Dataset Viewer
Auto-converted to Parquet
FLIGHT
int64
3.74B
3.75B
TYPE
stringclasses
37 values
DEST
stringclasses
343 values
WEIGHT
int64
0
4.92k
FLOOR TYPE
stringclasses
12 values
POS
stringclasses
105 values
CONT
stringclasses
16 values
PRIORITY
int64
0
24
VOLUME
float64
0
100
SPECIAL CARGO
stringclasses
442 values
3,744,617,311
A320
SIN
177
BY
41
null
1
0
null
3,744,617,311
A320
SIN
177
BY
42
null
1
0
null
3,744,617,332
A320
SIN
560
BY
31
null
1
0
null
3,744,617,332
A320
SIN
560
BY
32
null
1
0
null
3,744,617,332
A320
SIN
242
BY
42
null
1
0
null
3,744,617,332
A320
SIN
71
BY
52
null
1
0
null
3,744,677,353
A320
TFU
380
EC
1H
null
1
0
null
3,744,677,353
A320
TFU
280
EC
3H
null
1
0
null
3,744,677,353
A320
TFU
280
EC
4H
null
1
0
null
3,744,662,919
A320
RIZ
359
B
1H
null
1
0
null
3,744,662,919
A320
DLC
490
B
4H
null
1
0
null
3,744,662,919
A320
DLC
650
C
3H
null
1
0
null
3,744,662,919
A320
DLC
350
M
3H
null
1
0
null
3,744,662,919
A320
RIZ
1,100
C
1H
null
1
0
null
3,744,656,225
A320
NKG
679
BY
1H
null
1
0
null
3,744,640,772
A320
DYG
205
BY
1H
null
1
0
null
3,744,654,070
A319
MIG
941
BY
1H
null
1
0
null
3,745,179,488
A319
LXA
188
BY
4H
null
1
0
null
3,745,179,488
A319
LXA
583
C
1H
null
1
0
null
3,744,693,833
A321
YBP
376
BY
4H
null
1
0
null
3,744,693,833
A321
YBP
100
C
3H
null
1
0
null
3,745,791,430
A321
CAN
554
BY
2H
null
1
0
null
3,745,791,430
A321
CAN
305
C
2H
null
1
0
null
3,744,691,380
A320
XIC
614
BY
1H
null
1
0
null
3,744,691,380
A320
XIC
118
C
1H
null
1
0
null
3,745,791,394
A320
CAN
0
B
1H
null
1
0
null
3,744,695,931
A320
ZHY
43
B
4H
null
1
0
null
3,744,695,931
A320
KMG
143
B
1H
null
1
0
null
3,744,650,585
A320
KMG
333
B
1H
null
1
0
null
3,744,650,585
A320
KMG
1,058
C
1H
null
1
3
null
3,744,650,585
A320
KMG
1,182
C
3H
null
1
3
null
3,744,650,585
A320
KMG
1,183
C
1H
null
1
3
null
3,744,650,585
A320
KMG
0
BY
4H
null
1
0
null
3,744,695,510
A320
ZHY
318
C
4H
null
1
0
null
3,744,695,510
A320
PEK
838
C
1H
null
1
0
null
3,744,695,510
A320
PEK
769
C
3H
null
1
0
null
3,744,695,510
A320
ZHY
110
BY
4H
null
1
0
null
3,744,695,510
A320
PEK
655
BY
1H
null
1
0
null
3,744,695,510
A320
PEK
138
C
5H
null
1
0
null
3,744,695,510
A320
PEK
5
BY
4H
null
1
0
null
3,744,661,083
A320
PEK
838
C
1H
null
1
0
null
3,744,661,083
A320
PEK
655
BY
1H
null
1
0
null
3,744,661,083
A320
PEK
769
C
3H
null
1
0
null
3,744,661,083
A320
PEK
5
BY
4H
null
1
0
null
3,744,661,083
A320
PEK
138
C
5H
null
1
0
null
3,744,661,083
A320
PEK
0
BY
4H
null
1
0
null
3,745,790,907
A321
CAN
696
C
3H
null
1
0
null
