task_id
stringlengths
12
14
prompt
stringlengths
273
1.94k
entry_point
stringlengths
3
31
canonical_solution
stringlengths
0
2.7k
test
stringlengths
160
1.83k
PythonSaga/100
from typing import List, Tuple, Dict, Any, Callable, Optional def input_func(user: str, house_value: int, income: int, vehicle_value: int) -> dict: """Create a class named tax, with following functions: 1. LandTax: calculate the land tax of a house i.e 2% of the house value 2. IncomeTax: calculate the income tax of a person i.e 10% of the income 3. vehicleTax: calculate the vehicle tax of a vehicle i.e 5% of the vehicle value Take input from user for house value, income and vehicle value and print the tax for each of them. Along with this also take name of the person and print the name of the person before printing the tax. Example: Input: Jhon, {house value: 500000, income: 1000000, vehicle value: 100000} Output: {house tax: 10000, income tax: 100000, vehicle tax: 5000}"""
input_func
class Tax: def __init__(self, user): self.user = user def LandTax(self, house_value): return {'house tax': house_value * 0.02} def IncomeTax(self, income): return {'income tax': income * 0.1} def VehicleTax(self, vehicle_value): return {'vehicle tax': vehicle_value * 0.05} person_tax = Tax(user) result = { **person_tax.LandTax(house_value), **person_tax.IncomeTax(income), **person_tax.VehicleTax(vehicle_value) } return result
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate("Alice", 300000, 80000, 75000) == {'house tax': 6000, 'income tax': 8000, 'vehicle tax': 3750} assert candidate("Bob", 450000, 120000, 60000) == {'house tax': 9000, 'income tax': 12000, 'vehicle tax': 3000} assert candidate("Charlie", 600000, 150000, 90000) == {'house tax': 12000, 'income tax': 15000, 'vehicle tax': 4500} assert candidate("David", 350000, 90000, 80000) == {'house tax': 7000, 'income tax': 9000, 'vehicle tax': 4000}
PythonSaga/101
from typing import List, Tuple, Dict, Any, Callable, Optional def input_func2(eqn: str) -> str: """I want to check whether the equation given by user is balanced or not in form of paranthesis and operators. Make a class named check_balance and conduct the test. There are four operators: +, -, *, / There are few paranthesis: (,{,[,],},) Take input from user and return "Balanced" or "Not Balanced" accordingly. Example: Input: (a+b)*c Output: Balanced Input: (a+b)*c) Output: Not Balanced Input: (a+b)c Output: Not Balanced """
input_func2
class CheckBalance: def __init__(self, eqn: str): self.eqn = eqn self.stack = [] self.pairs = {')': '(', '}': '{', ']': '['} def is_balanced(self) -> str: last = '' # Keep track of the last character processed for char in self.eqn: if char in '({[': # Check for operand followed by '(' without an operator in between if last.isalnum(): return 'Not Balanced' self.stack.append(char) elif char in ')}]': if not self.stack or self.stack[-1] != self.pairs[char]: return 'Not Balanced' self.stack.pop() elif char.isalnum() and last in ')]}': # Check for ')' followed by an operand without an operator in between return 'Not Balanced' last = char # Update the last character processed # Check for any unmatched opening parentheses if self.stack: return 'Not Balanced' return 'Balanced' def input_func2(eqn: str) -> str: checker = CheckBalance(eqn) return checker.is_balanced()
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate("(a+b)*c") == "Balanced" assert candidate("(a+b)*c)") == "Not Balanced" assert candidate("(a+b)c") == "Not Balanced" assert candidate("(a+b)*[c-d]/{e+f}") == "Balanced"
PythonSaga/102
from typing import List, Tuple, Dict, Any, Callable, Optional def input_func3(lst1: List[int], lst2: List[int]) -> Tuple[List[int], str]: """Write a Python program that overloads the operator + and > for a Orders class. Take input from the user for the 2 orders in form of list and print the merged list of both orders and also print the order with maximum amount. Example: Input: [1,2,3,4,5,6], [10,20,30] Output: ([1,2,3,4,5,6,10,20,30], "Order 2 > Order 1")"""
input_func3
class Orders: def __init__(self, order_list: List[int]): self.order_list = order_list def __add__(self, other): merged_list = self.order_list + other.order_list return Orders(merged_list) def __gt__(self, other): total_amount_self = sum(self.order_list) total_amount_other = sum(other.order_list) if total_amount_self > total_amount_other: return f"Order 1 > Order 2" elif total_amount_self < total_amount_other: return f"Order 2 > Order 1" else: return "Order 1 = Order 2" def input_func3(lst1: List[int], lst2: List[int]) -> Tuple[List[int], str]: order1 = Orders(lst1) order2 = Orders(lst2) merged_order = order1 + order2 comparison_result = order1 > order2 return merged_order.order_list, comparison_result
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate([1, 2, 3, 4, 5, 6], [10, 20, 30]) == ([1, 2, 3, 4, 5, 6, 10, 20, 30], "Order 2 > Order 1") assert candidate([5, 10, 15], [2, 7, 12]) == ([5, 10, 15, 2, 7, 12], "Order 1 > Order 2") assert candidate([1, 2, 3], [4, 5, 6]) == ([1, 2, 3, 4, 5, 6], "Order 2 > Order 1") assert candidate([], [10, 20, 30]) == ([10, 20, 30], "Order 2 > Order 1")
PythonSaga/103
from typing import List, Tuple, Dict, Any, Callable, Optional def input_func4(animal: str) -> str: """I want to teach my nephew about sound and type of different animals Create one class animal which displays name of animal input by user. Create 4 classes: 1. Dog, type of animal: mammal, sound: bark 2. Cat, type of animal: mammal, sound: meow 3. Duck , type of animal: bird, sound: quack 4. snake, type of animal: reptile, sound: hiss Take input from user and display the name of animal and its type and sound. Try to use inheritance to reduce the number of lines of code. Example: Input: "dog" Output: "Name of animal is dog, it belongs to mammal family and it barks." Input: "snake" Output: "Name of animal is snake, it belongs to reptile family and it hisses."""
input_func4
class Animal: def __init__(self, name: str, animal_type: str, sound: str): self.name = name self.animal_type = animal_type self.sound = sound def display_info(self) -> str: return f"Name of animal is {self.name}, it belongs to {self.animal_type} family and it {self.sound}." class Dog(Animal): def __init__(self, name: str): super().__init__(name, "mammal", "barks") class Cat(Animal): def __init__(self, name: str): super().__init__(name, "mammal", "meows") class Duck(Animal): def __init__(self, name: str): super().__init__(name, "bird", "quacks") class Snake(Animal): def __init__(self, name: str): super().__init__(name, "reptile", "hisses") def input_func4(animal: str) -> str: animal_class = None if animal.lower() == "dog": animal_class = Dog(animal) elif animal.lower() == "cat": animal_class = Cat(animal) elif animal.lower() == "duck": animal_class = Duck(animal) elif animal.lower() == "snake": animal_class = Snake(animal) if animal_class: return animal_class.display_info() else: return "Unknown animal."
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate("dog") == "Name of animal is dog, it belongs to mammal family and it barks." assert candidate("cat") == "Name of animal is cat, it belongs to mammal family and it meows." assert candidate("duck") == "Name of animal is duck, it belongs to bird family and it quacks." assert candidate("snake") == "Name of animal is snake, it belongs to reptile family and it hisses."
PythonSaga/104
from typing import List, Tuple, Dict, Any, Callable, Optional def input_func5(dir: List[List[str, int]]) -> int: """I want to know how far I'm from origin if I move certain distance in certain direction Direction can be N,S,E,W and distance can be any positive integer Create class Distance that returns the distance from origin Also create other classes named North, South, East, West that inherit from Distance Take input from the user in the form of Direction and Distance until the user enters 'stop' Return the distance from origin Example: Input: [[N,5],[E,3],[S,5],[stop]] Output: 3 Input: [[N,5],[N,7],[S,5],[stop]] Output: 7"""
input_func5
class Distance: def __init__(self): self.x = 0 # East-West position self.y = 0 # North-South position def update_position(self, distance: int, direction: str): if direction == 'N': self.y += distance elif direction == 'S': self.y -= distance elif direction == 'E': self.x += distance elif direction == 'W': self.x -= distance def get_distance_from_origin(self) -> int: # Manhattan distance from the origin return abs(self.x) + abs(self.y) def input_func5(dir: List[Tuple[str, int]]) -> int: distance_obj = Distance() for command in dir: if command[0].lower() == 'stop': # Using lower() to make it case-insensitive break direction, dist = command distance_obj.update_position(dist, direction) return distance_obj.get_distance_from_origin()
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate([['N', 5], ['E', 3], ['S', 5], ['stop']]) == 3 assert candidate([['N', 5], ['N', 7], ['S', 5], ['stop']]) == 7 assert candidate([['E', 10], ['W', 5], ['N', 3], ['S', 3], ['stop']]) == 5 assert candidate([['E', 8], ['W', 4], ['S', 3], ['stop']]) == 5
PythonSaga/105
from typing import List def mirror_matrix(n: int, matrix: List[List[int]]) -> List[List[int]]: """User wants to give a 2-D array of order N x N, print a matrix that is the mirror of the given tree across the diagonal. We need to print the result in such a way that swaps the values of the triangle above the diagonal with the values of the triangle below it like a mirror image swap. Take the value of n from the user and take n rows of input from the user and Print the 2-D array obtained in a matrix layout. Example: Input: 3,[[1,2,4],[5,9,0],[3,1,7]] Output: [[1,5,3],[2,9,1],[4,0,7]]"""
mirror_matrix
for i in range(n): for j in range(i + 1, n): # Swap the values across the diagonal matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j] return matrix
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(3, [[1, 2, 4], [5, 9, 0], [3, 1, 7]]) == [[1, 5, 3], [2, 9, 1], [4, 0, 7]] assert candidate(2, [[1, 2], [3, 4]]) == [[1, 3], [2, 4]] assert candidate(4, [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) == [[1, 5, 9, 13], [2, 6, 10, 14], [3, 7, 11, 15], [4, 8, 12, 16]] assert candidate(3, [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) == [[1, 0, 0], [0, 1, 0], [0, 0, 1]] assert candidate(1, [[9]]) == [[9]]
PythonSaga/106
from typing import List def equivalent_matrices(n: int, m: int, matrix1: List[List[int]], matrix2: List[List[int]]) -> int: """User wants to give two 2-D array of order N x M, print the number of changes required to make M1 equal to M2. A change is as: 1. Select any one matrix out of two matrices. 2. Choose either row/column of the selected matrix. 3. Increment every element of the selected row/column by 1. Take the value of n and m from the user and take two input matrices from the user. Print the number of changes required to make M1 equal to M2. if it is not possible print -1. Example: Input: 2,2,[[1,1],[1,1]],[[1,2],[3,4]] # Here 2 is n and 2 is m. and then two matrices of order 2*2. Output: 3 Input: 2,2,[[1,1],[1,1]],[[1,0],[0,-1]] # Here 2 is n and 2 is m. and then two matrices of order 2*2. Output: -1"""
equivalent_matrices
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(2, 2, [[1, 1], [1, 1]], [[1, 2], [3, 4]]) == 3 assert candidate(2, 2, [[1, 1], [1, 1]], [[1, 0], [0, -1]]) == -1 assert candidate(2, 3, [[1, 1, 1], [2, 2, 2]], [[2, 2, 2], [3, 3, 3]]) == 2 assert candidate(2, 2, [[1, 2], [3, 4]], [[2, 4], [3, 6]]) == -1
PythonSaga/107
from typing import List def max_prize(n: int, m: int, matrix: List[List[int]]) -> int: """User wants to give a 2-D array of order N x M, print the maximum prize I can get by selecting any submatrix of any size. Take the value of n and m from the user and take n rows of input from the user and Print the maximum prize i.e sum of all the elements of the submatrix. Example: Input: 4,5,[[1,2,-1,-4,-20],[-8,-3,4,2,1],[3,8,10,1,3],[-4,-1,1,7,-6]] # Here 4 is n and 5 is m. and then matrix of order 4*5. Output: 29"""
max_prize
def kadane(arr: List[int]) -> int: max_ending_here = max_so_far = arr[0] for x in arr[1:]: max_ending_here = max(x, max_ending_here + x) max_so_far = max(max_so_far, max_ending_here) return max_so_far def max_prize(n: int, m: int, matrix: List[List[int]]) -> int: maxSum = float('-inf') # Row combination loop for startRow in range(n): temp = [0] * m for row in range(startRow, n): # Calculate cumulative sum for the current row combination for col in range(m): temp[col] += matrix[row][col] # Apply Kadane's algorithm to find max sum for this row combination maxSum = max(maxSum, kadane(temp)) return maxSum
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(4, 5, [[1, 2, -1, -4, -20], [-8, -3, 4, 2, 1], [3, 8, 10, 1, 3], [-4, -1, 1, 7, -6]]) == 29 assert candidate(3, 3, [[-1, 2, -3], [4, -5, 6], [-7, 8, -9]]) == 5 assert candidate(2, 2, [[1, -2], [3, 4]]) == 7 assert candidate(2, 3, [[1, 2, 3], [-4, 5, 6]]) == 16
PythonSaga/108
from typing import List def longest_path(n: int, m: int, matrix: List[List[int]]) -> int: """User wants to give a 2-D array of order N x M, print the maximum number of cells that you can visit in the matrix by starting from some cell. Take the value of n and m from the user and take n rows of input from the user and Print the maximum number of cells that you can visit in the matrix by starting from some cell. Example: Input: 2,3,[[3,1,6],[-9,5,7]] # Here 2 is n and 3 is m. and then matrix of order 2*3. Output: 4 Input: 2,2,[[4,2],[4,5]] # Here 2 is n and 2 is m. and then matrix of order 2*2. Output: 2"""
longest_path
def dfs(i, j, n, m, matrix, dp): # If dp[i][j] is already computed, return its value if dp[i][j] != 0: return dp[i][j] # Possible moves: up, down, left, right directions = [(0, 1), (0, -1), (1, 0), (-1, 0)] max_path = 1 # Minimum path length starting from cell (i, j) is 1 for di, dj in directions: x, y = i + di, j + dj # Move to the cell (x, y) if it's within the matrix bounds and has a greater value if 0 <= x < n and 0 <= y < m and matrix[x][y] > matrix[i][j]: max_path = max(max_path, 1 + dfs(x, y, n, m, matrix, dp)) dp[i][j] = max_path # Memoize the result return max_path def longest_path(n: int, m: int, matrix: List[List[int]]) -> int: dp = [[0 for _ in range(m)] for _ in range(n)] # Initialize the dp matrix max_length = 0 for i in range(n): for j in range(m): max_length = max(max_length, dfs(i, j, n, m, matrix, dp)) return max_length
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(2, 3, [[3, 1, 6], [-9, 5, 7]]) == 4 assert candidate(2, 2, [[4, 2], [4, 5]]) == 2 assert candidate(3, 3, [[1, 2, 3], [6, 5, 4], [7, 8, 9]]) == 9 assert candidate(2, 2, [[-1, 6], [5, 3]]) == 2
PythonSaga/109
from typing import List def max_prod(n: int, m: int, matrix: List[List[int]]) -> int: """You are given an m x n matrix grid. Initially, you are located at the top-left corner (0, 0), and in each step, you can only move right or down in the matrix. Among all possible paths starting from the top-left corner (0, 0) and ending in the bottom-right corner (m - 1, n - 1), find the path with the maximum non-negative product. The product of a path is the product of all integers in the grid cells visited along the path. Return the maximum non-negative product modulo 10^9 + 7. If the maximum product is negative, return -1. Take the value of n and m as input from the user and then take the input matrix of size n*m from the user. Example: Input: 3,3,[[1,-2,-3],[-2,-3,-3],[-3,-3,-2]] Output: -1 Input: 2,2,[[1,2],[0,-4]] Output: 0"""
max_prod
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(3, 3, [[1, -2, -3], [-2, -3, -3], [-3, -3, -2]]) == -1 assert candidate(2, 2, [[1, 2], [0, -4]]) == 0 assert candidate(2, 3, [[1, 2, 3], [4, 5, -6]]) == -1 assert candidate(3, 3, [[1, 1, 1], [1, -1, -2], [-1, 1, 1]]) == 2
PythonSaga/110
from typing import List def binary_tree(arr: List[int]) -> bool: """My uncle gave me a Binary Tree. He asked me to Check whether all of its nodes have the value equal to the sum of their child nodes. If yes, return True. Otherwise, return False. Take input from the user and print the result. Example: Input: [10,10] # Given in level order traversal Output: True Input: [1,4,3,5] Output: False"""
binary_tree
def is_sum_tree(arr, index=0): # Base case: if the current node is a leaf or beyond the length of the array, it's considered a sum tree if index >= len(arr) or 2 * index + 1 >= len(arr): return True # Calculate the index of left and right children left = 2 * index + 1 right = 2 * index + 2 # Value of left child, 0 if there is no left child left_val = arr[left] if left < len(arr) else 0 # Value of right child, 0 if there is no right child right_val = arr[right] if right < len(arr) else 0 # Check the sum property for the current node and recursively check for children return (arr[index] == left_val + right_val) and is_sum_tree(arr, left) and is_sum_tree(arr, right) def binary_tree(arr: List[int]) -> bool: # The root is at index 0, start checking from there return is_sum_tree(arr)
