file
stringlengths
6
44
content
stringlengths
38
162k
reader.py
"""This module contains the Reader class.""" from .builtin_datasets import BUILTIN_DATASETS class Reader: """The Reader class is used to parse a file containing ratings. Such a file is assumed to specify only one rating per line, and each line needs to respect the following structure: :: user ; item ; rating ; [timestamp] where the order of the fields and the separator (here ';') may be arbitrarily defined (see below). brackets indicate that the timestamp field is optional. For each built-in dataset, Surprise also provides predefined readers which are useful if you want to use a custom dataset that has the same format as a built-in one (see the ``name`` parameter). Args: name(:obj:`string`, optional): If specified, a Reader for one of the built-in datasets is returned and any other parameter is ignored. Accepted values are 'ml-100k', 'ml-1m', and 'jester'. Default is ``None``. line_format(:obj:`string`): The fields names, in the order at which they are encountered on a line. Please note that ``line_format`` is always space-separated (use the ``sep`` parameter). Default is ``'user item rating'``. sep(char): the separator between fields. Example : ``';'``. rating_scale(:obj:`tuple`, optional): The rating scale used for every rating. Default is ``(1, 5)``. skip_lines(:obj:`int`, optional): Number of lines to skip at the beginning of the file. Default is ``0``. """ def __init__( self, name=None, line_format="user item rating", sep=None, rating_scale=(1, 5), skip_lines=0, ): if name: try: self.__init__(**BUILTIN_DATASETS[name].reader_params) except KeyError: raise ValueError( "unknown reader " + name + ". Accepted values are " + ", ".join(BUILTIN_DATASETS.keys()) + "." ) else: self.sep = sep self.skip_lines = skip_lines self.rating_scale = rating_scale lower_bound, higher_bound = rating_scale splitted_format = line_format.split() entities = ["user", "item", "rating"] if "timestamp" in splitted_format: self.with_timestamp = True entities.append("timestamp") else: self.with_timestamp = False # check that all fields are correct if any(field not in entities for field in splitted_format): raise ValueError("line_format parameter is incorrect.") self.indexes = [splitted_format.index(entity) for entity in entities] def parse_line(self, line): """Parse a line. Ratings are translated so that they are all strictly positive. Args: line(str): The line to parse Returns: tuple: User id, item id, rating and timestamp. The timestamp is set to ``None`` if it does no exist. """ line = line.split(self.sep) try: if self.with_timestamp: uid, iid, r, timestamp = (line[i].strip() for i in self.indexes) else: uid, iid, r = (line[i].strip() for i in self.indexes) timestamp = None except IndexError: raise ValueError( "Impossible to parse line. Check the line_format" " and sep parameters." ) return uid, iid, float(r), timestamp
__init__.py
from pkg_resources import get_distribution from . import dump, model_selection from .builtin_datasets import get_dataset_dir from .dataset import Dataset from .prediction_algorithms import ( AlgoBase, BaselineOnly, CoClustering, KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, NMF, NormalPredictor, Prediction, PredictionImpossible, SlopeOne, SVD, SVDpp, ) from .reader import Reader from .trainset import Trainset __all__ = [ "AlgoBase", "NormalPredictor", "BaselineOnly", "KNNBasic", "KNNWithMeans", "KNNBaseline", "SVD", "SVDpp", "NMF", "SlopeOne", "CoClustering", "PredictionImpossible", "Prediction", "Dataset", "Reader", "Trainset", "dump", "KNNWithZScore", "get_dataset_dir", "model_selection", ] __version__ = get_distribution("scikit-surprise").version
builtin_datasets.py
"""This module contains built-in datasets that can be automatically downloaded.""" import errno import os import zipfile from collections import namedtuple from os.path import join from urllib.request import urlretrieve def get_dataset_dir(): """Return folder where downloaded datasets and other data are stored. Default folder is ~/.surprise_data/, but it can also be set by the environment variable ``SURPRISE_DATA_FOLDER``. """ folder = os.environ.get( "SURPRISE_DATA_FOLDER", os.path.expanduser("~") + "/.surprise_data/" ) try: os.makedirs(folder) except OSError as e: if e.errno != errno.EEXIST: # reraise exception if folder does not exist and creation failed. raise return folder # a builtin dataset has # - an url (where to download it) # - a path (where it is located on the filesystem) # - the parameters of the corresponding reader BuiltinDataset = namedtuple("BuiltinDataset", ["url", "path", "reader_params"]) BUILTIN_DATASETS = { "ml-100k": BuiltinDataset( url="https://files.grouplens.org/datasets/movielens/ml-100k.zip", path=join(get_dataset_dir(), "ml-100k/ml-100k/u.data"), reader_params=dict( line_format="user item rating timestamp", rating_scale=(1, 5), sep="\t" ), ), "ml-1m": BuiltinDataset( url="https://files.grouplens.org/datasets/movielens/ml-1m.zip", path=join(get_dataset_dir(), "ml-1m/ml-1m/ratings.dat"), reader_params=dict( line_format="user item rating timestamp", rating_scale=(1, 5), sep="::" ), ), "jester": BuiltinDataset( url="https://eigentaste.berkeley.edu/dataset/archive/jester_dataset_2.zip", path=join(get_dataset_dir(), "jester/jester_ratings.dat"), reader_params=dict(line_format="user item rating", rating_scale=(-10, 10)), ), } def download_builtin_dataset(name): dataset = BUILTIN_DATASETS[name] print("Trying to download dataset from " + dataset.url + "...") tmp_file_path = join(get_dataset_dir(), "tmp.zip") urlretrieve(dataset.url, tmp_file_path) with zipfile.ZipFile(tmp_file_path, "r") as tmp_zip: tmp_zip.extractall(join(get_dataset_dir(), name)) os.remove(tmp_file_path) print("Done! Dataset", name, "has been saved to", join(get_dataset_dir(), name))
__main__.py
#!/usr/bin/env python import argparse import os import random as rd import shutil import sys import numpy as np import surprise.dataset as dataset from surprise import __version__ from surprise.builtin_datasets import get_dataset_dir from surprise.dataset import Dataset from surprise.model_selection import cross_validate, KFold, PredefinedKFold from surprise.prediction_algorithms import ( BaselineOnly, CoClustering, KNNBaseline, KNNBasic, KNNWithMeans, NMF, NormalPredictor, SlopeOne, SVD, SVDpp, ) from surprise.reader import Reader # noqa def main(): class MyParser(argparse.ArgumentParser): """A parser which prints the help message when an error occurs. Taken from https://stackoverflow.com/questions/4042452/display-help-message-with-python-argparse-when-script-is-called-without-any-argu.""" # noqa def error(self, message): sys.stderr.write("error: %s\n" % message) self.print_help() sys.exit(2) parser = MyParser( description="Evaluate the performance of a rating prediction " + "algorithm " + "on a given dataset using cross validation. You can use a built-in " + "or a custom dataset, and you can choose to automatically split the " + "dataset into folds, or manually specify train and test files. " + "Please refer to the documentation page " + "(https://surprise.readthedocs.io/) for more details.", epilog="""Example:\n surprise -algo SVD -params "{'n_epochs': 5, 'verbose': True}" -load-builtin ml-100k -n-folds 3""", ) algo_choices = { "NormalPredictor": NormalPredictor, "BaselineOnly": BaselineOnly, "KNNBasic": KNNBasic, "KNNBaseline": KNNBaseline, "KNNWithMeans": KNNWithMeans, "SVD": SVD, "SVDpp": SVDpp, "NMF": NMF, "SlopeOne": SlopeOne, "CoClustering": CoClustering, } parser.add_argument( "-algo", type=str, choices=algo_choices, help="The prediction algorithm to use. " + "Allowed values are " + ", ".join(algo_choices.keys()) + ".", metavar="<prediction algorithm>", ) parser.add_argument( "-params", type=str, metavar="<algorithm parameters>", default="{}", help="A kwargs dictionary that contains all the " + "algorithm parameters." + "Example: \"{'n_epochs': 10}\".", ) parser.add_argument( "-load-builtin", type=str, dest="load_builtin", metavar="<dataset name>", default="ml-100k", help="The name of the built-in dataset to use." + "Allowed values are " + ", ".join(dataset.BUILTIN_DATASETS.keys()) + ". Default is ml-100k.", ) parser.add_argument( "-load-custom", type=str, dest="load_custom", metavar="<file path>", default=None, help="A file path to custom dataset to use. " + "Ignored if " + "-loadbuiltin is set. The -reader parameter needs " + "to be set.", ) parser.add_argument( "-folds-files", type=str, dest="folds_files", metavar="<train1 test1 train2 test2... >", default=None, help="A list of custom train and test files. " + "Ignored if -load-builtin or -load-custom is set. " "The -reader parameter needs to be set.", ) parser.add_argument( "-reader", type=str, metavar="<reader>", default=None, help="A Reader to read the custom dataset. Example: " + "\"Reader(line_format='user item rating timestamp'," + " sep='\\t')\"", ) parser.add_argument( "-n-folds", type=int, dest="n_folds", metavar="<number of folds>", default=5, help="The number of folds for cross-validation. " + "Default is 5.", ) parser.add_argument( "-seed", type=int, metavar="<random seed>", default=None, help="The seed to use for RNG. " + "Default is the current system time.", ) parser.add_argument( "--with-dump", dest="with_dump", action="store_true", help="Dump the algorithm " + "results in a file (one file per fold). " + "Default is False.", ) parser.add_argument( "-dump-dir", dest="dump_dir", type=str, metavar="<dir>", default=None, help="Where to dump the files. Ignored if " + "with-dump is not set. Default is " + os.path.join(get_dataset_dir(), "dumps/"), ) parser.add_argument( "--clean", dest="clean", action="store_true", help="Remove the " + get_dataset_dir() + " directory and exit.", ) parser.add_argument("-v", "--version", action="version", version=__version__) args = parser.parse_args() if args.clean: folder = get_dataset_dir() shutil.rmtree(folder) print("Removed", folder) exit() # setup RNG rd.seed(args.seed) np.random.seed(args.seed) # setup algorithm params = eval(args.params) if args.algo is None: parser.error("No algorithm was specified.") algo = algo_choices[args.algo](**params) # setup dataset if args.load_custom is not None: # load custom and split if args.reader is None: parser.error("-reader parameter is needed.") reader = eval(args.reader) data = Dataset.load_from_file(args.load_custom, reader=reader) cv = KFold(n_splits=args.n_folds, random_state=args.seed) elif args.folds_files is not None: # load from files if args.reader is None: parser.error("-reader parameter is needed.") reader = eval(args.reader) folds_files = args.folds_files.split() folds_files = [ (folds_files[i], folds_files[i + 1]) for i in range(0, len(folds_files) - 1, 2) ] data = Dataset.load_from_folds(folds_files=folds_files, reader=reader) cv = PredefinedKFold() else: # load builtin dataset and split data = Dataset.load_builtin(args.load_builtin) cv = KFold(n_splits=args.n_folds, random_state=args.seed) cross_validate(algo, data, cv=cv, verbose=True) if __name__ == "__main__": main()
trainset.py
"""This module contains the Trainset class.""" import numpy as np class Trainset: """A trainset contains all useful data that constitute a training set. It is used by the :meth:`fit() <surprise.prediction_algorithms.algo_base.AlgoBase.fit>` method of every prediction algorithm. You should not try to build such an object on your own but rather use the :meth:`Dataset.folds() <surprise.dataset.Dataset.folds>` method or the :meth:`DatasetAutoFolds.build_full_trainset() <surprise.dataset.DatasetAutoFolds.build_full_trainset>` method. Trainsets are different from :class:`Datasets <surprise.dataset.Dataset>`. You can think of a :class:`Dataset <surprise.dataset.Dataset>` as the raw data, and Trainsets as higher-level data where useful methods are defined. Also, a :class:`Dataset <surprise.dataset.Dataset>` may be comprised of multiple Trainsets (e.g. when doing cross validation). Attributes: ur(:obj:`defaultdict` of :obj:`list`): The users ratings. This is a dictionary containing lists of tuples of the form ``(item_inner_id, rating)``. The keys are user inner ids. ir(:obj:`defaultdict` of :obj:`list`): The items ratings. This is a dictionary containing lists of tuples of the form ``(user_inner_id, rating)``. The keys are item inner ids. n_users: Total number of users :math:`|U|`. n_items: Total number of items :math:`|I|`. n_ratings: Total number of ratings :math:`|R_{train}|`. rating_scale(tuple): The minimum and maximal rating of the rating scale. global_mean: The mean of all ratings :math:`\\mu`. """ def __init__( self, ur, ir, n_users, n_items, n_ratings, rating_scale, raw2inner_id_users, raw2inner_id_items, ): self.ur = ur self.ir = ir self.n_users = n_users self.n_items = n_items self.n_ratings = n_ratings self.rating_scale = rating_scale self._raw2inner_id_users = raw2inner_id_users self._raw2inner_id_items = raw2inner_id_items self._global_mean = None # inner2raw dicts could be built right now (or even before) but they # are not always useful so we wait until we need them. self._inner2raw_id_users = None self._inner2raw_id_items = None def knows_user(self, uid): """Indicate if the user is part of the trainset. A user is part of the trainset if the user has at least one rating. Args: uid(int): The (inner) user id. See :ref:`this note<raw_inner_note>`. Returns: ``True`` if user is part of the trainset, else ``False``. """ return uid in self.ur def knows_item(self, iid): """Indicate if the item is part of the trainset. An item is part of the trainset if the item was rated at least once. Args: iid(int): The (inner) item id. See :ref:`this note<raw_inner_note>`. Returns: ``True`` if item is part of the trainset, else ``False``. """ return iid in self.ir def to_inner_uid(self, ruid): """Convert a **user** raw id to an inner id. See :ref:`this note<raw_inner_note>`. Args: ruid(str): The user raw id. Returns: int: The user inner id. Raises: ValueError: When user is not part of the trainset. """ try: return self._raw2inner_id_users[ruid] except KeyError: raise ValueError("User " + str(ruid) + " is not part of the trainset.") def to_raw_uid(self, iuid): """Convert a **user** inner id to a raw id. See :ref:`this note<raw_inner_note>`. Args: iuid(int): The user inner id. Returns: str: The user raw id. Raises: ValueError: When ``iuid`` is not an inner id. """ if self._inner2raw_id_users is None: self._inner2raw_id_users = { inner: raw for (raw, inner) in self._raw2inner_id_users.items() } try: return self._inner2raw_id_users[iuid] except KeyError: raise ValueError(str(iuid) + " is not a valid inner id.") def to_inner_iid(self, riid): """Convert an **item** raw id to an inner