3,745,790,907
A321
CAN
562
C
3H
null
1
0
null
3,745,790,907
A321
CAN
490
C
2H
null
1
0
null
3,745,790,907
A321
CAN
374
C
5H
null
1
0
null
3,745,790,907
A321
CAN
358
C
2H
null
1
0
null
3,745,790,907
A321
CAN
342
C
1H
null
1
0
null
3,745,790,907
A321
CAN
400
B
4H
null
1
0
null
3,744,644,944
A321
HGH
584
BY
4H
null
1
0
null
3,744,644,944
A321
HGH
142
M
5H
null
1
0
null
3,745,790,946
A320
CAN
554
C
1H
null
1
0
null
3,745,790,946
A320
CAN
528
C
3H
null
1
0
null
3,745,790,946
A320
CAN
341
B
4H
null
1
0
null
3,744,645,002
A320
HGH
353
BY
4H
null
1
0
null
3,744,645,002
A320
HGH
1,140
C
1H
null
1
0
null
3,744,645,002
A320
HGH
266
M
3H
null
1
0
null
3,744,645,002
A320
HGH
6
BY
4H
null
1
0
null
3,744,645,002
A320
HGH
417
C
3H
null
1
0
null
3,744,649,599
A320
KMG
453
C
1H
null
1
0
null
3,744,649,599
A320
KMG
183
C
3H
null
1
0
null
3,744,649,599
A320
KMG
26
C
3H
null
1
0
null
3,744,649,599
A320
KMG
523
C
1H
null
1
0
null
3,744,649,599
A320
KMG
667
B
4H
null
1
0
null
3,744,646,401
A320
HGH
1,262
C
1H
null
1
0
null
3,744,646,401
A320
HGH
694
C
3H
null
1
0
null
3,744,646,401
A320
HGH
20
C
3H
null
1
0
null
3,744,646,401
A320
HGH
420
C
4H
null
1
0
null
3,744,646,401
A320
HGH
735
BY
1H
null
1
0
null
3,744,646,401
A320
HGH
248
C
5H
null
1
0
null
3,744,646,401
A320
HGH
19
M
3H
null
1
0
null
3,745,091,969
A319
DCY
82
B
1H
null
1
0
null
3,745,091,969
A319
DCY
96
B
1H
null
1
0
null
3,744,624,544
A319
CKG
536
C
1H
null
1
0
null
3,744,624,544
A319
CKG
414
C
4H
null
1
0
null
3,744,624,544
A319
CKG
206
C
5H
null
1
0
null
3,744,624,544
A319
CKG
122
B
4H
null
1
0
null
3,744,624,544
A319
DCY
65
B
1H
null
1
0
null
3,744,645,315
A319
HGH
101
B
1H
null
1
0
null
3,744,645,315
A319
HGH
390
BY
4H
null
1
0
null
3,744,624,202
A319
CKG
0
BY
1H
null
1
0
null
3,744,624,202
A319
HGH
0
BY
4H
null
1
0
null
3,744,695,302
A320
ZAT
218
B
4H
null
1
0
null
3,745,113,307
A320
HGH
1,090
C
1H
null
1
0
null
3,745,113,307
A320
HGH
76
C
1H
null
1
0
null
3,745,113,307
A320
HGH
487
C
3H
null
1
0
null
3,745,113,307
A320
HGH
120
M
1H
null
1
0
null
3,745,113,307
A320
HGH
0
BY
4H
null
1
0
null
3,745,180,426
A321
LZO
2
C
3H
null
1
0
null
3,745,180,426
A321
LZO
588
B
4H
null
1
0
null
3,745,180,426
A321
LZO
6
B
4H
null
1
0
null
3,744,646,826
A321
HGH
71
BY
2H
null
1
0
null
3,744,646,826
A321
HGH
1,325
C
3H
null
1
0
null
3,744,646,826
A321
HGH
800
BY
2H
null
1
0
null
3,745,926,072
A319
JZH
408
B
5H
null
1
0
null
3,744,646,309
A319
HGH
341
BY
4H
null
1
0
null
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Contents