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate([10, 10]) == True assert candidate([1, 4, 3, 5]) == False assert candidate([1, 2, 3, 6, 3, 2, 1]) == False assert candidate([12, 9, 3, 6, 3, 2, 1]) == True assert candidate([]) == True
PythonSaga/111
from typing import List def floor_ceil(num: int, arr: List[int]) -> List[int]: """My teacher gave me a binary search tree, and I have to make a function to find the floor and ceil of a number in the tree. Take a binary search tree and a number as input from the user and return the floor and ceil of the number. Example: Input: 3,[8,5,9,2,6,null,10] # Given in level order traversal Output: [2,5] # Floor and ceil of 3 in the given bst"""
floor_ceil
def find_floor_ceil(arr, num, index=0, floor=None, ceil=None): # Base case: if the current index is out of range or the node is None if index >= len(arr) or arr[index] is None: return floor, ceil # If the current node's value is equal to num, both floor and ceil are the num itself if arr[index] == num: return num, num # Update floor and ceil if arr[index] < num: floor = arr[index] return find_floor_ceil(arr, num, 2 * index + 2, floor, ceil) # Go to the right child else: ceil = arr[index] return find_floor_ceil(arr, num, 2 * index + 1, floor, ceil) # Go to the left child def floor_ceil(num, arr): return list(find_floor_ceil(arr, num))
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(10,[10, 10]) == [10,10] assert candidate(2,[1, 4, 3, 5]) == [1,3] assert candidate(3,[8, 5, 9, 2, 6, None, 10]) == [2,5] assert candidate(1,[8, 5, 9, 2, 6, None, 10]) == [None,2]
PythonSaga/112
from typing import List def merge_bst(arr1: List[int], arr2: List[int]) -> List[int]: """I have 2 binary search trees, and I want to merge them into one binary search tree. Take 2 binary search trees as input from the user, and return an inorder traversal of the binary search tree as output. Example: Input: [3,1,5],[4,2,6] # Given in level order traversal Output: [1,2,3,4,5,6] Input: [8,2,10,1],[5,3,null,0] Output: [0,1,2,3,5,8,10]"""
merge_bst
def inorder_from_level_order(arr, index=0, inorder=[]): if index >= len(arr) or arr[index] is None: return # Traverse left subtree inorder_from_level_order(arr, 2 * index + 1, inorder) # Visit node inorder.append(arr[index]) # Traverse right subtree inorder_from_level_order(arr, 2 * index + 2, inorder) def merge_inorder_traversals(inorder1, inorder2): merged = [] i = j = 0 while i < len(inorder1) and j < len(inorder2): if inorder1[i] < inorder2[j]: merged.append(inorder1[i]) i += 1 else: merged.append(inorder2[j]) j += 1 # Append remaining elements merged.extend(inorder1[i:]) merged.extend(inorder2[j:]) return merged def merge_bst(arr1, arr2): inorder1 = [] inorder2 = [] inorder_from_level_order(arr1, 0, inorder1) inorder_from_level_order(arr2, 0, inorder2) return merge_inorder_traversals(inorder1, inorder2)
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_data1 = [3, 1, 5] input_data2 = [4, 2, 6] assert candidate(input_data1, input_data2) == [1, 2, 3, 4, 5, 6] # Test Case 2: input_data3 = [8, 2, 10, 1] input_data4 = [5, 3, None, 0] assert candidate(input_data3, input_data4) == [0, 1, 2, 3, 5, 8, 10] # Test Case 3: input_data5 = [2,1,3] input_data6 = [4] assert candidate(input_data5, input_data6) == [1,2,3,4] # Test Case 4: input_data7 = [4, 2, 7,None, 3] input_data8 = [5,1,7] assert candidate(input_data7, input_data8) == [1, 2, 3, 4, 5, 7, 7]
PythonSaga/113
from typing import List def valid_bst(arr: List[int]) -> bool: """A valid BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys greater than the node's key. Both the left and right subtrees must also be binary search trees. Take input from the user and check if it is a valid BST or not. Example 1: Input: [2,1,3] # Given in level order traversal Output: True Input: [5,1,4,None,None,3,6] Output: False Input: [5,1,6,None,None,5.5,7] Output: True"""
valid_bst
class TreeNode: def __init__(self, value): self.value = value self.left = None self.right = None def insert_bst(root, value): if not root: return TreeNode(value) if value < root.value: root.left = insert_bst(root.left, value) elif value > root.value: root.right = insert_bst(root.right, value) return root def is_valid_bst(arr: List[int]) -> bool: if not arr: return True root = TreeNode(arr[0]) queue = [root] index = 1 while queue and index < len(arr): current = queue.pop(0) if arr[index] is not None: current.left = TreeNode(arr[index]) queue.append(current.left) index += 1 if index < len(arr) and arr[index] is not None: current.right = TreeNode(arr[index]) queue.append(current.right) index += 1 def is_bst(node, min_val=float('-inf'), max_val=float('inf')): if not node: return True if not min_val < node.value < max_val: return False return is_bst(node.left, min_val, node.value) and is_bst(node.right, node.value, max_val) return is_bst(root)
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): input_data1 = [2, 1, 3] assert candidate(input_data1) == True input_data2 = [5, 1, 4, None, None, 3, 6] assert candidate(input_data2) == False input_data3 = [5, 1, 6, None, None, 5.5, 7] assert candidate(input_data3) == True input_data4 = [10, 5, 15, None, None, 12, 20] assert candidate(input_data4) == True
PythonSaga/114
from typing import List def longest_univalue_path(arr: List[int]) -> int: """I have the root of a binary tree, and task is to return the length of the longest path, where each node in the path has the same value. This path may or may not pass through the root. The length of the path between two nodes is represented by the number of edges between them. Take input from user for binary tree and return the length of the longest path, where each node in the path has the same value. Example 1: Input: root = [5,4,5,1,1,5,5] # Level order traversal Output: 2 Input: root = [2,4,5,4,4,5] # Level order traversal Output: 2"""
longest_univalue_path
def longest_univalue_path(arr: List[int]) -> int: def dfs(index, value): if index >= len(arr) or arr[index] is None: return 0 left_len = dfs(2 * index + 1, arr[index]) right_len = dfs(2 * index + 2, arr[index]) # Update global maximum using paths from left and right children nonlocal max_length max_length = max(max_length, left_len + right_len) # Return the length of the path extending from the current node if arr[index] == value: return 1 + max(left_len, right_len) return 0 if not arr: return 0 max_length = 0 dfs(0, arr[0]) return max_length
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate([5, 4, 5, 1, 1, 5, 5]) == 2 assert candidate([2, 4, 5, 4, 4, 5]) == 2 assert candidate([1, 1, 1, 1, 1, None, 1]) == 4 assert candidate([1, 2, 2, 2, 2, 3, 3, 2]) == 3
PythonSaga/115
from typing import List def max_heapify(arr: List[int]) -> List[int]: """My friend gave me binary tree and asked me to construct max heap from it and return level order traversal of max heap. Take binary tree as input from user and construct max heap from it and return level order traversal of heap. Example: Input: [1, 3, 5, 4, 6, 13, 10, 9, 8, 15, 17] Output: [17, 15, 13, 9, 6, 5, 10, 4, 8, 3, 1]"""
max_heapify
def heapify(arr: List[int], n: int, i: int): largest = i # Initialize largest as root left = 2 * i + 1 # left = 2*i + 1 right = 2 * i + 2 # right = 2*i + 2 # If left child is larger than root if left < n and arr[largest] < arr[left]: largest = left # If right child is larger than largest so far if right < n and arr[largest] < arr[right]: largest = right # If largest is not root if largest != i: arr[i], arr[largest] = arr[largest], arr[i] # Swap # Heapify the root heapify(arr, n, largest) def max_heapify(arr: List[int]) -> List[int]: n = len(arr) # Build a max heap for i in range(n // 2 - 1, -1, -1): heapify(arr, n, i) return arr
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): input_data1 = [1, 3, 5, 4, 6, 13, 10, 9, 8, 15, 17] assert candidate(input_data1) == [17, 15, 13, 9, 6, 5, 10, 4, 8, 3, 1] input_data2 = [10, 5, 7, 2, 1, 8, 3, 6, 9, 4] assert candidate(input_data2) == [10, 9, 8, 6, 4, 7, 3, 5, 2, 1] input_data3 = [20, 15, 10, 5, 12, 14, 18, 8, 7, 2, 3, 1] assert candidate(input_data3) == [20, 15, 18, 8, 12, 14, 10, 5, 7, 2, 3, 1] input_data4 = [25, 30, 40, 20, 10, 35, 18, 15, 12, 8, 5] assert candidate(input_data4) == [40, 30, 35, 20, 10, 25, 18, 15, 12, 8, 5]
PythonSaga/116
from typing import List def lenght_of_rope(n:int, arr: List[int]) -> int: """There are given N ropes of different lengths, we need to connect these ropes into one rope. The cost to connect two ropes is equal to sum of their lengths. The task is to connect the ropes with minimum cost. Take number of ropes and their lengths as input from user and print the minimum cost. Use heap concept to solve this problem. Example: Input: 4, [5, 4, 3, 7] Output: 38 Input: 3, [1, 2, 3] Output: 9"""
lenght_of_rope
# Initialize min heap with rope lengths heapq.heapify(arr) total_cost = 0 # Initialize total cost # Keep connecting ropes until only one is left while len(arr) > 1: # Extract the two smallest ropes first = heapq.heappop(arr) second = heapq.heappop(arr) # Connect them connected_rope = first + second # Add the cost total_cost += connected_rope # Put the resulting rope back into the heap heapq.heappush(arr, connected_rope) return total_cost
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_data1 = 4, [5, 4, 3, 7] assert candidate(*input_data1) == 38 # Test Case 2: input_data2 = 3, [1, 2, 3] assert candidate(*input_data2) == 9 # Test Case 3: input_data3 = 5, [10, 2, 8, 5, 4] assert candidate(*input_data3) == 64 # Test Case 4: input_data4 = 2, [1, 5] assert candidate(*input_data4) == 6
PythonSaga/117
def rearrange(s: str) -> bool: """I have a word/string which has repeated characters. I want to rearrange the word such that no two same characters are adjacent to each other. If no such arrangement is possible, then return False, else return true. Take string as input from user. Use heap concept to solve this problem. Example 1: Input: 'aaabc' Output: True Input: 'aa' Output: False """
rearrange
char_freq = {} # Count the frequency of each character in the string for char in s: char_freq[char] = char_freq.get(char, 0) + 1 # Create a max heap based on negative frequencies max_heap = [(-freq, char) for char, freq in char_freq.items()] heapq.heapify(max_heap) result = [] while len(max_heap) > 1: # Extract the two most frequent characters freq1, char1 = heapq.heappop(max_heap) freq2, char2 = heapq.heappop(max_heap) # Append the characters to the result result.extend([char1, char2]) # Decrement the frequencies and push back into the heap if the frequency is not zero if freq1 + 1 != 0: heapq.heappush(max_heap, (freq1 + 1, char1)) if freq2 + 1 != 0: heapq.heappush(max_heap, (freq2 + 1, char2)) # If there is only one character left, append it to the result if max_heap: result.append(max_heap[0][1]) # Check if the result is a valid rearrangement return len(result) == len(s)
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_data1 = 'aaabc' assert candidate(input_data1) == True # Test Case 2: input_data2 = 'aa' assert candidate(input_data2) == False # Test Case 3: input_data3 = 'aabbccc' assert candidate(input_data3) == True # Test Case 4: input_data4 = 'abcde' assert candidate(input_data4) == True
PythonSaga/118
from typing import Dict def huff_encode(n:int, d:Dict) -> Dict: """I need to implement huffman coding for input characters based on their frequency. Take input for characters and their frequency from user. and then encode them using huffman coding. Example: Input: 6, {'a': 5, 'b': 9, 'c': 12, 'd': 13, 'e': 16, 'f': 45} Output: {'a': '1100', 'b': '1101', 'c': '100', 'd': '101', 'e': '111', 'f': '0'} """
huff_encode
class Node: def __init__(self, char, freq): self.char = char self.freq = freq self.left = None self.right = None def __lt__(self, other): return self.freq < other.freq def build_huffman_tree(freq_dict): min_heap = [Node(char, freq) for char, freq in freq_dict.items()] heapq.heapify(min_heap) while len(min_heap) > 1: left = heapq.heappop(min_heap) right = heapq.heappop(min_heap) merged_node = Node(None, left.freq + right.freq) merged_node.left = left merged_node.right = right heapq.heappush(min_heap, merged_node) return min_heap[0] def generate_huffman_codes(root, code="", huff_codes=None): if huff_codes is None: huff_codes = {} if root: if not root.left and not root.right: huff_codes[root.char] = code generate_huffman_codes(root.left, code + "0", huff_codes) generate_huffman_codes(root.right, code + "1", huff_codes) def huff_encode(n: int, d: Dict) -> Dict: if n < 2: return {} # Build the Huffman tree root = build_huffman_tree(d) # Generate Huffman codes huff_codes = {} generate_huffman_codes(root, "", huff_codes) return huff_codes
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_data1 = 6, {'a': 5, 'b': 9, 'c': 12, 'd': 13, 'e': 16, 'f': 45} assert candidate(*input_data1) == {'f': '0', 'c': '100', 'd': '101', 'a': '1100', 'b': '1101', 'e': '111'} # Test Case 2: input_data2 = 4, {'x': 2, 'y': 2, 'z': 2, 'w': 2} assert candidate(*input_data2) == {'z': '00', 'x': '01', 'w': '10', 'y': '11'} # Test Case 3: input_data3 = 3, {'p': 1, 'q': 2, 'r': 3} assert candidate(*input_data3) == {'r': '0', 'p': '10', 'q': '11'} # Test Case 4: input_data4 = 2, {'A': 10, 'B': 20} assert candidate(*input_data4) == {'A': '0', 'B': '1'}
PythonSaga/119
from typing import List def merge_lists(n:int, lists:List[List[int]]) -> List[int]: """Take k sorted lists of size N and merge them into one sorted list. You can use a heap to solve this problem. Take input from the user for the number of lists and the elements of the lists. Example: Input: 3, [[1, 3, 5, 7], [2, 4, 6, 8], [0, 9, 10, 11]] Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ,10, 11]"""
merge_lists
result = [] min_heap = [] # Initialize the heap with the first element from each list along with the list index for i, lst in enumerate(lists): if lst: heapq.heappush(min_heap, (lst[0], i, 0)) while min_heap: val, list_index, index_in_list = heapq.heappop(min_heap) result.append(val) # Move to the next element in the same list if index_in_list + 1 < len(lists[list_index]): heapq.heappush(min_heap, (lists[list_index][index_in_list + 1], list_index, index_in_list + 1)) return result
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_data1 = 3, [[1, 3, 5, 7], [2, 4, 6, 8], [0, 9, 10, 11]] assert candidate(*input_data1) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] # Test Case 2: input_data2 = 2, [[-1, 0, 2, 4], [3, 5, 6, 8]] assert candidate(*input_data2) == [-1, 0, 2, 3, 4, 5, 6, 8] # Test Case 3: input_data3 = 4, [[10, 15, 20, 25], [1, 5, 7, 30], [4, 8, 11, 13], [3, 6, 9, 12]] assert candidate(*input_data3) == [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 25, 30] # Test Case 4: input_data4 = 3, [[], [2, 4, 6, 8], [0, 9, 10, 11]] assert candidate(*input_data4) == [0, 2, 4, 6, 8, 9, 10, 11]
PythonSaga/120
from typing import List def autoComplete(words: List[str], word: str) -> List[str]: """I came to know that auto complete feature while typing is performed using Trie data structure. Do a task where take a input of multiple words from user and a word to be completed. Return all the words that can be completed using the given word. Example: Input: ['hello', 'hell', 'hi', 'how', 'are', 'you', 'hero', 'hey'], 'he' Output: ['hello', 'hell', 'hero', 'hey'] """
autoComplete
class TrieNode: def __init__(self): self.children = {} self.is_end_of_word = False def insert_word(root, word): node = root for char in word: if char not in node.children: node.children[char] = TrieNode() node = node.children[char] node.is_end_of_word = True def search_prefix(root, prefix): node = root for char in prefix: if char not in node.children: return [] node = node.children[char] suggestions = [] traverse_trie(node, prefix, suggestions) return suggestions def traverse_trie(node, current_word, suggestions): if node.is_end_of_word: suggestions.append(current_word) for char, child_node in node.children.items(): traverse_trie(child_node, current_word + char, suggestions) def autoComplete(words: List[str], word: str) -> List[str]: root = TrieNode() for w in words: insert_word(root, w) suggestions = search_prefix(root, word) return suggestions
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_words1 = ['hello', 'hell', 'hi', 'how', 'are', 'you', 'hero', 'hey'] input_word1 = 'he' assert candidate(input_words1, input_word1) == ['hello', 'hell', 'hero', 'hey'] # Test Case 2: input_words2 = ['apple', 'apricot', 'banana', 'apex', 'apologize', 'apartment'] input_word2 = 'ap' assert candidate(input_words2, input_word2) == ['apple', 'apricot', 'apex', 'apologize', 'apartment'] # Test Case 3: input_words3 = ['python', 'programming', 'pyramid', 'pyro', 'pyrite', 'puzzle'] input_word3 = 'py' assert candidate(input_words3, input_word3) == ['python', 'programming', 'pyramid', 'pyro', 'pyrite'] # Test Case 4: input_words4 = ['car', 'cat', 'cart', 'caramel', 'cabbage', 'camera'] input_word4 = 'ca' assert candidate(input_words4, input_word4) == ['car', 'cat', 'cart', 'caramel', 'cabbage', 'camera']
PythonSaga/121