id. See :ref:`this note<raw_inner_note>`. Args: riid(str): The item raw id. Returns: int: The item inner id. Raises: ValueError: When item is not part of the trainset. """ try: return self._raw2inner_id_items[riid] except KeyError: raise ValueError("Item " + str(riid) + " is not part of the trainset.") def to_raw_iid(self, iiid): """Convert an **item** inner id to a raw id. See :ref:`this note<raw_inner_note>`. Args: iiid(int): The item inner id. Returns: str: The item raw id. Raises: ValueError: When ``iiid`` is not an inner id. """ if self._inner2raw_id_items is None: self._inner2raw_id_items = { inner: raw for (raw, inner) in self._raw2inner_id_items.items() } try: return self._inner2raw_id_items[iiid] except KeyError: raise ValueError(str(iiid) + " is not a valid inner id.") def all_ratings(self): """Generator function to iterate over all ratings. Yields: A tuple ``(uid, iid, rating)`` where ids are inner ids (see :ref:`this note <raw_inner_note>`). """ for u, u_ratings in self.ur.items(): for i, r in u_ratings: yield u, i, r def build_testset(self): """Return a list of ratings that can be used as a testset in the :meth:`test() <surprise.prediction_algorithms.algo_base.AlgoBase.test>` method. The ratings are all the ratings that are in the trainset, i.e. all the ratings returned by the :meth:`all_ratings() <surprise.Trainset.all_ratings>` generator. This is useful in cases where you want to to test your algorithm on the trainset. """ return [ (self.to_raw_uid(u), self.to_raw_iid(i), r) for (u, i, r) in self.all_ratings() ] def build_anti_testset(self, fill=None): """Return a list of ratings that can be used as a testset in the :meth:`test() <surprise.prediction_algorithms.algo_base.AlgoBase.test>` method. The ratings are all the ratings that are **not** in the trainset, i.e. all the ratings :math:`r_{ui}` where the user :math:`u` is known, the item :math:`i` is known, but the rating :math:`r_{ui}` is not in the trainset. As :math:`r_{ui}` is unknown, it is either replaced by the :code:`fill` value or assumed to be equal to the mean of all ratings :meth:`global_mean <surprise.Trainset.global_mean>`. Args: fill(float): The value to fill unknown ratings. If :code:`None` the global mean of all ratings :meth:`global_mean <surprise.Trainset.global_mean>` will be used. Returns: A list of tuples ``(uid, iid, fill)`` where ids are raw ids. """ fill = self.global_mean if fill is None else float(fill) anti_testset = [] for u in self.all_users(): user_items = {j for (j, _) in self.ur[u]} anti_testset += [ (self.to_raw_uid(u), self.to_raw_iid(i), fill) for i in self.all_items() if i not in user_items ] return anti_testset def all_users(self): """Generator function to iterate over all users. Yields: Inner id of users. """ return range(self.n_users) def all_items(self): """Generator function to iterate over all items. Yields: Inner id of items. """ return range(self.n_items) @property def global_mean(self): if self._global_mean is None: self._global_mean = np.mean([r for (_, _, r) in self.all_ratings()]) return self._global_mean
utils.py
"""The utils module contains the get_rng function.""" import numbers import numpy as np def get_rng(random_state): """Return a 'validated' RNG. If random_state is None, use RandomState singleton from numpy. Else if it's an integer, consider it's a seed and initialized an rng with that seed. If it's already an rng, return it. """ if random_state is None: return np.random.mtrand._rand elif isinstance(random_state, (numbers.Integral, np.integer)): return np.random.RandomState(random_state) if isinstance(random_state, np.random.RandomState): return random_state raise ValueError( "Wrong random state. Expecting None, an int or a numpy " "RandomState instance, got a " "{}".format(type(random_state)) )
search.py
from abc import ABC, abstractmethod from itertools import product import numpy as np from joblib import delayed, Parallel from ..dataset import DatasetUserFolds from ..utils import get_rng from .split import get_cv from .validation import fit_and_score class BaseSearchCV(ABC): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__( self, algo_class, measures=["rmse", "mae"], cv=None, refit=False, return_train_measures=False, n_jobs=1, pre_dispatch="2*n_jobs", joblib_verbose=0, ): self.algo_class = algo_class self.measures = [measure.lower() for measure in measures] self.cv = cv if isinstance(refit, str): if refit.lower() not in self.measures: raise ValueError( "It looks like the measure you want to use " "with refit ({}) is not in the measures " "parameter" ) self.refit = refit.lower() elif refit is True: self.refit = self.measures[0] else: self.refit = False self.return_train_measures = return_train_measures self.n_jobs = n_jobs self.pre_dispatch = pre_dispatch self.joblib_verbose = joblib_verbose def _parse_options(self, params): # As sim_options and bsl_options are dictionaries, they require a # special treatment. if "sim_options" in params: sim_options = params["sim_options"] sim_options_list = [ dict(zip(sim_options, v)) for v in product(*sim_options.values()) ] params["sim_options"] = sim_options_list if "bsl_options" in params: bsl_options = params["bsl_options"] bsl_options_list = [ dict(zip(bsl_options, v)) for v in product(*bsl_options.values()) ] params["bsl_options"] = bsl_options_list return params def fit(self, data): """Runs the ``fit()`` method of the algorithm for all parameter combinations, over different splits given by the ``cv`` parameter. Args: data (:obj:`Dataset <surprise.dataset.Dataset>`): The dataset on which to evaluate the algorithm, in parallel. """ if self.refit and isinstance(data, DatasetUserFolds): raise ValueError( "refit cannot be used when data has been " "loaded with load_from_folds()." ) cv = get_cv(self.cv) delayed_list = ( delayed(fit_and_score)( self.algo_class(**params), trainset, testset, self.measures, self.return_train_measures, ) for params, (trainset, testset) in product( self.param_combinations, cv.split(data) ) ) out = Parallel( n_jobs=self.n_jobs, pre_dispatch=self.pre_dispatch, verbose=self.joblib_verbose, )(delayed_list) (test_measures_dicts, train_measures_dicts, fit_times, test_times) = zip(*out) # test_measures_dicts is a list of dict like this: # [{'mae': 1, 'rmse': 2}, {'mae': 2, 'rmse': 3} ...] # E.g. for 5 splits, the first 5 dicts are for the first param # combination, the next 5 dicts are for the second param combination, # etc... # We convert it into a dict of list: # {'mae': [1, 2, ...], 'rmse': [2, 3, ...]} # Each list is still of size n_parameters_combinations * n_splits. # Then, reshape each list to have 2-D arrays of shape # (n_parameters_combinations, n_splits). This way we can easily compute # the mean and std dev over all splits or over all param comb. test_measures = dict() train_measures = dict() new_shape = (len(self.param_combinations), cv.get_n_folds()) for m in self.measures: test_measures[m] = np.asarray([d[m] for d in test_measures_dicts]) test_measures[m] = test_measures[m].reshape(new_shape) if self.return_train_measures: train_measures[m] = np.asarray([d[m] for d in train_measures_dicts]) train_measures[m] = train_measures[m].reshape(new_shape) cv_results = dict() best_index = dict() best_params = dict() best_score = dict() best_estimator = dict() for m in self.measures: # cv_results: set measures for each split and each param comb for split in range(cv.get_n_folds()): cv_results[f"split{split}_test_{m}"] = test_measures[m][:, split] if self.return_train_measures: cv_results[f"split{split}_train_{m}"] = train_measures[m][:, split] # cv_results: set mean and std over all splits (testset and # trainset) for each param comb mean_test_measures = test_measures[m].mean(axis=1) cv_results[f"mean_test_{m}"] = mean_test_measures cv_results[f"std_test_{m}"] = test_measures[m].std(axis=1) if self.return_train_measures: mean_train_measures = train_measures[m].mean(axis=1) cv_results[f"mean_train_{m}"] = mean_train_measures cv_results[f"std_train_{m}"] = train_measures[m].std(axis=1) # cv_results: set rank of each param comb # also set best_index, and best_xxxx attributes indices = cv_results[f"mean_test_{m}"].argsort() cv_results[f"rank_test_{m}"] = np.empty_like(indices) if m in ("mae", "rmse", "mse"): cv_results[f"rank_test_{m}"][indices] = ( np.arange(len(indices)) + 1 ) # sklearn starts at 1 as well best_index[m] = mean_test_measures.argmin() elif m in ("fcp",): cv_results[f"rank_test_{m}"][indices] = np.arange(len(indices), 0, -1) best_index[m] = mean_test_measures.argmax() best_params[m] = self.param_combinations[best_index[m]] best_score[m] = mean_test_measures[best_index[m]] best_estimator[m] = self.algo_class(**best_params[m]) # Cv results: set fit and train times (mean, std) fit_times = np.array(fit_times).reshape(new_shape) test_times = np.array(test_times).reshape(new_shape) for s, times in zip(("fit", "test"), (fit_times, test_times)): cv_results[f"mean_{s}_time"] = times.mean(axis=1) cv_results[f"std_{s}_time"] = times.std(axis=1) # cv_results: set params key and each param_* values cv_results["params"] = self.param_combinations for param in self.param_combinations[0]: cv_results["param_" + param] = [ comb[param] for comb in self.param_combinations ] if self.refit: best_estimator[self.refit].fit(data.build_full_trainset()) self.best_index = best_index self.best_params = best_params self.best_score = best_score self.best_estimator = best_estimator self.cv_results = cv_results def test(self, testset, verbose=False): """Call ``test()`` on the estimator with the best found parameters (according the the ``refit`` parameter). See :meth:`AlgoBase.test() <surprise.prediction_algorithms.algo_base.AlgoBase.test>`. Only available if ``refit`` is not ``False``. """ if not self.refit: raise ValueError("refit is False, cannot use test()") return self.best_estimator[self.refit].test(testset, verbose) def predict(self, *args): """Call ``predict()`` on the estimator with the best found parameters (according the the ``refit`` parameter). See :meth:`AlgoBase.predict() <surprise.prediction_algorithms.algo_base.AlgoBase.predict>`. Only available if ``refit`` is not ``False``. """ if not self.refit: raise ValueError("refit is False, cannot use predict()") return self.best_estimator[self.refit].predict(*args) class GridSearchCV(BaseSearchCV): """The :class:`GridSearchCV` class computes accuracy metrics for an algorithm on various combinations of parameters, over a cross-validation procedure. This is useful for finding the best set of parameters for a prediction algorithm. It is analogous to `GridSearchCV <https://scikit-learn.org/stable/modules/generated/sklearn. model_selection.GridSearchCV.html>`_ from scikit-learn. See an example in the :ref:`User Guide <tuning_algorithm_parameters>`. Args: algo_class(:obj:`AlgoBase \ <surprise.prediction_algorithms.algo_base.AlgoBase>`): The class of the algorithm to evaluate. param_grid(dict): Dictionary with algorithm parameters as keys and list of values as keys. All combinations will be evaluated with desired algorithm. Dict parameters such as ``sim_options`` require special treatment, see :ref:`this note<grid_search_note>`. measures(list of string): The performance measures to compute. Allowed names are function names as defined in the :mod:`accuracy <surprise.accuracy>` module. Default is ``['rmse', 'mae']``. cv(cross-validation iterator, int or ``None``): Determines how the ``data`` parameter will be split (i.e. how trainsets and testsets will be defined). If an int is passed, :class:`KFold <surprise.model_selection.split.KFold>` is used with the appropriate ``n_splits`` parameter. If ``None``, :class:`KFold <surprise.model_selection.split.KFold>` is used with ``n_splits=5``. refit(bool or str): If ``True``, refit the algorithm on the whole dataset using the set of parameters that gave the best average performance for the first measure of ``measures``. Other measures can be used by passing a string (corresponding to the measure name). Then, you can use the ``test()`` and ``predict()`` methods. ``refit`` can only be used if the ``data`` parameter given to ``fit()`` hasn't been loaded with :meth:`load_from_folds() <surprise.dataset.Dataset.load_from_folds>`. Default is ``False``. return_train_measures(bool): Whether to compute performance measures on the trainsets. If ``True``, the ``cv_results`` attribute will also contain measures for trainsets. Default is ``False``. n_jobs(int): The maximum number of parallel training procedures. - If ``-1``, all CPUs are used. - If ``1`` is given, no parallel computing code is used at all,\ which is useful for debugging. - For ``n_jobs`` below ``-1``, ``(n_cpus + n_jobs + 1)`` are\ used. For example, with ``n_jobs = -2`` all CPUs but one are\ used. Default is ``1``. pre_dispatch(int or string): Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - ``None``, in which case all the jobs are immediately created\ and spawned. Use this for lightweight and fast-running\ jobs, to avoid delays due to on-demand spawning of the\ jobs. - An int, giving the exact number of total jobs that are\ spawned. - A string, giving an expression as a function of ``n_jobs``,\ as in ``'2*n_jobs'``. Default is ``'2*n_jobs'``. joblib_verbose(int): Controls the verbosity of joblib: the higher, the more messages. Attributes: best_estimator (dict of AlgoBase): Using an accuracy measure as key, get the algorithm that gave the best accuracy results for the chosen measure, averaged over all splits. best_score (dict of floats): Using an accuracy measure as key, get the best average score achieved for that measure. best_params (dict of dicts): Using an accuracy measure as key, get the parameters combination that gave the best accuracy results for the chosen measure (on average). best_index (dict of ints): Using an accuracy measure as key, get the index that can be used with ``cv_results`` that achieved the highest accuracy for that measure (on average). cv_results (dict of arrays): A dict that contains accuracy measures over all splits, as well as train and test time for each parameter combination. Can be imported into a pandas `DataFrame` (see :ref:`example <cv_results_example>`). """ def __init__( self, algo_class, param_grid, measures=["rmse", "mae"], cv=None, refit=False, return_train_measures=False, n_jobs=1, pre_dispatch="2*n_jobs", joblib_verbose=0, ): super().