markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values | hash
stringlengths 32
32
|
---|---|---|---|---|---|
View Image | # Show image
plt.imshow(image_enhanced, cmap='gray'), plt.axis("off")
plt.show() | machine-learning/enhance_contrast_of_greyscale_image.ipynb | tpin3694/tpin3694.github.io | mit | 9fb6183147ac1c2a021d4163167bd07f |
If you don't have the image viewing tool ds9, you should install it - it's very useful astronomical software. You can download it (later!) from this webpage.
We can also display the image in the notebook: | plt.imshow(viz.scale_image(im, scale='log', max_cut=40), cmap='gray', origin='lower');
plt.savefig("figures/cluster_image.png") | examples/XrayImage/FirstLook.ipynb | enoordeh/StatisticalMethods | gpl-2.0 | 84c281bcce17e5530375e9aedd7ba96b |
Exercise
What is going on in this image?
Make a list of everything that is interesting about this image with your neighbor, and we'll discuss the features you identify in about 5 minutes time.
Just to prove that images really are arrays of numbers: | im[350:359,350:359]
index = np.unravel_index(im.argmax(), im.shape)
print("image dimensions:",im.shape)
print("location of maximum pixel value:",index)
print("maximum pixel value: ",im[index]) | examples/XrayImage/FirstLook.ipynb | enoordeh/StatisticalMethods | gpl-2.0 | 6efb34527a18f052c52735d66b16e4bb |
A full adder has three single bit inputs, and returns the sum and the carry. The sum is the exclusive or of the 3 bits, the carry is 1 if any two of the inputs bits are 1. Here is a schematic of a full adder circuit (from logisim).
<img src="images/full_adder_logisim.png" width="500"/>
We start by defining a magma combinational function that implements a full adder.
The full adder function takes three single bit inputs (type m.Bit) and returns two single bit outputs as a tuple.
The first element of tuple is the sum, the second element is the carry. Note that the arguments and return values of the functions have type annotations using Python 3's typing syntax.
We compute the sum and carry using standard Python bitwise operators &, |, and ^. | @m.circuit.combinational
def full_adder(A: m.Bit, B: m.Bit, C: m.Bit) -> (m.Bit, m.Bit):
return A ^ B ^ C, A & B | B & C | C & A # sum, carry | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 0a860b89f0a18f62ad0a3694943ebfa0 |
We can test our combinational function to verify that our implementation behaves as expected fault.
We'll use the fault.PythonTester which will simulate the circuit using magma's Python simulator. | import fault
tester = fault.PythonTester(full_adder)
assert tester(1, 0, 0) == (1, 0), "Failed"
assert tester(0, 1, 0) == (1, 0), "Failed"
assert tester(1, 1, 0) == (0, 1), "Failed"
assert tester(1, 0, 1) == (0, 1), "Failed"
assert tester(1, 1, 1) == (1, 1), "Failed"
print("Success!") | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | d5c58bcb134d421ed7f3ba148a5f50a9 |
combinational functions are polymorphic over Python and magma types. If the function is called with magma values, it will produce a circuit instance, wire up the inputs, and return references to the outputs. Otherwise, it will invoke the function in Python. For example, we can use the Python function to verify the circuit simulation. | assert tester(1, 0, 0) == full_adder(1, 0, 0), "Failed"
assert tester(0, 1, 0) == full_adder(0, 1, 0), "Failed"
assert tester(1, 1, 0) == full_adder(1, 1, 0), "Failed"
assert tester(1, 0, 1) == full_adder(1, 0, 1), "Failed"
assert tester(1, 1, 1) == full_adder(1, 1, 1), "Failed"
print("Success!") | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 5abbd2d1c4e9925c840ae4eb50b70017 |
Circuits
Now that we have an implementation of full_adder as a combinational function,
we'll use it to construct a magma Circuit.
A Circuit in magma corresponds to a module in verilog.
This example shows using the combinational function inside a circuit definition, as opposed to using the Python implementation shown before. | class FullAdder(m.Circuit):
io = m.IO(I0=m.In(m.Bit),
I1=m.In(m.Bit),
CIN=m.In(m.Bit),
O=m.Out(m.Bit),
COUT=m.Out(m.Bit))
O, COUT = full_adder(io.I0, io.I1, io.CIN)
io.O @= O
io.COUT @= COUT | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | bb93b76721fde2fab3375397f012030d |
First, notice that the FullAdder is a subclass of Circuit. All magma circuits are classes in python.
Second, the function IO creates the interface to the circuit.
The arguments toIO are keyword arguments.
The key is the name of the argument in the circuit, and the value is its type.
In this circuit, all the inputs and outputs have Magma type Bit.
We also qualify each type as an input or an output using the functions In and Out.
Note that when we call the python function fulladder
it is passed magma values not standard python values.
In the previous cell, we tested fulladder with standard python ints,
while in this case, the values passed to the Python fulladder function
are magma values of type Bit.
The Python bitwise operators for Magma types are overloaded to automatically create subcircuits to compute logical functions.
fulladder returns two values.
These values are assigned to the python variables O and COUT.
Remember that assigning to a Python variable
sets the variable to refer to the object.
magma values are Python objects,
so assigning an object to a variable creates a reference to that magma value.
In order to complete the definition of the circuit,
O and COUT need to be wired to the outputs in the interface.
The python @= operator is overloaded to perform wiring.
Let's inspect the circuit definition by printing the __repr__. | print(repr(FullAdder)) | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | ccda67d47e3f10e4d7b7f64ba258200e |
We see that it has created an instance of the full_adder combinational function and wired up the interface.
We can also inspect the contents of the full_adder circuit definition. Notice that it has lowered the Python operators into a structural representation of the primitive logicoperations. | print(repr(full_adder.circuit_definition)) | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 1cf85f6cdedd92b1206e19adde819323 |
We can also inspect the code generated by the m.circuit.combinational decorator by looking in the .magma directory for a file named .magma/full_adder.py. When using m.circuit.combinational, magma will generate a file matching the name of the decorated function. You'll notice that the generated code introduces an extra temporary variable (this is an artifact of the SSA pass that magma runs to handle if/else statements). | with open(".magma/full_adder.py") as f:
print(f.read()) | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | e4ab494e3c05c22b261d43ce3b5edb1c |
In the code above, a mux is imported and named phi. If the combinational circuit contains any if-then-else constructs, they will be transformed into muxes.