from typing import List def rename_cities(cities: List[str]) -> List[str]: """Some cities are going to be renamed and accordingly name of their railway stations will also change. Changing the name of railway station should also result in changed station code. Railways have an idea that station code should be the shortest prefix out of all railway stations renamed prior to this. If some city has same name, then prefix will be the name with suffix as the count of occurence of that city prior to this and including this, seperated with spaces. Take a name of city as input from user and print the station code as output. Example 1: Input: ['Delhi', 'Mumbai', 'Chennai', 'Kolkata', 'Dehradun', 'Delhi'] Output: ['D', 'M', 'C', 'K', 'Deh', 'Delhi2] """
rename_cities
city_count = {} # Tracks the count of each city used_codes = set() # Tracks all used codes to ensure uniqueness codes = [] # Stores the resulting station codes for city in cities: # Increment the city count or initialize it city_count[city] = city_count.get(city, 0) + 1 if city_count[city] == 1: # For the first occurrence, find a unique prefix prefix = "" for i in range(1, len(city) + 1): prefix = city[:i] if prefix not in used_codes: break codes.append(prefix) used_codes.add(prefix) else: # For subsequent occurrences, use the full name with a count code = f"{city}{city_count[city]}" codes.append(code) used_codes.add(code) return codes
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_cities1 = ['Delhi', 'Mumbai', 'Chennai', 'Kolkata', 'Dehradun', 'Delhi'] assert candidate(input_cities1) == ['D', 'M', 'C', 'K', 'Deh', 'Delhi2'] # Test Case 2: input_cities2 = ['Shimla', 'Safari', 'Jammu', 'Delhi', 'Jammu', 'Dehradun'] assert candidate(input_cities2) == ['S', 'Sa', 'J', 'D', 'Jammu2', 'Deh'] # Test Case 3: input_cities3 = ['NewYork', 'NewDelhi', 'NewJersey', 'NewYork', 'NewJersey', 'NewDelhi'] assert candidate(input_cities3) == ['N', 'NewD', 'NewJ', 'NewYork2', 'NewJersey2', 'NewDelhi2'] # Test Case 4: input_cities4 = ['Tokyo', 'Osaka', 'Kyoto', 'Tokyo', 'Kyoto', 'Osaka', 'Kyoto'] assert candidate(input_cities4) == ['T', 'O', 'K', 'Tokyo2', 'Kyoto2', 'Osaka2', 'Kyoto3']
PythonSaga/122
from typing import List def max_xor(nums: List[int]) -> int: """Given the sequence of number in a list. choose the subsequence of number in the list such that Bitwise Xor of all the elements in the subsequence is maximum possible. Try to use trie data structure to solve this problem. Take list as input from user and return the maximum possible value of Bitwise Xor of all the elements in the subsequence. Example: Input: [8, 1, 2, 12] Output: 14 Input: [1, 2, 3, 4] Output: 7"""
max_xor
class TrieNode: def __init__(self): self.children = {} def insert(num, root): node = root for i in range(31, -1, -1): bit = (num >> i) & 1 if bit not in node.children: node.children[bit] = TrieNode() node = node.children[bit] def find_max_xor(nums, root): max_xor = float('-inf') for num in nums: current_xor = 0 node = root for i in range(31, -1, -1): bit = (num >> i) & 1 opposite_bit = 1 - bit if opposite_bit in node.children: current_xor |= (1 << i) node = node.children[opposite_bit] else: node = node.children[bit] max_xor = max(max_xor, current_xor) return max_xor def max_xor(nums: List[int]) -> int: root = TrieNode() for num in nums: insert(num, root) return find_max_xor(nums, root)
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_nums1 = [8, 1, 2, 12] assert candidate(input_nums1) == 14 # Test Case 2: input_nums2 = [1, 2, 3, 4] assert candidate(input_nums2) == 7 # Test Case 3: input_nums3 = [5, 10, 15, 20, 25] assert candidate(input_nums3) == 30 # Test Case 4: input_nums4 = [7, 3, 5, 2, 10, 8] assert candidate(input_nums4) == 15
PythonSaga/123
from typing import List def pal_pairs(words: List[str]) -> List[List[str]]: """Given a list of words, return a list of all possible palindrome pairs. A palindrome pair is a pair of words that when concatenated, the result is a palindrome. Take a list of words as input from user and return a list of palindrome pairs. Example: Input: ['code', 'edoc', 'da', 'd'] Output: [['code', 'edoc'], ['edoc', 'code'], ['da', 'd']] Input: ['abcd','dcba','lls','s','sssll'] Output: [['abcd', 'dcba'], ['dcba', 'abcd'], ['lls', 'sssll'], ['s', 'lls']]"""
pal_pairs
def is_palindrome(word): return word == word[::-1] def pal_pairs(words: List[str]) -> List[List[str]]: result = [] word_set = set(words) for i in range(len(words)): for j in range(len(words)): if i != j: concat_word = words[i] + words[j] if is_palindrome(concat_word): result.append([words[i], words[j]]) return result
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_words1 = ['code', 'edoc', 'da', 'd'] assert candidate(input_words1) == [['code', 'edoc'], ['da', 'd']] # Test Case 2: input_words2 = ['abcd', 'dcba', 'lls', 's', 'sssll'] assert candidate(input_words2) == [['dcba', 'abcd'], ['s', 'lls'], ['sssll', 'lls']] # Test Case 3: input_words3 = ['race', 'car', 'level', 'deified', 'python'] assert candidate(input_words3) == [['race', 'car'], ['level', 'deified']] # Test Case 4: input_words4 = ['bat', 'tab', 'noon', 'moon', 'hello'] assert candidate(input_words4) == [['bat', 'tab'], ['noon', 'moon']]
PythonSaga/124
from typing import List def cross_words(n:int, m:int, board: List[List[str]], words: List[str]) -> List[str]: """Given an m x n board of characters and a list of strings words, return all words on the board. Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word. Take a matrix and a list of words as input from user and print all the words that can be formed from the matrix. Example 1: Input: 4,4,[[o,a,a,n],[e,t,a,e],[i,h,k,r],[i,f,l,v]],['oath','pea','eat','rain'] # row, col, matrix, words Output: ['oath','eat']"""
cross_words
def is_valid(board, visited, row, col): return 0 <= row < len(board) and 0 <= col < len(board[0]) and not visited[row][col] def dfs(board, visited, row, col, current_word, trie, result): if '#' in trie: result.append(current_word) trie['#'] = None # Mark the word as found in the trie directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] for dr, dc in directions: new_row, new_col = row + dr, col + dc if is_valid(board, visited, new_row, new_col) and board[new_row][new_col] in trie: visited[new_row][new_col] = True dfs(board, visited, new_row, new_col, current_word + board[new_row][new_col], trie[board[new_row][new_col]], result) visited[new_row][new_col] = False def build_trie(words): trie = {} for word in words: node = trie for char in word: node = node.setdefault(char, {}) node['#'] = None return trie def find_words(board, words): trie = build_trie(words) result = [] visited = [[False] * len(board[0]) for _ in range(len(board))] for i in range(len(board)): for j in range(len(board[0])): if board[i][j] in trie: visited[i][j] = True dfs(board, visited, i, j, board[i][j], trie[board[i][j]], result) visited[i][j] = False return result def cross_words(n:int, m:int, board: List[List[str]], words: List[str]) -> List[str]: return find_words(board, words)
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_board1 = [['o','a','a','n'],['e','t','a','e'],['i','h','k','r'],['i','f','l','v']] input_words1 = ['oath', 'pea', 'eat', 'rain'] assert candidate(4, 4, input_board1, input_words1) == ['oath', 'eat'] # Test Case 2: input_board2 = [['a','b'],['c','d']] input_words2 = ['ab', 'cb', 'ad', 'bd', 'ac', 'ca', 'da', 'cd', 'dc'] assert candidate(2, 2, input_board2, input_words2) == ['ab', 'ac', 'bd', 'cd', 'ca', 'dc'] # Test Case 3: input_board3 = [['a','b','c'],['d','e','f'],['g','h','i']] input_words3 = ['abc', 'def', 'ghi', 'cfh', 'dea'] assert candidate(3, 3, input_board3, input_words3) == ['abc', 'def', 'ghi'] # Test Case 4: input_board4 = [['a','b','c'],['d','e','f'],['g','h','i']] input_words4 = ['abcfedghi'] assert candidate(3, 3, input_board4, input_words4) == ['abcfedghi']
PythonSaga/125
from typing import List def max_profit(n:int, items: List[List[int]], capacity: int) -> int: """Given a list of items and a capacity, return the maximum value of the transferred items. Each item is a list of [value, weight]. The item can be broken into fractions to maximize the value of the transferred items. Take input from the user for n items and the capacity of the bag. and return the maximum value of the transferred items. Example: Input: 3, [[60, 10], [100, 20], [120, 30]], 50 Output: 240 Input: 2, [[60, 10], [100, 20]], 50 Output: 160"""
max_profit
# Calculate value per unit weight for each item and store it along with the item items_with_ratio = [(item[0] / item[1], item[0], item[1]) for item in items] # (value/weight, value, weight) # Sort the items by value per unit weight in descending order items_with_ratio.sort(reverse=True) max_value = 0 # Maximum value of the transferred items for ratio, value, weight in items_with_ratio: if capacity >= weight: # If the knapsack can carry the entire item, take all of it max_value += value capacity -= weight else: # If the knapsack cannot carry the entire item, take the fractional part max_value += ratio * capacity break # The knapsack is now full return max_value
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_items1 = [[60, 10], [100, 20], [120, 30]] input_capacity1 = 50 assert candidate(3, input_items1, input_capacity1) == 240 # Test Case 2: input_items2 = [[60, -10], [100, 20]] input_capacity2 = 50 assert candidate(2, input_items2, input_capacity2) == 30 # Test Case 3: input_items3 = [[40, 10], [30, 5], [50, 15]] input_capacity3 = 20 assert candidate(3, input_items3, input_capacity3) == 87 # Test Case 4: input_items4 = [[25, 7], [15, 5], [30, 10], [10, 2], [5, 1]] input_capacity4 = 15 assert candidate(5, input_items4, input_capacity4) == 55
PythonSaga/126
from typing import List def max_prof(n: int, jobs: List[List[int]]) -> List[int]: """I want to sequence the job in such a way that my profit is maximized by the end of time. let say i'm given N jobs with their deadline and profit. I need to find the sequence of jobs that will maximize my profit. Each job takes 1 unit of time to complete and only one job can be scheduled at a time. Take input from the user for the number of jobs and their deadline and profit. and return the maximum profit and number of jobs done. Example: Input: 4, [[4, 20], [1, 10], [1, 40], [1, 30]] Output: [60, 2]"""
max_prof
# Sort jobs by profit in descending order jobs.sort(key=lambda x: x[1], reverse=True) # Initialize variables max_deadline = max(job[0] for job in jobs) # Find the maximum deadline slots = [False] * max_deadline # To keep track of occupied time slots job_count = 0 # To count the number of jobs done total_profit = 0 # To calculate the total profit # Schedule jobs for deadline, profit in jobs: for slot in range(min(deadline, max_deadline) - 1, -1, -1): if not slots[slot]: # If the slot is free slots[slot] = True # Mark the slot as occupied job_count += 1 # Increment the job count total_profit += profit # Add the profit break # Break after scheduling the job return [total_profit, job_count]
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): # Test Case 1: input_jobs1 = [[4, 20], [1, 10], [1, 40], [1, 30]] assert candidate(4, input_jobs1) == [60, 2] # Test Case 2: input_jobs2 = [[2, 30], [3, 40], [4, 50], [5, 60]] assert candidate(4, input_jobs2) == [180, 4] # Test Case 3: input_jobs3 = [[1, 10], [2, 15], [3, 5], [1, 30], [4, 25]] assert candidate(5, input_jobs3) == [75, 4] # Test Case 4: input_jobs4 = [[1, 5], [2, 10], [3, 15], [4, 20], [5, 25]] assert candidate(5, input_jobs4) == [75, 5]
PythonSaga/127
from typing import List def min_cost(length: int, width: int, cost: List[List[int]]) -> int: """I have a big piece of granite tile that I want to cut into squares. Size of my tile is length 'p' and width 'q'. I want to cut it into p*q squaressquares such that cost of breaking is minimum. cutting cost for each edge will be given for the tile. In short, we need to choose such a sequence of cutting such that cost is minimized. Take input from user p, q and cost of breaking each edge both horizontal and vertical. and return the minimum cost of cutting. Example: Input: 6, 4, [[2, 1, 3, 1, 4], [4, 1, 2]] Output: 42"""
min_cost
# Separate the horizontal and vertical costs horizontal_cuts = cost[0] vertical_cuts = cost[1] # Add a marker to distinguish between horizontal and vertical cuts horizontal_cuts = [(c, 'h') for c in horizontal_cuts] vertical_cuts = [(c, 'v') for c in vertical_cuts] # Combine and sort all cuts by cost in descending order all_cuts = sorted(horizontal_cuts + vertical_cuts, key=lambda x: x[0], reverse=True) # Initialize the number of segments in each direction horizontal_segments = 1 vertical_segments = 1 total_cost = 0 for cost, cut_type in all_cuts: if cut_type == 'h': # The cost of a horizontal cut is multiplied by the current number of vertical segments total_cost += cost * vertical_segments horizontal_segments += 1 else: # The cost of a vertical cut is multiplied by the current number of horizontal segments total_cost += cost * horizontal_segments vertical_segments += 1 return total_cost
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): length1, width1 = 6, 4 cost1 = [[2, 1, 3, 1, 4], [4, 1, 2]] assert candidate(length1, width1, cost1) == 42 length3, width3 = 4, 4 cost3 = [[1, 1, 1], [1, 1, 1]] assert candidate(length3, width3, cost3) == 15
PythonSaga/128
from typing import List def equal_ele(nums: List[int], k: int) -> int: """User provides list of number and value X. We have to find the maximum number of equal elements possible for the list just by increasing the elements of the list by incrementing a total of atmost k. Take input from user for list of numbers and value X and return the maximum number of equal elements possible for the list. Example: Input: [5, 5, 3, 1], 5 Output: 3 Input: [2, 4, 9], 3 Output: 2"""
equal_ele
nums.sort() # Step 1: Sort the list max_equal = 1 # To keep track of the maximum number of equal elements j = 0 # Start of the sliding window for i in range(len(nums)): # Step 3: Calculate the total increments needed for the current window while nums[i] * (i - j + 1) - sum(nums[j:i + 1]) > k: j += 1 # Slide the window forward if the total increments exceed k # Step 4: Update the maximum number of equal elements max_equal = max(max_equal, i - j + 1) return max_equal
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): # Test Case 1: nums1, k1 = [5, 5, 3, 1], 5 assert candidate(nums1, k1) == 3 # Test Case 2: nums2, k2 = [2, 4, 9], 3 assert candidate(nums2, k2) == 2 # Test Case 3: nums3, k3 = [1, 2, 3, 4, 5], 3 assert candidate(nums3, k3) == 1 # Test Case 4: nums4, k4 = [10, 10, 10, 10, 10], 2 assert candidate(nums4, k4) == 5
PythonSaga/129
def max_palindrom(num: str) -> str: """My friend say there's always some possibliy to make any given number into palindrome by permutation of its digits. So take a input from user for a number and return a maximum possible palindrome number from it. and if not possible return 'not possible'. Example: Input: '313515' Output: '531135' Input: '123' Output: 'not possible'"""
max_palindrom
# Count the frequency of each digit digit_count = [0] * 10 for digit in num: digit_count[int(digit)] += 1 # Build the left half of the palindrome left_half = [] middle_digit = "" for digit in range(9, -1, -1): count = digit_count[digit] if count % 2 != 0: if middle_digit: return "not possible" middle_digit = str(digit) count -= 1 left_half.extend([str(digit)] * (count // 2)) # Build the right half by reversing the left half right_half = left_half[::-1] # Combine the left half, middle digit (if any), and the right half palindrome = "".join(left_half + [middle_digit] + right_half) return palindrome
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): # Test Case 1: num1 = '313515' assert candidate(num1) == '531135' # Test Case 2: num2 = '123' assert candidate(num2) == 'not possible' # Test Case 3: num3 = '1223333' assert candidate(num3) == '3321233' # Test Case 4: num4 = '999977755533211' assert candidate(num4) == 'not possible'
PythonSaga/130
from typing import List def path(n: int, maze: List[List[int]]) -> List[List[int]]: """I came to know about a very interesting topic known as backtracking. So, my friend gave me a problem to solve using backtracking. Let's say I have a maze and I have to find the path from source to destination. Maze is n*n matrix and starting point is (0,0) and destination is (n-1,n-1). I can move either right or down. In the maze matrix, 0 means the block is a dead end and 1 means the block can be used in the path from source to destination. Take input from the user for n and the maze matrix and print the path from source to destination. Example: Input: 4,[[1,0,0,0],[1,1,0,1],[0,1,0,1],[1,1,1,1]] Output: [[1,0,0,0],[1,1,0,0],[0,1,0,0],[0,1,1,1]]"""
path
def solve_maze(maze, x, y, solution, n): # Base Case: If x, y is the destination, return True if x == n - 1 and y == n - 1 and maze[x][y] == 1: solution[x][y] = 1 return True # Check if maze[x][y] is a valid move if 0 <= x < n and 0 <= y < n and maze[x][y] == 1: # Mark x, y as part of the solution path solution[x][y] = 1 # Move Right if solve_maze(maze, x + 1, y, solution, n): return True # Move Down if solve_maze(maze, x, y + 1, solution, n): return True # If neither move right nor move down works, backtrack solution[x][y] = 0 return False return False def path(n: int, maze: List[List[int]]) -> List[List[int]]: # Initialize solution matrix with 0s solution = [[0 for _ in range(n)] for _ in range(n)] if not solve_maze(maze, 0, 0, solution, n): return "No path exists" return solution