Dataset Download: https://huggingface.co/datasets/LINC-BIT/AirCa
Dataset Website: https://huggingface.co/datasets/LINC-BIT/AirCa
Code Link: https://github.com/LINC-BIT/AirCa
Paper Link:

1. About Dataset

AirCa is a publicly available aircraft cargo loading dataset with millions of instances from industry. It has three unique characteristics: (1) Large-scale, AirCa contains in total 6,071k records and 1,092k flights, covering 6 aircraft types and 425 airports over a total span of 9 months. (2) Comprehensive information, AirCa is delivered to provide rich information pertaining to aircraft cargo loading, including detailed cargo characteristic information, loading-event logs, flight destination, and comprehensive loading constraints in practical scenarios. (3) Diversity, AirCa aims to increase data diversity from three perspectives: destination diversity, Flight diversity, and Constraint diversity.

image/jpeg

The figure depicts the process of air cargo loading, starting with terminal administration, where goods are processed and prepared for transportation. Cargo loading follows as goods are transferred to the aircraft, and then flight preparation and flying take place as the plane gets ready for departure. The cargo is carefully organized in the Unit Load Devices (ULD), which are containers or pallets used to carry the cargo efficiently. For wide-body aircraft cargo holds, like the B777, there are designated areas for both small ULD containers and larger pallets. Meanwhile, narrow-body aircraft cargo holds, like the A320, have a different arrangement suited for smaller loads. The cargo types include bulk cargo and special goods, which require specific handling due to their size, fragility, or value.

2. Download

AirCa can be used for research purposes. Before you download the dataset, please read these terms. Then put the data into "./data/raw/".
The structure of "./data/raw/" should be like:

* ./data/raw/  
    * split_by_aircraft_type    
        * A320.csv   
        * ...    
    * split_by_date  
        * BAKFLGITH_LOADDATA2024-10-12.csv  
        * ...
import pandas as pd
>>> import pandas as pd
>>> df = pd.read_csv("BAKFLGITH_LOADDATA2024-10-12.csv")
>>> df.head(3)
       FLIGHT  TYPE DEST  WEIGHT  ... CONT PRIORITY VOLUME  SPECIAL CARGO
0  3744617311  A320  SIN     177  ...  NaN        1    0.0            NaN
1  3744617311  A320  SIN     177  ...  NaN        1    0.0            NaN
2  3744617332  A320  SIN     560  ...  NaN        1    0.0            NaN

3. Description

Below is the detailed field of each sub-dataset.

3.1 AirCa-W

Data field Description Unit/format
Cargo information
Loading order Record of the cargo loading order String
ID Unique identifier for ULD ID
Weight Weight of ULD String
ULD type Types of ULD include general cargo, special cargo String
Priority Cargo loading priority String
Length Length of ULD Float
Width Width of ULD Float
Height Height of ULD Float
Transship cargo The record of whether it is transship cargo Bool
Flight information
Loading time Record of the cargo loading time Time
Flight ID (anonymity) Record of the different flights ID
Destination airport Record of the airport's name String
Segment The record of whether it is multi-segment flight Bool
Aircraft information
Aircraft type The type of the aircraft String
Constraints The constraints of air cargo loading Constraint format

3.2 AirCa-N

Data field Description Unit/format
Cargo information
ID Unique identifier for ULD ID
Weight Weight of cargo String
Bulk type Types of bulk include general cargo, special cargo String
Priority Cargo loading priority String
Volume The volume of the cargo Float
Flight information
Loading time Record of the cargo loading time Time
Flight ID (anonymity) Record of the different flights ID
Destination airport Record of the airport's name String
Segment The record of whether it is multi-segment flight Bool
Aircraft information
Aircraft type The type of the aircraft String
Constraints The constraints of air cargo loading Constraint format