__init__( algo_class=algo_class, measures=measures, cv=cv, refit=refit, return_train_measures=return_train_measures, n_jobs=n_jobs, pre_dispatch=pre_dispatch, joblib_verbose=joblib_verbose, ) self.param_grid = self._parse_options(param_grid.copy()) self.param_combinations = [ dict(zip(self.param_grid, v)) for v in product(*self.param_grid.values()) ] class RandomizedSearchCV(BaseSearchCV): """The :class:`RandomizedSearchCV` class computes accuracy metrics for an algorithm on various combinations of parameters, over a cross-validation procedure. As opposed to GridSearchCV, which uses an exhaustive combinatorial approach, RandomizedSearchCV samples randomly from the parameter space. This is useful for finding the best set of parameters for a prediction algorithm, especially using a coarse to fine approach. It is analogous to `RandomizedSearchCV <https://scikit-learn.org/stable/ modules/generated/sklearn.model_selection.RandomizedSearchCV.html>`_ from scikit-learn. See an example in the :ref:`User Guide <tuning_algorithm_parameters>`. Args: algo_class(:obj:`AlgoBase \ <surprise.prediction_algorithms.algo_base.AlgoBase>`): The class of the algorithm to evaluate. param_distributions(dict): Dictionary with algorithm parameters as keys and distributions or lists of parameters to try. Distributions must provide a rvs method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. Parameters will be sampled n_iter times. n_iter(int): Number of times parameter settings are sampled. Default is ``10``. measures(list of string): The performance measures to compute. Allowed names are function names as defined in the :mod:`accuracy <surprise.accuracy>` module. Default is ``['rmse', 'mae']``. cv(cross-validation iterator, int or ``None``): Determines how the ``data`` parameter will be split (i.e. how trainsets and testsets will be defined). If an int is passed, :class:`KFold <surprise.model_selection.split.KFold>` is used with the appropriate ``n_splits`` parameter. If ``None``, :class:`KFold <surprise.model_selection.split.KFold>` is used with ``n_splits=5``. refit(bool or str): If ``True``, refit the algorithm on the whole dataset using the set of parameters that gave the best average performance for the first measure of ``measures``. Other measures can be used by passing a string (corresponding to the measure name). Then, you can use the ``test()`` and ``predict()`` methods. ``refit`` can only be used if the ``data`` parameter given to ``fit()`` hasn't been loaded with :meth:`load_from_folds() <surprise.dataset.Dataset.load_from_folds>`. Default is ``False``. return_train_measures(bool): Whether to compute performance measures on the trainsets. If ``True``, the ``cv_results`` attribute will also contain measures for trainsets. Default is ``False``. n_jobs(int): The maximum number of parallel training procedures. - If ``-1``, all CPUs are used. - If ``1`` is given, no parallel computing code is used at all,\ which is useful for debugging. - For ``n_jobs`` below ``-1``, ``(n_cpus + n_jobs + 1)`` are\ used. For example, with ``n_jobs = -2`` all CPUs but one are\ used. Default is ``1``. pre_dispatch(int or string): Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - ``None``, in which case all the jobs are immediately created\ and spawned. Use this for lightweight and fast-running\ jobs, to avoid delays due to on-demand spawning of the\ jobs. - An int, giving the exact number of total jobs that are\ spawned. - A string, giving an expression as a function of ``n_jobs``,\ as in ``'2*n_jobs'``. Default is ``'2*n_jobs'``. random_state(int, RandomState or None): Pseudo random number generator seed used for random uniform sampling from lists of possible values instead of scipy.stats distributions. If int, ``random_state`` is the seed used by the random number generator. If ``RandomState`` instance, ``random_state`` is the random number generator. If ``None``, the random number generator is the RandomState instance used by ``np.random``. Default is ``None``. joblib_verbose(int): Controls the verbosity of joblib: the higher, the more messages. Attributes: best_estimator (dict of AlgoBase): Using an accuracy measure as key, get the algorithm that gave the best accuracy results for the chosen measure, averaged over all splits. best_score (dict of floats): Using an accuracy measure as key, get the best average score achieved for that measure. best_params (dict of dicts): Using an accuracy measure as key, get the parameters combination that gave the best accuracy results for the chosen measure (on average). best_index (dict of ints): Using an accuracy measure as key, get the index that can be used with ``cv_results`` that achieved the highest accuracy for that measure (on average). cv_results (dict of arrays): A dict that contains accuracy measures over all splits, as well as train and test time for each parameter combination. Can be imported into a pandas `DataFrame` (see :ref:`example <cv_results_example>`). """ def __init__( self, algo_class, param_distributions, n_iter=10, measures=["rmse", "mae"], cv=None, refit=False, return_train_measures=False, n_jobs=1, pre_dispatch="2*n_jobs", random_state=None, joblib_verbose=0, ): super().__init__( algo_class=algo_class, measures=measures, cv=cv, refit=refit, return_train_measures=return_train_measures, n_jobs=n_jobs, pre_dispatch=pre_dispatch, joblib_verbose=joblib_verbose, ) self.n_iter = n_iter self.random_state = random_state self.param_distributions = self._parse_options(param_distributions.copy()) self.param_combinations = self._sample_parameters( self.param_distributions, self.n_iter, self.random_state ) @staticmethod def _sample_parameters(param_distributions, n_iter, random_state=None): """Samples ``n_iter`` parameter combinations from ``param_distributions`` using ``random_state`` as a seed. Non-deterministic iterable over random candidate combinations for hyper-parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that before SciPy 0.16, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Deterministic behavior is however guaranteed from SciPy 0.16 onwards. Args: param_distributions(dict): Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter(int): Number of parameter settings produced. Default is ``10``. random_state(int, RandomState instance or None): Pseudo random number generator seed used for random uniform sampling from lists of possible values instead of scipy.stats distributions. If ``None``, the random number generator is the random state instance used by np.random. Default is ``None``. Returns: combos(list): List of parameter dictionaries with sampled values. """ # check if all distributions are given as lists # if so, sample without replacement all_lists = np.all( [not hasattr(v, "rvs") for v in param_distributions.values()] ) rnd = get_rng(random_state) # sort for reproducibility items = sorted(param_distributions.items()) if all_lists: # create exhaustive combinations param_grid = [ dict(zip(param_distributions, v)) for v in product(*param_distributions.values()) ] combos = np.random.choice(param_grid, n_iter, replace=False) else: combos = [] for _ in range(n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs(random_state=rnd) else: params[k] = v[rnd.randint(len(v))] combos.append(params) return combos
__init__.py
from .search import GridSearchCV, RandomizedSearchCV from .split import ( KFold, LeaveOneOut, PredefinedKFold, RepeatedKFold, ShuffleSplit, train_test_split, ) from .validation import cross_validate __all__ = [ "KFold", "ShuffleSplit", "train_test_split", "RepeatedKFold", "LeaveOneOut", "PredefinedKFold", "cross_validate", "GridSearchCV", "RandomizedSearchCV", ]
validation.py
""" The validation module contains the cross_validate function, inspired from the mighty scikit learn. """ import time import numpy as np from joblib import delayed, Parallel from .. import accuracy from .split import get_cv def cross_validate( algo, data, measures=["rmse", "mae"], cv=None, return_train_measures=False, n_jobs=1, pre_dispatch="2*n_jobs", verbose=False, ): """ Run a cross validation procedure for a given algorithm, reporting accuracy measures and computation times. See an example in the :ref:`User Guide <cross_validate_example>`. Args: algo(:obj:`AlgoBase \ <surprise.prediction_algorithms.algo_base.AlgoBase>`): The algorithm to evaluate. data(:obj:`Dataset <surprise.dataset.Dataset>`): The dataset on which to evaluate the algorithm. measures(list of string): The performance measures to compute. Allowed names are function names as defined in the :mod:`accuracy <surprise.accuracy>` module. Default is ``['rmse', 'mae']``. cv(cross-validation iterator, int or ``None``): Determines how the ``data`` parameter will be split (i.e. how trainsets and testsets will be defined). If an int is passed, :class:`KFold <surprise.model_selection.split.KFold>` is used with the appropriate ``n_splits`` parameter. If ``None``, :class:`KFold <surprise.model_selection.split.KFold>` is used with ``n_splits=5``. return_train_measures(bool): Whether to compute performance measures on the trainsets. Default is ``False``. n_jobs(int): The maximum number of folds evaluated in parallel. - If ``-1``, all CPUs are used. - If ``1`` is given, no parallel computing code is used at all,\ which is useful for debugging. - For ``n_jobs`` below ``-1``, ``(n_cpus + n_jobs + 1)`` are\ used. For example, with ``n_jobs = -2`` all CPUs but one are\ used. Default is ``1``. pre_dispatch(int or string): Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - ``None``, in which case all the jobs are immediately created\ and spawned. Use this for lightweight and fast-running\ jobs, to avoid delays due to on-demand spawning of the\ jobs. - An int, giving the exact number of total jobs that are\ spawned. - A string, giving an expression as a function of ``n_jobs``,\ as in ``'2*n_jobs'``. Default is ``'2*n_jobs'``. verbose(int): If ``True`` accuracy measures for each split are printed, as well as train and test times. Averages and standard deviations over all splits are also reported. Default is ``False``: nothing is printed. Returns: dict: A dict with the following keys: - ``'test_*'`` where ``*`` corresponds to a lower-case accuracy measure, e.g. ``'test_rmse'``: numpy array with accuracy values for each testset. - ``'train_*'`` where ``*`` corresponds to a lower-case accuracy measure, e.g. ``'train_rmse'``: numpy array with accuracy values for each trainset. Only available if ``return_train_measures`` is ``True``. - ``'fit_time'``: numpy array with the training time in seconds for each split. - ``'test_time'``: numpy array with the testing time in seconds for each split. """ measures = [m.lower() for m in measures] cv = get_cv(cv) delayed_list = ( delayed(fit_and_score)(algo, trainset, testset, measures, return_train_measures) for (trainset, testset) in cv.split(data) ) out = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch)(delayed_list) (test_measures_dicts, train_measures_dicts, fit_times, test_times) = zip(*out) test_measures = dict() train_measures = dict() ret = dict() for m in measures: # transform list of dicts into dict of lists # Same as in GridSearchCV.fit() test_measures[m] = np.asarray([d[m] for d in test_measures_dicts]) ret["test_" + m] = test_measures[m] if return_train_measures: train_measures[m] = np.asarray([d[m] for d in train_measures_dicts]) ret["train_" + m] = train_measures[m] ret["fit_time"] = fit_times ret["test_time"] = test_times if verbose: print_summary( algo, measures, test_measures, train_measures, fit_times, test_times, cv.n_splits, ) return ret def fit_and_score(algo, trainset, testset, measures, return_train_measures=False): """Helper method that trains an algorithm and compute accuracy measures on a testset. Also report train and test times. Args: algo(:obj:`AlgoBase \ <surprise.prediction_algorithms.algo_base.AlgoBase>`): The algorithm to use. trainset(:obj:`Trainset <surprise.trainset.Trainset>`): The trainset. testset(:obj:`testset`): The testset. measures(list of string): The performance measures to compute. Allowed names are function names as defined in the :mod:`accuracy <surprise.accuracy>` module. return_train_measures(bool): Whether to compute performance measures on the trainset. Default is ``False``. Returns: tuple: A tuple containing: - A dictionary mapping each accuracy metric to its value on the testset (keys are lower case). - A dictionary mapping each accuracy metric to its value on the trainset (keys are lower case). This dict is empty if return_train_measures is False. - The fit time in seconds. - The testing time in seconds. """ start_fit = time.time() algo.fit(trainset) fit_time = time.time() - start_fit start_test = time.time() predictions = algo.test(testset) test_time = time.time() - start_test if return_train_measures: train_predictions = algo.test(trainset.build_testset()) test_measures = dict() train_measures = dict() for m in measures: f = getattr(accuracy, m.lower()) test_measures[m] = f(predictions, verbose=0) if return_train_measures: train_measures[m] = f(train_predictions, verbose=0) return test_measures, train_measures, fit_time, test_time def print_summary( algo, measures, test_measures, train_measures, fit_times, test_times, n_splits ): """Helper for printing the result of cross_validate.""" print( "Evaluating {} of algorithm {} on {} split(s).".format( ", ".join(m.upper() for m in measures), algo.__class__.__name__, n_splits ) ) print() row_format = "{:<18}" + "{:<8}" * (n_splits + 2) s = row_format.format( "", *[f"Fold {i + 1}" for i in range(n_splits)] + ["Mean"] + ["Std"] ) s += "\n" s += "\n".join( row_format.format( key.upper() + " (testset)", *[f"{v:1.4f}" for v in vals] + [f"{np.mean(vals):1.4f}"] + [f"{np.std(vals):1.4f}"], ) for (key, vals) in test_measures.items() ) if train_measures: s += "\n" s += "\n".join( row_format.format( key.upper() + " (trainset)", *[f"{v:1.4f}" for v in vals] + [f"{np.mean(vals):1.4f}"] + [f"{np.std(vals):1.4f}"], ) for (key, vals) in train_measures.items() ) s += "\n" s += row_format.format( "Fit time", *[f"{t:.2f}" for t in fit_times] + [f"{np.mean(fit_times):.2f}"] + [f"{np.std(fit_times):.2f}"], ) s += "\n" s += row_format.format( "Test time", *[f"{t:.2f}" for t in test_times] + [f"{np.mean(test_times):.2f}"] + [f"{np.std(test_times):.2f}"], ) print(s)
split.py