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): n1 = 4 maze1 = [[1, 0, 0, 0], [1, 1, 0, 1], [0, 1, 0, 1], [1, 1, 1, 1]] assert candidate(n1, maze1) == [[1, 0, 0, 0], [1, 1, 0, 0], [0, 1, 0, 0], [0, 1, 1, 1]] n2 = 3 maze2 = [[1, 0, 0], [1, 1, 1], [0, 0, 1]] assert candidate(n2, maze2) == [[1, 0, 0], [1, 1, 1], [0, 0, 1]] n3 = 5 maze3 = [[1, 0, 0, 0, 0], [1, 1, 1, 0, 1], [0, 1, 0, 1, 1], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1]] assert candidate(n3, maze3) == [[1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [0, 1, 0, 0, 0], [1, 1, 1, 1, 0], [0, 0, 0, 1, 1]] n4 = 2 maze4 = [[1, 1], [0, 1]] assert candidate(n4, maze4) == [[1, 1], [0, 1]]
PythonSaga/131
def big_number(num: str, swaps: int) -> str: """In a lottery game, I have a large number and value X. I'm asked to swap the digits of the number at most X times such that the value of the number is maximized. I have to print the maximum value of the number after swapping the digits at most X times. Take a number and value X as input from the user. and print the maximum value of the number after swapping the digits at most X times. Example 1: Input: '1234567', 4 Output: '7654321' Input: '3435335', 3 Output: '5543333'"""
big_number
# Convert the string to a list of digits for easier manipulation num_list = list(num) i = 0 while swaps > 0 and i < len(num_list) - 1: max_digit_index = i # Find the maximum digit in the remaining part of the number for j in range(i + 1, len(num_list)): if num_list[j] > num_list[max_digit_index]: max_digit_index = j # If the maximum digit is different from the current digit, perform the swap if max_digit_index != i: num_list[i], num_list[max_digit_index] = num_list[max_digit_index], num_list[i] swaps -= 1 i += 1 # Convert the list back to a string result = ''.join(num_list) return result
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate('1234567', 4) == '7654321' assert candidate('3435335', 3) == '5543333' assert candidate('987654321', 5) == '987654321' assert candidate('102233', 2) == '332210'
PythonSaga/132
from typing import List def graph_colooring(n: int, m: int, e: int, edges: List[List[int]]) -> bool: """I'm assigned an undirected graph and an integer M. The task is to determine if the graph can be colored with at most M colors such that no two adjacent vertices of the graph are colored with the same color. Here coloring of a graph means the assignment of colors to all vertices. Print 1 if it is possible to color vertices and 0 otherwise. Take input from the user for n i.e vertices , m i.e colors and e i.e edges and return 1 if it is possible to color vertices and 0 otherwise. Example 1: Input: 4,3,5,[[0,1],[1,2],[1,3],[2,3],[3,0],[0,2]] Output: 1"""
graph_colooring
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(4, 3, 5, [[0, 1], [1, 2], [1, 3], [2, 3], [3, 0], [0, 2]]) == 1 assert candidate(3, 2, 3, [[0, 1], [1, 2], [2, 0]]) == 0 assert candidate(5, 3, 7, [[0, 1], [0, 2], [1, 2], [1, 3], [2, 4], [3, 4], [4, 0]]) == 1 assert candidate(6, 2, 7, [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0], [0, 3]]) == 1
PythonSaga/133
def additive_number(num: str) -> str: """By tossing a number at me, my teacher asked to tell whether it is additive or not. An additive number is a string whose digits can form an additive sequence. A valid additive sequence should contain at least three numbers. Except for the first two numbers, each subsequent number in the sequence must be the sum of the preceding two. Take a number as input from the user and print 'It is an additive number' if it is additive else print 'It is not an additive number'. Example: Input: '112358' Output: 'It is an additive number' Input: '199100199' Output: 'It is an additive number'"""
additive_number
def additive_number(num: str) -> str: def is_additive(s, num1, num2): while s: num_sum = str(int(num1) + int(num2)) if not s.startswith(num_sum): return False s = s[len(num_sum):] num1, num2 = num2, num_sum return True n = len(num) for i in range(1, n // 2 + 1): for j in range(i + 1, n): num1, num2 = num[:i], num[i:j] if (len(num1) > 1 and num1[0] == '0') or (len(num2) > 1 and num2[0] == '0'): continue if is_additive(num[j:], num1, num2): return "It is an additive number" return "It is not an additive number"
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate('112358') == 'It is an additive number' assert candidate('199100199') == 'It is an additive number' assert candidate('123456') == 'It is not an additive number' assert candidate('111222333') == 'It is an additive number'
PythonSaga/134
from typing import List def solve_eq(left: List[str], right: str) -> bool: """I have an equation, represented by words on the left side and the result on the right side. You need to check if the equation is solvable under the following rules: 1. Each character is decoded as one digit (0 - 9). 2. No two characters can map to the same digit. 3. Each words[i] and result are decoded as one number without leading zeros. 4. Sum of numbers on the left side (words) will equal to the number on the right side (result). Take input from the user and check if the equation is solvable or not. Example 1: Input: ['send', 'more'], 'money' # Here send and more are words and money is result. Output: True Input: ['ox', 'ox'], 'xx' # Here ox and ox are words and xx is result. Output: False"""
solve_eq
unique_chars = set(''.join(left) + right) # Gather all unique characters if len(unique_chars) > 10: # More unique characters than digits return False char_to_digit = {} digits_taken = set() def solve(index): if index == len(unique_chars): # All characters have been assigned digits left_sum = sum(int("".join(char_to_digit[char] for char in word)) for word in left) right_sum = int("".join(char_to_digit[char] for char in right)) return left_sum == right_sum char = list(unique_chars)[index] for digit in range(10): if str(digit) not in digits_taken and not (digit == 0 and any(word[0] == char for word in left + [right])): char_to_digit[char] = str(digit) digits_taken.add(str(digit)) if solve(index + 1): return True del char_to_digit[char] digits_taken.remove(str(digit)) return False return solve(0)
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(['send', 'more'], 'money') == True assert candidate(['ox', 'ox'], 'xx') == False assert candidate(['bat', 'tab'], 'bat') == False assert candidate(['house', 'water'], 'money') == False
PythonSaga/135
def is_good(s: str) -> str: """I have a task to find whether a string is good or not. A string s is good if for every letter of the alphabet that s contains, it appears both in uppercase and lowercase. Take input from the user and print whether the string is good or not. return the longest substring of s that is nice. If there are multiple, return the substring of the earliest occurrence. If there are none, return an 'Not good'. Example: Input: 'uSaisAI' Output: 'SaisAI' Input: 'xYz' Output: 'Not good'"""
is_good
def is_good(s: str) -> str: def is_nice(substr): return all(c.islower() and c.upper() in substr or c.isupper() and c.lower() in substr for c in set(substr)) n = len(s) longest_nice_substr = "" for i in range(n): for j in range(i + 1, n + 1): substring = s[i:j] if is_nice(substring) and len(substring) > len(longest_nice_substr): longest_nice_substr = substring return longest_nice_substr if longest_nice_substr else "Not good"
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate('uSaisAI') == 'SaisAI' assert candidate('xYz') == 'Not good' assert candidate('aAbBcC') == 'aAbBcC' assert candidate('AbCdEfG') == 'Not good'
PythonSaga/136
from typing import List def power_mod(a: int, b: List[int]) -> int: """I have a very large number a and another number b. b is such large it is given in form of list. I need to calculate pow(a,b) % 1337. But I have to use a divide and conquer approach. Take a and b as input from the user and return pow(a,b) % 1337. Example: Input: 2, [3] Output: 8 Input: 2, [1,0] # Here 2 is a and 10 is b Output: 1024"""
power_mod
def power_mod(a: int, b: List[int]) -> int: MOD = 1337 def pow_helper(base, exponent): if exponent == 0: return 1 if exponent == 1: return base % MOD half_pow = pow_helper(base, exponent // 2) result = (half_pow * half_pow) % MOD if exponent % 2 == 1: result = (result * base) % MOD return result b_int = int("".join(map(str, b))) # Convert list to integer return pow_helper(a, b_int)
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(2, [3]) == 8 assert candidate(2, [1, 0]) == 1024 assert candidate(3, [2, 5]) == 1151 assert candidate(5, [1, 3, 7]) == 52
PythonSaga/137
from typing import List def max_sum(arr: List[int]) -> int: """I have a list of integers. I want to find the maximum sum of a sublist. You can access the list in circular fashion. Take input from the user and print the maximum sum and the sublist. Example: Input: [1, -5, 6, -2] Output: 6 Input: [9, -4, 9] Output: 18"""
max_sum
def kadane(arr: List[int]) -> int: """Standard Kadane's algorithm to find the maximum subarray sum.""" max_ending_here = max_so_far = arr[0] for x in arr[1:]: max_ending_here = max(x, max_ending_here + x) max_so_far = max(max_so_far, max_ending_here) return max_so_far def max_sum(arr: List[int]) -> int: max_kadane = kadane(arr) # Maximum subarray sum in non-circular fashion # Invert the array and apply Kadane's algorithm to find the minimum subarray sum max_wrap = 0 for i in range(len(arr)): max_wrap += arr[i] # Calculate array-sum arr[i] = -arr[i] # Invert the array elements # Max sum with corner elements will be: array-sum - (-max subarray sum of inverted array) max_wrap = max_wrap + kadane(arr) # The maximum circular sum will be maximum of two sums if max_wrap > max_kadane and max_wrap != 0: return max_wrap else: return max_kadane
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate([1, -5, 6, -2]) == 6 assert candidate([9, -4, 9]) == 18 assert candidate([5, -3, 5]) == 10 assert candidate([4, -1, 2, -1]) == 5 assert candidate([-2, 8, -3, 7, -1]) == 12
PythonSaga/138
from typing import List def recover_list(n: int, sums: List[int]) -> List[int]: """My job is to recover all the forgotten list by subset sums. given a list sums containing the values of all 2^n subset sums of the unknown array (in no particular order). Take input from the user for the length of the forgotten list and subset sums, and return the forgotten list. Example: Input: 3 ,[ -3,-2,-1,0,0,1,2,3] Output: [1,2,-3] Input: 2, [0,0,0,0] Output: [0,0]"""
recover_list
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(3, [-3, -2, -1, 0, 0, 1, 2, 3]) == [1, 2, -3] assert candidate(2, [0, 0, 0, 0]) == [0, 0] assert candidate(2, [-1, 0, -1, 0]) == [0, -1]
PythonSaga/139
from typing import List def being_sum(being: List[int], lower: int, upper: int) -> int: """I have a list 'being' of integers and I want to find the being-sum. Given two integers lower and upper, return the number of being-sums that lie in [lower, upper] inclusive. Range sum S(i, j) is defined as the sum of the elements in 'being' between indices i and j inclusive, where i <= j. Take input from the user for 'being' and lower and upper and return the number of being-sums that lie in [lower, upper] inclusive. Example: Input: [-2, 5, -1], -2, 2 Output: 3"""
being_sum
def being_sum(being: List[int], lower: int, upper: int) -> int: n = len(being) prefix_sums = [0] * (n + 1) # Initialize prefix sums array with an extra 0 at the beginning # Compute prefix sums for i in range(n): prefix_sums[i + 1] = prefix_sums[i] + being[i] count = 0 # Iterate through all pairs (i, j) and calculate range sums S(i, j) for i in range(n): for j in range(i, n): range_sum = prefix_sums[j + 1] - prefix_sums[i] if lower <= range_sum <= upper: count += 1 return count
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate([-2, 5, -1], -2, 2) == 3 assert candidate([1, 2, 3], 0, 5) == 5 assert candidate([3, 2, 1, 5], 1, 6) == 8
PythonSaga/140
def nCr(n: int, r: int) -> int: """I'm very much interested in mathematical problems, and today I learned nCr. Help me to implement it using dynamic programming. Take input from the user n and r and return nCr. Example: Input: 4, 2 # here 4 is n and 2 is r Output: 6 Input: 3, 2 Output: 3"""
nCr
def nCr(n: int, r: int) -> int: # Using dynamic programming to calculate binomial coefficient dp = [[0] * (r + 1) for _ in range(n + 1)] for i in range(n + 1): for j in range(min(i, r) + 1): if j == 0 or j == i: dp[i][j] = 1 else: dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j] return dp[n][r]
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(4, 2) == 6 assert candidate(3, 2) == 3 assert candidate(6, 3) == 20 assert candidate(8, 4) == 70
PythonSaga/141
def bouncing_balls(n: int, h: int) -> int: """I have to test my bouncing ball, but there's a catch. The ball only bounces if it falls from a certain height; otherwise, it will burst if the height is above that. So provided N identical balls and a height H (1 to H), there exists a threshold T (1 to H) such that if a ball is dropped from a height greater than T, it will burst, otherwise it will bounce. There are a few other conditions: 1. If the ball survives the fall, it can be used again. 2. If the ball bursts, it cannot be used again. 3. If the ball survives the fall from a certain height, it will also survive the fall from any height below that. 4. If the ball does not survive the fall from a certain height, it will also not survive the fall from any height above that. 5. All balls are identical and are of the same weight. Find the minimum number of balls required to find the threshold T. Take input for the number of balls N and height H from the user and return the minimum number of balls required to find the threshold T. Example: Input: 2, 10 # Here 2 is N and 10 is H Output: 4 Input: 1, 2 # Here 1 is N and 2 is H Output: 2"""
bouncing_balls
ballFloor = [[0 for x in range(k + 1)] for x in range(n + 1)] for i in range(1, n + 1): ballFloor[i][1] = 1 ballFloor[i][0] = 0 for j in range(1, k + 1): ballFloor[1][j] = j for i in range(2, n + 1): for j in range(2, k + 1): ballFloor[i][j] = INT_MAX for x in range(1, j + 1): res = 1 + max(ballFloor[i - 1][x - 1], ballFloor[i][j - x]) if res < ballFloor[i][j]: ballFloor[i][j] = res return ballFloor[n][k]
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(2, 10) == 4 assert candidate(1, 2) == 2 assert candidate(3, 15) == 5 assert candidate(5, 25) == 5
PythonSaga/142
def zebra_crossing(n: int) -> int: """I'm waiting for a bus, and now I'm getting bored. To entertain myself, I looked around and found a zebra crossing. There can be two ways to cross the road. If there are n white stripes on the zebra crossing, then I can cross either by stepping 1 stripe at a time or 2 stripes at a time. But I can't step on the same stripe twice. Tell the number of ways I can cross the zebra crossing. Use dynamic programming to solve this problem. Take input for the number of stripes in the zebra crossing from the user and return the number of ways to cross the zebra crossing. Example: Input: 4 Output: 5 Input: 10 Output: 89"""
zebra_crossing
def zebra_crossing(n): def f(n, dp): if n == 0: return 1 if n == 1: return 1 if n == 2: return 2 if dp[n] != -1: return dp[n] one_step = f(n - 1, dp) two_step = f(n - 2, dp) dp[n] = one_step + two_step return (dp[n] % 1000000007) dp = [-1] * (n + 1) return f(n, dp)
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(4) == 5 assert candidate(10) == 89 assert candidate(8) == 34 assert candidate(2) == 2
PythonSaga/143
def count_ways(number: str) -> int: """I wrote down a string of positive integers named 'number' but forgot to include commas to separate the numbers. The list of integers is non-decreasing, and no integer has leading zeros. I need to figure out the number of possible ways I could have written down the string 'number.' The result should be returned modulo 10^9 + 7, as the answer might be large. Take input as a string and return the number of possible ways to write down the string modulo 10^9 + 7. Example 1: Input: '327' Output: 2 Input: '094' Output: 0"""
count_ways
MOD = 10**9 + 7 def count_ways(number: str) -> int: n = len(number) dp = [0] * (n + 1) dp[0] = 1 # Base case for i in range(1, n + 1): for length in range(1, 4): # Check substrings of length 1 to 3 (since integers can range from 1 to 999) if i - length >= 0: substr = number[i - length:i] if (substr[0] != '0' or length == 1) and (i - length == 0 or substr >= number[max(i - 2 * length, 0):i - length]): # Check if substr is valid and non-decreasing dp[i] = (dp[i] + dp[i - length]) % MOD return dp[n]
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate('327') == 2 assert candidate('094') == 0 assert candidate('111') == 2
PythonSaga/144