3.3 Constraints description

Constraint Description Unit/format
Cargo constraints
Special cargo space weight constraint This constraint defines the maximum allowable weight of special cargo in the space Float
Dangerous cargo isolation constraint Any two special cargo loading locations need to maintain a specified distance String
Aircraft cargo hold constraints
ULD correspondence constraint Get the corresponding relationship of cargo types and verify each piece of cargo data String
ULD Type Restriction Rules If the container type in the loading data is not one of the ones defined in ULD Type, the check fails Bool
ULD type and ULD number constraint If the container type does not correspond to the container serial number, the verification fails Bool
Cargo hold availability constraint Before loading, check whether the cargo hold is available String
Mixed cargo space constraint Check whether there is mixed loading in the cargo hold Bool
Number of ULD constraint The quantity of ULD cannot exceed this specified value Float
Front/Rear compartment constraint Ensure weight in the front (FWD) and rear (AFT) compartments do not exceed the defined limits. Float
Cargo Type validity constraint Check whether cargo type is valid and belongs to predefined cargo types. String
Loading constraints
Weight constraint Maximum load weight of the cargo hold Float
CG constraint Ideal center of gravity range for airliner when zero fuel Float
Volume constraint The volume of cargo cannot exceed this specified value Float
Joint weight constraint Total load weight constraints for multiple cargo holds Float
Cargo space weight constraint This constraint defines the maximum weight limit for a cargo space. Float
Continuous loading constraint Some types of ULDs need to be loaded according to the load sequence String
Load order constraint Goods must be loaded in the specified order String

4. Leaderboard

Blow shows the performance of different methods in AirCa.

4.1 Long-term Cargo Capacity Prediction

image/png

4.2 Optimization of Cargo Loading

Experimental results of Optimization of Cargo Loading. The introduction of 12 baselines is shown as follows:

  • COM [1]: Combinatorial Optimization Model solves discrete optimization tasks by searching for an optimal arrangement among a finite set of feasible solutions.
  • IOM [2]: Improved Combinatorial Optimization Model obtains better solutions for discrete optimization tasks by refining search strategies to more effectively explore feasible configurations.
  • NL-CPLEX [3]: NL-CPLEX addresses nonlinear optimization tasks by leveraging branch-and-bound and cutting-plane techniques to efficiently explore the solution space.
  • SDCCLPM [4]: Stochastic-Demand Cargo Container Loading Plan Model optimizes container loading configurations under demand uncertainty by incorporating probabilistic approaches to balance capacity and cost requirements.
  • MLIP [5]: Mixed Integer Linear Program finds optimal solutions to discrete optimization problems by combining integer constraints with linear relationships in a branch-and-bound search process.
  • MLIP-WBP [6]: MLIP-WBP optimizes weighted bin packing by employing a Mixed Integer Linear Programming formulation to balance item distribution and capacity constraints.
  • MLIP-ACLPDD [7]: MLIP-ACLPDD solves advanced cargo loading planning under uncertain demand by incorporating robust constraints into a Mixed Integer Linear Programming framework.
  • HGA [8]: Hybrid Genetic Algorithm enhances solution quality by combining evolutionary operators with complementary search techniques to accelerate convergence and explore the solution space more thoroughly.
  • GA-normal [9]: GA-normal employs foundational genetic algorithm operations—selection, crossover, and mutation—to explore solutions within a population-based search framework.
  • DMOPSO [10]: Discrete Multi-Objective Particle Swarm Optimization locates Pareto-optimal solutions in discrete search spaces by adapting swarm-based velocity and position update mechanisms to address multiple conflicting objectives.
  • PSO-normal [11]: PSO-normal employs the basic velocity and position update rules, guided by personal and global best solutions, to iteratively converge on an optimal search space configuration.
  • RCH [12]: Randomized Constructive Heuristic incrementally constructs feasible solutions by integrating stochastic choices during each step, thus diversifying the search process and enhancing solution discovery.
Method B777 MAC(%)↓ B777 INDEX(%)↓ B777 TIME(s)↓ A320 MAC(%)↓ A320 INDEX(%)↓ A320 TIME(s)↓ B787 MAC(%)↓ B787 INDEX(%)↓ B787 TIME(s)↓
COM 23.93 ± 0.59 3.40 ± 1.64 0.06 ± 0.04 21.14 ± 0.28 6.46 ± 2.20 0.06 ± 0.05 23.71 ± 0.47 3.10 ± 1.58 0.03 ± 0.03
IOM 23.90 ± 0.59 3.40 ± 1.62 0.07 ± 0.08 21.16 ± 0.28 6.50 ± 2.16 0.07 ± 0.05 23.71 ± 0.46 3.08 ± 1.56 0.06 ± 0.05
NL-CPLEX 23.92 ± 0.58 3.45 ± 1.60 0.08 ± 0.06 21.15 ± 0.29 6.48 ± 2.18 0.08 ± 0.07 23.70 ± 0.47 3.07 ± 1.61 0.05 ± 0.04
SDCCLPM 23.91 ± 0.59 3.40 ± 1.63 0.07 ± 0.05 21.15 ± 0.28 6.46 ± 2.18 0.07 ± 0.06 23.70 ± 0.46 3.08 ± 1.57 0.05 ± 0.04
MLIP 23.92 ± 0.57 3.47 ± 1.59 0.06 ± 0.07 21.14 ± 0.29 6.45 ± 2.20 0.06 ± 0.05 23.69 ± 0.46 3.04 ± 1.63 0.03 ± 0.02
MLIP-WBP 23.92 ± 0.58 3.45 ± 1.60 3.53 ± 5.78 21.15 ± 0.29 6.47 ± 2.19 1.43 ± 0.78 23.70 ± 0.47 3.07 ± 1.61 1.43 ± 0.85
MLIP-ACLPDD 23.93 ± 0.59 3.44 ± 1.65 3.46 ± 1.61 21.14 ± 0.29 6.44 ± 2.20 1.46 ± 0.98 23.71 ± 0.47 3.12 ± 1.60 1.67 ± 1.02
HGA 23.37 ± 0.47 3.23 ± 1.06 253.30 ± 0.80 21.14 ± 0.22 6.69 ± 1.80 1.80 ± 0.84 23.46 ± 0.24 3.86 ± 1.74 193.62 ± 0.51
GA-normal 23.35 ± 0.48 3.13 ± 1.08 221.82 ± 0.52 21.14 ± 0.22 6.71 ± 1.80 1.81 ± 0.51 23.44 ± 0.23 3.73 ± 1.69 145.70 ± 0.17
DMOPSO 23.12 ± 0.49 1.56 ± 1.65 266.11 ± 2.61 21.10 ± 0.28 6.59 ± 2.43 2.60 ± 0.61 23.29 ± 0.29 3.00 ± 2.39 204.13 ± 2.02
PSO-normal 23.19 ± 0.44 2.13 ± 1.81 211.73 ± 2.70 21.09 ± 0.28 6.56 ± 2.43 2.61 ± 0.70 23.30 ± 0.27 3.09 ± 2.19 199.24 ± 1.80
RCH 23.35 ± 0.50 3.23 ± 1.23 200.63 ± 0.06 21.07 ± 0.24 6.55 ± 1.93 1.78 ± 0.06 23.41 ± 0.26 3.50 ± 1.93 200.20 ± 0.02
Method Segment 1 MAC(%)↓ Segment 1 INDEX(%)↓ Segment 1 TIME(s)↓ Segment 2 MAC(%)↓ Segment 2 INDEX(%)↓ Segment 2 TIME(s)↓
COM 23.59 ± 0.40 2.72 ± 1.56 0.73 ± 0.61 24.29 ± 0.74 3.89 ± 2.32 1.25 ± 0.92
IOM 23.65 ± 0.41 3.02 ± 1.62 1.19 ± 0.90 24.30 ± 0.73 4.02 ± 2.42 1.82 ± 1.19
NL-CPLEX 23.61 ± 0.41 2.65 ± 1.49 1.06 ± 0.94 24.30 ± 0.74 3.88 ± 2.27 1.96 ± 1.39
SDCCLPM 23.63 ± 0.41 2.96 ± 1.61 1.11 ± 0.95 24.28 ± 0.74 3.97 ± 2.38 1.81 ± 1.35
MLIP 23.63 ± 0.42 2.68 ± 1.48 0.84 ± 0.75 24.28 ± 0.74 3.87 ± 2.24 1.21 ± 0.85
MLIP-WBP 23.61 ± 0.41 2.65 ± 1.49 32.06 ± 22.02 24.30 ± 0.74 3.88 ± 2.27 44.32 ± 22.77
MLIP-ACLPDD 23.60 ± 0.40 2.73 ± 1.54 34.05 ± 22.46 24.28 ± 0.74 3.88 ± 2.33 51.55 ± 27.58
HGA 23.44 ± 0.23 3.73 ± 1.69 36.10 ± 8.55 23.39 ± 0.30 3.32 ± 2.15 23.86 ± 2.69
GA-normal 23.43 ± 0.24 3.65 ± 1.77 28.70 ± 3.45 23.25 ± 0.24 2.37 ± 1.74 23.57 ± 2.50
DMOPSO 23.30 ± 0.27 2.58 ± 2.19 38.12 ± 23.18 23.20 ± 0.27 2.24 ± 2.25 37.39 ± 20.79
PSO-normal 23.29 ± 0.28 2.54 ± 2.01 67.54 ± 57.82 23.34 ± 0.27 3.43 ± 2.25 31.77 ± 16.63
RCH 23.39 ± 0.27 3.38 ± 1.96 36.72 ± 0.55 23.25 ± 0.27 2.35 ± 1.96 35.27 ± 0.31