Note also the m.wire function. m.wire(O0, io.I0) is equivalent to io.O0 @= O0.
Staged testing with Fault
fault is a python package for testing magma circuits. By default, fault is quiet, so we begin by enabling logging using the built-in logging module | import logging
logging.basicConfig(level=logging.INFO)
import fault | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 6f15c157abc0e441e495d796550c2e8e |
Earlier in the notebook, we showed an example using fault.PythonTester to simulate a circuit. This uses an interactive programming model where test actions are immediately dispatched to the underlying simulator (which is why we can perform assertions on the simulation values in Python.
fault also provides a staged metaprogramming environment built upon the Tester class. Using the staged environment means values are not returned immediately to Python. Instead, the Python test code records a sequence of actions that are compiled and run in a later stage.
A Tester is instantiated with a magma circuit. | tester = fault.Tester(FullAdder) | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 9b48fac5d30bcbdcd583a4660c2228eb |
An instance of a Tester has an attribute .circuit that enables the user to record test actions. For example, inputs to a circuit can be poked by setting the attribute corresponding to the input port name. | tester.circuit.I0 = 1
tester.circuit.I1 = 1
tester.circuit.CIN = 1 | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | a7ab59bb6d679a36d679401dc099a4ae |
fault's default Tester provides the semantics of a cycle accurate simulator, so, unlike verilog, pokes do not create events that trigger computation. Instead, these poke values are staged, and the propogation of their effect occurs when the user calls the eval action. | tester.eval() | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | d2277ba3c1e7350029da9ea235c5f9c0 |
To assert that the output of the circuit is equal to a value, we use the expect method that are defined on the attributes corresponding to circuit output ports | tester.circuit.O.expect(1)
tester.circuit.COUT.expect(1) | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 7fad5b10ee57bd2f62b7f49cd0bafdb0 |
Because fault is a staged programming environment, the above actions are not executed until we have advanced to the next stage. In the first stage, the user records test actions (e.g. poke, eval, expect). In the second stage, the test is compiled and run using a target runtime. Here's examples of running the test using magma's python simulator, the coreir c++ simulator, and verilator. | # compile_and_run throws an exception if the test fails
tester.compile_and_run("verilator") | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 5b58742b8b7dbe0f74998609455d69bf |
The tester also provides the same convenient __call__ interface we saw before. | O, COUT = tester(1, 0, 0)
tester.expect(O, 1)
tester.expect(COUT, 0)
tester.compile_and_run("verilator") | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 1f9225b0fa7784dc52538dcb35dfa25e |
Generate Verilog
Magma's default compiler will generate verilog using CoreIR | m.compile("build/FullAdder", FullAdder, inline=True)
%cat build/FullAdder.v | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 92f7a3a612a01e67c1220c59aabe7b32 |
Generate CoreIR
We can also inspect the intermediate CoreIR used in the generation process. | %cat build/FullAdder.json | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | 45c005c815977b64a6fe65dfe9aa8b46 |
Here's an example of running a CoreIR pass on the intermediate representation. | !coreir -i build/FullAdder.json -p instancecount | notebooks/tutorial/coreir/FullAdder.ipynb | phanrahan/magmathon | mit | a37c9fa639a0422bce1443ac798ef2cf |
При увеличении порога мы делаем меньше ошибок FP и больше ошибок FN, поэтому одна из кривых растет, а вторая - падает. По такому графику можно подобрать оптимальное значение порога, при котором precision и recall будут приемлемы. Если такого порога не нашлось, нужно обучать другой алгоритм.
Оговоримся, что приемлемые значения precision и recall определяются предметной областью. Например, в задаче определения, болен ли пациент определенной болезнью (0 - здоров, 1 - болен), ошибок false negative стараются избегать, требуя recall около 0.9. Можно сказать человеку, что он болен, и при дальнейшей диагностике выявить ошибку; гораздо хуже пропустить наличие болезни.
<font color="green" size=5>Programming assignment: problem 1. </font> Фиксируем порог T = 0.65; по графикам можно примерно узнать, чему равны метрики на трех выбранных парах векторов (actual, predicted). Вычислите точные precision и recall для этих трех пар векторов.
6 полученных чисел запишите в текстовый файл в таком порядке:
precision_1 recall_1 precision_10 recall_10 precision_11 recall_11
Цифры XXX после пробела соответствуют таким же цифрам в названиях переменных actual_XXX и predicted_XXX.
Передайте ответ в функцию write_answer_1. Полученный файл загрузите в форму. | ############### Programming assignment: problem 1 ###############
T = 0.65
for _actual, _predicted in zip([actual_1, actual_10, actual_11],
[predicted_1, predicted_10, predicted_11]):
print('Precision: %s' % precision_score(_actual, _predicted > T))
print('Recall: %s\n' % recall_score(_actual, _predicted > T))
def write_answer_1(precision_1, recall_1, precision_10, recall_10, precision_11, recall_11):
answers = [precision_1, recall_1, precision_10, recall_10, precision_11, recall_11]
with open("pa_metrics_problem1.txt", "w") as fout:
fout.write(" ".join([str(num) for num in answers]))
write_answer_1(1.0, 0.466666666667, 1.0, 0.133333333333, 0.647058823529, 0.846153846154) | Coursera/Machine-learning-data-analysis/Course 2/Week_02/MetricsPA.ipynb | ALEXKIRNAS/DataScience | mit | d5a70f645f8b21e88292210a67510200 |
F1-метрика в двух последних случаях, когда одна из парных метрик равна 1, значительно меньше, чем в первом, сбалансированном случае.
<font color="green" size=5>Programming assignment: problem 2. </font> На precision и recall влияют и характер вектора вероятностей, и установленный порог.
Для тех же пар (actual, predicted), что и в предыдущей задаче, найдите оптимальные пороги, максимизирующие F1_score. Будем рассматривать только пороги вида T = 0.1 * k, k - целое; соответственно, нужно найти три значения k. Если f1 максимизируется при нескольких значениях k, укажите наименьшее из них.