""" The :mod:`model_selection.split<surprise.model_selection.split>` module contains various cross-validation iterators. Design and tools are inspired from the mighty scikit learn. The available iterators are: .. autosummary:: :nosignatures: KFold RepeatedKFold ShuffleSplit LeaveOneOut PredefinedKFold This module also contains a function for splitting datasets into trainset and testset: .. autosummary:: :nosignatures: train_test_split """ import numbers from collections import defaultdict from itertools import chain from math import ceil, floor import numpy as np from ..utils import get_rng def get_cv(cv): """Return a 'validated' CV iterator.""" if cv is None: return KFold(n_splits=5) if isinstance(cv, numbers.Integral): return KFold(n_splits=cv) if hasattr(cv, "split") and not isinstance(cv, str): return cv # str have split raise ValueError( "Wrong CV object. Expecting None, an int or CV iterator, " "got a {}".format(type(cv)) ) class KFold: """A basic cross-validation iterator. Each fold is used once as a testset while the k - 1 remaining folds are used for training. See an example in the :ref:`User Guide <use_cross_validation_iterators>`. Args: n_splits(int): The number of folds. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter of the ``split()`` method. Shuffling is not done in-place. Default is ``True``. """ def __init__(self, n_splits=5, random_state=None, shuffle=True): self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ if self.n_splits > len(data.raw_ratings) or self.n_splits < 2: raise ValueError( "Incorrect value for n_splits={}. " "Must be >=2 and less than the number " "of ratings".format(len(data.raw_ratings)) ) # We use indices to avoid shuffling the original data.raw_ratings list. indices = np.arange(len(data.raw_ratings)) if self.shuffle: get_rng(self.random_state).shuffle(indices) start, stop = 0, 0 for fold_i in range(self.n_splits): start = stop stop += len(indices) // self.n_splits if fold_i < len(indices) % self.n_splits: stop += 1 raw_trainset = [ data.raw_ratings[i] for i in chain(indices[:start], indices[stop:]) ] raw_testset = [data.raw_ratings[i] for i in indices[start:stop]] trainset = data.construct_trainset(raw_trainset) testset = data.construct_testset(raw_testset) yield trainset, testset def get_n_folds(self): return self.n_splits class RepeatedKFold: """ Repeated :class:`KFold` cross validator. Repeats :class:`KFold` n times with different randomization in each repetition. See an example in the :ref:`User Guide <use_cross_validation_iterators>`. Args: n_splits(int): The number of folds. n_repeats(int): The number of repetitions. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter of the ``split()`` method. Shuffling is not done in-place. Default is ``True``. """ def __init__(self, n_splits=5, n_repeats=10, random_state=None): self.n_repeats = n_repeats self.random_state = random_state self.n_splits = n_splits def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ rng = get_rng(self.random_state) for _ in range(self.n_repeats): cv = KFold(n_splits=self.n_splits, random_state=rng, shuffle=True) yield from cv.split(data) def get_n_folds(self): return self.n_repeats * self.n_splits class ShuffleSplit: """A basic cross-validation iterator with random trainsets and testsets. Contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. See an example in the :ref:`User Guide <use_cross_validation_iterators>`. Args: n_splits(int): The number of folds. test_size(float or int ``None``): If float, it represents the proportion of ratings to include in the testset. If int, represents the absolute number of ratings in the testset. If ``None``, the value is set to the complement of the trainset size. Default is ``.2``. train_size(float or int or ``None``): If float, it represents the proportion of ratings to include in the trainset. If int, represents the absolute number of ratings in the trainset. If ``None``, the value is set to the complement of the testset size. Default is ``None``. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter of the ``split()`` method. Shuffling is not done in-place. Setting this to `False` defeats the purpose of this iterator, but it's useful for the implementation of :func:`train_test_split`. Default is ``True``. """ def __init__( self, n_splits=5, test_size=0.2, train_size=None, random_state=None, shuffle=True, ): if n_splits <= 0: raise ValueError( "n_splits = {} should be strictly greater than " "0.".format(n_splits) ) if test_size is not None and test_size <= 0: raise ValueError( "test_size={} should be strictly greater than " "0".format(test_size) ) if train_size is not None and train_size <= 0: raise ValueError( "train_size={} should be strictly greater than " "0".format(train_size) ) self.n_splits = n_splits self.test_size = test_size self.train_size = train_size self.random_state = random_state self.shuffle = shuffle def validate_train_test_sizes(self, test_size, train_size, n_ratings): if test_size is not None and test_size >= n_ratings: raise ValueError( "test_size={} should be less than the number of " "ratings {}".format(test_size, n_ratings) ) if train_size is not None and train_size >= n_ratings: raise ValueError( "train_size={} should be less than the number of" " ratings {}".format(train_size, n_ratings) ) if np.asarray(test_size).dtype.kind == "f": test_size = ceil(test_size * n_ratings) if train_size is None: train_size = n_ratings - test_size elif np.asarray(train_size).dtype.kind == "f": train_size = floor(train_size * n_ratings) if test_size is None: test_size = n_ratings - train_size if train_size + test_size > n_ratings: raise ValueError( "The sum of train_size and test_size ({}) " "should be smaller than the number of " "ratings {}.".format(train_size + test_size, n_ratings) ) return int(train_size), int(test_size) def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ test_size, train_size = self.validate_train_test_sizes( self.test_size, self.train_size, len(data.raw_ratings) ) rng = get_rng(self.random_state) for _ in range(self.n_splits): if self.shuffle: permutation = rng.permutation(len(data.raw_ratings)) else: permutation = np.arange(len(data.raw_ratings)) raw_trainset = [data.raw_ratings[i] for i in permutation[:test_size]] raw_testset = [ data.raw_ratings[i] for i in permutation[test_size : (test_size + train_size)] ] trainset = data.construct_trainset(raw_trainset) testset = data.construct_testset(raw_testset) yield trainset, testset def get_n_folds(self): return self.n_splits def train_test_split( data, test_size=0.2, train_size=None, random_state=None, shuffle=True ): """Split a dataset into trainset and testset. See an example in the :ref:`User Guide <train_test_split_example>`. Note: this function cannot be used as a cross-validation iterator. Args: data(:obj:`Dataset <surprise.dataset.Dataset>`): The dataset to split into trainset and testset. test_size(float or int ``None``): If float, it represents the proportion of ratings to include in the testset. If int, represents the absolute number of ratings in the testset. If ``None``, the value is set to the complement of the trainset size. Default is ``.2``. train_size(float or int or ``None``): If float, it represents the proportion of ratings to include in the trainset. If int, represents the absolute number of ratings in the trainset. If ``None``, the value is set to the complement of the testset size. Default is ``None``. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter. Shuffling is not done in-place. Default is ``True``. """ ss = ShuffleSplit( n_splits=1, test_size=test_size, train_size=train_size, random_state=random_state, shuffle=shuffle, ) return next(ss.split(data)) class LeaveOneOut: """Cross-validation iterator where each user has exactly one rating in the testset. Contrary to other cross-validation strategies, ``LeaveOneOut`` does not guarantee that all folds will be different, although this is still very likely for sizeable datasets. See an example in the :ref:`User Guide <use_cross_validation_iterators>`. Args: n_splits(int): The number of folds. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. min_n_ratings(int): Minimum number of ratings for each user in the trainset. E.g. if ``min_n_ratings`` is ``2``, we are sure each user has at least ``2`` ratings in the trainset (and ``1`` in the testset). Other users are discarded. Default is ``0``, so some users (having only one rating) may be in the testset and not in the trainset. """ def __init__(self, n_splits=5, random_state=None, min_n_ratings=0): self.n_splits = n_splits self.random_state = random_state self.min_n_ratings = min_n_ratings def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ # map ratings to the users ids user_ratings = defaultdict(list) for uid, iid, r_ui, _ in data.raw_ratings: user_ratings[uid].append((uid, iid, r_ui, None)) rng = get_rng(self.random_state) for _ in range(self.n_splits): # for each user, randomly choose a rating and put it in the # testset. raw_trainset, raw_testset = [], [] for uid, ratings in user_ratings.items(): if len(ratings) > self.min_n_ratings: i = rng.randint(0, len(ratings)) raw_testset.append(ratings[i]) raw_trainset += [ rating for (j, rating) in enumerate(ratings) if j != i ] if not raw_trainset: raise ValueError( "Could not build any trainset. Maybe " "min_n_ratings is too high?" ) trainset = data.construct_trainset(raw_trainset) testset = data.construct_testset(raw_testset) yield trainset, testset def get_n_folds(self): return self.n_splits class PredefinedKFold: """A cross-validation iterator to when a dataset has been loaded with the :meth:`load_from_folds <surprise.dataset.Dataset.load_from_folds>` method. See an example in the :ref:`User Guide <load_from_folds_example>`. """ def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ self.n_splits = len(data.folds_files) for train_file, test_file in data.folds_files: raw_trainset = data.read_ratings(train_file) raw_testset = data.read_ratings(test_file) trainset = data.construct_trainset(raw_trainset) testset = data.construct_testset(raw_testset) yield trainset, testset def get_n_folds(self): return self.n_splits
knns.py
""" the :mod:`knns` module includes some k-NN inspired algorithms. """ import heapq import numpy as np from .algo_base import AlgoBase from .predictions import PredictionImpossible # Important note: as soon as an algorithm uses a similarity measure, it should # also allow the bsl_options parameter because of the pearson_baseline # similarity. It can be done explicitly (e.g. KNNBaseline), or implicetely # using kwargs (e.g. KNNBasic). class SymmetricAlgo(AlgoBase): """This is an abstract class aimed to ease the use of symmetric algorithms. A symmetric algorithm is an algorithm that can can be based on users or on items indifferently, e.g. all the algorithms in this module. When the algo is user-based x denotes a user and y an item. Else, it's reversed. """ def __init__(self, sim_options={}, verbose=True, **kwargs): AlgoBase.__init__(self, sim_options=sim_options, **kwargs) self.verbose = verbose def fit(self, trainset): AlgoBase.fit(self, trainset) ub = self.sim_options["user_based"] self.n_x = self.trainset.n_users if ub else self.trainset.n_items self.n_y = self.trainset.n_items if ub else self.trainset.n_users self.xr = self.trainset.ur if ub else self.trainset.ir self.yr = self.trainset.ir if ub else self.trainset.ur return self def switch(self, u_stuff, i_stuff): """Return x_stuff and y_stuff depending on the user_based field.""" if self.sim_options["user_based"]: return u_stuff, i_stuff else: return i_stuff, u_stuff class KNNBasic(SymmetricAlgo): """A basic collaborative filtering algorithm. The prediction :math:`\\hat{r}_{ui}` is set as: .. math:: \\hat{r}_{ui} = \\frac{ \\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v) \\cdot r_{vi}} {\\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v)} or .. math:: \\hat{r}_{ui} = \\frac{ \\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j) \\cdot r_{uj}} {\\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j)} depending on the ``user_based`` field of the ``sim_options`` parameter. Args: k(int): The (max) number of neighbors to take into account for aggregation (see :ref:`this note <actual_k_note>`). Default is ``40``. min_k(int): The minimum number of neighbors to take into account for aggregation. If there are not enough neighbors, the prediction is set to the global mean of all ratings. Default is ``1``. sim_options(dict): A dictionary of options for the similarity measure. See :ref:`similarity_measures_configuration` for accepted options. verbose(bool): Whether to print trace messages of bias estimation, similarity, etc. Default is True. """ def __init__(self, k=40, min_k=1, sim_options={}, verbose=True, **kwargs): SymmetricAlgo.__init__(self, sim_options=sim_options, verbose=verbose, **kwargs) self.k = k self.min_k = min_k def fit(self, trainset): SymmetricAlgo.fit(self, trainset) self.sim = self.compute_similarities() return self def estimate(self, u, i): if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)): raise PredictionImpossible("User and/or item is unknown.") x, y = self.switch(u, i) neighbors = [(self.sim[x, x2], r) for (x2, r) in self.yr[y]] k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[0]) # compute weighted average sum_sim = sum_ratings = actual_k = 0 for (sim, r) in k_neighbors: if sim > 0: sum_sim += sim sum_ratings += sim * r actual_k += 1 if actual_k < self.min_k: raise PredictionImpossible("Not enough neighbors.") est = sum_ratings / sum_sim details = {"actual_k": actual_k} return est, details class KNNWithMeans(SymmetricAlgo): """A basic collaborative filtering algorithm, taking into account the mean ratings of each user. The prediction :math:`\\hat{r}_{ui}` is set as: .. math:: \\hat{r}_{ui} = \\mu_u + \\frac{ \\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v) \\cdot (r_{vi} - \\mu_v)} {\\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v)} or .. math:: \\hat{r}_{ui} = \\mu_i + \\frac{ \\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j) \\cdot (r_{uj} - \\mu_j)} {\\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j)} depending on the ``user_based`` field of the ``sim_options`` parameter. Args: k(int): The (max) number of neighbors to take into account for aggregation (see :ref:`this note <actual_k_note>`). Default is ``40``. min_k(int): The minimum number of neighbors to take into account for aggregation. If there are not enough neighbors, the neighbor aggregation is set to zero (so the prediction ends up being equivalent to the mean :math:`\\mu_u` or :math:`\\mu_i`). Default is ``1``. sim_options(dict): A dictionary of options for the similarity measure. See :ref:`similarity_measures_configuration` for accepted options. verbose(bool): Whether to print trace messages of bias estimation, similarity, etc. Default is True. """ def __init__(self, k=40, min_k=1, sim_options={}, verbose=True, **kwargs): SymmetricAlgo.