4.3 Cargo balancing/loading with Large Language Model optimization

Method B777 MAC(%)↓ B777 INDEX(%)↓ B777 TIME(s)↓ B787 MAC(%)↓ B787 INDEX(%)↓ B787 TIME(s)↓
HGA 23.44 ± 0.22 3.75 ± 1.65 4.91 ± 2.08 23.44 ± 0.21 3.73 ± 1.55 2.50 ± 1.12
GA-normal 23.43 ± 0.23 3.66 ± 1.67 2.39 ± 0.76 23.46 ± 0.21 3.89 ± 1.58 1.29 ± 0.17
DMOPSO 23.32 ± 0.28 3.21 ± 2.30 3.28 ± 2.23 23.39 ± 0.26 3.79 ± 2.10 1.60 ± 0.81
PSO-normal 23.39 ± 0.28 3.79 ± 2.30 5.80 ± 4.09 23.39 ± 0.29 3.78 ± 2.37 1.19 ± 0.74
RCH 23.39 ± 0.26 3.40 ± 1.91 3.66 ± 0.03 23.42 ± 0.24 3.61 ± 1.76 0.72 ± 0.01

5. The AirCa APIs

In addition to our AirCa dataset, we release the AirCa package, including three types of APIs. It is designed to faciliate researchers in developing aircraft cargo loading applications.The details are presented as follows:

DataDownloader. This API allows researchers to download the AirCa data. the code presents how to utilize the DataDownloader API to download the up-to-date AirCa data. DataDownloader. This API allows researchers to download the AirCa data. Figure 4 presents how to utilize the DataDownloader API to download the up-to-date AirCa data.

from api . download_airca import AirCaDownloader
downloader = AirCaDownloader ()
# Download data A320
downloader . download_AirCa ( url , path , aircraft_type =" A320 " ,
date =" 2024 -10 -12 ")
# Download data B737
downloader . download_AirCa ( url , path , aircraft_type =" B737 " ,
date = None )
# Download data for all available aircraft types
downloader . download_AirCa ( url , path , aircraft_type = None ,
date = None )