Запишите найденные числа k в следующем порядке:
k_1, k_10, k_11
Цифры XXX после пробела соответствуют таким же цифрам в названиях переменных actual_XXX и predicted_XXX.
Передайте ответ в функцию write_answer_2. Загрузите файл в форму.
Если вы запишите список из трех найденных k в том же порядке в переменную ks, то с помощью кода ниже можно визуализировать найденные пороги: | ############### Programming assignment: problem 2 ###############
ks = np.zeros(3)
idexes = np.empty(3)
for threshold in np.arange(11):
T = threshold * 0.1
for actual, predicted, idx in zip([actual_1, actual_10, actual_11],
[predicted_1 > T, predicted_10 > T, predicted_11 > T],
[0, 1, 2]):
score = f1_score(actual, predicted)
if score > ks[idx]:
ks[idx] = score
idexes[idx] = threshold
print(ks)
print(idexes)
ks = idexes
many_scatters([actual_1, actual_10, actual_11], [predicted_1, predicted_10, predicted_11],
np.array(ks)*0.1, ["Typical", "Avoids FP", "Avoids FN"], (1, 3))
def write_answer_2(k_1, k_10, k_11):
answers = [k_1, k_10, k_11]
with open("pa_metrics_problem2.txt", "w") as fout:
fout.write(" ".join([str(num) for num in answers]))
write_answer_2(5, 3, 6) | Coursera/Machine-learning-data-analysis/Course 2/Week_02/MetricsPA.ipynb | ALEXKIRNAS/DataScience | mit | c070a7b7fa0136c2e06b713eb87ab99d |
Как и предыдущие метрики, log_loss хорошо различает идеальный, типичный и плохой случаи. Но обратите внимание, что интерпретировать величину достаточно сложно: метрика не достигает нуля никогда и не имеет верхней границы. Поэтому даже для идеального алгоритма, если смотреть только на одно значение log_loss, невозможно понять, что он идеальный.
Но зато эта метрика различает осторожный и рискующий алгоритмы. Как мы видели выше, в случаях Typical careful и Typical risky количество ошибок при бинаризации по T = 0.5 примерно одинаковое, в случаях Ideal ошибок вообще нет. Однако за неудачно угаданные классы в Typical рискующему алгоритму приходится платить большим увеличением log_loss, чем осторожному алгоритму. С другой стороны, за удачно угаданные классы рискованный идеальный алгоритм получает меньший log_loss, чем осторожный идеальный алгоритм.
Таким образом, log_loss чувствителен и к вероятностям, близким к 0 и 1, и к вероятностям, близким к 0.5.
Ошибки FP и FN обычный Log_loss различать не умеет.
Однако нетрудно сделать обобщение log_loss на случай, когда нужно больше штрафовать FP или FN: для этого достаточно добавить выпуклую (то есть неотрицательную и суммирующуюся к единице) комбинацию из двух коэффициентов к слагаемым правдоподобия. Например, давайте штрафовать false positive:
$weighted_log_loss(actual, predicted) = -\frac 1 n \sum_{i=1}^n (0.3\, \cdot actual_i \cdot \log (predicted_i) + 0.7\,\cdot (1-actual_i)\cdot \log (1-predicted_i))$
Если алгоритм неверно предсказывает большую вероятность первому классу, то есть объект на самом деле принадлежит классу 0, то первое слагаемое в скобках равно нулю, а второе учитывается с большим весом.
<font color="green" size=5>Programming assignment: problem 3. </font> Напишите функцию, которая берет на вход векторы actual и predicted и возвращает модифицированный Log-Loss, вычисленный по формуле выше. Вычислите ее значение (обозначим его wll) на тех же векторах, на которых мы вычисляли обычный log_loss, и запишите в файл в следующем порядке:
wll_0 wll_1 wll_2 wll_0r wll_1r wll_10 wll_11
Цифры XXX после пробела соответствуют таким же цифрам в названиях переменных actual_XXX и predicted_XXX.
Передайте ответ в функцию write_answer3. Загрузите файл в форму. | ############### Programming assignment: problem 3 ##############
ans = []
def modified_log(actual, predicted):
return - np.sum(0.3 * actual * np.log(predicted) + 0.7 * (1 - actual) * np.log(1 - predicted)) / len(actual)
for _actual, _predicted in zip([actual_0, actual_1, actual_2, actual_0r, actual_1r, actual_10, actual_11],
[predicted_0, predicted_1, predicted_2, predicted_0r, predicted_1r, predicted_10, predicted_11]):
print(modified_log(_actual, _predicted), log_loss(_actual, _predicted))
ans.append(modified_log(_actual, _predicted))
def write_answer_3(ans):
answers = ans
with open("pa_metrics_problem3.txt", "w") as fout:
fout.write(" ".join([str(num) for num in answers]))
write_answer_3(ans) | Coursera/Machine-learning-data-analysis/Course 2/Week_02/MetricsPA.ipynb | ALEXKIRNAS/DataScience | mit | d76a451e500b5ef7a9bf4f18441208e0 |
Чем больше объектов в выборке, тем более гладкой выглядит кривая (хотя на самом деле она все равно ступенчатая).
Как и ожидалось, кривые всех идеальных алгоритмов проходят через левый верхний угол. На первом графике также показана типичная ROC-кривая (обычно на практике они не доходят до "идеального" угла).
AUC рискующего алгоритма значительном меньше, чем у осторожного, хотя осторожный и рискущий идеальные алгоритмы не различаются по ROC или AUC. Поэтому стремиться увеличить зазор между интервалами вероятностей классов смысла не имеет.
Наблюдается перекос кривой в случае, когда алгоритму свойственны ошибки FP или FN. Однако по величине AUC это отследить невозможно (кривые могут быть симметричны относительно диагонали (0, 1)-(1, 0)).
После того, как кривая построена, удобно выбирать порог бинаризации, в котором будет достигнут компромисс между FP или FN. Порог соответствует точке на кривой. Если мы хотим избежать ошибок FP, нужно выбирать точку на левой стороне квадрата (как можно выше), если FN - точку на верхней стороне квадрата (как можно левее). Все промежуточные точки будут соответствовать разным пропорциям FP и FN.