__init__(self, sim_options=sim_options, verbose=verbose, **kwargs) self.k = k self.min_k = min_k def fit(self, trainset): SymmetricAlgo.fit(self, trainset) self.sim = self.compute_similarities() self.means = np.zeros(self.n_x) for x, ratings in self.xr.items(): self.means[x] = np.mean([r for (_, r) in ratings]) return self def estimate(self, u, i): if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)): raise PredictionImpossible("User and/or item is unknown.") x, y = self.switch(u, i) neighbors = [(x2, self.sim[x, x2], r) for (x2, r) in self.yr[y]] k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[1]) est = self.means[x] # compute weighted average sum_sim = sum_ratings = actual_k = 0 for (nb, sim, r) in k_neighbors: if sim > 0: sum_sim += sim sum_ratings += sim * (r - self.means[nb]) actual_k += 1 if actual_k < self.min_k: sum_ratings = 0 try: est += sum_ratings / sum_sim except ZeroDivisionError: pass # return mean details = {"actual_k": actual_k} return est, details class KNNBaseline(SymmetricAlgo): """A basic collaborative filtering algorithm taking into account a *baseline* rating. The prediction :math:`\\hat{r}_{ui}` is set as: .. math:: \\hat{r}_{ui} = b_{ui} + \\frac{ \\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v) \\cdot (r_{vi} - b_{vi})} {\\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v)} or .. math:: \\hat{r}_{ui} = b_{ui} + \\frac{ \\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j) \\cdot (r_{uj} - b_{uj})} {\\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j)} depending on the ``user_based`` field of the ``sim_options`` parameter. For the best predictions, use the :func:`pearson_baseline <surprise.similarities.pearson_baseline>` similarity measure. This algorithm corresponds to formula (3), section 2.2 of :cite:`Koren:2010`. Args: k(int): The (max) number of neighbors to take into account for aggregation (see :ref:`this note <actual_k_note>`). Default is ``40``. min_k(int): The minimum number of neighbors to take into account for aggregation. If there are not enough neighbors, the neighbor aggregation is set to zero (so the prediction ends up being equivalent to the baseline). Default is ``1``. sim_options(dict): A dictionary of options for the similarity measure. See :ref:`similarity_measures_configuration` for accepted options. It is recommended to use the :func:`pearson_baseline <surprise.similarities.pearson_baseline>` similarity measure. bsl_options(dict): A dictionary of options for the baseline estimates computation. See :ref:`baseline_estimates_configuration` for accepted options. verbose(bool): Whether to print trace messages of bias estimation, similarity, etc. Default is True. """ def __init__( self, k=40, min_k=1, sim_options={}, bsl_options={}, verbose=True, **kwargs ): SymmetricAlgo.__init__( self, sim_options=sim_options, bsl_options=bsl_options, verbose=verbose, **kwargs ) self.k = k self.min_k = min_k def fit(self, trainset): SymmetricAlgo.fit(self, trainset) self.bu, self.bi = self.compute_baselines() self.bx, self.by = self.switch(self.bu, self.bi) self.sim = self.compute_similarities() return self def estimate(self, u, i): est = self.trainset.global_mean if self.trainset.knows_user(u): est += self.bu[u] if self.trainset.knows_item(i): est += self.bi[i] x, y = self.switch(u, i) if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)): return est neighbors = [(x2, self.sim[x, x2], r) for (x2, r) in self.yr[y]] k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[1]) # compute weighted average sum_sim = sum_ratings = actual_k = 0 for (nb, sim, r) in k_neighbors: if sim > 0: sum_sim += sim nb_bsl = self.trainset.global_mean + self.bx[nb] + self.by[y] sum_ratings += sim * (r - nb_bsl) actual_k += 1 if actual_k < self.min_k: sum_ratings = 0 try: est += sum_ratings / sum_sim except ZeroDivisionError: pass # just baseline again details = {"actual_k": actual_k} return est, details class KNNWithZScore(SymmetricAlgo): """A basic collaborative filtering algorithm, taking into account the z-score normalization of each user. The prediction :math:`\\hat{r}_{ui}` is set as: .. math:: \\hat{r}_{ui} = \\mu_u + \\sigma_u \\frac{ \\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v) \\cdot (r_{vi} - \\mu_v) / \\sigma_v} {\\sum\\limits_{v \\in N^k_i(u)} \\text{sim}(u, v)} or .. math:: \\hat{r}_{ui} = \\mu_i + \\sigma_i \\frac{ \\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j) \\cdot (r_{uj} - \\mu_j) / \\sigma_j} {\\sum\\limits_{j \\in N^k_u(i)} \\text{sim}(i, j)} depending on the ``user_based`` field of the ``sim_options`` parameter. If :math:`\\sigma` is 0, than the overall sigma is used in that case. Args: k(int): The (max) number of neighbors to take into account for aggregation (see :ref:`this note <actual_k_note>`). Default is ``40``. min_k(int): The minimum number of neighbors to take into account for aggregation. If there are not enough neighbors, the neighbor aggregation is set to zero (so the prediction ends up being equivalent to the mean :math:`\\mu_u` or :math:`\\mu_i`). Default is ``1``. sim_options(dict): A dictionary of options for the similarity measure. See :ref:`similarity_measures_configuration` for accepted options. verbose(bool): Whether to print trace messages of bias estimation, similarity, etc. Default is True. """ def __init__(self, k=40, min_k=1, sim_options={}, verbose=True, **kwargs): SymmetricAlgo.__init__(self, sim_options=sim_options, verbose=verbose, **kwargs) self.k = k self.min_k = min_k def fit(self, trainset): SymmetricAlgo.fit(self, trainset) self.means = np.zeros(self.n_x) self.sigmas = np.zeros(self.n_x) # when certain sigma is 0, use overall sigma self.overall_sigma = np.std([r for (_, _, r) in self.trainset.all_ratings()]) for x, ratings in self.xr.items(): self.means[x] = np.mean([r for (_, r) in ratings]) sigma = np.std([r for (_, r) in ratings]) self.sigmas[x] = self.overall_sigma if sigma == 0.0 else sigma self.sim = self.compute_similarities() return self def estimate(self, u, i): if not (self.trainset.knows_user(u) and self.trainset.knows_item(i)): raise PredictionImpossible("User and/or item is unknown.") x, y = self.switch(u, i) neighbors = [(x2, self.sim[x, x2], r) for (x2, r) in self.yr[y]] k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda t: t[1]) est = self.means[x] # compute weighted average sum_sim = sum_ratings = actual_k = 0 for (nb, sim, r) in k_neighbors: if sim > 0: sum_sim += sim sum_ratings += sim * (r - self.means[nb]) / self.sigmas[nb] actual_k += 1 if actual_k < self.min_k: sum_ratings = 0 try: est += sum_ratings / sum_sim * self.sigmas[x] except ZeroDivisionError: pass # return mean details = {"actual_k": actual_k} return est, details
algo_base.py
""" The :mod:`surprise.prediction_algorithms.algo_base` module defines the base class :class:`AlgoBase` from which every single prediction algorithm has to inherit. """ import heapq from .. import similarities as sims from .optimize_baselines import baseline_als, baseline_sgd from .predictions import Prediction, PredictionImpossible class AlgoBase: """Abstract class where is defined the basic behavior of a prediction algorithm. Keyword Args: baseline_options(dict, optional): If the algorithm needs to compute a baseline estimate, the ``baseline_options`` parameter is used to configure how they are computed. See :ref:`baseline_estimates_configuration` for usage. """ def __init__(self, **kwargs): self.bsl_options = kwargs.get("bsl_options", {}) self.sim_options = kwargs.get("sim_options", {}) if "user_based" not in self.sim_options: self.sim_options["user_based"] = True def fit(self, trainset): """Train an algorithm on a given training set. This method is called by every derived class as the first basic step for training an algorithm. It basically just initializes some internal structures and set the self.trainset attribute. Args: trainset(:obj:`Trainset <surprise.Trainset>`) : A training set, as returned by the :meth:`folds <surprise.dataset.Dataset.folds>` method. Returns: self """ self.trainset = trainset # (re) Initialise baselines self.bu = self.bi = None return self def predict(self, uid, iid, r_ui=None, clip=True, verbose=False): """Compute the rating prediction for given user and item. The ``predict`` method converts raw ids to inner ids and then calls the ``estimate`` method which is defined in every derived class. If the prediction is impossible (e.g. because the user and/or the item is unknown), the prediction is set according to :meth:`default_prediction() <surprise.prediction_algorithms.algo_base.AlgoBase.default_prediction>`. Args: uid: (Raw) id of the user. See :ref:`this note<raw_inner_note>`. iid: (Raw) id of the item. See :ref:`this note<raw_inner_note>`. r_ui(float): The true rating :math:`r_{ui}`. Optional, default is ``None``. clip(bool): Whether to clip the estimation into the rating scale. For example, if :math:`\\hat{r}_{ui}` is :math:`5.5` while the rating scale is :math:`[1, 5]`, then :math:`\\hat{r}_{ui}` is set to :math:`5`. Same goes if :math:`\\hat{r}_{ui} < 1`. Default is ``True``. verbose(bool): Whether to print details of the prediction. Default is False. Returns: A :obj:`Prediction\ <surprise.prediction_algorithms.predictions.Prediction>` object containing: - The (raw) user id ``uid``. - The (raw) item id ``iid``. - The true rating ``r_ui`` (:math:`r_{ui}`). - The estimated rating (:math:`\\hat{r}_{ui}`). - Some additional details about the prediction that might be useful for later analysis. """ # Convert raw ids to inner ids try: iuid = self.trainset.to_inner_uid(uid) except ValueError: iuid = "UKN__" + str(uid) try: iiid = self.trainset.to_inner_iid(iid) except ValueError: iiid = "UKN__" + str(iid) details = {} try: est = self.estimate(iuid, iiid) # If the details dict was also returned if isinstance(est, tuple): est, details = est details["was_impossible"] = False except PredictionImpossible as e: est = self.default_prediction() details["was_impossible"] = True details["reason"] = str(e) # clip estimate into [lower_bound, higher_bound] if clip: lower_bound, higher_bound = self.trainset.rating_scale est = min(higher_bound, est) est = max(lower_bound, est) pred = Prediction(uid, iid, r_ui, est, details) if verbose: print(pred) return pred def default_prediction(self): """Used when the ``PredictionImpossible`` exception is raised during a call to :meth:`predict() <surprise.prediction_algorithms.algo_base.AlgoBase.predict>`. By default, return the global mean of all ratings (can be overridden in child classes). Returns: (float): The mean of all ratings in the trainset. """ return self.trainset.global_mean def test(self, testset, verbose=False): """Test the algorithm on given testset, i.e. estimate all the ratings in the given testset. Args: testset: A test set, as returned by a :ref:`cross-validation itertor<use_cross_validation_iterators>` or by the :meth:`build_testset() <surprise.Trainset.build_testset>` method. verbose(bool): Whether to print details for each predictions. Default is False. Returns: A list of :class:`Prediction\ <surprise.prediction_algorithms.predictions.Prediction>` objects that contains all the estimated ratings. """ # The ratings are translated back to their original scale. predictions = [ self.predict(uid, iid, r_ui_trans, verbose=verbose) for (uid, iid, r_ui_trans) in testset ] return predictions def compute_baselines(self): """Compute users and items baselines. The way baselines are computed depends on the ``bsl_options`` parameter passed at the creation of the algorithm (see :ref:`baseline_estimates_configuration`). This method is only relevant for algorithms using :func:`Pearson baseline similarity<surprise.similarities.pearson_baseline>` or the :class:`BaselineOnly <surprise.prediction_algorithms.baseline_only.BaselineOnly>` algorithm. Returns: A tuple ``(bu, bi)``, which are users and items baselines.""" # Firt of, if this method has already been called before on the same # trainset, then just return. Indeed, compute_baselines may be called # more than one time, for example when a similarity metric (e.g. # pearson_baseline) uses baseline estimates. if self.bu is not None: return self.bu, self.bi method = dict(als=baseline_als, sgd=baseline_sgd) method_name = self.bsl_options.get("method", "als") try: if getattr(self, "verbose", False): print("Estimating biases using", method_name + "...") self.bu, self.bi = method[method_name](self) return self.bu, self.bi except KeyError: raise ValueError( "Invalid method " + method_name + " for baseline computation." + " Available methods are als and sgd." ) def compute_similarities(self): """Build the similarity matrix. The way the similarity matrix is computed depends on the ``sim_options`` parameter passed at the creation of the algorithm (see :ref:`similarity_measures_configuration`). This method is only relevant for algorithms using a similarity measure, such as the :ref:`k-NN algorithms <pred_package_knn_inpired>`. Returns: The similarity matrix.""" construction_func = { "cosine": sims.cosine, "msd": sims.msd, "pearson": sims.pearson, "pearson_baseline": sims.pearson_baseline, } if self.sim_options["user_based"]: n_x, yr = self.trainset.n_users, self.trainset.ir else: n_x, yr = self.trainset.n_items, self.trainset.ur min_support = self.sim_options.get("min_support", 1) args = [n_x, yr, min_support] name = self.sim_options.get("name", "msd").lower() if name == "pearson_baseline": shrinkage = self.sim_options.get("shrinkage", 100) bu, bi = self.compute_baselines() if self.sim_options["user_based"]: bx, by = bu, bi else: bx, by = bi, bu args += [self.trainset.global_mean, bx, by, shrinkage] try: if getattr(self, "verbose", False): print(f"Computing the {name} similarity matrix...") sim = construction_func[name](*args) if getattr(self, "verbose", False): print("Done computing similarity matrix.") return sim except KeyError: raise NameError( "Wrong sim name " + name + ". Allowed values " + "are " + ", ".join(construction_func.keys()) + "." ) def get_neighbors(self, iid, k): """Return the ``k`` nearest neighbors of ``iid``, which is the inner id of a user or an item, depending on the ``user_based`` field of ``sim_options`` (see :ref:`similarity_measures_configuration`). As the similarities are computed on the basis of a similarity measure, this method is only relevant for algorithms using a similarity measure, such as the :ref:`k-NN algorithms <pred_package_knn_inpired>`. For a usage example, see the :ref:`FAQ <get_k_nearest_neighbors>`. Args: iid(int): The (inner) id of the user (or item) for which we want the nearest neighbors. See :ref:`this note<raw_inner_note>`. k(int): The number of neighbors to retrieve. Returns: The list of the ``k`` (inner) ids of the closest users (or items) to ``iid``. """ if self.sim_options["user_based"]: all_instances = self.trainset.all_users else: all_instances = self.trainset.all_items others = [(x, self.sim[iid, x]) for x in all_instances() if x != iid] others = heapq.nlargest(k, others, key=lambda tple: tple[1]) k_nearest_neighbors = [j for (j, _) in others] return k_nearest_neighbors
random_pred.py