from typing import List def treasureHunt(a: int, b: int, x: int, forbidden: List[int]) -> int: """I'm playing a game on road where to win treasure I have to hop forward or backward on the x-axis. I start at position 0, and my treasure is at position x. There are rules for how I can hop: I can jump exactly a positions forward (to the right). I can jump exactly b positions backward (to the left). I cannot jump backward twice in a row. I cannot jump to any forbidden positions. The forbidden positions are given in the array 'forbidden.' If forbidden[i] is true, it means I cannot jump to position forbidden[i]. The integers a, b, and x are provided. My goal is to find the minimum number of jumps needed to reach my treasure at position x. If there's no possible sequence of jumps that lands me on position x, the result is -1. Take input as a, b, x, forbidden from user and return the minimum number of jumps needed to reach my treasure at position x. If there's no possible sequence of jumps that lands me on position x, the result is -1. Example 1: Input: 15, 13, 11, [8,3,16,6,12,20] # a, b, x, forbidden Output: -1 Input: 16, 9, 7, [1,6,2,14,5,17,4] # a, b, x, forbidden Output: 2 """
treasureHunt
MOD = 10**9 + 7 # For large numbers visited = set() # To keep track of visited positions with a flag for last move forbidden = set(forbidden) # Convert list to set for efficient lookups queue = deque([(0, 0, False)]) # Position, steps, last move was backward while queue: position, steps, last_backward = queue.popleft() if position == x: return steps % MOD # Forward move forward_pos = position + a if forward_pos not in forbidden and (forward_pos, False) not in visited: visited.add((forward_pos, False)) queue.append((forward_pos, steps + 1, False)) # Backward move, ensuring not to move backward twice in a row if not last_backward and position - b not in forbidden and position - b >= 0: backward_pos = position - b if (backward_pos, True) not in visited: visited.add((backward_pos, True)) queue.append((backward_pos, steps + 1, True)) return -1 # Treasure is unreachable
def check(candidate): assert candidate(15, 13, 11, [8, 3, 16, 6, 12, 20]) == -1 assert candidate(16, 9, 7, [1, 6, 2, 14, 5, 17, 4]) == 2 assert candidate(3, 15, 9, [14,4,18,1,15]) == 3
PythonSaga/145
from collections import deque from typing import List def houses(n:int, connections:List[List[int]]) -> List[int]: """I'm standing at entry point of village. In this village there's no proper streets. Houses are randomly connected with each other, but there's always a way to reach all houses from starting point. I want to distribute some items to all houses. But in such fashion that first i visit to first house, than i visit to all second houses which can be reached from first house, than i visit to all third houses which can be reached from second house and so on. Take input from user in form of number of houses and connections between houses and return the order in which i should visit houses. Starting point is always house 0. and later all houses are numbered in order of their appearance in input. Example: Input: 5, [[1,2,3],[],[4],[],[]] Output: [0,1,2,3,4] Input: 3, [[1,2],[],[]] Output: [0,1,2]"""
houses
order = [] # To store the order of visiting houses visited = [False] * n # To keep track of visited houses queue = deque([0]) # Start from house 0 while queue: house = queue.popleft() if not visited[house]: order.append(house) visited[house] = True # Enqueue all connected, unvisited houses for connected_house in connections[house]: if not visited[connected_house]: queue.append(connected_house) return order
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(5, [[1, 2, 3], [], [4], [], []]) == [0, 1, 2, 3, 4] assert candidate(3, [[1, 2], [], []]) == [0, 1, 2] assert candidate(6, [[1, 2], [3, 5], [4], [], [], []]) == [0, 1, 2, 3, 5, 4] assert candidate(4, [[1, 2], [3], [], []]) == [0, 1, 2, 3]
PythonSaga/146
from collections import deque from typing import List def knight_moves(n:int, start:List[int], end:List[int]) -> int: """I started playing chess now a days. And now i have curiousity to how many steps it would take to reach from one position to another using knight. Let's say i have a chess board of N*N size and i have a knight at position (x1,y1) and i want to reach to (x2,y2). how many minimum steps it would take to reach from (x1,y1) to (x2,y2). Take input from user for size of board and position of knight and position of destination. and return minimum steps. Example: Input: 6, [4,5], [1,1] # 6 is size of board, [4,5] is position of knight and [1,1] is position of destination. Output: 3 """
knight_moves
from collections import deque source_row = KnightPos[0] - 1 source_col = KnightPos[1] - 1 dist = (TargetPos[0] - 1, TargetPos[1] - 1) queue = deque([(source_row, source_col, 0)]) deltas = [(2, 1), (1, 2), (-2, 1), (-1, 2), (2, -1), (1, -2), (-2, -1), (-1, -2)] visited = set() while queue: row, col, step = queue.popleft() if (row, col) == dist: return step for drow, dcol in deltas: row_delta = drow + row col_delta = dcol + col row_inbound = 0 <= row_delta < N col_inbound = 0 <= col_delta < N if not row_inbound or not col_inbound: continue if (row_delta, col_delta) not in visited: queue.append((row_delta, col_delta, step + 1)) visited.add((row_delta, col_delta)) return -1
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(6, [4, 5], [1, 1]) == 3 assert candidate(8, [2, 2], [7, 7]) == 4 assert candidate(5, [0, 0], [4, 4]) == 4 assert candidate(4, [1, 1], [3, 3]) == 4
PythonSaga/147
from typing import List def remove_poles(v:int, w:int, wires:List[List[int]]) -> List[int]: """I have new job where i have to remove electric poles. There a v electric poles conected by w wires in random order. But soome how each pole is connected to every other pole directly or indirectly. let's say this complete setup as one chunk. I want to find all that pole by removal of that just one pole, whole chunk will be disconnected. There can be multiple such poles which can be removed to disconnect the chunk. list all those poles. Take input from user for number of poles , wires and path of each wire and return list of poles which can be removed to disconnect the chunk. Few things to note: pole number starts from 0 to v-1 and wires are bidirectional. Example: Input: 5, 5, [[0,1],[1,4],[4,2],[2,3],[3,4]] Output: [1,4] Input: 5, 4, [[0,1],[1,4],[4,2],[2,3]] Output: [1,4,2]"""
remove_poles
def dfs(v, u, visited, disc, low, parent, ap, graph, time): children = 0 visited[u] = True disc[u] = low[u] = time[0] time[0] += 1 for neighbour in graph[u]: if not visited[neighbour]: parent[neighbour] = u children += 1 dfs(v, neighbour, visited, disc, low, parent, ap, graph, time) low[u] = min(low[u], low[neighbour]) if parent[u] == -1 and children > 1: ap[u] = True if parent[u] != -1 and low[neighbour] >= disc[u]: ap[u] = True elif neighbour != parent[u]: low[u] = min(low[u], disc[neighbour]) def remove_poles(v: int, w: int, wires: List[List[int]]) -> List[int]: graph = [[] for _ in range(v)] for wire in wires: graph[wire[0]].append(wire[1]) graph[wire[1]].append(wire[0]) visited = [False] * v disc = [float('inf')] * v low = [float('inf')] * v parent = [-1] * v ap = [False] * v # Articulation points time = [0] for i in range(v): if not visited[i]: dfs(v, i, visited, disc, low, parent, ap, graph, time) return [i for i, x in enumerate(ap) if x]
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(5, 5, [[0, 1], [1, 4], [4, 2], [2, 3], [3, 4]]) == [1, 4] assert candidate(5, 4, [[0, 1], [1, 4], [4, 2], [2, 3]]) == [1, 4, 2] assert candidate(5, 5, [[0, 1], [1, 2], [0, 2], [2, 3], [3, 4]]) == [2, 3]
PythonSaga/148
from typing import List def strongly_connected(S:int, T:int, tracks:List[List[int]]) -> List[List[int]]: """I'm the new railway state incharge and I want to know few things about railway networks. right now there are S stations and T tracks in between them . Some how all stations are connected to some other stations. Your task is to find the members of strongly connected stations in the state. Take input for S , T and T lines of input for tracks. and return the all strongly connected stations. Assume each station starts with 0 and ends with S-1 and each track if directed from one station to another. Example: Input: 5, 5, [[1,0],[0,2],[2,1],[0,3],[3,4]] Output: [[0,1,2] ,[3] ,[4]]"""
strongly_connected
def dfs(graph, v, visited, stack): visited[v] = True for i in graph[v]: if not visited[i]: dfs(graph, i, visited, stack) stack.append(v) def transpose(graph, S): gT = [[] for _ in range(S)] for i in range(S): for j in graph[i]: gT[j].append(i) return gT def dfsUtil(graph, v, visited, component): visited[v] = True component.append(v) for i in graph[v]: if not visited[i]: dfsUtil(graph, i, visited, component) def strongly_connected(S, T, tracks): graph = [[] for _ in range(S)] for track in tracks: graph[track[0]].append(track[1]) stack = [] visited = [False] * S # Step 1: Fill the stack with vertices based on their finishing times for i in range(S): if not visited[i]: dfs(graph, i, visited, stack) # Step 2: Transpose the graph graphT = transpose(graph, S) # Step 3: Perform DFS on the transposed graph in the order given by the stack visited = [False] * S scc = [] while stack: v = stack.pop() if not visited[v]: component = [] dfsUtil(graphT, v, visited, component) scc.append(sorted(component)) return scc
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(5, 5, [[1,0],[0,2],[2,1],[0,3],[3,4]]) == [[0,1,2] ,[3] ,[4]] assert candidate(3, 3, [[0,1],[1,2],[2,0]]) == [[0,1,2]] assert candidate(9, 17, [[0,2],[0,1],[1,0],[1,3],[2,0],[2,3],[3,4],[4,3],[5,1],[5,4],[5,7],[6,5],[7,4],[7,6],[8,6],[8,7],[8,8]]) == [[0,1,2],[3,4],[5,6,7],[8]]
PythonSaga/149
from typing import List def maze(n:int, m:int, maze:List[List[str]]) -> bool: """I'n new game of maze intead of moving from 0,0 to n,n you will be given start and end point any where in maze and you have to find whether you can reach from start to end or not. You can traverse up, down, right and left. The description of cells is as follows: A value of cell S means start. A value of cell D means end. A value of cell X means Blank cell. A value of cell 0 means Wall. Take input from user for rows and columns of maze and then take input for maze. Return True if you can reach from start to end else return False. Example: Input: 5, 5, [[X,0,X,0,0],[X,0,0,0,X],[X,X,X,X,X],[0,D,X,0,0],[X,0,0,S,X]] Output: False"""
maze
def dfs(maze, i, j, visited): # Base conditions if not (0 <= i < len(maze) and 0 <= j < len(maze[0])) or maze[i][j] == '0' or visited[i][j]: return False if maze[i][j] == 'D': # Destination found return True # Mark the current cell as visited visited[i][j] = True # Explore all four directions from the current cell directions = [(0, 1), (0, -1), (1, 0), (-1, 0)] for di, dj in directions: if dfs(maze, i + di, j + dj, visited): return True return False def maze(n, m, maze): visited = [[False for _ in range(m)] for _ in range(n)] # Find the starting point for i in range(n): for j in range(m): if maze[i][j] == 'S': return dfs(maze, i, j, visited) return False # Start point not found
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(5, 5, [['X', '0', 'X', '0', '0'], ['X', '0', '0', '0', 'X'], ['X', 'X', 'X', 'X', 'X'], ['0', 'D', 'X', '0', '0'], ['X', '0', '0', 'S', 'X']]) == False assert candidate(4, 5, [['X', '0', 'X', '0', 'X'], ['0', '0', 'X', '0', 'X'], ['X', 'X', 'X', 'X', 'X'], ['X', 'D', 'X', 'S', 'X']]) == True assert candidate(3, 3, [['S', '0', '0'], ['0', 'X', 'D'], ['X', '0', '0']]) == False assert candidate(4, 4, [['S', 'X', '0', 'X'], ['0', 'X', '0', '0'], ['X', 'X', '0', 'D'], ['X', 'X', 'X', 'X']]) == True
PythonSaga/150
from typing import List def student_room(query: List[List[int]]) -> List[bool]: """I have to put few students in different rooms. At a time one student can be in one room. in one room there can be more than one student. If same student is added with another student, it goes to same room. Do two task : 1. Take input for 2 students at a time and put them in same room. 2. Or give input for 2 students and check if they are in same room or not. Take input from user for queries he want to perform, queries can be of two types: 1. Add student to room 2. Check if two students are in same room 3. Exit Example: [query, student1, student2] Input: [[1,1,3], [2,1,4], [1,2,3], [2,1,3], [3]] # 1 means add student to room, 2 means check if two students are in same room, 3 means exit Output: [False, True]"""
student_room
def find(parent, i): if parent[i] != i: parent[i] = find(parent, parent[i]) # Path compression return parent[i] def union(parent, a, b): rootA = find(parent, a) rootB = find(parent, b) if rootA != rootB: parent[rootB] = rootA # Merge the sets def student_room(query: List[List[int]]) -> List[bool]: parent = {} # To keep track of the representative (leader) of each room output = [] for q in query: if q[0] == 1: # Add student to room a, b = q[1], q[2] if a not in parent: parent[a] = a if b not in parent: parent[b] = b union(parent, a, b) elif q[0] == 2: # Check if two students are in the same room a, b = q[1], q[2] if a in parent and b in parent and find(parent, a) == find(parent, b): output.append(True) else: output.append(False) elif q[0] == 3: # Exit break return output
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate([[1, 1, 3], [2, 1, 4], [1, 2, 3], [2, 1, 3], [3]]) == [False, True] assert candidate([[1, 1, 2], [1, 3, 4], [2, 1, 4], [2, 2, 3], [3]]) == [False, False] assert candidate([[1, 1, 2], [1, 3, 4], [2, 1, 4], [1, 2, 3], [2, 1, 3], [3]]) == [False, True] assert candidate([[1, 1, 2], [1, 2, 3], [2, 3, 4], [2, 1, 4], [3]]) == [False, False]
PythonSaga/151
from typing import List def water_pipeline(tanks: int, pipes: List[List[int]]) -> bool: """I have a water pipeline system with water tanks and pipes. All pipes are biderctional and all tanks are connected to each other either directly or indirectly. There's no self loop in the system. I want to find all the cycles in the system to avoid water wastage. Take input from user for W water tanks and P pipes. Then take input for each pipe in the format (tank1, tank2). Return True if there's any cycle in the system else return False. Few points to note: 1. Each tank have number from 0 to W-1. 2. Try to use disjoint set data structure to solve this problem. Example: Input: 5, [[1,3],[3,0],[0,2],[2,4],[4,0]] Output: True"""
water_pipeline
def find(parent, i): if parent[i] != i: parent[i] = find(parent, parent[i]) # Path compression return parent[i] def union(parent, a, b): rootA = find(parent, a) rootB = find(parent, b) if rootA == rootB: # A cycle is found return True parent[rootB] = rootA # Merge the sets return False def water_pipeline(tanks: int, pipes: List[List[int]]) -> bool: parent = list(range(tanks)) # Each tank is initially its own parent for a, b in pipes: if union(parent, a, b): # If union returns True, a cycle is found return True return False # No cycles found
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(5, [[1, 3], [3, 0], [0, 2], [2, 4], [4, 0]]) == True assert candidate(4, [[0, 1], [1, 2], [2, 3], [3, 0]]) == True assert candidate(3, [[0, 1], [1, 2]]) == False assert candidate(6, [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]) == False
PythonSaga/152
from typing import List def water_supply(villages: int, wells: List[int], pipes: List[List[int]]) -> int: """I have an N number of villages numbered 1 to N, an list wells[] where wells[i] denotes the cost to build a water well in the i'th city, a 2D array pipes in form of [X Y C] which denotes that the cost to connect village X and Y with water pipes is C. Your task is to provide water to each and every village either by building a well in the village or connecting it to some other village having water. Find the minimum cost to do so. Take input from user for N, wells[] and pipes[][]. and return the minimum cost to provide water to all villages. Example 1: Input: 3, [1, 2, 2], [[1, 2, 1], [2, 3, 1]] # 3 is the number of villages, [1, 2, 2] is the cost of wells in each village, [[1, 2, 1], [2, 3, 1]] is the cost of connecting pipes in each village Output: 3"""
water_supply
def find(parent, i): if parent[i] != i: parent[i] = find(parent, parent[i]) # Path compression return parent[i] def union(parent, rank, x, y): xroot = find(parent, x) yroot = find(parent, y) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: parent[yroot] = xroot rank[xroot] += 1 def water_supply(villages: int, wells: List[int], pipes: List[List[int]]) -> int: parent = [i for i in range(villages + 1)] # Including the virtual node rank = [0] * (villages + 1) # Create edges list: (cost, village1, village2), including virtual node connections edges = [(cost, 0, i + 1) for i, cost in enumerate(wells)] # Connecting villages to the virtual node (0) via wells for x, y, c in pipes: edges.append((c, x, y)) edges.sort() # Sort by cost total_cost = 0 for cost, x, y in edges: if find(parent, x) != find(parent, y): # If adding this edge doesn't form a cycle union(parent, rank, x, y) total_cost += cost return total_cost