<font color="green" size=5>Programming assignment: problem 4. </font> На каждой кривой найдите точку, которая ближе всего к левому верхнему углу (ближе в смысле обычного евклидова расстояния), этой точке соответствует некоторый порог бинаризации. Запишите в выходной файл пороги в следующем порядке:
T_0 T_1 T_2 T_0r T_1r T_10 T_11
Цифры XXX после пробела соответствуют таким же цифрам в названиях переменных actual_XXX и predicted_XXX.
Если порогов, минимизирующих расстояние, несколько, выберите наибольший.
Передайте ответ в функцию write_answer_4. Загрузите файл в форму.
Пояснение: функция roc_curve возвращает три значения: FPR (массив абсции точек ROC-кривой), TPR (массив ординат точек ROC-кривой) и thresholds (массив порогов, соответствующих точкам).
Рекомендуем отрисовывать найденную точку на графике с помощью функции plt.scatter. | ############### Programming assignment: problem 4 ###############
ans = []
for actual, predicted in zip([actual_0, actual_1, actual_2, actual_0r, actual_1r, actual_10, actual_11],
[predicted_0, predicted_1, predicted_2, predicted_0r, predicted_1r, predicted_10, predicted_11]):
fpr, tpr, thr = roc_curve(actual, predicted)
dist = np.sqrt(np.square(-fpr) + np.square(1 - tpr))
idx = np.argmin(dist)
print(thr[idx])
ans.append(thr[idx])
def write_answer_4(ans):
answers = ans
with open("pa_metrics_problem4.txt", "w") as fout:
fout.write(" ".join([str(num) for num in answers]))
write_answer_4(ans) | Coursera/Machine-learning-data-analysis/Course 2/Week_02/MetricsPA.ipynb | ALEXKIRNAS/DataScience | mit | 82481a5cc54526441ba3073d702bec1e |
Exercise 1.
a.
$\Omega$ will be all the possible combinations we have for 150 object two have two diffent values. For example (0, 0, ..., 0), (1, 0, ..., 0), (0, 1, ..., 0), ... (1, 1, ..., 0), ... (1, 1, ..., 1). This sample space has size of $2^{150}$. The random variable $X(\omega)$ will be the number of defective objects there are in the sample $\omega$. We can also define $Y(\omega) = 150 - X(\omega)$, that will be counting the number of checked items.
b.
The binomial distribution is the distribution that gives the probability of the number of "succeses" in a sequence of random and indipendent boolean values. This is the case for counting the number of broken object in a group of 150 and the probability of being broken of 4%.
c.
For computing the probability that at most 4 objects are broken we need to sum the probabilities that $k$ objects are broken with $k \in [0, 4]$.
$P(<5) = \sum_{k=0}^{150} P(X=k) = \sum_{k=0}^{150} {150\choose k}p^k(1-p)^{150-k}$
The probability is 28 % | p = 1. / 365
1 - np.sum(binomial(p, 23 * (22) / 2, 0)) | UQ/assignment_3/Assignment 3.ipynb | LorenzoBi/courses | mit | 53a412a477b85d65a63496015f03889d |
Quick Start | # import data
data_fc, data_p_value = kinact.get_example_data()
# import prior knowledge
adj_matrix = kinact.get_kinase_targets()
print data_fc.head()
print
print data_p_value.head()
# Perform ksea using the Mean method
score, p_value = kinact.ksea.ksea_mean(data_fc=data_fc['5min'].dropna(),
interactions=adj_matrix,
mP=data_fc['5min'].values.mean(),
delta=data_fc['5min'].values.std())
print pd.DataFrame({'score': score, 'p_value': p_value}).head()
# Perform ksea using the Alternative Mean method
score, p_value = kinact.ksea.ksea_mean_alt(data_fc=data_fc['5min'].dropna(),
p_values=data_p_value['5min'],
interactions=adj_matrix,
mP=data_fc['5min'].values.mean(),
delta=data_fc['5min'].values.std())
print pd.DataFrame({'score': score, 'p_value': p_value}).head()
# Perform ksea using the Delta method
score, p_value = kinact.ksea.ksea_delta(data_fc=data_fc['5min'].dropna(),
p_values=data_p_value['5min'],
interactions=adj_matrix)
print pd.DataFrame({'score': score, 'p_value': p_value}).head() | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | 6872721622ac89fb0814c0e7e1e99eb1 |
1. Loading the data
In order to perform the described kinase enrichment analysis, we load the data into a Pandas DataFrame. Here, we use the data from <em>de Graaf et al., 2014</em> for demonstration of KSEA. The data is available as supplemental material to the article online under http://mcponline.org/content/13/9/2426/suppl/DC1. The dataset of interest can be found in the Supplemental Table 2.
When downloading the dataset from the internet, it will be provided as Excel spreadsheet. For the use in this script, it will have to saved as csv-file, using the 'Save As' function in Excel.
In the accompanying github repository, we will provide an already processed csv-file together with the code for KSEA. | # Read data
data_raw = pd.read_csv('../kinact/data/deGraaf_2014_jurkat.csv', sep=',', header=0)
# Filter for those p-sites that were matched ambiguously
data_reduced = data_raw[~data_raw['Proteins'].str.contains(';')]
# Create identifier for each phosphorylation site, e.g. P06239_S59 for the Serine 59 in the protein Lck
data_reduced.loc[:, 'ID'] = data_reduced['Proteins'] + '_' + data_reduced['Amino acid'] + \
data_reduced['Positions within proteins']
data_indexed = data_reduced.set_index('ID')
# Extract only relevant columns
data_relevant = data_indexed[[x for x in data_indexed if x.startswith('Average')]]
# Rename columns
data_relevant.columns = [x.split()[-1] for x in data_relevant]
# Convert abundaces into fold changes compared to control (0 minutes after stimulation)
data_fc = data_relevant.sub(data_relevant['0min'], axis=0)
data_fc.drop('0min', axis=1, inplace=True)
# Also extract the p-values for the fold changes
data_p_value = data_indexed[[x for x in data_indexed if x.startswith('p value') and x.endswith('vs0min')]]
data_p_value.columns = [x.split('_')[-1].split('vs')[0] + 'min' for x in data_p_value]
data_p_value = data_p_value.astype('float') # Excel saved the p-values as strings, not as floating point numbers
print data_fc.head()
print data_p_value.head() | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | f373447a48140a8bef5929fbceab3da3 |
2. Import prior-knowledge kinase-substrate relationships from PhosphoSitePlus
In the following example, we use the data from the PhosphoSitePlus database, which can be downloaded here: http://www.phosphosite.org/staticDownloads.action.
