set_option('display.max_colwidth', None)
103
- pd.set_option('display.max_columns', None)
104
-
105
-
106
- def perform_original_preprocessing():
107
- # Original Preprocessing from: https://github.com/lagefreitas/predicting-brazilian-court-decisions/blob/main/predicting-brazilian-court-decisions.py#L81
108
- # Loading the labeled decisions
109
- data = pd.read_csv("dataset.csv", sep='<=>', header=0)
110
- print('data.shape=' + str(data.shape) + ' full data set')
111
- # Removing NA values
112
- data = data.dropna(subset=[data.columns[9]]) # decision_description
113
- data = data.dropna(subset=[data.columns[11]]) # decision_label
114
- print('data.shape=' + str(data.shape) + ' dropna')
115
- # Removing duplicated samples
116
- data = data.drop_duplicates(subset=[data.columns[1]]) # process_number
117
- print('data.shape=' + str(data.shape) + ' removed duplicated samples by process_number')
118
- data = data.drop_duplicates(subset=[data.columns[9]]) # decision_description
119
- print('data.shape=' + str(data.shape) + ' removed duplicated samples by decision_description')
120
- # Removing not relevant decision labels and decision not properly labeled
121
- data = data.query('decision_label != "conflito-competencia"')
122
- print('data.shape=' + str(data.shape) + ' removed decisions labeled as conflito-competencia')
123
- data = data.query('decision_label != "prejudicada"')
124
- print('data.shape=' + str(data.shape) + ' removed decisions labeled as prejudicada')
125
- data = data.query('decision_label != "not-cognized"')
126
- print('data.shape=' + str(data.shape) + ' removed decisions labeled as not-cognized')
127
- data_no = data.query('decision_label == "no"')
128
- print('data_no.shape=' + str(data_no.shape))
129
- data_yes = data.query('decision_label == "yes"')
130
- print('data_yes.shape=' + str(data_yes.shape))
131
- data_partial = data.query('decision_label == "partial"')
132
- print('data_partial.shape=' + str(data_partial.shape))
133
- # Merging decisions whose labels are yes, no, and partial to build the final data set
134
- data_merged = data_no.merge(data_yes, how='outer')
135
- data = data_merged.merge(data_partial, how='outer')
136
- print('data.shape=' + str(data.shape) + ' merged decisions whose labels are yes, no, and partial')
137
- # Removing decision_description and decision_labels whose values are -1 and -2
138
- indexNames = data[(data['decision_description'] == str(-1)) | (data['decision_description'] == str(-2)) | (
139
- data['decision_label'] == str(-1)) | (data['decision_label'] == str(-2))].index
140
- data.drop(indexNames, inplace=True)
141
- print('data.shape=' + str(data.shape) + ' removed -1 and -2 decision descriptions and labels')
142
-
143
- data.to_csv("dataset_processed_original.csv", index=False)
144
-
145
-
146
- def perform_additional_processing():
147
- df = pd.read_csv("dataset_processed_original.csv")
148
-
149
- # remove strange " characters sometimes occurring in the beginning and at the end of a line
150
- df.ementa_filepath = df.ementa_filepath.str.replace('^"', '')
151
- df.decision_unanimity = df.decision_unanimity.str.replace('"$', '')
152
-
153
- # removing process_type and judgment_date, since they are the same everywhere (-)
154
- # decisions only contains 'None', nan and '-2'
155
- # ementa_filepath refers to the name of file in the filesystem that we created when we scraped the data from the Court. It is temporary data and can be removed
156
- # decision_description = ementa_text - decision_text - decision_unanimity_text
157
- df = df.drop(['process_type', 'judgment_date', 'decisions', 'ementa_filepath'], axis=1)
158
-
159
- # some rows are somehow not read correctly. With this, we can filter them
160
- df = df[df.decision_text.str.len() > 1]
161
-
162
- # rename "-2" to more descriptive name ==> -2 means, that they were not able to determine it
163
- df.decision_unanimity = df.decision_unanimity.replace('-2', 'not_determined')
164
-
165
- # rename cols for more clarity
166
- df = df.rename(columns={"decision_unanimity": "unanimity_label"})
167
- df = df.rename(columns={"decision_unanimity_text": "unanimity_text"})
168
- df = df.rename(columns={"decision_text": "judgment_text"})
169
- df = df.rename(columns={"decision_label": "judgment_label"})
170
-
171
- df.to_csv("dataset_processed_additional.csv", index=False)
172
-
173
- return df
174
-
175
-
176
- perform_original_preprocessing()
177
- df = perform_additional_processing()
178
-
179
- # perform random split 80% train (3234), 10% validation (404), 10% test (405)
180
- train, validation, test = np.split(df.sample(frac=1, random_state=42), [int(.8 * len(df)), int(.9 * len(df))])
181
-
182
-
183
- def save_splits_to_jsonl(config_name):
184
- # save to jsonl files for huggingface
185
- if config_name: os.makedirs(config_name, exist_ok=True)
186
- train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
187
- validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
188
- test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)
189
-
190
-
191
- def print_split_table_single_label(train, validation, test, label_name):
192
- train_counts = train[label_name].value_counts().to_frame().rename(columns={label_name: "train"})
193
- validation_counts = validation[label_name].value_counts().to_frame().rename(columns={label_name: "validation"})
194
- test_counts = test[label_name].value_counts().to_frame().rename(columns={label_name: "test"})
195
-
196
- table = train_counts.join(validation_counts)
197
- table = table.join(test_counts)
198
- table[label_name] = table.index
199
- total_row = {label_name: "total",
200
- "train": len(train.index),
201
- "validation": len(validation.index),
202
- "test": len(test.index)}
203
- table = table.append(total_row, ignore_index=True)
204
- table = table[[label_name, "train", "validation", "test"]] # reorder columns
205
- print(table.to_markdown(index=False))
206
-
207
-
208
- save_splits_to_jsonl("")
209
-
210
- print_split_table_single_label(train, validation, test, "judgment_label")
211
- print_split_table_single_label(train, validation, test, "unanimity_label")
212
-
213
- # create second config by filtering out rows with unanimity label == not_determined, while keeping the same splits
214
- # train = train[train.unanimity_label != "not_determined"]
215
- # validation = validation[validation.unanimity_label != "not_determined"]
216
- # test = test[test.unanimity_label != "not_determined"]
217
-
218
-
219
- # it is a very small dataset and very imbalanced (only very few not-unanimity labels)
220
- # save_splits_to_jsonl("unanimity")
221
- '''
 
96
  train_split, val_split, test_split = prepare_data()
97
  train_split.to_json(os.path.join("train.jsonl"), lines=True, orient="records", force_ascii=False)
98
  val_split.to_json(os.path.join("validation.jsonl"), lines=True, orient="records", force_ascii=False)
99
+ test_split.to_json(os.path.join("test.jsonl"), lines=True, orient="records", force_ascii=False)