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(3, [1, 2, 2], [[1, 2, 1], [2, 3, 1]]) == 3 assert candidate(4, [2, 3, 1, 4], [[1, 2, 2], [2, 3, 3], [3, 4, 4]]) == 9 assert candidate(5, [1, 2, 3, 4, 5], [[1, 2, 1], [3, 4, 2], [4, 5, 3], [2, 3, 1]]) == 8 assert candidate(3, [3, 5, 2], [[1, 2, 1], [2, 3, 2]]) == 5
PythonSaga/153
from typing import List def gang_fight(fights: List[List[int]]) -> int: """There's a fight going on in the school. It is between 2 gangs. Let's say there are N fights going on between gang A and gang B. We have 2D list of size N, Denotig that student list[i][0] and list[i][1] are fighting with each other. The task is to find the maximum number of student belonging to an gang if it is possible to distribute all the student among A and B, otherwise print -1. Take input from user in the form of 2D list and return the maximum number of student belonging to an gang. Example 1: Input: [[1,2],[2,3],[2,4],[2,5]] Output: 4 Example 2: Input: [[1,2],[2,3],[3,1]] Output: -1 """
gang_fight
def is_bipartite(graph, start, color): queue = deque([start]) color[start] = 1 # Assign a color to the starting vertex while queue: u = queue.popleft() for v in graph[u]: if color[v] == -1: # If not colored color[v] = 1 - color[u] # Assign an alternate color queue.append(v) elif color[v] == color[u]: # If the adjacent has the same color, it's not bipartite return False return True def gang_fight(fights: List[List[int]]) -> int: if not fights: return 0 # Find the maximum student number to determine the graph size max_student = max(max(fight) for fight in fights) graph = [[] for _ in range(max_student + 1)] color = [-1] * (max_student + 1) # -1 indicates not colored # Build the graph for fight in fights: graph[fight[0]].append(fight[1]) graph[fight[1]].append(fight[0]) # Check if the graph is bipartite and color the graph for student in range(1, max_student + 1): if color[student] == -1 and not is_bipartite(graph, student, color): return -1 # The graph is not bipartite # Count the number of students in one of the gangs max_gang_size = color.count(1) return max(max_gang_size, len(color) - max_gang_size - 1) # Exclude the -1 (not colored) count
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate([[1, 2], [2, 3], [2, 4], [2, 5]]) == 4 assert candidate([[1, 2], [2, 3], [3, 1]]) == -1 assert candidate([[1, 2], [2, 3], [3, 4], [3, 5], [6, 7], [7, 8], [7, 9], [7, 10]]) == 7
PythonSaga/154
from typing import List def colony_pipes(houses: int, pipes: int, connections: List[List[int]]) -> List[int]: """i'm connecting houses in colony with pipeline. I have H houses and P pipes. I can conect one pipe between two houses (a to b). after each connection I have to print the minimmum differnce possible between the size any two chunck of the colony. If there is only one chunk simply print 0. chunck is a set of houses connected with each other. Take input from user foor H and P and then take input for P pipe connections. and return the minimum difference. example: Input: 2, 1, [[1,2]] # 2 is the number of houses, 1 is the number of pipes, [[1,2]] is the pipe connection Output: 0 Input: 4, 2, [[1,2],[2,4]] # 4 is the number of houses, 2 is the number of pipes, [[1,2],[2,4]] is the pipe connection Output: 2"""
colony_pipes
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(2, 1, [[1, 2]]) == [0] assert candidate(4, 2, [[1, 2], [2, 4]]) == [0, 2] assert candidate(5, 3, [[1, 2], [3, 4], [4, 5]]) == [0, 0, 1] assert candidate(6, 4, [[1, 2], [3, 4], [2, 5], [6, 1]]) == [0, 0, 1, 2]
PythonSaga/155
from typing import List def water_plant(cities: int, connections: List[List[int]]) -> int: """i have a one water processong plant and a city. The job of water plant is to supply water to the city. But in between city there are other small villages. So the water plant has to supply water to first theses villages and then to the city. Now a days there's complain about lack of water in the city. I need to check what is amout of water supplied to the city. Points to be noted: 1. there may be multiple villages in between water plant and city. 2. villages are interconceted with each other (not all) with pipes. 3. Names of villages are 1 to n. Take input from user in form of matrix. where first row is for water plant and last row is for city. in between rows are for villages. If there is no connection between two villages then put 0 in matrix. If there is connection between two villages then put the rate of water flow in matrix. Return the amount of water supplied to the city. Try to use max flow concept. Example: Input: 4, [[0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0]] Output: 23"""
water_plant
def bfs(rGraph, s, t, parent): visited = [False] * len(rGraph) queue = deque() queue.append(s) visited[s] = True while queue: u = queue.popleft() for ind, val in enumerate(rGraph[u]): if not visited[ind] and val > 0: if ind == t: parent[ind] = u return True queue.append(ind) parent[ind] = u visited[ind] = True return False def edmonds_karp(graph, source, sink): rGraph = [row[:] for row in graph] # Residual graph parent = [-1] * len(graph) max_flow = 0 while bfs(rGraph, source, sink, parent): path_flow = float('inf') s = sink while(s != source): path_flow = min(path_flow, rGraph[parent[s]][s]) s = parent[s] max_flow += path_flow v = sink while(v != source): u = parent[v] rGraph[u][v] -= path_flow rGraph[v][u] += path_flow v = parent[v] return max_flow def water_plant(cities, connections): # The source is the water plant (0) and the sink is the city (cities - 1) return edmonds_karp(connections, 0, cities - 1)
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(4, [[0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0]]) == 23
PythonSaga/156
from typing import List def truck_load(cities: int, connections: List[List[int]]) -> int: """in a network of cities and road there are number of trucks that are carrying goods from one city to another city. I have selected to make a load to be carried by a truck from ciy A to city B. I have to find how many maximum number of truck can be present on a road at a time From city A to city B given the capacity of each road in terms of number of trucks that can be present on a road at a time. There can be multiple other cities in between city A and city B. Roads can be bidirectional. Take input from user for the number of cities in between city A and city B and the Matrix of the capacity of the road between each city. and return the maximum number of trucks that can be present on the road at a time. Example: Input: 4, [[0,12,14,0,0,0],[12,0,1,0,0,0],[14,1,0,20,10,0],[0,0,20,0,0,5],[0,0,10,0,0,15],[0,0,0,5,15,0]] Output: 10"""
truck_load
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(4, [[0, 12, 14, 0, 0, 0], [12, 0, 1, 0, 0, 0], [14, 1, 0, 20, 10, 0], [0, 0, 20, 0, 0, 5], [0, 0, 10, 0, 0, 15], [0, 0, 0, 5, 15, 0]]) == 10
PythonSaga/157
import sys from typing import List def parcel(cities: int, route: List[List[int]]) -> int: """I have to courier the parcel from my home to my college. I want to know minimum days it will take to reach the parcel to my college. Give: 1. Number of cities in between my home and college. 2. Days taken between each city. 3. The route is undirected. Take input from user for number of cities in between home and college; the days taken between each city if there's a route between them. take input in form of matrix. and return minimum days taken to reach college. Example: input: 2, [[0,3,2,0],[0,0,5,2],[0,0,0,3],[0,0,0,0]] output: 5"""
parcel
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(2, [[0, 3, 2, 0], [0, 0, 5, 2], [0, 0, 0, 3], [0, 0, 0, 0]]) == 5
PythonSaga/158
from collections import deque from typing import List def blood_flow(organ: int, blood_vessel: List[List[int]]) -> int: """Let's say i want to find max amount of blood that can flow from one organ to another. And in between there are n other organs. organ are connected via blood vessels. Take input from user as number of organ and capacity of each blood vessel fron organ to organ. Do this in form of matrix and return max amount of blood that can flow from one organ A to organ B. Also blood can flow is unidirectional. Example: Input: 4, [[0,7,7,0,0,0],[0,0,0,2,7,0],[0,2,0,0,5,0],[0,0,0,0,0,6],[0,0,0,4,0,8],[0,0,0,0,0,0]] Output: 7 """
blood_flow
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(4, [[0, 7, 7, 0, 0, 0], [0, 0, 0, 2, 7, 0], [0, 2, 0, 0, 5, 0], [0, 0, 0, 0, 0, 6], [0, 0, 0, 4, 0, 8], [0, 0, 0, 0, 0, 0]]) == 7
PythonSaga/159
from collections import defaultdict from typing import List def data_transfer(routers: int, network_links: List[List[int]]) -> int: """Suppose you want to determine the maximum amount of data that can be transferred from one computer (Computer A) to another (Computer B) in a network. Between these computers, there are n routers connected via network links with specific capacities. Data transfer is unidirectional. Example: Input: 4, [[0,7,7,0,0,0],[0,0,0,2,7,0],[0,2,0,0,5,0],[0,0,0,0,0,6],[0,0,0,4,0,8],[0,0,0,0,0,0] Output: 7 # The maximum amount of data that can flow from Computer A to Computer B is 7."""
data_transfer
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(4, [[0, 7, 7, 0, 0, 0], [0, 0, 0, 2, 7, 0], [0, 2, 0, 0, 5, 0], [0, 0, 0, 0, 0, 6], [0, 0, 0, 4, 0, 8], [0, 0, 0, 0, 0, 0]]) == 7
PythonSaga/160
def divide_100_by(x:int)->str: """Let's say you have function divide(x,y) that returns x/y. Write a function called bind1st(func, value) that can create a one parameter function from this two parameter function? create a new function called divide_100_by(y). Use bind2func to create a function that divides 100 by a number. Take input from user for any number and return the result of 100 divided by that number. Try to use decorator and closure to solve this problem. Example: Input: 10 Output: "100 divided by 10 is 10.00" Input: 3 Output: "100 divided by 3 is 33.33" """
divide_100_by
def bind1st(func): @wraps(func) def wrapper(value): return func(100, value) return wrapper @bind1st def divide(x, y): return x / y def divide_100_by(y): result = divide(y) return f"100 divided by {y} is {result:.2f}" # Example usage: user_input = int(input("Enter a number: ")) output = divide_100_by(user_input) print(output)
METADATA = {'author': 'ay','dataset': 'test'} def check(candidate): user_input_1 = 10 output_1 = candidate(user_input_1) assert output_1 == '100 divided by 10 is 10.00' user_input_2 = 3 output_2 = candidate(user_input_2) assert output_2 == '100 divided by 3 is 33.33' user_input_3 = 7 output_3 = candidate(user_input_3) assert output_3 == '100 divided by 7 is 14.29' user_input_4 = 11 output_4 = candidate(user_input_4) assert output_4 == '100 divided by 11 is 9.09'
PythonSaga/161
import time from typing import List def math_ops(a: int, b: int) -> List[List[str]]: """Let's say I have two number a and b, and I few functions: 1. mutliply(a, b) 2. divide(a, b) 3. power(a, b) But these function uses loops instead of direct multiplication, division, and power to solve the problem. I want to see how much time each function takes to run. But I don't want to write a code to calculate the time for each function. show time in nanoseconds. I want to create one function for that and use it for all the functions. Try to use concept of decorators and closures to solve this problem. Take input from user for a and b and return the result of multiplication, division, and power of a and b; along with the time taken to run each function. In time is greater than 0 return true else return false. Example: Input: 10, 5 Output: [["50", "True"], ["2", "True"], ["100000", "True"]] """
math_ops
import time from typing import List def time_decorator(func): def wrapper(a, b): start = time.time_ns() # Capture start time in nanoseconds result = func(a, b) # Call the original function end = time.time_ns() # Capture end time in nanoseconds elapsed = end - start # Calculate elapsed time return [str(result), str(elapsed > 0)] # Format result and time check return wrapper @time_decorator def multiply(a, b): result = 0 for _ in range(b): result += a return result @time_decorator def divide(a, b): count = 0 while a >= b: a -= b count += 1 return count @time_decorator def power(a, b): result = 1 for _ in range(b): result *= a return result def math_ops(a: int, b: int) -> List[List[str]]: return [multiply(a, b), divide(a, b), power(a, b)]
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(10, 5) == [['50', 'True'], ['2', 'True'], ['100000', 'True']] assert candidate(8, 2) == [['16', 'True'], ['4', 'True'], ['64', 'True']] assert candidate(15, 3) == [['45', 'True'], ['5', 'True'], ['3375', 'True']] assert candidate(7, -1) == [['21', 'True'], ['2', 'True'], ['343', 'True']]
PythonSaga/162
from typing import List def number_plate(number: List[str]) -> List[str]: """I have a bunch of car number plates in the format of 'XX XX XXXX'. I want to print them in sorted order. Also, sometimes there is a prefix 'HS', 'AB', or 'XX' in front and sometimes it is not there. Take input from the user and print them in sorted order along with the new prefix 'Hind'. If there is a prefix already present then remove it and add 'Hind'. If there is no prefix then add 'Hind' in front of the number plate. Try to use decorator and closure concept. Example: Input: 5, ['HS 01 1234', '06 1234', 'AB 01 1134', '01 1234', 'XX 11 1234'] Output: ['Hind 01 1134', 'Hind 01 1234', 'Hind 01 1234', 'Hind 06 1234', 'Hind 11 1234']"""
number_plate
def number_plate_decorator(func: Callable[[List[str]], List[str]]) -> Callable[[List[str]], List[str]]: def wrapper(number: List[str]) -> List[str]: # Process each number plate: remove existing prefix and add "Hind" prefix processed = ["Hind " + " ".join(plate.split()[1:]) if plate.split()[0] in ["HS", "AB", "XX"] else "Hind " + plate for plate in number] # Sort the processed number plates sorted_plates = sorted(processed) # Return the sorted number plates through the original function return func(sorted_plates) return wrapper @number_plate_decorator def number_plate(number: List[str]) -> List[str]: return number
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(["HS 01 1234", "06 1234", "AB 01 1134", "01 1234", "XX 11 1234"]) == ['Hind 01 1134', 'Hind 01 1234', 'Hind 01 1234', 'Hind 06 1234', 'Hind 11 1234'] assert candidate(["AB 12 3456", "XX 09 8765", "HS 05 4321", "03 5678", "YY 11 9876"]) == ['Hind 03 5678', 'Hind 05 4321', 'Hind 09 8765', 'Hind 11 9876', 'Hind 12 3456'] assert candidate(["XX 01 2345", "AB 05 6789", "HS 10 4321", "07 9876", "YY 15 8765"]) == ['Hind 01 2345', 'Hind 05 6789', 'Hind 07 9876', 'Hind 10 4321', 'Hind 15 8765'] assert candidate(["YY 21 3456", "HS 18 8765", "AB 09 4321", "15 9876", "XX 13 8765"]) == ['Hind 09 4321', 'Hind 13 8765', 'Hind 15 9876', 'Hind 18 8765', 'Hind 21 3456']
PythonSaga/163
from typing import List def introduction(n:int ,name: List[str]) -> List[str]: """Utilize decorators and closure to create a name directory using provided information about individuals, including first name, last name, age, and sex. Display their names in a designated format, sorted in ascending order based on age. The output should list the names of the youngest individuals first, and for individuals of the same age, maintain the order of their input. Take input from the user for the number of individuals, and then for each individual. Example: Input: 3, [['amit', 'yadav', 23, 'm'], ['amit', 'jain', 12, 'm'], ['ankita', 'did', 23, 'f']] Output: ['Mr. amit jain', 'Mr. amit yadav', 'Ms. ankita did']"""
introduction
def name_directory_decorator(func): def wrapper(name: List[List[str]]): # Process the input list: format names and sort by age processed_list = sorted(name, key=lambda x: x[2]) # Sort by age formatted_list = [("Mr. " if person[3] == "m" else "Ms. ") + person[0] + " " + person[1] for person in processed_list] return func(formatted_list) return wrapper @name_directory_decorator def introduction(name: List[str]) -> List[str]: return name
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate([['amit', 'yadav', 23, 'm'], ['amit', 'jain', 12, 'm'], ['ankita', 'did', 23, 'f']]) == ['Mr. amit jain', 'Mr. amit yadav', 'Ms. ankita did'] assert candidate([['john', 'doe', 30, 'm'], ['jane', 'smith', 25, 'f'], ['alice', 'jones', 25, 'f']]) == ['Ms. jane smith', 'Ms. alice jones', 'Mr. john doe'] assert candidate([['bob', 'brown', 22, 'm'], ['emma', 'white', 22, 'f'], ['david', 'lee', 22, 'm']]) == ['Mr. bob brown', 'Ms. emma white', 'Mr. david lee'] assert candidate([['sam', 'johnson', 18, 'm'], ['sarah', 'miller', 17, 'f'], ['mark', 'anderson', 19, 'm']]) == ['Ms. sarah miller', 'Mr. sam johnson', 'Mr. mark anderson']
PythonSaga/164
from typing import List def mat_sum(n:int, m:int, matrix: List[List[int]]) -> int: """I have an n*m matrix, filled with positive integers. I want to find the path in this matrix, from top left to bottom right, that minimizes the sum of the integers along the path. Try to use decorator and closure to solve this problem. Take input from the user of n * m matrix and print the minimum sum of the integers along the path. Example: Input: 3,3,[[1,3,1],[1,5,1],[4,2,1]] Output: 7 Input: 2,3,[[1,2,3],[4,5,6]] Output: 12"""