Consider, that the downloaded file contains a disclaimer at the top of the file, which has to be removed before the file can be used as described below. | # Read data
ks_rel = pd.read_csv('../kinact/data/PhosphoSitePlus.txt', sep='\t')
# The data from the PhosphoSitePlus database is not provided as comma-separated value file (csv),
# but instead, a tab = \t delimits the individual cells
# Restrict the data on interactions in the organism of interest
ks_rel_human = ks_rel.loc[(ks_rel['KIN_ORGANISM'] == 'human') & (ks_rel['SUB_ORGANISM'] == 'human')]
# Create p-site identifier of the same format as before
ks_rel_human.loc[:, 'psite'] = ks_rel_human['SUB_ACC_ID'] + '_' + ks_rel_human['SUB_MOD_RSD']
# Create adjencency matrix (links between kinases (columns) and p-sites (rows) are indicated with a 1, NA otherwise)
ks_rel_human.loc[:, 'value'] = 1
adj_matrix = pd.pivot_table(ks_rel_human, values='value', index='psite', columns='GENE', fill_value=0)
print adj_matrix.head()
print adj_matrix.sum(axis=0).sort_values(ascending=False).head() | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | 67745c12e5c9e231120efae0b274e343 |
3. KSEA
3.1 Quick start for KSEA
Together with this tutorial, we will provide an implementation of KSEA as custom Python functions. Examplary, the use of the function for the dataset by de Graaf et al. could look like this. | score, p_value = kinact.ksea.ksea_delta(data_fc=data_fc['5min'],
p_values=data_p_value['5min'],
interactions=adj_matrix,
)
print pd.DataFrame({'score': score, 'p_value': p_value}).head()
# Calculate the KSEA scores for all data with the ksea_mean method
activity_mean = pd.DataFrame({c: kinact.ksea.ksea_mean(data_fc=data_fc[c],
interactions=adj_matrix,
mP=data_fc.values.mean(),
delta=data_fc.values.std())[0]
for c in data_fc})
activity_mean = activity_mean[['5min', '10min', '20min', '30min', '60min']]
print activity_mean.head()
# Calculate the KSEA scores for all data with the ksea_mean method, using the median
activity_median = pd.DataFrame({c: kinact.ksea.ksea_mean(data_fc=data_fc[c],
interactions=adj_matrix,
mP=data_fc.values.mean(),
delta=data_fc.values.std(), median=True)[0]
for c in data_fc})
activity_median = activity_median[['5min', '10min', '20min', '30min', '60min']]
print activity_median.head()
# Calculate the KSEA scores for all data with the ksea_mean_alt method
activity_mean_alt = pd.DataFrame({c: kinact.ksea.ksea_mean_alt(data_fc=data_fc[c],
p_values=data_p_value[c],
interactions=adj_matrix,
mP=data_fc.values.mean(),
delta=data_fc.values.std())[0]
for c in data_fc})
activity_mean_alt = activity_mean_alt[['5min', '10min', '20min', '30min', '60min']]
print activity_mean_alt.head()
# Calculate the KSEA scores for all data with the ksea_mean method, using the median
activity_median_alt = pd.DataFrame({c: kinact.ksea.ksea_mean_alt(data_fc=data_fc[c],
p_values=data_p_value[c],
interactions=adj_matrix,
mP=data_fc.values.mean(),
delta=data_fc.values.std(),
median=True)[0]
for c in data_fc})
activity_median_alt = activity_median_alt[['5min', '10min', '20min', '30min', '60min']]
print activity_median_alt.head()
# Calculate the KSEA scores for all data with the ksea_delta method
activity_delta = pd.DataFrame({c: kinact.ksea.ksea_delta(data_fc=data_fc[c],
p_values=data_p_value[c],
interactions=adj_matrix)[0]
for c in data_fc})
activity_delta = activity_delta[['5min', '10min', '20min', '30min', '60min']]
print activity_delta.head()
sns.set(context='poster', style='ticks')
sns.heatmap(activity_mean_alt, cmap=sns.blend_palette([sns.xkcd_rgb['amber'],
sns.xkcd_rgb['almost black'],
sns.xkcd_rgb['bright blue']],
as_cmap=True))
plt.show() | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | b9926c753f868cd11bf910a51b0aa5d7 |
In de Graaf et al., they associated (amongst others) the Casein kinase II alpha (CSNK2A1) with higher activity after prolonged stimulation with prostaglandin E2. Here, we plot the activity scores of CSNK2A1 for all three methods of KSEA, which are in good agreement. | kinase='CSNK2A1'
df_plot = pd.DataFrame({'mean': activity_mean.loc[kinase],
'delta': activity_delta.loc[kinase],
'mean_alt': activity_mean_alt.loc[kinase]})
df_plot['time [min]'] = [5, 10, 20, 30, 60]
df_plot = pd.melt(df_plot, id_vars='time [min]', var_name='method', value_name='activity score')
g = sns.FacetGrid(df_plot, col='method', sharey=False, size=3, aspect=1)
g = g.map(sns.pointplot, 'time [min]', 'activity score')
plt.subplots_adjust(top=.82)
plt.show() | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | 00c39dd122a72e37c1681c17b04d2c2c |
3.2. KSEA in detail
In the following, we show in detail the computations that are carried out inside the provided functions. Let us concentrate on a single condition (60 minutes after stimulation with prostaglandin E2) and a single kinase (CDK1). | data_condition = data_fc['60min'].copy()
p_values = data_p_value['60min']
kinase = 'CDK1'
substrates = adj_matrix[kinase].replace(0, np.nan).dropna().index
detected_p_sites = data_fc.index
intersect = list(set(substrates).intersection(detected_p_sites)) | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | c73a1171d7d35fcd666d404dc1d67fed |
3.2.1. Mean method | mS = data_condition.loc[intersect].mean()
mP = data_fc.values.mean()
m = len(intersect)
delta = data_fc.values.std()
z_score = (mS - mP) * np.sqrt(m) * 1/delta
from scipy.stats import norm