DataRetriever. This API enables researchers to conveniently obtain the AirCa data stroed in the local machine. For instance, the code shows how to employ the DataRetriever API to obtain the AirCa data for aircraft type B777.

from api . retriever import Retriever
retriever = Retriever ()
# Enter the type A320
retriever . retrieve ( path = path , aircraft_type = " A320 ")
# Enter the type B777
retriever . retrieve ( path = path , aircraft_type = " B777 ")
# Enter the type B787
retriever . retrieve ( path = path , aircraft_type = " B787 ")

DataLoader. This API is designed to assist researchers in their applications of aircraft cargo loading. It allows researchers to flex- ibly and seamlessly merge multiple modalities of AirCa data. It exposes the AirCa through a DataLoader object after performing necessary data preprocessing techniques. A PyTorch example of using our DataLoader API for training DNNs is shown in the code.

import torch
from torch . utils . data import DataLoader
# generate AirCa ( A320 ) dataset for training
dataloader1 = DataLoader ( AircraftDataset ( path ," A320 ") ,
batch_size = batch_size , shuffle = True )
# generate AirCa ( B777 ) dataset for training
dataloader2 = DataLoader ( AircraftDataset ( path ," B777 ") ,
batch_size = batch_size , shuffle = True )
# generate AirCa ( B787 ) dataset for training
dataloader3 = DataLoader ( AircraftDataset ( path ," B787 ") ,
batch_size = batch_size , shuffle = True )
train_model ( dataloader1 , baseline_name , criterion ,
optimizer , epochs =600)

6. References

[1] Zhao, X., Dong, Y., & Zuo, L. (2023). A combinatorial optimization approach for air cargo palletization and aircraft loading. Mathematics, 11(13), 2798.
[2] Mesquita, A. C. P., & Sanches, C. A. A. (2024). Air cargo load and route planning in pickup and delivery operations. Expert Systems with Applications, 249, 123711.
[3] Yan, S., Lo, C.-T., & Shih, Y.-L. (2006). Cargo container loading plan model and solution method for international air express carriers. Transportation Planning and Technology, 29(6), 445–470.
[4] Yan, S., Shih, Y.-L., & Shiao, F.-Y. (2008). Optimal cargo container loading plans under stochastic demands for air express carriers. Transportation Research Part E: Logistics and Transportation Review, 44(3), 555–575.
[5] Limbourg, S., Schyns, M., & Laporte, G. (2012). Automatic aircraft cargo load planning. Journal of the Operational Research Society, 63(9), 1271–1283.
[6] Zhao, X., Yuan, Y., Dong, Y., & Zhao, R. (2021). Optimization approach to the aircraft weight and balance problem with the centre of gravity envelope constraints. IET Intelligent Transport Systems, 15(10), 1269–1286.
[7] Lurkin, V., & Schyns, M. (2015). The airline container loading problem with pickup and delivery. European Journal of Operational Research, 244(3), 955–965.
[8] Zhu, L., Wu, Y., Smith, H., & Luo, J. (2023). Optimisation of containerised air cargo forwarding plans considering a hub consolidation process with cargo loading. Journal of the Operational Research Society, 74(3), 777–796.
[9] Chenguang, Y., Liu, H., & Yuan, G. (2018). Load planning of transport aircraft based on hybrid genetic algorithm. In MATEC’18, Vol. 179 (pp. 01007). EDP Sciences.
[10] Dahmani, N., & Krichen, S. (2016). Solving a load balancing problem with a multi-objective particle swarm optimisation approach: application to aircraft cargo transportation. International Journal of Operational Research, 27(1-2), 62–84.
[11] Dahmani, N., & Krichen, S. (2013). On solving the bi-objective aircraft cargo loading problem. In ICMSAO’13 (pp. 1–6). IEEE.
[12] Gajda, M., Trivella, A., Mansini, R., & Pisinger, D. (2022). An optimization approach for a complex real-life container loading problem. Omega, 107, 102559.

Downloads last month
33