Datasets:
File size: 3,561 Bytes
ad182f3 c5ac579 ad182f3 e33af0a ad182f3 f7f8ece 22bd5e9 ad182f3 e33af0a 228340e e33af0a 228340e ad182f3 228340e ad182f3 d4af7a3 ad182f3 228340e d4af7a3 ad182f3 19ec0f2 ad182f3 19ec0f2 ad182f3 22bd5e9 eadfb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
task_categories:
- image-segmentation
- image-classification
language:
- en
tags:
- agritech
- hyperspectral
- spectroscopy
- fruit
- sub-class classification
- detection
size_categories:
- 10K<n<100K
---
# Living Optics Orchard Dataset
## Overview
This dataset contains 100 images of various fruits and vegetables captured under controlled lighting, with the [Living Optics Camera](livingoptics.com).
The data consists of RGB images, sparse spectral samples and instance segmentation masks.
From the 100 images, we extract >430,000 spectral samples, of which >85,000 belong to one of the 19 classes in the dataset. The rest of the spectra can be used for negative sampling when training classifiers.
Additionally, we provide a set of demo videos in `.lo` format which are unannotated but which can be used to qualititively test algorithms built on this dataset.
### Classes
The dataset contains 19 classes:
- lemon - 8275 total samples
- melon - 9507 total samples
- yellow pepper - 4752 total samples
- cucumber - 227 total samples
- granny smith apple - 3984 total samples
- jazz apple - 272 total samples
- plastic apple - 6693 total samples
- pink lady apple - 17311 total samples
- royal gala apple - 21319 total samples
- tomato - 3748 total samples
- cherry tomato - 360 total samples
- plastic tomato - 569 total samples
- green pepper - 226 total samples
- orange - 4641 total samples
- easy peeler orange - 2720 total samples
- orange pepper - 552 total samples
- pear - 194 total samples
- green grape - 106 total samples
- lime - 43 total samples
## Requirements
- [lo-sdk](https://www.livingoptics.com/register-for-download-sdk/)
- [lo-examples](https://github.com/livingoptics/python-examples)
- [lo-data] TODO
## Download instructions
### Command line
```commandline
mkdir -p hyperspectral-fruit
huggingface-cli download LivingOptics/hyperspectral-fruit --repo-type dataset --local-dir hyperspectral-fruit
```
### Python
```python
from huggingface_hub import hf_hub_download
dataset_path = hf_hub_download(repo_id="LivingOptics/hyperspectral-fruit", filename="train", repo_type="dataset")
print(dataset_path)
```
## Usage
```python
import os.path as op
import numpy.typing as npt
from typing import List, Dict, Generator
from lo.data.tools import Annotation, LODataItem, LOJSONDataset, draw_annotations
from lo.data.dataset_visualisation import get_object_spectra, plot_labelled_spectra
from lo.sdk.api.acquisition.io.open import open as lo_open
# Load the dataset
path_to_download = op.expanduser("~/Downloads/LivingOpticsOrchardData")
dataset = LOJSONDataset(path_to_download)
# Get the training data as an iterator
training_data: List[LODataItem] = dataset.load("train")
# Inspect the data
lo_data_item: LODataItem
for lo_data_item in training_data[:3]:
draw_annotations(lo_data_item)
ann: Annotation
for ann in lo_data_item.annotations:
print(ann.class_name, ann.category, ann.subcategories)
# Plot the spectra for each class
fig, ax = plt.subplots(1)
object_spectra_dict = {}
class_numbers_to_labels = {0: "background_class"}
for lo_data_item in training_data:
object_spectra_dict, class_numbers_to_labels = get_object_spectra(
lo_data_item, object_spectra_dict, class_numbers_to_labels
)
plot_labelled_spectra(object_spectra_dict, class_numbers_to_labels, ax)
plt.show()
```
See [here TODO](https://github.com/livingoptics/python-examples) for an example of how to train and run a segmentation and spectral classification algoirthm using this dataset. |