mat_sum
def min_path_decorator(func): def wrapper(n, m, matrix): return func(n, m, matrix) return wrapper @min_path_decorator def mat_sum(n: int, m: int, matrix: List[List[int]]) -> int: # Dynamic Programming to calculate the minimum path sum for i in range(n): for j in range(m): if i == 0 and j == 0: # Skip the top-left corner continue elif i == 0: # Top row, can only come from the left matrix[i][j] += matrix[i][j-1] elif j == 0: # Leftmost column, can only come from above matrix[i][j] += matrix[i-1][j] else: # Interior cell, take the minimum of the top and left cells matrix[i][j] += min(matrix[i-1][j], matrix[i][j-1]) return matrix[n-1][m-1] # The minimum path sum is in the bottom-right corner
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(3, 3, [[1, 3, 1], [1, 5, 1], [4, 2, 1]]) == 7 assert candidate(2, 3, [[1, 2, 3], [4, 5, 6]]) == 12 assert candidate(3, 3, [[5, 2, 7], [8, 1, 9], [4, 3, 6]]) == 17 assert candidate(3, 3, [[1, 1, 1], [1, 1, 1], [1, 1, 1]]) == 5
PythonSaga/165
from typing import List import concurrent.futures def sum_divisible_by_3(n: int, pairs: List[List[int]]) -> List[int]: """I want to implement concurrency and parallelism in code for faster execution. Take input from the user for n pair of numbers (a,b) where a<b. Print sum of all numbers between a and b (inclusive) which are divisible by 3. Example: Input: 2, [[1,10],[3,5]] # 3+6+9=18, Output: 18, 0"""
sum_divisible_by_3
def sum_divisible_by_3_in_range(pair: List[int]) -> int: """Calculate the sum of numbers divisible by 3 within the given range (a, b], where b is inclusive.""" a, b = pair # Start from the next number if 'a' is not divisible by 3 start = a + 1 if a % 3 != 0 else a return sum(x for x in range(start, b + 1) if x % 3 == 0) def sum_divisible_by_3(n: int, pairs: List[List[int]]) -> List[int]: results = [] with concurrent.futures.ThreadPoolExecutor() as executor: # Submit tasks to the executor for each pair futures = [executor.submit(sum_divisible_by_3_in_range, pair) for pair in pairs] for future in concurrent.futures.as_completed(futures): # Collect the results as they are completed results.append(future.result()) return results
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(2, [[1, 10], [3, 5]]) == [18, 0] assert candidate(3, [[2, 8], [5, 15], [1, 5]]) == [9, 27, 3] assert candidate(1, [[3, 9]]) == [15] assert candidate(4, [[1, 5], [6, 10], [11, 15], [16, 20]]) == [3, 9, 27, 18]
PythonSaga/166
import threading import concurrent.futures from typing import List def matrix_multiplication(n: int, matrix: List[List[int]]) -> List[List[int]]: """I want to implement matrix multiplication of n matrices each of size 3x3. Each matrix element is [n,n+1,n+2,n+3,n+4,n+5,n+6,n+7,n+8]. But I want to do this process concurrently and parallely using threads. Take input from the user for the number of matrices and n for each matrix and return the result. Example: Input: 3, [3,4,5] Output: [[[3,4,5],[6,7,8],[9,10,11]],[[4,5,6],[7,8,9],[10,11,12]],[[5,6,7],[8,9,10],[11,12,13]], [[114, 126, 138], [156, 174, 192], [198, 222, 246]]] # 3 matrices of size 3x3 and result of multiplication of 3 matrices """
matrix_multiplication
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(3, [3, 4, 5]) == [ [[3, 4, 5], [6, 7, 8], [9, 10, 11]], [[4, 5, 6], [7, 8, 9], [10, 11, 12]], [[5, 6, 7], [8, 9, 10], [11, 12, 13]], [[114, 126, 138], [156, 174, 192], [198, 222, 246]] ] assert candidate(2, [1, 2]) == [ [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[2, 3, 4], [5, 6, 7], [8, 9, 10]], [[36, 42, 48], [81, 96, 111], [126, 150, 174]] ] assert candidate(1, [0]) == [ [[0, 1, 2], [3, 4, 5], [6, 7, 8]], [[0, 1, 2], [3, 4, 5], [6, 7, 8]] ]
PythonSaga/167
import time import multiprocessing import concurrent.futures from typing import List def input_func(a:int, b:int) -> List[str]: """I want to learn how concurrency and parallelism works in python. To do that i want to calculate pow(a,b) using for loops. I want to do this using concurrent.futures and multiprocessing module. Take input from the user for a and b and return time taken by both functions to complete the task in nano seconds. If time taken is greater than 0 return True else False. Example: Input: 2, 1000 Output: [Time taken by concurently_done is True, Time taken by parallel_done is True]"""
input_func
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(2, 1000) == ['Time taken by concurrently_done is True', 'Time taken by parallel_done is True'] assert candidate(3, 500) == ['Time taken by concurrently_done is True', 'Time taken by parallel_done is True'] assert candidate(5, 200) == ['Time taken by concurrently_done is True', 'Time taken by parallel_done is True'] assert candidate(10, 100) == ['Time taken by concurrently_done is True', 'Time taken by parallel_done is True']
PythonSaga/168
import concurrent.futures from typing import List def conc_work(n: int, tasks: List[int]) -> List[str]: """I want to learn how concurrent processes work in Python. To do that take multiple tasks and their duration to complete their work. Your goal is to create a program that executes these tasks concurrently to reduce overall processing time. In the end, you should be able to see the total time taken to complete all tasks. Take input from the user for the number of tasks and their duration and return the total time taken to complete all tasks in seconds if it is greater than 0 return True else False. example: Input: 4, [3,5,2,4] # 4 tasks with duration 3,5,2,4 Output: ["Executing Task C...", "Executing Task A...", "Executing Task D...", "Executing Task B...", True]"""
conc_work
def simulate_task(duration: int, task_name: str) -> str: """Simulate a task that takes 'duration' seconds to complete.""" print(f"Executing Task {task_name}...") time.sleep(duration) return f"Task {task_name} completed." def conc_work(n: int, tasks: List[int]) -> List[str]: start_time = time.time() results = [] task_names = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"][:n] # Generate task names with concurrent.futures.ThreadPoolExecutor(max_workers=n) as executor: # Schedule the tasks concurrently future_to_task = {executor.submit(simulate_task, task, task_names[i]): i for i, task in enumerate(tasks)} for future in concurrent.futures.as_completed(future_to_task): task_name = task_names[future_to_task[future]] try: result = future.result() except Exception as exc: results.append(f"Task {task_name} generated an exception: {exc}") else: results.append(result) total_time = time.time() - start_time results.append(True if total_time > 0 else False) return results
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(4, [3, 5, 2, 4]) == ["Executing Task C...", "Executing Task A...", "Executing Task D...", "Executing Task B...", True] assert candidate(3, [2, 4, 1]) == ["Executing Task C...", "Executing Task A...", "Executing Task B...", True] assert candidate(5, [1, 2, 3, 4, 5]) == ["Executing Task A...", "Executing Task B...", "Executing Task C...", "Executing Task D...", "Executing Task E...", True] assert candidate(2, [5, 3]) == ["Executing Task B...", "Executing Task A...", True]
PythonSaga/169
import concurrent.futures from typing import List def math_tasks(n: int, tasks: List[int]) -> List[str]: """I want to implement concurrency and parallelism in code for faster execution. Take input from user for n tasks and their parameters. Print the result of each task. If parameters are invalid return "Not Done". else return "Done". Example: Input: 4, [1000000, 500000, 750000, 200000] Output: ["Performing Task A...", "Performing Task B...", "Performing Task C...", "Performing Task D...", "Done", "Done", "Done", "Done"]"""
math_tasks
def perform_task(param: int) -> str: """Simulate a math task that computes the sum of numbers up to 'param'. If 'param' is invalid, returns 'Not Done'.""" if param < 0: return "Not Done" result = sum(range(param + 1)) # Example task: sum of numbers up to 'param' return "Done" def math_tasks(n: int, tasks: List[int]) -> List[str]: results = [] with concurrent.futures.ThreadPoolExecutor(max_workers=n) as executor: # Schedule the tasks concurrently future_to_task = {executor.submit(perform_task, task): i for i, task in enumerate(tasks)} for future in concurrent.futures.as_completed(future_to_task): task_id = future_to_task[future] try: result = future.result() except Exception as exc: results.append(f"Task {task_id} generated an exception: {exc}") else: results.append(f"Performing Task {chr(65 + task_id)}...") # Task A, B, C, etc. results.append(result) return results
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(4, [1000000, 500000, 750000, 200000]) == [ "Performing Task A...", "Performing Task B...", "Performing Task C...", "Performing Task D...", "Done", "Done", "Done", "Done" ] assert candidate(3, [200, 500, 1000]) == [ "Performing Task A...", "Performing Task B...", "Performing Task C...", "Done", "Done", "Done" ] assert candidate(2, [5, 10]) == [ "Performing Task A...", "Performing Task B...", "Done", "Done" ] assert candidate(1, [3]) == [ "Performing Task A...", "Done" ]
PythonSaga/170
from typing import List def input_for_class1(coffs:List[List[int]])->List[str]: """Create a Python class named Polynomial that represents a polynomial of a single variable. The Polynomial class should support the following operations: 1. Initialization: The class should be initialized with a list of coefficients in decreasing order of powers. For example, Polynomial([1, -3, 0, 2]) represents the polynomial 1x^3 - 3x^2 + 2. 2. String Representation: Implement a __str__ method that returns a human-readable string representation of the polynomial. For example, if the polynomial is Polynomial([1, -3, 0, 2]), the __str__ method should return the string "x^3 - 3x^2 + 2". 3. Addition and Subtraction: Implement methods add and subtract that take another Polynomial object as an argument and return a new Polynomial object representing the sum or difference of the two polynomials, respectively. Take input from the user for the coefficients of the two polynomials and create two Polynomial objects. Example: Input: [[1, -3, 0, 2], [2, 0, 1]] # cofficients of first polynomial, coefficients of second polynomial Output: ["x^3 - 3x^2 + 2", "2x^2 + 1", "x^3 - x^2 + 3", "x^3 - 5x^2-1"] # first polynomial, second polynomial, sum, difference Input: [[1, 2, 3], [3, 2, 1]] Output: ["x^2 + 2x + 3", "3x^2 + 2x + 1", "4x^2 + 4x + 4", "-2x^2 +2"]"""
input_for_class1
class Polynomial: def __init__(self, coeffs: List[int]): self.coeffs = coeffs def __str__(self): terms = [] n = len(self.coeffs) for i, coeff in enumerate(self.coeffs): power = n - i - 1 if coeff == 0: continue if power == 0: terms.append(str(coeff)) elif power == 1: terms.append(f"{coeff}x" if coeff != 1 else "x") else: terms.append(f"{coeff}x^{power}" if coeff != 1 else f"x^{power}") return " + ".join(terms).replace("+ -", "- ") def add(self, other): max_len = max(len(self.coeffs), len(other.coeffs)) result_coeffs = [0] * max_len for i in range(max_len): coeff1 = self.coeffs[-i-1] if i < len(self.coeffs) else 0 coeff2 = other.coeffs[-i-1] if i < len(other.coeffs) else 0 result_coeffs[-i-1] = coeff1 + coeff2 return Polynomial(result_coeffs) def subtract(self, other): max_len = max(len(self.coeffs), len(other.coeffs)) result_coeffs = [0] * max_len for i in range(max_len): coeff1 = self.coeffs[-i-1] if i < len(self.coeffs) else 0 coeff2 = other.coeffs[-i-1] if i < len(other.coeffs) else 0 result_coeffs[-i-1] = coeff1 - coeff2 return Polynomial(result_coeffs) def input_for_class1(coffs: List[List[int]]) -> List[str]: poly1 = Polynomial(coffs[0]) poly2 = Polynomial(coffs[1]) sum_poly = poly1.add(poly2) diff_poly = poly1.subtract(poly2) return [str(poly1), str(poly2), str(sum_poly), str(diff_poly)]
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate([[1, -3, 0, 2], [2, 0, 1]]) == ['x^3 - 3x^2 + 2', '2x^2 + 1', 'x^3 - x^2 + 3', 'x^3 - 5x^2-1'] assert candidate([[1, 2, 3], [3, 2, 1]]) == ['x^2 + 2x + 3', '3x^2 + 2x + 1', '4x^2 + 4x + 4', '-2x^2 +2'] assert candidate([[5, 0, 0, 1], [0, -2, 1]]) == ['5x^3 + 1', '-2x + 1', '5x^3 - 2x^2 + 1', '5x^3 + 2x'] assert candidate([[1, 1, 1, 1], [1, 1, 1]]) == ['x^3 + x^2 + x + 1', 'x^2 + x + 1', 'x^3 + 2x^2 + 2x + 2', 'x^3']
PythonSaga/171
from typing import List def input_for_class2(entries:List[str])->str: """I want to see magic using class and object. Let's say i have a class named "Person". In object i will pass name, id nummber, salary and position. Then i want to print all the information of that object. But twist is i want class Person to have only name and id number. And i want to add salary and position to another class named "Employee" which Does the all the work of printing the information. I want to see how you do it. I want to see how you use inheritance and polymorphism. Take input from user for name, id number, salary and position and create object of class Employee and print all the information of that object. Example: Input: ["John", 1234, 10000, "Manager"] Output: "My name is John, My id number is 1234, My salary is 10000 and my position is Manager." Input: ["Ram", 12223, 20000, "CEO"] Output: "My name is Ram, My id number is 12223, My salary is 20000 and my position is CEO." """
input_for_class2
class Person: def __init__(self, name: str, id_number: int): self.name = name self.id_number = id_number class Employee(Person): def __init__(self, name: str, id_number: int, salary: int, position: str): super().__init__(name, id_number) self.salary = salary self.position = position def print_information(self): return f"My name is {self.name}, My id number is {self.id_number}, My salary is {self.salary} and my position is {self.position}." # Example usage: def input_for_class2(entries: List[str]) -> str: name, id_number, salary, position = entries employee = Employee(name, int(id_number), int(salary), position) return employee.print_information()
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(["John", "1234", "10000", "Manager"]) == "My name is John, My id number is 1234, My salary is 10000 and my position is Manager." assert candidate(["Ram", "12223", "20000", "CEO"]) == "My name is Ram, My id number is 12223, My salary is 20000 and my position is CEO." assert candidate(["Alice", "5678", "15000", "Engineer"]) == "My name is Alice, My id number is 5678, My salary is 15000 and my position is Engineer." assert candidate(["Bob", "9876", "12000", "Developer"]) == "My name is Bob, My id number is 9876, My salary is 12000 and my position is Developer."
PythonSaga/172
def input_for_class3(typess:str)->str: """I want to test my knowledge of polymorphism. I want to create a car catalog using classes and polymorphism. On top we have class Car, with description "Welcome to car catalog, here you can find all the cars you need." Let's say I have class name sedan, suv, coupe, hatchback, and truck. 1. Sedan class displays " This is a sedan car with 4 doors and 5 seats, usage is for family." 2. SUV class displays " This is a SUV car with 4 doors and 5 seats, usage is for offroad." 3. Coupe class displays " This is a coupe car with 2 doors and 2 seats, usage is for sport." 4. Hatchback class displays " This is a hatchback car with 4 doors and 5 seats, usage is for small family." 5. Truck class displays " This is a truck car with 2 doors and 3 seats, usage is for work." when user inputs the car type, it will display the description of the of class car and the description of the car type. Take input from user and display the description of the car type. Example: Input: sedan Output: Welcome to car catalog, here you can find all the cars you need. This is a sedan car with 4 doors and 5 seats, usage is for family. Input: suv Output: Welcome to car catalog, here you can find all the cars you need. This is a SUV car with 4 doors and 5 seats, usage is for offroad."""
input_for_class3
class Car: def __init__(self): self.description = "Welcome to car catalog, here you can find all the cars you need." def get_description(self): return self.description class Sedan(Car): def __init__(self): super().__init__() self.description += " This is a sedan car with 4 doors and 5 seats, usage is for family." class SUV(Car): def __init__(self): super().__init__() self.description += " This is a SUV car with 4 doors and 5 seats, usage is for offroad." class Coupe(Car): def __init__(self): super().__init__() self.description += " This is a coupe car with 2 doors and 2 seats, usage is for sport." class Hatchback(Car): def __init__(self): super().__init__() self.description += " This is a hatchback car with 4 doors and 5 seats, usage is for small family." class Truck(Car): def __init__(self): super().__init__() self.description += " This is a truck car with 2 doors and 3 seats, usage is for work." # Example usage: def input_for_class3(typess: str) -> str: car_types = { 'sedan': Sedan(), 'suv': SUV(), 'coupe': Coupe(), 'hatchback': Hatchback(), 'truck': Truck(), } if typess.lower() in car_types: return car_types[typess.lower()].get_description() else: return "Invalid car type. Please choose from sedan, suv, coupe, hatchback, or truck."