p_value_mean = norm.sf(abs(z_score))
print mS, p_value_mean | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | 33bf4e05a8e48d64f8f2c23831067f57 |
3.2.2. Alternative Mean method | cut_off = -np.log10(0.05)
set_alt = data_condition.loc[intersect].where(p_values.loc[intersect] > cut_off).dropna()
mS_alt = set_alt.mean()
z_score_alt = (mS_alt - mP) * np.sqrt(len(set_alt)) * 1/delta
p_value_mean_alt = norm.sf(abs(z_score_alt))
print mS_alt, p_value_mean_alt | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | b2511e3d0da66418f478019c9ff923f4 |
3.2.3. Delta Method | cut_off = -np.log10(0.05)
score_delta = len(data_condition.loc[intersect].where((data_condition.loc[intersect] > 0) &
(p_values.loc[intersect] > cut_off)).dropna()) -\
len(data_condition.loc[intersect].where((data_condition.loc[intersect] < 0) &
(p_values.loc[intersect] > cut_off)).dropna())
M = len(data_condition)
n = len(intersect)
N = len(np.where(p_values.loc[adj_matrix.index.tolist()] > cut_off)[0])
from scipy.stats import hypergeom
hypergeom_dist = hypergeom(M, n, N)
p_value_delta = hypergeom_dist.pmf(len(p_values.loc[intersect].where(p_values.loc[intersect] > cut_off).dropna()))
print score_delta, p_value_delta | doc/KSEA_example.ipynb | saezlab/kinact | gpl-3.0 | 7ddf2fd32123c80240305caa032ce010 |
1. Basic Linear Model | LM = keras.model.Sequential([Dense(Num_Classes, input_shape=(784,))])
LM.compile(optimizer=SGD(lr=0.01), loss='mse')
# LM.compile(optimizer=RMSprop(lr=0.01), loss='mse')
| FAI_old/lesson2/L2HW.ipynb | WNoxchi/Kaukasos | mit | f1dd7d733493c468144e15f01f50f9bd |
2. 1-Layer Neural Network
3. Finetuned VGG16 | import os, sys
sys.path.insert(os.path.join(1, '../utils/'))
import Vgg16 | FAI_old/lesson2/L2HW.ipynb | WNoxchi/Kaukasos | mit | 02e276e2c4444ceeef9f60c2f61a461c |
Setting up the notebook's environment
Install AI Platform Pipelines client library
For AI Platform Pipelines (Unified), which is in the Experimental stage, you need to download and install the AI Platform client library on top of the KFP and TFX SDKs that were installed as part of the initial environment setup. | AIP_CLIENT_WHEEL = "aiplatform_pipelines_client-0.1.0.caip20201123-py3-none-any.whl"
AIP_CLIENT_WHEEL_GCS_LOCATION = (
f"gs://cloud-aiplatform-pipelines/releases/20201123/{AIP_CLIENT_WHEEL}"
)
!gsutil cp {AIP_CLIENT_WHEEL_GCS_LOCATION} {AIP_CLIENT_WHEEL}
%pip install {AIP_CLIENT_WHEEL} | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | 4f7a1ae29032326272ffbd30789a3f47 |
Import notebook dependencies | import logging
import tensorflow as tf
import tfx
from aiplatform.pipelines import client
from tfx.orchestration.beam.beam_dag_runner import BeamDagRunner
print("TFX Version: ", tfx.__version__) | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | e8f1603c188ad81994e00d0ee3c4f77e |
Configure GCP environment
If you're on AI Platform Notebooks, authenticate with Google Cloud before running the next section, by running
sh
gcloud auth login
in the Terminal window (which you can open via File > New in the menu). You only need to do this once per notebook instance.
Set the following constants to the values reflecting your environment:
PROJECT_ID - your GCP project ID
PROJECT_NUMBER - your GCP project number
BUCKET_NAME - a name of the GCS bucket that will be used to host artifacts created by the pipeline
PIPELINE_NAME_SUFFIX - a suffix appended to the standard pipeline name. You can change to differentiate between pipelines from different users in a classroom environment
API_KEY - a GCP API key
VPC_NAME - a name of the GCP VPC to use for the index deployments.
REGION - a compute region. Don't change the default - us-central - while the ANN Service is in the experimental stage | PROJECT_ID = "jk-mlops-dev" # <---CHANGE THIS
PROJECT_NUMBER = "895222332033" # <---CHANGE THIS
API_KEY = "AIzaSyBS_RiaK3liaVthTUD91XuPDKIbiwDFlV8" # <---CHANGE THIS
USER = "user" # <---CHANGE THIS
BUCKET_NAME = "jk-ann-staging" # <---CHANGE THIS
VPC_NAME = "default" # <---CHANGE THIS IF USING A DIFFERENT VPC
REGION = "us-central1"
PIPELINE_NAME = "ann-pipeline-{}".format(USER)
PIPELINE_ROOT = "gs://{}/pipeline_root/{}".format(BUCKET_NAME, PIPELINE_NAME)
PATH=%env PATH
%env PATH={PATH}:/home/jupyter/.local/bin
print("PIPELINE_ROOT: {}".format(PIPELINE_ROOT)) | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | ae65fc2df47da9b396d64e201bf3e1ad |
Defining custom components
In this section of the notebook you define a set of custom TFX components that encapsulate BQ, BQML and ANN Service calls. The components are TFX Custom Python function components.
Each component is created as a separate Python module. You also create a couple of helper modules that encapsulate Python functions and classess used across the custom components.
Remove files created in the previous executions of the notebook | component_folder = "bq_components"
if tf.io.gfile.exists(component_folder):
print("Removing older file")
tf.io.gfile.rmtree(component_folder)
print("Creating component folder")
tf.io.gfile.mkdir(component_folder)
%cd {component_folder} | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | b51d870f3c0d84bddacdc02098d58c7c |
Creating a TFX pipeline
The pipeline automates the process of preparing item embeddings (in BigQuery), training a Matrix Factorization model (in BQML), and creating and deploying an ANN Service index.