""" Algorithm predicting a random rating. """ import numpy as np from .algo_base import AlgoBase class NormalPredictor(AlgoBase): """Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal. The prediction :math:`\\hat{r}_{ui}` is generated from a normal distribution :math:`\\mathcal{N}(\\hat{\\mu}, \\hat{\\sigma}^2)` where :math:`\\hat{\\mu}` and :math:`\\hat{\\sigma}` are estimated from the training data using Maximum Likelihood Estimation: .. math:: \\hat{\\mu} &= \\frac{1}{|R_{train}|} \\sum_{r_{ui} \\in R_{train}} r_{ui}\\\\\\\\\ \\hat{\\sigma} &= \\sqrt{\\sum_{r_{ui} \\in R_{train}} \\frac{(r_{ui} - \\hat{\\mu})^2}{|R_{train}|}} """ def __init__(self): AlgoBase.__init__(self) def fit(self, trainset): AlgoBase.fit(self, trainset) num = sum( (r - self.trainset.global_mean) ** 2 for (_, _, r) in self.trainset.all_ratings() ) denum = self.trainset.n_ratings self.sigma = np.sqrt(num / denum) return self def estimate(self, *_): return np.random.normal(self.trainset.global_mean, self.sigma)
predictions.py
""" The :mod:`surprise.prediction_algorithms.predictions` module defines the :class:`Prediction` named tuple and the :class:`PredictionImpossible` exception. """ from collections import namedtuple class PredictionImpossible(Exception): r"""Exception raised when a prediction is impossible. When raised, the estimation :math:`\hat{r}_{ui}` is set to the global mean of all ratings :math:`\mu`. """ pass class Prediction(namedtuple("Prediction", ["uid", "iid", "r_ui", "est", "details"])): """A named tuple for storing the results of a prediction. It's wrapped in a class, but only for documentation and printing purposes. Args: uid: The (raw) user id. See :ref:`this note<raw_inner_note>`. iid: The (raw) item id. See :ref:`this note<raw_inner_note>`. r_ui(float): The true rating :math:`r_{ui}`. est(float): The estimated rating :math:`\\hat{r}_{ui}`. details (dict): Stores additional details about the prediction that might be useful for later analysis. """ __slots__ = () # for memory saving purpose. def __str__(self): s = f"user: {self.uid:<10} " s += f"item: {self.iid:<10} " if self.r_ui is not None: s += f"r_ui = {self.r_ui:1.2f} " else: s += "r_ui = None " s += f"est = {self.est:1.2f} " s += str(self.details) return s
__init__.py
""" The :mod:`prediction_algorithms` package includes the prediction algorithms available for recommendation. The available prediction algorithms are: .. autosummary:: :nosignatures: random_pred.NormalPredictor baseline_only.BaselineOnly knns.KNNBasic knns.KNNWithMeans knns.KNNWithZScore knns.KNNBaseline matrix_factorization.SVD matrix_factorization.SVDpp matrix_factorization.NMF slope_one.SlopeOne co_clustering.CoClustering """ from .algo_base import AlgoBase from .baseline_only import BaselineOnly from .co_clustering import CoClustering from .knns import KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore from .matrix_factorization import NMF, SVD, SVDpp from .predictions import Prediction, PredictionImpossible from .random_pred import NormalPredictor from .slope_one import SlopeOne __all__ = [ "AlgoBase", "NormalPredictor", "BaselineOnly", "KNNBasic", "KNNBaseline", "KNNWithMeans", "SVD", "SVDpp", "NMF", "SlopeOne", "CoClustering", "PredictionImpossible", "Prediction", "KNNWithZScore", ]
baseline_only.py
""" This class implements the baseline estimation. """ from .algo_base import AlgoBase class BaselineOnly(AlgoBase): r"""Algorithm predicting the baseline estimate for given user and item. :math:`\hat{r}_{ui} = b_{ui} = \mu + b_u + b_i` If user :math:`u` is unknown, then the bias :math:`b_u` is assumed to be zero. The same applies for item :math:`i` with :math:`b_i`. See section 2.1 of :cite:`Koren:2010` for details. Args: bsl_options(dict): A dictionary of options for the baseline estimates computation. See :ref:`baseline_estimates_configuration` for accepted options. verbose(bool): Whether to print trace messages of bias estimation, similarity, etc. Default is True. """ def __init__(self, bsl_options={}, verbose=True): AlgoBase.__init__(self, bsl_options=bsl_options) self.verbose = verbose def fit(self, trainset): AlgoBase.fit(self, trainset) self.bu, self.bi = self.compute_baselines() return self def estimate(self, u, i): est = self.trainset.global_mean if self.trainset.knows_user(u): est += self.bu[u] if self.trainset.knows_item(i): est += self.bi[i] return est
linux_dependencies.py
import os import traceback import sys print("before function process") def process(version): print("inside fun process") currentDirectory = os.path.dirname(os.path.abspath(__file__)) print(currentDirectory) try: from os.path import expanduser import platform import subprocess import sys import demoji try: print('Downloading NLTK additional packages...') import nltk nltk.download('punkt') nltk.download('wordnet') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') except Exception as e: print('NLTK Error: '+str(e)) pass from appbe.dataPath import DATA_DIR import shutil import importlib license_path = DATA_DIR if os.path.isdir(license_path) == False: os.makedirs(license_path) import warnings warnings.filterwarnings("ignore") LicenseFolder = os.path.join(license_path,'License') if os.path.isdir(LicenseFolder) == False: os.makedirs(LicenseFolder) sqlite_path = os.path.join(license_path,'sqlite') if os.path.isdir(sqlite_path) == False: os.makedirs(sqlite_path) pretrainedModel_path = os.path.join(license_path,'PreTrainedModels') if os.path.isdir(pretrainedModel_path) == False: os.makedirs(pretrainedModel_path) config_path = os.path.join(license_path,'config') if os.path.isdir(config_path) == False: os.makedirs(config_path) target_path = os.path.join(license_path,'target') if os.path.isdir(target_path) == False: os.makedirs(target_path) data_path = os.path.join(license_path,'storage') if os.path.isdir(data_path) == False: os.makedirs(data_path) log_path = os.path.join(license_path,'logs') if os.path.isdir(log_path) == False: os.makedirs(log_path) configFolder = os.path.join(currentDirectory,'..','config') for file in os.listdir(configFolder): if file.endswith(".var"): os.remove(os.path.join(configFolder,file)) versionfile = os.path.join(configFolder,str(version)+'.var') with open(versionfile, 'w') as fp: pass manage_path = os.path.join(currentDirectory,'..','aion.py') print('Setting up Django Environment for AION User Interface') proc = subprocess.Popen([sys.executable, manage_path, "-m","migrateappfe"],stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = proc.communicate() if proc.returncode != 0: err_string = stderr.decode('utf8') import re result = re.search("No module named '(.*)'", err_string) if 'ModuleNotFoundError' in err_string: print('\n"{}" module is missing. The dependencies of AION were not installed properly. Uninstall and reinstall AION'.format(result.group(1))) else: print('\nThe dependencies of AION were not installed properly. Uninstall and reinstall AION') raise Exception(err_string) else: print('AION User Interface successfully set') print('--------------AION Installed Successfully--------------') except Exception as e: print(e) f = open(os.path.join(currentDirectory, 'workspace_error_logs.txt'), "w") f.write(str(traceback.format_exc())) f.close() pass if __name__ == "__main__": process(sys.argv[1])
dependencies.py
import os import traceback def process(version): currentDirectory = os.path.dirname(os.path.abspath(__file__)) try: import win32com.client from os.path import expanduser import platform import subprocess import sys import demoji try: print('Downloading NLTK additional packages...') import nltk nltk.download('punkt') nltk.download('wordnet') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') except Exception as e: print('NLTK Error: '+str(e)) pass from appbe.dataPath import DATA_DIR from win32com.shell import shell, shellcon import shutil import importlib license_path = DATA_DIR if os.path.isdir(license_path) == False: os.makedirs(license_path) import warnings warnings.filterwarnings("ignore") LicenseFolder = os.path.join(license_path,'License') if os.path.isdir(LicenseFolder) == False: os.makedirs(LicenseFolder) sqlite_path = os.path.join(license_path,'sqlite') if os.path.isdir(sqlite_path) == False: os.makedirs(sqlite_path) pretrainedModel_path = os.path.join(license_path,'PreTrainedModels') if os.path.isdir(pretrainedModel_path) == False: os.makedirs(pretrainedModel_path) config_path = os.path.join(license_path,'config') if os.path.isdir(config_path) == False: os.makedirs(config_path) target_path = os.path.join(license_path,'target') if os.path.isdir(target_path) == False: os.makedirs(target_path) data_path = os.path.join(license_path,'storage') if os.path.isdir(data_path) == False: os.makedirs(data_path) log_path = os.path.join(license_path,'logs') if os.path.isdir(log_path) == False: os.makedirs(log_path) configFolder = os.path.join(currentDirectory,'..','config') for file in os.listdir(configFolder): if file.endswith(".var"): os.remove(os.path.join(configFolder,file)) versionfile = os.path.join(configFolder,str(version)+'.var') with open(versionfile, 'w') as fp: pass manage_path = os.path.join(currentDirectory,'..','aion.py') print('Setting up Django Environment for AION User Interface') proc = subprocess.Popen([sys.executable, manage_path, "-m","migrateappfe"],stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = proc.communicate() if proc.returncode != 0: err_string = stderr.decode('utf8') import re result = re.search("No module named '(.*)'", err_string) if 'ModuleNotFoundError' in err_string: print('\n"{}" module is missing. The dependencies of AION were not installed properly. Uninstall and reinstall AION'.format(result.group(1))) else: print('\nThe dependencies of AION were not installed properly. Uninstall and reinstall AION') raise Exception(err_string) else: print('AION User Interface successfully set') desktop = shell.SHGetFolderPath (0, shellcon.CSIDL_DESKTOP, 0, 0) #desktop = os.path.expanduser('~/Desktop') path = os.path.join(desktop, 'Explorer {0}.lnk'.format(version)) target = os.path.normpath(os.path.join(currentDirectory,'..', 'sbin', 'AION_Explorer.bat')) icon = os.path.join(currentDirectory,'icons','aion.ico') shell = win32com.client.Dispatch("WScript.Shell") shortcut = shell.CreateShortCut(path) shortcut.Targetpath = '"'+target+'"' shortcut.WorkingDirectory = currentDirectory #shortcut.WorkingDirectory = os.path.dirname(__file__) shortcut.IconLocation = icon shortcut.WindowStyle = 1 # 7 - Minimized, 3 - Maximized, 1 - Normal shortcut.save() path = os.path.join(desktop, 'Shell {0}.lnk'.format(version)) target = os.path.normpath(os.path.join(currentDirectory,'..','sbin', 'AION_Shell.bat')) icon = os.path.join(currentDirectory,'icons','aion_shell.ico') shell = win32com.client.Dispatch("WScript.Shell") shortcut = shell.CreateShortCut(path) shortcut.Targetpath = '"'+target+'"' shortcut.WorkingDirectory = currentDirectory #shortcut.WorkingDirectory = os.path.dirname(__file__) shortcut.IconLocation = icon shortcut.WindowStyle = 1 # 7 - Minimized, 3 - Maximized, 1 - Normal shortcut.save() print('--------------AION Installed Successfully--------------') except Exception as e: print(e) f = open(os.path.join(currentDirectory, 'workspace_error_logs.txt'), "w") f.write(str(traceback.format_exc())) f.close() pass
__init__.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''
visualization.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import warnings import numpy as np import pandas as pd import sklearn.metrics as metrics from collections import defaultdict from sklearn.metrics import confusion_matrix import re import shutil import scipy.stats as st import json import os,sys import glob import logging from utils.file_ops import read_df_compressed class Visualization(): def __init__(self,usecasename,version,dataframe,visualizationJson,dateTimeColumn,deployPath,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,modelFeatures,targetFeature,modeltype,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,vectorizerFeatures,textFeatures,numericalFeatures,nonNumericFeatures,emptyFeatures,nrows,ncols,saved_model,scoreParam,learner_type,modelname,featureReduction,reduction_data_file): self.dataframe = dataframe self.displayjson = {} self.visualizationJson = visualizationJson self.dateTimeColumn = dateTimeColumn self.deployPath = deployPath #shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'aion_portal.py'),self.deployPath) if learner_type == 'ML' and modelname != 'Neural Architecture Search': if(os.path.isfile(os.path.join(self.deployPath,'explainable_ai.py'))): os.remove(os.path.join(self.deployPath,'explainable_ai.py')) shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','xai','explainable_ai.py'),self.deployPath) # os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) try: os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) except FileExistsError: os.remove(os.path.join(self.deployPath,'aion_xai.py')) os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) elif learner_type == 'DL' or modelname == 'Neural Architecture Search': if(os.path.isfile(os.path.join(self.deployPath,'explainable_ai.py'))): os.remove(os.path.join(self.deployPath,'explainable_ai.py')) shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','xai','explainabledl_ai.py'),self.deployPath) # os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) try: os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) except FileExistsError: os.remove(os.path.join(self.deployPath,'aion_xai.py')) os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) self.jsondeployPath = deployPath #self.deployPath = self.deployPath+'visualization/' self.dataFolderLocation = dataFolderLocation self.vectorizerFeatures = vectorizerFeatures self.textFeatures = textFeatures self.emptyFeatures = emptyFeatures ''' try: os.makedirs(self.deployPath) except OSError as e: print("\nFolder Already Exists") ''' self.numericContinuousFeatures = numericContinuousFeatures self.discreteFeatures = discreteFeatures self.categoricalFeatures = categoricalFeatures self.modelFeatures = modelFeatures self.modeltype = modeltype self.targetFeature = targetFeature self.displayjson['usecasename'] = str(usecasename) self.displayjson['version'] = str(version) self.displayjson['problemType'] = str(self.modeltype) self.displayjson['targetFeature'] = self.targetFeature self.displayjson['numericalFeatures'] = numericalFeatures self.displayjson['nonNumericFeatures'] = nonNumericFeatures self.displayjson['modelFeatures'] = self.modelFeatures self.displayjson['textFeatures'] = self.textFeatures self.displayjson['emptyFeatures'] = self.emptyFeatures