File size: 5,120 Bytes
318f974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import json
import os
import ast
from pathlib import Path
import datasets
from PIL import Image
import pandas as pd
import glob

logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{,
  title={},
  author={},
  journal={},
  year={},
  volume={}
}
"""
_DESCRIPTION = """\
This is a sample dataset for training layoutlmv3 model on custom annotated data.
"""

def load_image(image_path):
    image = Image.open(image_path).convert("RGB")
    w, h = image.size
    return image, (w,h)

def normalize_bbox(bbox, size):
    return [
        int(1000 * bbox[0] / size[0]),
        int(1000 * bbox[1] / size[1]),
        int(1000 * bbox[2] / size[0]),
        int(1000 * bbox[3] / size[1]),
    ]

_URLS = []
data_dir = r"D:\Study\LayoutLMV3\data_ne"

class DatasetConfig(datasets.BuilderConfig):
    """BuilderConfig for InvoiceExtraction Dataset"""
    def __init__(self, **kwargs):
        """BuilderConfig for InvoiceExtraction Dataset.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(DatasetConfig, self).__init__(**kwargs)

class InvoiceExtraction(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        DatasetConfig(name="InvoiceExtraction", version=datasets.Version("1.0.0"), description="InvoiceExtraction dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names = [ 'address', 'company_name', 'customer_id', 'invoice_id', 'invoice_date', 'invoice_total', 'sub_total', 'total_tax', 'item', 'amount',
]
                            )
                    ),
                    "image_path": datasets.Value("string"),
                    "image": datasets.features.Image()
                }
            ),
            supervised_keys=None,
            citation=_CITATION,
            homepage="",
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        """Uses local files located with data_dir"""
        return [
        datasets.SplitGenerator(
            name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "dataset/training_data/")}
        ),
        datasets.SplitGenerator(
            name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "dataset/testing_data/")}
        ),
    ]

    def get_line_bbox(self, bboxs):
        x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
        y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]

        x0, y0, x1, y1 = min(x), min(y), max(x), max(y)

        assert x1 >= x0 and y1 >= y0
        bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
        return bbox

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        ann_dir = os.path.join(filepath, "annotations")
        img_dir = os.path.join(filepath, "images")

        for guid, file in enumerate(sorted(os.listdir(ann_dir))):
            tokens = []
            bboxes = []
            ner_tags = []

            file_path = os.path.join(ann_dir, file)
            with open(file_path, "r", encoding="utf8") as f:
                data = json.load(f)
        
            image_path = os.path.join(img_dir, file.replace('.json', '.png'))  # Adjust the file extension
            print("Image Path:", image_path)  # Add this line
            image, size = load_image(image_path)
        
            for item in data["form"]:
                cur_line_bboxes = []
                words, label = item["words"], item["label"]
                words = [w for w in words if w["text"].strip() != ""]
            
                if len(words) == 0:
                    continue
            
                if label == "other":
                    for w in words:
                        tokens.append(w["text"])
                        ner_tags.append("O")
                        cur_line_bboxes.append(normalize_bbox(w["box"], size))
                else:
                    tokens.append(words[0]["text"])
                    ner_tags.append("B-" + label.upper())
                    cur_line_bboxes.append(normalize_bbox(words[0]["box"], size))
                
                    for w in words[1:]:
                        tokens.append(w["text"])
                        ner_tags.append("I-" + label.upper())
                        cur_line_bboxes.append(normalize_bbox(w["box"], size))
            
                cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
                bboxes.extend(cur_line_bboxes)

            yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}