The pipeline has a simple sequential flow. The pipeline accepts a set of runtime parameters that define GCP environment settings and embeddings and index assembly parameters. | import os
from compute_pmi import compute_pmi
from create_index import create_index
from deploy_index import deploy_index
from export_embeddings import export_embeddings
from extract_embeddings import extract_embeddings
from tfx.orchestration.kubeflow.v2 import kubeflow_v2_dag_runner
# Only required for local run.
from tfx.orchestration.metadata import sqlite_metadata_connection_config
from tfx.orchestration.pipeline import Pipeline
from train_item_matching import train_item_matching_model
def ann_pipeline(
pipeline_name,
pipeline_root,
metadata_connection_config,
project_id,
project_number,
region,
vpc_name,
bq_dataset_name,
min_item_frequency,
max_group_size,
dimensions,
embeddings_gcs_location,
index_display_name,
deployed_index_id_prefix,
) -> Pipeline:
"""Implements the SCANN training pipeline."""
pmi_computer = compute_pmi(
project_id=project_id,
bq_dataset=bq_dataset_name,
min_item_frequency=min_item_frequency,
max_group_size=max_group_size,
)
bqml_trainer = train_item_matching_model(
project_id=project_id,
bq_dataset=bq_dataset_name,
item_cooc=pmi_computer.outputs.item_cooc,
dimensions=dimensions,
)
embeddings_extractor = extract_embeddings(
project_id=project_id,
bq_dataset=bq_dataset_name,
bq_model=bqml_trainer.outputs.bq_model,
)
embeddings_exporter = export_embeddings(
project_id=project_id,
gcs_location=embeddings_gcs_location,
item_embeddings_bq=embeddings_extractor.outputs.item_embeddings,
)
index_constructor = create_index(
project_id=project_id,
project_number=project_number,
region=region,
display_name=index_display_name,
dimensions=dimensions,
item_embeddings=embeddings_exporter.outputs.item_embeddings_gcs,
)
index_deployer = deploy_index(
project_id=project_id,
project_number=project_number,
region=region,
vpc_name=vpc_name,
deployed_index_id_prefix=deployed_index_id_prefix,
ann_index=index_constructor.outputs.ann_index,
)
components = [
pmi_computer,
bqml_trainer,
embeddings_extractor,
embeddings_exporter,
index_constructor,
index_deployer,
]
return Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
# Only needed for local runs.
metadata_connection_config=metadata_connection_config,
components=components,
) | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | c2ea2279300a0067211b3d8f2425a9da |
Testing the pipeline locally
You will first run the pipeline locally using the Beam runner.
Clean the metadata and artifacts from the previous runs | pipeline_root = f"/tmp/{PIPELINE_NAME}"
local_mlmd_folder = "/tmp/mlmd"
if tf.io.gfile.exists(pipeline_root):
print("Removing previous artifacts...")
tf.io.gfile.rmtree(pipeline_root)
if tf.io.gfile.exists(local_mlmd_folder):
print("Removing local mlmd SQLite...")
tf.io.gfile.rmtree(local_mlmd_folder)
print("Creating mlmd directory: ", local_mlmd_folder)
tf.io.gfile.mkdir(local_mlmd_folder)
print("Creating pipeline root folder: ", pipeline_root)
tf.io.gfile.mkdir(pipeline_root) | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | ca9d2323fef55547307e60c9403d8d8f |
Set pipeline parameters and create the pipeline | bq_dataset_name = "song_embeddings"
index_display_name = "Song embeddings"
deployed_index_id_prefix = "deployed_song_embeddings_"
min_item_frequency = 15
max_group_size = 100
dimensions = 50
embeddings_gcs_location = f"gs://{BUCKET_NAME}/embeddings"
metadata_connection_config = sqlite_metadata_connection_config(
os.path.join(local_mlmd_folder, "metadata.sqlite")
)
pipeline = ann_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=pipeline_root,
metadata_connection_config=metadata_connection_config,
project_id=PROJECT_ID,
project_number=PROJECT_NUMBER,
region=REGION,
vpc_name=VPC_NAME,
bq_dataset_name=bq_dataset_name,
index_display_name=index_display_name,
deployed_index_id_prefix=deployed_index_id_prefix,
min_item_frequency=min_item_frequency,
max_group_size=max_group_size,
dimensions=dimensions,
embeddings_gcs_location=embeddings_gcs_location,
) | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | 12726c48f9889f1138646ebf82f10360 |
Inspect produced metadata
During the execution of the pipeline, the inputs and outputs of each component have been tracked in ML Metadata. | from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2
connection_config = metadata_store_pb2.ConnectionConfig()
connection_config.sqlite.filename_uri = os.path.join(
local_mlmd_folder, "metadata.sqlite"
)
connection_config.sqlite.connection_mode = 3 # READWRITE_OPENCREATE
store = metadata_store.MetadataStore(connection_config)
store.get_artifacts() | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | b2865f65dee37537cc818151581304a4 |
Set the the parameters for AIPP execution and create the pipeline | metadata_connection_config = None
pipeline_root = PIPELINE_ROOT
pipeline = ann_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=pipeline_root,
metadata_connection_config=metadata_connection_config,
project_id=PROJECT_ID,
project_number=PROJECT_NUMBER,
region=REGION,
vpc_name=VPC_NAME,
bq_dataset_name=bq_dataset_name,
index_display_name=index_display_name,
deployed_index_id_prefix=deployed_index_id_prefix,
min_item_frequency=min_item_frequency,
max_group_size=max_group_size,
dimensions=dimensions,
embeddings_gcs_location=embeddings_gcs_location,
) | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | 19ef3e26a5a9065206de1825b13774d1 |
Compile the pipeline | config = kubeflow_v2_dag_runner.KubeflowV2DagRunnerConfig(
project_id=PROJECT_ID,
display_name=PIPELINE_NAME,
default_image="gcr.io/{}/caip-tfx-custom:{}".format(PROJECT_ID, USER),
)
runner = kubeflow_v2_dag_runner.KubeflowV2DagRunner(
config=config, output_filename="pipeline.json"
)
runner.compile(pipeline, write_out=True) | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | d7d02827a07a7fba1ad0ff49749e2d4b |
Submit the pipeline run | aipp_client.create_run_from_job_spec("pipeline.json") | notebooks/community/analytics-componetized-patterns/retail/recommendation-system/bqml-scann/ann02_run_pipeline.ipynb | GoogleCloudPlatform/bigquery-notebooks | apache-2.0 | e4faeb2c5ac5fa335990d3ec6385a0eb |
creates in memory an object with the name "ObjectCreator". | %%HTML