self.displayjson['modelname']= str(modelname) self.displayjson['preprocessedData'] = str(original_data_file) self.displayjson['nrows'] = str(nrows) self.displayjson['ncols'] = str(ncols) self.displayjson['saved_model'] = str(saved_model) self.displayjson['scoreParam'] = str(scoreParam) self.displayjson['labelMaps'] = eval(str(labelMaps)) self.original_data_file = original_data_file self.displayjson['featureReduction'] = featureReduction if featureReduction == 'True': self.displayjson['reduction_data_file'] = reduction_data_file else: self.displayjson['reduction_data_file'] = '' self.pred_filename = predicted_data_file self.profiled_data_file = profiled_data_file self.displayjson['predictedData'] = predicted_data_file self.displayjson['postprocessedData'] = profiled_data_file #self.trained_data_file = trained_data_file #self.displayjson['trainingData'] = trained_data_file #self.displayjson['categorialFeatures']=categoricalFeatures #self.displayjson['discreteFeatures']=discreteFeatures #self.displayjson['continuousFeatures']=numericContinuousFeatures #y = json.dumps(self.displayjson) #print(y) self.labelMaps = labelMaps self.log = logging.getLogger('eion') def visualizationrecommandsystem(self): try: import tensorflow.keras.utils as kutils datasetid = self.visualizationJson['datasetid'] self.log.info('\n================== Data Profiling Details==================') datacolumns=list(self.dataframe.columns) self.log.info('================== Data Profiling Details End ==================\n') self.log.info('================== Features Correlation Details ==================\n') self.log.info('\n================== Model Performance Analysis ==================') if os.path.exists(self.pred_filename): try: status,df=read_df_compressed(self.pred_filename) if self.modeltype == 'Classification' or self.modeltype == 'ImageClassification' or self.modeltype == 'anomaly_detection': y_actual = df['actual'].values y_predict = df['predict'].values y_actual = kutils.to_categorical(y_actual) y_predict = kutils.to_categorical(y_predict) classes = df.actual.unique() n_classes = y_actual.shape[1] self.log.info('-------> ROC AUC CURVE') roc_curve_dict = [] for i in classes: try: classname = i if str(self.labelMaps) != '{}': inv_map = {v: k for k, v in self.labelMaps.items()} classname = inv_map[i] fpr, tpr, threshold = metrics.roc_curve(y_actual[:,i],y_predict[:,i]) roc_auc = metrics.auc(fpr, tpr) class_roc_auc_curve = {} class_roc_auc_curve['class'] = str(classname) fprstring = ','.join(str(v) for v in fpr) tprstring = ','.join(str(v) for v in tpr) class_roc_auc_curve['FP'] = str(fprstring) class_roc_auc_curve['TP'] = str(tprstring) roc_curve_dict.append(class_roc_auc_curve) self.log.info('----------> Class: '+str(classname)) self.log.info('------------> ROC_AUC: '+str(roc_auc)) self.log.info('------------> False Positive Rate (x Points): '+str(fpr)) self.log.info('------------> True Positive Rate (y Points): '+str(tpr)) except: pass self.displayjson['ROC_AUC_CURVE'] = roc_curve_dict self.log.info('-------> Precision Recall CURVE') precision_recall_curve_dict = [] for i in range(n_classes): try: lr_precision, lr_recall, threshold = metrics.precision_recall_curve(y_actual[:,i],y_predict[:,i]) classname = i if str(self.labelMaps) != '{}': inv_map = {v: k for k, v in self.labelMaps.items()} classname = inv_map[i] roc_auc = metrics.auc(lr_recall,lr_precision) class_precision_recall_curve = {} class_precision_recall_curve['class'] = str(classname) Precisionstring = ','.join(str(round(v,2)) for v in lr_precision) Recallstring = ','.join(str(round(v,2)) for v in lr_recall) class_precision_recall_curve['Precision'] = str(Precisionstring) class_precision_recall_curve['Recall'] = str(Recallstring) precision_recall_curve_dict.append(class_precision_recall_curve) except: pass self.log.info('----------> Class: '+str(classname)) self.log.info('------------> ROC_AUC: '+str(roc_auc)) self.log.info('------------> Recall (x Points): '+str(lr_precision)) self.log.info('------------> Precision (y Points): '+str(lr_recall)) self.displayjson['PRECISION_RECALL_CURVE'] = precision_recall_curve_dict status,predictdataFrame=read_df_compressed(self.displayjson['predictedData']) except Exception as e: self.log.info('================== Error in Calculation ROC_AUC/Recall Precision Curve '+str(e)) self.log.info('================== Model Performance Analysis End ==================\n') self.log.info('\n================== For Descriptive Analysis of Model Features ==================') outputfile = os.path.join(self.jsondeployPath,'etc','display.json') with open(outputfile, 'w') as fp: json.dump(self.displayjson, fp) self.log.info('================== For Descriptive Analysis of Model Features End ==================\n') except Exception as inst: self.log.info('Visualization Failed !....'+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def drawlinechart(self,xcolumn,ycolumn,deploy_path,datasetid): title = 'aion_visualization_'+xcolumn+"_"+ycolumn+"_linechart" yaxisname = 'Average '+ycolumn datasetindex = datasetid visulizationjson = '[{"_id": "543234","_type": "visualization","_source": {"title": "'+title+'",' visulizationjson = visulizationjson+'"visState": "{\\"title\\":\\"'+title+'\\",' visulizationjson = visulizationjson+'\\"type\\":\\"line\\",\\"params\\":{\\"type\\":\\"line\\",\\"grid\\":{\\"categoryLines\\":false,\\"style\\":{\\"color\\":\\"#eee\\"}},\\"categoryAxes\\":[{\\"id\\":\\"CategoryAxis-1\\",\\"type\\":\\"category\\",\\"position\\":\\"bottom\\",\\"show\\":true,\\"style\\":{},\\"scale\\":{\\"type\\":\\"linear\\"},\\"labels\\":{\\"show\\":true,\\"truncate\\":100},\\"title\\":{}}],\\"valueAxes\\":[{\\"id\\":\\"ValueAxis-1\\",\\"name\\":\\"LeftAxis-1\\",\\"type\\":\\"value\\",\\"position\\":\\"left\\",\\"show\\":true,\\"style\\":{},\\"scale\\":{\\"type\\":\\"linear\\",\\"mode\\":\\"normal\\"},\\"labels\\":{\\"show\\":true,\\"rotate\\":0,\\"filter\\":false,\\"truncate\\":100},\\"title\\":' visulizationjson = visulizationjson+'{\\"text\\":\\"'+yaxisname+'\\"}}],\\"seriesParams\\":[{\\"show\\":\\"true\\",\\"type\\":\\"line\\",\\"mode\\":\\"normal\\",\\"data\\":' visulizationjson = visulizationjson+'{\\"label\\":\\"'+yaxisname+'\\",\\"id\\":\\"1\\"},\\"valueAxis\\":\\"ValueAxis-1\\",\\"drawLinesBetweenPoints\\":true,\\"showCircles\\":true}],\\"addTooltip\\":true,\\"addLegend\\":true,\\"legendPosition\\":\\"right\\",\\"times\\":[],\\"addTimeMarker\\":false},\\"aggs\\":[{\\"id\\":\\"1\\",\\"enabled\\":true,\\"type\\":\\"avg\\",\\"schema\\":\\"metric\\",\\"params\\":{\\"field\\":\\"'+str(ycolumn)+'\\"}},{\\"id\\":\\"2\\",\\"enabled\\":true,\\"type\\":\\"terms\\",\\"schema\\":\\"segment\\",\\"params\\":{\\"field\\":\\"'+xcolumn+'\\",\\"size\\":100,\\"order\\":\\"desc\\",\\"orderBy\\":\\"1\\",\\"otherBucket\\":false,\\"otherBucketLabel\\":\\"Other\\",\\"missingBucket\\":false,\\"missingBucketLabel\\":\\"Missing\\"}}]}","uiStateJSON": "{}", "description": "","version": 1,"kibanaSavedObjectMeta": {"searchSourceJSON": "{\\"index\\":\\"'+datasetindex+'\\",\\"query\\":{\\"query\\":\\"\\",\\"language\\":\\"lucene\\"},\\"filter\\":[]}"}},"_migrationVersion": {"visualization": "6.7.2"}}]' filename = deploy_path+title+'.json' f = open(filename, "w") f.write(str(visulizationjson)) f.close() def drawbarchart(self,xcolumn,ycolumn,deploy_path,datasetid): title = 'aion_visualization_'+xcolumn+"_"+ycolumn+"_barchart" yaxisname = 'Average '+ycolumn datasetindex = datasetid visulizationjson = '[{"_id": "123456","_type": "visualization","_source": {"title":"'+title+'",' visulizationjson = visulizationjson+'"visState": "{\\"title\\":\\"'+title+'\\",' visulizationjson = visulizationjson+'\\"type\\":\\"histogram\\",\\"params\\":{\\"addLegend\\":true,\\"addTimeMarker\\":false,\\"addTooltip\\":true,\\"categoryAxes\\":[{\\"id\\":\\"CategoryAxis-1\\",\\"labels\\":{\\"show\\":true,\\"truncate\\":100},\\"position\\":\\"bottom\\",\\"scale\\":{\\"type\\":\\"linear\\"},\\"show\\":true,\\"style\\":{},\\"title\\":{},\\"type\\":\\"category\\"}],\\"grid\\":{\\"categoryLines\\":false,\\"style\\":{\\"color\\":\\"#eee\\"}},\\"legendPosition\\":\\"right\\",\\"seriesParams\\":[{\\"data\\":{\\"id\\":\\"1\\",' visulizationjson = visulizationjson+'\\"label\\":\\"'+yaxisname+'\\"},' visulizationjson = visulizationjson+'\\"drawLinesBetweenPoints\\":true,\\"mode\\":\\"stacked\\",\\"show\\":\\"true\\",\\"showCircles\\":true,\\"type\\":\\"histogram\\",\\"valueAxis\\":\\"ValueAxis-1\\"}],\\"times\\":[],\\"type\\":\\"histogram\\",\\"valueAxes\\":[{\\"id\\":\\"ValueAxis-1\\",\\"labels\\":{\\"filter\\":false,\\"rotate\\":0,\\"show\\":true,\\"truncate\\":100},\\"name\\":\\"LeftAxis-1\\",\\"position\\":\\"left\\",\\"scale\\":{\\"mode\\":\\"normal\\",\\"type\\":\\"linear\\"},\\"show\\":true,\\"style\\":{},\\"title\\":' visulizationjson = visulizationjson+'{\\"text\\":\\"'+yaxisname+'\\"},' visulizationjson = visulizationjson+'\\"type\\":\\"value\\"}]},\\"aggs\\":[{\\"id\\":\\"1\\",\\"enabled\\":true,\\"type\\":\\"avg\\",\\"schema\\":\\"metric\\",\\"params\\":{\\"field\\":\\"'+str(xcolumn)+'\\"}},{\\"id\\":\\"2\\",\\"enabled\\":true,\\"type\\":\\"terms\\",\\"schema\\":\\"segment\\",\\"params\\":{\\"field\\":\\"'+ycolumn+'\\",\\"size\\":100,\\"order\\":\\"asc\\",\\"orderBy\\":\\"1\\",\\"otherBucket\\":false,\\"otherBucketLabel\\":\\"Other\\",\\"missingBucket\\":false,\\"missingBucketLabel\\":\\"Missing\\"}}]}","uiStateJSON":"{}","description": "","version": 1,"kibanaSavedObjectMeta": {' visulizationjson = visulizationjson+'"searchSourceJSON": "{\\"index\\":\\"'+datasetindex+'\\",\\"query\\":{\\"language\\":\\"lucene\\",\\"query\\":\\"\\"},\\"filter\\":[]}"}},"_migrationVersion":{"visualization": "6.7.2"}}]' filename = deploy_path+title+'.json' f = open(filename, "w") f.write(str(visulizationjson)) f.close() def drawpiechart(self,xcolumn,deploy_path,datasetid): title = 'aion_visualization_'+xcolumn+"_piechart" datasetindex = datasetid visulizationjson = '[{"_id": "123456","_type": "visualization","_source": {"title":"'+title+'",' visulizationjson = visulizationjson+'"visState": "{\\"title\\":\\"'+title+'\\",' visulizationjson = visulizationjson+'\\"type\\":\\"pie\\",\\"params\\":{\\"type\\":\\"pie\\",\\"addTooltip\\":true,\\"addLegend\\":true,\\"legendPosition\\":\\"right\\",\\"isDonut\\":true,\\"labels\\":{\\"show\\":false,\\"values\\":true,\\"last_level\\":true,\\"truncate\\":100}},\\"aggs\\":[{\\"id\\":\\"1\\",\\"enabled\\":true,\\"type\\":\\"count\\",\\"schema\\":\\"metric\\",\\"params\\":{}},{\\"id\\":\\"2\\",\\"enabled\\":true,\\"type\\":\\"terms\\",\\"schema\\":\\"segment\\",\\"params\\":{\\"field\\":\\"'+xcolumn+'\\",\\"size\\":100,\\"order\\":\\"asc\\",\\"orderBy\\":\\"1\\",\\"otherBucket\\":false,\\"otherBucketLabel\\":\\"Other\\",\\"missingBucket\\":false,\\"missingBucketLabel\\":\\"Missing\\"}}]}",' visulizationjson = visulizationjson+'"uiStateJSON": "{}","description": "","version": 1,"kibanaSavedObjectMeta": {"searchSourceJSON":"{\\"index\\":\\"'+datasetid+'\\",\\"query\\":{\\"query\\":\\"\\",\\"language\\":\\"lucene\\"},\\"filter\\":[]}"}},"_migrationVersion": {"visualization": "6.7.2"}}]' filename = deploy_path+title+'.json' f = open(filename, "w") f.write(str(visulizationjson)) f.close() def get_confusion_matrix(self,df): setOfyTrue = set(df['actual']) unqClassLst = list(setOfyTrue) if(str(self.labelMaps) != '{}'): inv_mapping_dict = {v: k for k, v in self.labelMaps.items()} unqClassLst2 = (pd.Series(unqClassLst)).map(inv_mapping_dict) unqClassLst2 = list(unqClassLst2) else: unqClassLst2 = unqClassLst indexName = [] columnName = [] for item in unqClassLst2: indexName.append("act:"+str(item)) columnName.append("pre:"+str(item)) result = pd.DataFrame(confusion_matrix(df['actual'], df['predict'], labels = unqClassLst),index = indexName, columns = columnName) resultjson = result.to_json(orient='index') return(resultjson) def DistributionFinder(self,data): try: distributionName ="" sse =0.0 KStestStatic=0.0 dataType="" if(data.dtype == "float64"): dataType ="Continuous" elif(data.dtype =="int" or data.dtype =="int64"): dataType="Discrete" if(dataType == "Discrete"): distributions= [st.bernoulli,st.binom,st.geom,st.nbinom,st.poisson] index, counts = np.unique(abs(data.astype(int)),return_counts=True) if(len(index)>=2): best_sse = np.inf y1=[] total=sum(counts) mean=float(sum(index*counts))/total variance=float((sum(index**2*counts) -total*mean**2))/(total-1) dispersion=mean/float(variance) theta=1/float(dispersion) r=mean*(float(theta)/1-theta) for j in counts: y1.append(float(j)/total) pmf1=st.bernoulli.pmf(index,mean) pmf2=st.binom.pmf(index,len(index),p=mean/len(index)) pmf3=st.geom.pmf(index,1/float(1+mean)) pmf4=st.nbinom.pmf(index,mean,r) pmf5=st.poisson.pmf(index,mean) sse1 = np.sum(np.power(y1 - pmf1, 2.0)) sse2 = np.sum(np.power(y1 - pmf2, 2.0)) sse3 = np.sum(np.power(y1 - pmf3, 2.0)) sse4 = np.sum(np.power(y1 - pmf4, 2.0)) sse5 = np.sum(np.power(y1- pmf5, 2.0)) sselist=[sse1,sse2,sse3,sse4,sse5] for i in range(0,len(sselist)): if best_sse > sselist[i] > 0: best_distribution = distributions[i].name best_sse = sselist[i] elif (len(index) == 1): best_distribution = "Constant Data-No Distribution" best_sse = 0.0 distributionName =best_distribution sse=best_sse elif(dataType == "Continuous"): distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta] best_distribution = st.norm.name best_sse = np.inf datamin=data.min() datamax=data.max() nrange=datamax-datamin y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: with warnings.catch_warnings(): warnings.filterwarnings('ignore') params = distribution.fit(data.astype(float)) # Separate parts of parameters arg = params[:-2] loc = params[-2] scale = params[-1] # Calculate fitted PDF and error with fit in distribution pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if(best_sse >sse > 0): best_distribution = distribution.name best_sse = sse distributionName =best_distribution sse=best_sse except: response = str(sys.exc_info()[0]) message='Job has Failed'+response print(message) return distributionName,sse
local_pipeline.py