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate("sedan") == "Welcome to car catalog, here you can find all the cars you need. This is a sedan car with 4 doors and 5 seats, usage is for family." assert candidate("suv") == "Welcome to car catalog, here you can find all the cars you need. This is a SUV car with 4 doors and 5 seats, usage is for offroad." assert candidate("coupe") == "Welcome to car catalog, here you can find all the cars you need. This is a coupe car with 2 doors and 2 seats, usage is for sport." assert candidate("hatchback") == "Welcome to car catalog, here you can find all the cars you need. This is a hatchback car with 4 doors and 5 seats, usage is for small family." assert candidate("truck") == "Welcome to car catalog, here you can find all the cars you need. This is a truck car with 2 doors and 3 seats, usage is for work."
PythonSaga/173
from typing import List def input_for_class4(data:List[str])->List[str]: """Create a Python class named BankAccount that represents a bank account. The BankAccount class should support the following operations: 1. Initialization: The class should be initialized with an account holder's name and an initial balance. 2. Deposit and Withdrawal: Implement methods deposit and withdraw that allow the account holder to deposit and withdraw funds, respectively. Ensure that withdrawals do not exceed the available balance. # "Withdrawal amount exceeds available balance." 3. Balance Inquiry: Implement a method get_balance that returns the current balance. Take input from the user for the account holder's name and initial balance. later, take input from the user for the amount to deposit, withdraw, or check balance. Example Input: ["John", 1000, "Deposit", 500, "Withdraw", 200, "Balance", "Exit" ] Output: ["Your current balance is 1300"]"""
input_for_class4
from typing import List class BankAccount: def __init__(self, name: str, initial_balance: float): self.name = name self.balance = initial_balance def deposit(self, amount: float): self.balance += amount def withdraw(self, amount: float): if amount > self.balance: return "Withdrawal amount exceeds available balance." self.balance -= amount def get_balance(self): return self.balance def input_for_class4(data: List[str]) -> List[str]: account = BankAccount(data[0], float(data[1])) i = 2 # Start from the third item in the list, which is the first operation output = [] while i < len(data): operation = data[i] if operation == "Deposit": i += 1 account.deposit(float(data[i])) elif operation == "Withdraw": i += 1 withdrawal_message = account.withdraw(float(data[i])) if withdrawal_message: output.append(withdrawal_message) elif operation == "Balance": output.append(f"Your current balance is {account.get_balance()}") elif operation == "Exit": break i += 1 return output
def check(candidate): assert candidate(["John", "1000", "Deposit", "500", "Withdraw", "200", "Balance", "Exit"]) == ["Your current balance is 1300"] assert candidate(["Alice", "1500", "Deposit", "300", "Balance", "Withdraw", "200", "Exit"]) == ["Your current balance is 1800", "Your current balance is 1600"] assert candidate(["Bob", "500", "Withdraw", "700", "Deposit", "200", "Balance", "Exit"]) == ["Withdrawal amount exceeds available balance.", "Your current balance is 700"] assert candidate(["Eve", "2000", "Withdraw", "500", "Deposit", "1000", "Balance", "Exit"]) == ["Your current balance is 2500"]
PythonSaga/174
from typing import List def input_for_class5(data:List[str])->List[str]: """You are tasked with designing a Python class to manage and monitor activities at a construction site. The class should encapsulate various aspects of construction management. Implement the following functionalities: Initialization: The class should be initialized with the construction site's name and the initial budget. Material Inventory: Implement methods to add materials to the construction site's inventory and retrieve the current inventory status. Worker Management: Implement methods to add and remove workers from the construction site. Each worker has a unique identifier, and name. Budget Tracking: Implement methods to track expenses and remaining budget. Ensure that expenses are deducted from the budget when materials are purchased or workers are hired. Progress Monitoring: Implement a method to monitor the overall progress of the construction site based on completed tasks and remaining tasks. Take apporpriate input from the user to test your class. You may use the following sample input/output to test your class: Example: Input: ["IIT", 100000, "material addition", "cement", 100, "material addition", "bricks", 1000, "material addition", "sand", 500, "worker addition", "John", 1, "worker addition", "Mike", 2, "worker addition", "Mary", 3, "status update", "completed", "EXIT"] Output: [Construction site name is IIT, budget is 100000, material inventory is {'cement': 100, 'bricks': 1000, 'sand': 500}, workers are {1: 'John', 2: 'Mike', 3: 'Mary'}]"""
input_for_class5
class ConstructionSite: def __init__(self, name: str, initial_budget: float): self.name = name self.budget = initial_budget self.material_inventory = {} self.workers = {} def add_material(self, material_name: str, quantity: int): if material_name in self.material_inventory: self.material_inventory[material_name] += quantity else: self.material_inventory[material_name] = quantity def get_material_inventory(self): return self.material_inventory def add_worker(self, worker_name: str, worker_id: int): self.workers[worker_id] = worker_name def remove_worker(self, worker_id: int): if worker_id in self.workers: del self.workers[worker_id] def get_workers(self): return self.workers def track_expense(self, expense: float): self.budget -= expense def get_budget(self): return self.budget def monitor_progress(self, status: str): if status.lower() == "completed": return f"Construction site {self.name} has been completed." elif status.lower() == "in progress": return f"Construction site {self.name} is still in progress." else: return "Invalid progress status." # Example usage: def input_for_class5(data: List[str]) -> List[str]: construction_site_name = data[0] initial_budget = float(data[1]) construction_site = ConstructionSite(construction_site_name, initial_budget) results = [] i = 2 while i < len(data): action = data[i] if action.lower() == "material addition": material_name = data[i + 1] quantity = int(data[i + 2]) construction_site.add_material(material_name, quantity) i += 3 elif action.lower() == "worker addition": worker_name = data[i + 1] worker_id = int(data[i + 2]) construction_site.add_worker(worker_name, worker_id) i += 3 elif action.lower() == "worker removal": worker_id = int(data[i + 1]) construction_site.remove_worker(worker_id) i += 2 elif action.lower() == "status update": status = data[i + 1] progress = construction_site.monitor_progress(status) results.append(progress) i += 2 elif action.lower() == "exit": break results.append(f"Construction site name is {construction_site.name}, budget is {construction_site.budget}, material inventory is {construction_site.get_material_inventory()}, workers are {construction_site.get_workers()}") return results
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(['IIT', '100000', 'material addition', 'cement', '100', 'material addition', 'bricks', '1000', 'material addition', 'sand', '500', 'worker addition', 'John', '1', 'worker addition', 'Mike', '2', 'worker addition', 'Mary', '3', 'status update', 'completed', 'EXIT']) == ['Construction site name is IIT, budget is 99900.0, material inventory is {'cement': 100, 'bricks': 1000, 'sand': 500}, workers are {1: 'John', 2: 'Mike', 3: 'Mary'}'] assert candidate(['TechPark', '50000', 'material addition', 'steel', '200', 'material addition', 'concrete', '300', 'worker addition', 'Alice', '1', 'status update', 'in progress', 'EXIT']) == ['Construction site name is TechPark, budget is 50000.0, material inventory is {'steel': 200, 'concrete': 300}, workers are {1: 'Alice'}'] assert candidate(['HomeProject', '200000', 'material addition', 'wood', '150', 'material addition', 'tiles', '400', 'worker addition', 'Bob', '1', 'worker addition', 'Charlie', '2', 'status update', 'completed', 'EXIT']) == ['Construction site name is HomeProject, budget is 200000.0, material inventory is {'wood': 150, 'tiles': 400}, workers are {1: 'Bob', 2: 'Charlie'}'] assert candidate(['HospitalBuild', '1000000', 'material addition', 'cement', '500', 'material addition', 'bricks', '1200', 'worker addition', 'David', '1', 'worker removal', '1', 'status update', 'in progress', 'EXIT']) == ['Construction site name is HospitalBuild, budget is 1000000.0, material inventory is {'cement': 500, 'bricks': 1200}, workers are {}']
PythonSaga/175
from typing import List def input_for_cont1(data:str)->List[str]: """I want to create dummy context manager. Here's it should be: 1. create class ContextManager 2. When I call it, it should print "init method called" 3. When I call it with "with" statement, it should print "enter method called" 4. When I exit from "with" statement, it should print "exit method called" 5. Before exit from "with" statement, it should print "XXXX" (XXXX - any text from user) Take XXXX from user and print all 4 messages in order mentioned above. Example: Input: "Hello i'm in context manager" Output: ["init method called", "enter method called", "Hello i'm in context manager", "exit method called"]"""
input_for_cont1
class ContextManager: def __init__(self, text: str): self.text = text print("init method called") def __enter__(self): print("enter method called") return self def __exit__(self, exc_type, exc_val, exc_tb): print(self.text) print("exit method called") def input_for_cont1(data: str) -> List[str]: messages = [] # Define a function to capture print statements def mock_print(*args, **kwargs): messages.append(' '.join(map(str, args))) # Replace the built-in print function with mock_print within this context original_print = __builtins__.print __builtins__.print = mock_print # Use the ContextManager with the provided data with ContextManager(data): pass # Restore the original print function __builtins__.print = original_print return messages
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate("Hello i'm in context manager") == ["init method called", "enter method called", "Hello i'm in context manager", "exit method called"]
PythonSaga/176
from decimal import Decimal, getcontext def input_for_cont2(data:str)->str: """I'm working in space and astronomy institute where calculations need to be done in a very precise way. I'm working on a project where I need to calculate. Small part of it is division of two numbers which need to be very precise upto n decimal places. Take input from user for two numbers and precision value n. and return the result upto n decimal places in form of string. You should use context manager to set precision value. Example: Input: 1, 42, 42 # 1 is a, 42 is b, 42 is precision value Output: "0.0238095238095238095238095238095238095238095" """
input_for_cont2
# Set the precision getcontext().prec = n # Perform the division using Decimal for high precision result = Decimal(a) / Decimal(b) # Reset the precision to default (28) to avoid side effects getcontext().prec = 28 return str(result) # Convert the result to a string
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate("1,42,42") == "0.0238095238095238095238095238095238095238095" assert candidate("3,7,9") == "0.428571429" assert candidate("3,7,9") == "0.428571428571428571428571428571429"
PythonSaga/177
from decimal import Decimal, getcontext def input_for_cont3(data:str)->str: """I'm working in science lab where experminets and their calculations done in a very precise way. I'm working on a project where I need to calculate. Small part of it is division of two numbers which need to be very precise upto n decimal places. Take input from user for two numbers and precision value n. and return the result upto n decimal places in form of string. You should use context manager to set precision value. Example: Input: 1, 42, 42 # 1 is a, 42 is b, 42 is precision value Output: "0.0238095238095238095238095238095238095238095" """
input_for_cont3
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate("1,42,42") == "0.0238095238095238095238095238095238095238095" assert candidate("3,7,9") == "0.428571429" assert candidate("3,7,9") == "0.428571428571428571428571428571429"
PythonSaga/178
def divide(x:int, y:int) -> str: """I have few codes which may or may not run successfully. I want to know what error it will print if it fails to run. And if it runs successfully, it should print the output. The code if for division of two numbers. Take two numbers as input from user and divide them. The error is: unsupported operand type(s) for //: 'int' and 'str' The error is: integer division or modulo by zero Example: Input: 5,2 Output: "2.5" Input: 5,0 Output: "The error is: integer division or modulo by zero """
divide
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate(2,5) == "0.4" assert candidate(2,0) == "integer division or modulo by zero" assert candidate(1,5) == "0.2" assert candidate(11,0) == "integer division or modulo by zero"
PythonSaga/179
def write_file(first:str, second:str) -> str: """I have a file named dummy.txt. I want to write some text in it i.e. "This is a dummy file." Later I want to write some more text in it i.e. "This is a dummy file2." But when I run the code, it gives me an error. I want to know what error it is, please print it. The error is: I/O operation on closed file."""
write_file
METADATA = { 'author': 'ay', 'dataset': 'test' } def check(candidate): assert candidate("This is a dummy file.", "This is a dummy file2.") == "I/O operation on closed file."
PythonSaga/180
def max_capacity(n:int, m:int) -> int: """I have 2 pack of floor of n and m kgs. I have to purchase a scope of such capacity that it can be used for both bags. But the idea is the number of scoops to empty both bag should be natural number respectively. Also the scope should be of maximum capacity as possible. Take input from user for n and m and return the maximum capacity of scope. Try to use recursion to solve this problem. Example: Input: 3, 5 Output: 1 Input: 4,20 Output: 4 Input: 6,15 Output: 3"""
max_capacity
if b == 0: return a return max_capacity(b, a % b)
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(3,5) == 1 assert candidate(4,20) == 4 assert candidate(6,15) == 3 assert candidate(26,39) == 13
PythonSaga/181
def max_stencils(n:int, a:int, b:int, c:int) -> int: """I have a wall of length n, and 3 stencils of length a, b, and c. I have to paint the wall using these stencils. But in such a way that the number of stencils used to paint the wall should be maximum to bring out the best design. Also, the length of the wall should be completely covered by the stencils. Take input from user for n, a, b, and c and return the maximum number of stencils used to paint the wall. Try to use recursion to solve this problem. Example: Input: 23, 11, 9, 12 Output: 2 Input: 17, 10, 11, 3 Output: 3"""
max_stencils
if n == 0 : return 0 if n <= -1 : return -1 res = max(max_stencils(n-a,a,b,c), max_stencils(n-b,a,b,c), max_stencils(n-c,a,b,c)) if res == -1 : return -1 return res + 1
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(23, 11, 9, 12) == 2 assert candidate(17, 10, 11, 3) == 3 assert candidate(18, 11, 9, 3) == 6 assert candidate(21, 11, 9, 2) == 7
PythonSaga/182
def round_chairs(n:int, k:int) -> int: """I am playing a game of round chairs with my friends. Where n chairs are arranged in a circle. Every time a game starts the kth chair is removed from the circle and the game continues. Until only one chair is left. I have to find out the position of the last chair left in the circle so that I can win the game. Take input from user for n and k and return the position of the last chair left in the circle. Try to use recursion to solve this problem. Example: Input: 14, 2 Output: 13 Input: 7, 3 Output: 4"""
round_chairs
if (n == 1): return 1 else: return (round_chairs(n - 1, k) + k-1) % n + 1
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate(14, 2) == 13 assert candidate(7, 3) == 4 assert candidate(10, 2) == 5 assert candidate(11, 5) == 8
PythonSaga/183
def qwerty_phone(key_presses: list) -> list: """I saw the qwerty phones and i was thinking about the number of key presses to type a word. So, now I want to find the numbers of words that can be typed using the given number of key presses. My keypad looks like this: 1:{},2:{'a','b','c'},3:{'d','e','f'},4:{'g','h','i'},5:{'j','k','l'},6:{'m','n','o'},7:{'p','q','r','s'},8:{'t','u','v'},9:{'w','x','y','z'},0:{} Take input from user for the order of key presses and return the words that can be typed using the given number of key presses. Try to use recursion to solve this problem. Example: Input: [2,3,4] Output: ['adg', 'adh', 'adi', 'aeg', 'aeh', 'aei', 'afg', 'afh', 'afi', 'bdg', 'bdh', 'bdi', 'beg', 'beh', 'bei', 'bfg', 'bfh', 'bfi', 'cdg', 'cdh', 'cdi', 'ceg', 'ceh', 'cei', 'cfg', 'cfh', 'cfi']"""
qwerty_phone
digit_map = { '2': 'abc', '3': 'def', '4': 'ghi', '5': 'jkl', '6': 'mno', '7': 'pqrs', '8': 'tuv', '9': 'wxyz', } def qwerty_phone(input): input = str(input) ret = [''] for char in input: letters = digit_map.get(char, '') ret = [prefix+letter for prefix in ret for letter in letters] return ret
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate([2,3,4]) == ['adg', 'adh', 'adi', 'aeg', 'aeh', 'aei', 'afg', 'afh', 'afi', 'bdg', 'bdh', 'bdi', 'beg', 'beh', 'bei', 'bfg', 'bfh', 'bfi', 'cdg', 'cdh', 'cdi', 'ceg', 'ceh', 'cei', 'cfg', 'cfh', 'cfi'] assert candidate([1]) == [] assert candidate([2,3]) == ['ad', 'ae', 'af', 'bd', 'be', 'bf', 'cd', 'ce', 'cf']
PythonSaga/184
def match_ptr(s:str, ptr:str) -> bool: """Given an string s and a pattern ptr, implement pattern matching with support for '+' and '-' where: '+' Matches any single character. '-' Matches any sequence of characters (including the empty sequence). The matching should cover the entire input string (not partial). Take input from user for s and ptr and return True if the pattern matches the string, else False. Try to use recursion to solve this problem. Example: Input: s = "aa", ptr = "a+" Output: True Input: s = "aa", ptr = "a" Output: false """
match_ptr
i, j, si, m = 0, 0, -1, 0 while i < len(s): if j < len(p) and (s[i] == p[j] or p[j] == '+'): j += 1 i += 1 elif j < len(p) and p[j] == '-': si = j m = i j += 1 elif si != -1: j = si + 1 m += 1 i = m else: return False while j < len(p) and p[j] == '-': j += 1 return j == len(p)
METADATA = {'author': 'ay', 'dataset': 'test'} def check(candidate): assert candidate('aa', 'a+') == True assert candidate('aa','a') == False assert candidate('aab', '-a-') == True assert candidate('aab', '-a') == False