import docker import json import logging def read_json(file_path): data = None with open(file_path,'r') as f: data = json.load(f) return data def run_pipeline(inputconfig): inputconfig = json.loads(inputconfig) logfilepath = inputconfig['logfilepath'] logging.basicConfig(level=logging.INFO,filename =logfilepath) usecasename = inputconfig['usecase'] logging.info("UseCaseName :"+str(usecasename)) version = inputconfig['version'] logging.info("version :"+str(version)) config = inputconfig['dockerlist'] persistancevolume = inputconfig['persistancevolume'] logging.info("PersistanceVolume :"+str(persistancevolume)) datasetpath = inputconfig['datasetpath'] logging.info("DataSet Path :"+str(datasetpath)) config = read_json(config) client = docker.from_env() inputconfig = {'modelName':usecasename,'modelVersion':str(version),'dataLocation':datasetpath} inputconfig = json.dumps(inputconfig) inputconfig = inputconfig.replace('"', '\\"') logging.info("===== Model Monitoring Container Start =====") outputStr = client.containers.run(config['ModelMonitoring'],'python code.py -i'+datasetpath,volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelMonitoring: '+str(outputStr)) print('ModelMonitoring: '+str(outputStr)) logging.info("===== ModelMonitoring Stop =====") logging.info("===== Data Ingestion Container Start =====") outputStr = client.containers.run(config['DataIngestion'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('DataIngestion: '+str(outputStr)) print('DataIngestion: '+str(outputStr)) logging.info("===== Data Ingestion Container Stop =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] if status != 'Success': output = {'Status':'Error','Msg':'Data Ingestion Fails'} logging.info("===== Transformation Container Start =====") outputStr = client.containers.run(config['DataTransformation'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('Data Transformations: '+str(outputStr)) print('Data Transformations: '+str(outputStr)) logging.info("===== Transformation Container Done =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] if status != 'Success': output = {'Status':'Error','Msg':'Data Transformations Fails'} logging.info("===== Feature Engineering Container Start =====") outputStr = client.containers.run(config['FeatureEngineering'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('FeatureEngineering: '+str(outputStr)) print('FeatureEngineering: '+str(outputStr)) logging.info("===== Feature Engineering Container Done =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] modeltraining = config['ModelTraining'] for mt in modeltraining: logging.info("===== Training Container Start =====") outputStr = client.containers.run(mt['Training'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelTraining: '+str(outputStr)) print('ModelTraining: '+str(outputStr)) logging.info("===== Training Container Done =====") outputStr = outputStr.strip() try: decoded_data = json.loads(outputStr) status = decoded_data['Status'] except Exception as inst: logging.info(inst) logging.info("===== Model Registry Start =====") outputStr = client.containers.run(config['ModelRegistry'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelRegistry: '+str(outputStr)) print('ModelRegistry: '+str(outputStr)) logging.info("===== ModelRegistry Done =====") logging.info("===== ModelServing Start =====") outputStr = client.containers.run(config['ModelServing'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('Prediction: '+str(outputStr)) print('Prediction: '+str(outputStr)) logging.info("===== ModelServing Done =====")
build_container.py
import os import shutil import sys import subprocess from os.path import expanduser import platform import json def createDockerImage(model_name,model_version,module,folderpath): command = 'docker pull python:3.8-slim-buster' os.system(command); subprocess.check_call(["docker", "build", "-t",module+'_'+model_name.lower()+":"+model_version,"."], cwd=folderpath) def local_docker_build(config): print(config) config = json.loads(config) model_name = config['usecase'] model_version = config['version'] mlaac__code_path = config['mlacPath'] docker_images = {} docker_images['ModelMonitoring'] = 'modelmonitoring'+'_'+model_name.lower()+':'+model_version dataset_addr = os.path.join(mlaac__code_path,'ModelMonitoring') createDockerImage(model_name,model_version,'modelmonitoring',dataset_addr) docker_images['DataIngestion'] = 'dataingestion'+'_'+model_name.lower()+':'+model_version dataset_addr = os.path.join(mlaac__code_path,'DataIngestion') createDockerImage(model_name,model_version,'dataingestion',dataset_addr) transformer_addr = os.path.join(mlaac__code_path,'DataTransformation') docker_images['DataTransformation'] = 'datatransformation'+'_'+model_name.lower()+':'+model_version createDockerImage(model_name,model_version,'datatransformation',transformer_addr) featureengineering_addr = os.path.join(mlaac__code_path,'FeatureEngineering') docker_images['FeatureEngineering'] = 'featureengineering'+'_'+model_name.lower()+':'+model_version createDockerImage(model_name,model_version,'featureengineering',featureengineering_addr) from os import listdir arr = [filename for filename in os.listdir(mlaac__code_path) if filename.startswith("ModelTraining")] docker_training_images = [] for x in arr: dockertraing={} dockertraing['Training'] = str(x).lower()+'_'+model_name.lower()+':'+model_version docker_training_images.append(dockertraing) training_addri = os.path.join(mlaac__code_path,x) createDockerImage(model_name,model_version,str(x).lower(),training_addri) docker_images['ModelTraining'] = docker_training_images docker_images['ModelRegistry'] = 'modelregistry'+'_'+model_name.lower()+':'+model_version deploy_addr = os.path.join(mlaac__code_path,'ModelRegistry') createDockerImage(model_name,model_version,'modelregistry',deploy_addr) docker_images['ModelServing'] = 'modelserving'+'_'+model_name.lower()+':'+model_version deploy_addr = os.path.join(mlaac__code_path,'ModelServing') createDockerImage(model_name,model_version,'modelserving',deploy_addr) outputjsonFile = os.path.join(mlaac__code_path,'dockerlist.json') with open(outputjsonFile, 'w') as f: json.dump(docker_images, f) f.close() output = {'Status':'Success','Msg':outputjsonFile} output = json.dumps(output) print("aion_build_container:",output)
git_upload.py
import os import sys import json from pathlib import Path import subprocess import shutil import argparse def create_and_save_yaml(git_storage_path, container_label,usecasepath): file_name_prefix = 'gh-acr-' yaml_file = f"""\ name: gh-acr-{container_label} on: push: branches: main paths: {container_label}/** workflow_dispatch: jobs: gh-acr-build-push: runs-on: ubuntu-latest steps: - name: 'checkout action' uses: actions/checkout@main - name: 'azure login' uses: azure/login@v1 with: creds: ${{{{ secrets.AZURE_CREDENTIALS }}}} - name: 'build and push image' uses: azure/docker-login@v1 with: login-server: ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}} username: ${{{{ secrets.REGISTRY_USERNAME }}}} password: ${{{{ secrets.REGISTRY_PASSWORD }}}} - run: | docker build ./{container_label}/ModelMonitoring -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label} docker build ./{container_label}/DataIngestion -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label} docker build ./{container_label}/DataTransformation -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label} docker build ./{container_label}/FeatureEngineering -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label} docker build ./{container_label}/ModelRegistry -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label} docker build ./{container_label}/ModelServing -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label} """ arr = [filename for filename in os.listdir(usecasepath) if filename.startswith("ModelTraining")] for x in arr: yaml_file+=' docker build ./'+container_label+'/'+x+' -t ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label yaml_file+='\n' yaml_file+=' docker push ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label yaml_file+='\n' with open(Path(git_storage_path)/(file_name_prefix + container_label + '.yaml'), 'w') as f: f.write(yaml_file) def run_cmd(cmd): try: subprocess.check_output(cmd, stderr=subprocess.PIPE) except subprocess.CalledProcessError as e: if e.stderr: if isinstance(e.stderr, bytes): err_msg = e.stderr.decode(sys.getfilesystemencoding()) else: err_msg = e.stderr elif e.output: if isinstance(e.output, bytes): err_msg = e.output.decode(sys.getfilesystemencoding()) else: err_msg = e.output else: err_msg = str(e) return False, err_msg return True, "" def validate_config(config): non_null_keys = ['url','username', 'token', 'location', 'gitFolderLocation', 'email', 'modelName'] missing_keys = [k for k in non_null_keys if k not in config.keys()] if missing_keys: raise ValueError(f"following fields are missing in config file: {missing_keys}") for k,v in config.items(): if k in non_null_keys and not v: raise ValueError(f"Please provide value for '{k}' in config file.") def upload(config): validate_config(config) url_type = config.get('url_type','https') if url_type == 'https': https_str = "https://" url = https_str + config['username'] + ":" + config['token'] + "@" + config['url'][len(https_str):] else: url = config['url'] model_location = Path(config['location']) git_folder_location = Path(config['gitFolderLocation']) git_folder_location.mkdir(parents=True, exist_ok=True) (git_folder_location/'.github'/'workflows').mkdir(parents=True, exist_ok=True) if not model_location.exists(): raise ValueError('Trained model data not found') os.chdir(str(git_folder_location)) (git_folder_location/config['modelName']).mkdir(parents=True, exist_ok=True) shutil.copytree(model_location, git_folder_location/config['modelName'], dirs_exist_ok=True) create_and_save_yaml((git_folder_location/'.github'/'workflows'), config['modelName'],config['location']) if (Path(git_folder_location)/'.git').exists(): first_upload = False else: first_upload = True if first_upload: cmd = ['git','init'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','config','user.name',config['username']] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','config','user.email',config['email']] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','add', '-A'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','commit','-m',f"commit {config['modelName']}"] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','branch','-M','main'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) if first_upload: cmd = ['git','remote','add','origin', url] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','push','-f','-u','origin', 'main'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) else: cmd = ['git','push'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) return json.dumps({'Status':'SUCCESS'}) if __name__ == '__main__': try: if shutil.which('git') is None: raise ValueError("git is not installed on this system") parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', help='Config file location or as a string') args = parser.parse_args() if Path(args.config).is_file() and Path(args.config).suffix == '.json': with open(args.config,'r') as f: config = json.load(f) else: config = json.loads(args.config) print(upload(config)) except Exception as e: status = {'Status':'Failure','msg':str(e)} print(json.dumps(status))
__init__.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''
kafka_consumer.py
from kafka import KafkaConsumer from json import loads import pandas as pd import json import os,sys import time import multiprocessing from os.path import expanduser import platform import datetime modelDetails = {} class Process(multiprocessing.Process): def __init__(self, modelSignature,jsonData,predictedData,modelpath): super(Process, self).__init__() self.config = jsonData self.modelSignature = modelSignature self.data = predictedData self.modelpath = modelpath def run(self): #data = pd.json_normalize(self.data) minotoringService = self.config['minotoringService']['url'] trainingdatalocation = self.config['trainingDataLocation'][self.modelSignature] #filetimestamp = 'AION_'+str(int(time.time()))+'.csv' #data.to_csv(dataFile, index=False) inputFieldsJson = {"trainingDataLocation":trainingdatalocation,"currentDataLocation":self.data} inputFieldsJson = json.dumps(inputFieldsJson) ser_url = minotoringService+self.modelSignature+'/monitoring' driftTime = datetime.datetime.now() import requests try: response = requests.post(ser_url, data=inputFieldsJson,headers={"Content-Type":"application/json",}) outputStr=response.content outputStr = outputStr.decode('utf-8') outputStr = outputStr.strip() decoded_data = json.loads(outputStr) print(decoded_data) status = decoded_data['status'] msg = decoded_data['data'] except Exception as inst: if 'Failed to establish a new connection' in str(inst): status = 'Fail' msg = 'AION Service needs to be started' else: status = 'Fail' msg = 'Error during Drift Analysis' statusFile = os.path.join(self.modelpath,self.modelSignature+'_status.csv') df = pd.DataFrame(columns = ['dateTime', 'status', 'msg']) df = df.append({'dateTime' : driftTime, 'status' : status, 'msg' : msg},ignore_index = True) print(df) if (os.path.exists(statusFile)): df.to_csv(statusFile, mode='a', header=False,index=False) else: df.to_csv(statusFile, header=True,index=False) def launch_kafka_consumer(): from appbe.dataPath import DATA_DIR configfile = os.path.join(os.path.dirname(__file__),'..','config','kafkaConfig.conf') with open(configfile,'r',encoding='utf-8') as f: jsonData = json.load(f) f.close() kafkaIP=jsonData['kafkaCluster']['ip'] kafkaport = jsonData['kafkaCluster']['port'] topic = jsonData['kafkaCluster']['topic'] kafkaurl = kafkaIP+':'+kafkaport if jsonData['database']['csv'] == 'True': database = 'csv' elif jsonData['database']['mySql'] == 'True': database = 'mySql' else: database = 'csv' kafkaPath = os.path.join(DATA_DIR,'kafka') if not (os.path.exists(kafkaPath)): try: os.makedirs(kafkaPath) except OSError as e: pass consumer = KafkaConsumer(topic,bootstrap_servers=[kafkaurl],auto_offset_reset='earliest',enable_auto_commit=True,group_id='my-group',value_deserializer=lambda x: loads(x.decode('utf-8'))) for message in consumer: message = message.value data = message['data'] data = pd.json_normalize(data) modelname = message['usecasename'] version = message['version'] modelSignature = modelname+'_'+str(version) modelpath = os.path.join(kafkaPath,modelSignature) try: os.makedirs(modelpath) except OSError as e: pass secondsSinceEpoch = time.time() if modelSignature not in modelDetails: modelDetails[modelSignature] = {} modelDetails[modelSignature]['startTime'] = secondsSinceEpoch if database == 'csv': csvfile = os.path.join(modelpath,modelSignature+'.csv') if (os.path.exists(csvfile)): data.to_csv(csvfile, mode='a', header=False,index=False) else: data.to_csv(csvfile, header=True,index=False) modelTimeFrame = jsonData['timeFrame'][modelSignature] currentseconds = time.time() print(currentseconds - modelDetails[modelSignature]['startTime']) if (currentseconds - modelDetails[modelSignature]['startTime']) >= float(modelTimeFrame): csv_path = os.path.join(modelpath,modelSignature+'.csv') #predictedData = pd.read_csv(csv_path) ##predictedData = predictedData.to_json(orient="records") index = Process(modelSignature,jsonData,csv_path,modelpath) index.start() modelDetails[modelSignature]['startTime'] = secondsSinceEpoch