<p style="color:red;font-size: 150%;">This object (the class) is itself capable of creating objects (the instances), and this is why it's a class.</p> | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 1754e4631ba44103ccf696b324556eb3 |
But still, it's an object, and therefore:
you can assign it to a variable | object_creator_class = ObjectCreator
print(object_creator_class) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | b3929169c4654f3e5fc072999b2bd1f7 |
you can copy it | from copy import copy
ObjectCreatorCopy = copy(ObjectCreator)
print(ObjectCreatorCopy)
print("copy ObjectCreatorCopy is not ObjectCreator: ", ObjectCreatorCopy is not ObjectCreator)
print("variable object_creator_class is ObjectCreator: ", object_creator_class is ObjectCreator) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 4e2e4ce5cde64999ebcd0a5ef995d9ed |
you can add attributes to it | print("ObjectCreator has an attribute 'new_attribute': ", hasattr(ObjectCreator, 'new_attribute'))
ObjectCreator.new_attribute = 'foo' # you can add attributes to a class
print("ObjectCreator has an attribute 'new_attribute': ", hasattr(ObjectCreator, 'new_attribute'))
print("attribute 'new_attribute': ", ObjectCreator.new_attribute) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 573111c0aabcdcafd64013051ce547bc |
you can pass it as a function parameter | def echo(o):
print(o)
# you can pass a class as a parameter
print("return value of passing Object Creator to {}: ".format(echo), echo(ObjectCreator))
%%HTML
<p style="color:red;font-size: 150%;">Since classes are objects, you can create them on the fly, like any object.</p>
def get_class_by(name):
class Foo:
pass
class Bar:
pass
classes = {
'foo': Foo,
'bar': Bar
}
return classes.get(name, None)
for class_ in (get_class_by(name) for name in ('foo', 'bar', )):
pprint(class_) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 17fcfaf8d2bb2a15b2aeb63692f3f8ac |
But it's not so dynamic, since you still have to write the whole class yourself.
Since classes are objects, they must be generated by something.
When you use the class keyword, Python creates this object automatically. But as with most things in Python, it gives you a way to do it manually.
Remember the function type? The good old function that lets you know what type an object is: | print(type(1))
print(type("1"))
print(type(int))
print(type(ObjectCreator))
print(type(type)) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | b8d11b76d82343b13b0e63480592c05d |
Well, type has a completely different ability, it can also create classes on the fly. type can take the description of a class as parameters, and return a class. | classes = Foo, Bar = [type(name, (), {}) for name in ('Foo', 'Bar')]
for class_ in classes:
pprint(class_) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | bae3ca9d9da4d4f68cfa5c4e9c3b848b |
type accepts a dictionary to define the attributes of the class. So: | classes_with_attributes = Foo, Bar = [type(name, (), namespace)
for name, namespace
in zip(
('Foo', 'Bar'),
(
{'assigned_attr': 'foo_attr'},
{'assigned_attr': 'bar_attr'}
)
)
]
for class_ in classes_with_attributes:
pprint([item for item in vars(class_).items()]) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | b62f05baa7f7df3c79b864e500b7c3fe |
Eventually you'll want to add methods to your class. Just define a function with the proper signature and assign it as an attribute. | def an_added_function(self):
return "I am an added function."
Foo.added = an_added_function
foo = Foo()
print(foo.added()) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 46a1fbe16b0331ee8f6bc95a4e2488e2 |
You see where we are going: in Python, classes are objects, and you can create a class on the fly, dynamically. | %%HTML
<p style="color:red;font-size: 150%;">[Creating a class on the fly, dynamically] is what Python does when you use the keyword class, and it does so by using a metaclass.</p>
%%HTML
<p style="color:red;font-size: 150%;">Metaclasses are the 'stuff' that creates classes.</p> | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | e3af60965cd1393dd8f54c035c829d6e |
You define classes in order to create objects, right?
But we learned that Python classes are objects. | %%HTML
<p style="color:red;font-size: 150%;">Well, metaclasses are what create these objects. They are the classes' classes.</p>
%%HTML
<p style="color:red;font-size: 150%;">Everything, and I mean everything, is an object in Python. That includes ints, strings, functions and classes. All of them are objects. And all of them have been created from a class (which is also an object).</p> | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 49826a0320e51271e3a01a25fd299572 |
Changing to blog post entitled Python 3 OOP Part 5—Metaclasses
object, which inherits from nothing.
reminds me of Eastern teachings of 'sunyata':
emptiness, voidness, openness, nonexistence, thusness, etc.
```python
a = 5
type(a)
<class 'int'>
a.class
<class 'int'>
a.class.bases
(<class 'object'>,)
object.bases
() # object, which inherits from nothing.
type(a)
<class 'int'>
type(int)
<class 'type'>
type(float)
<class 'type'>
type(dict)
<class 'type'>
type(object)
<class 'type'>
type.bases
(<class 'object'>,)
```
When you think you grasped the type/object matter read this and start thinking again
```python
type(type)
<class 'type'>
``` | class MyType(type):
pass
class MySpecialClass(metaclass=MyType):
pass
msp = MySpecialClass()
type(msp)
type(MySpecialClass)
type(MyType) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 686fe6fe08f5b7c1773126ee8e28e9de |
Metaclasses are a very advanced topic in Python, but they have many practical uses. For example, by means of a custom metaclass you may log any time a class is instanced, which can be important for applications that shall keep a low memory usage or have to monitor it. | %%HTML
<p style="color:red;font-size: 150%;">"Build a class"? This is a task for metaclasses. The following implementation comes from Python 3 Patterns, Recipes and Idioms.</p>
class Singleton(type):
instance = None
def __call__(cls, *args, **kwargs):
if not cls.instance:
cls.instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls.instance
class ASingleton(metaclass=Singleton):
pass
a = ASingleton()
b = ASingleton()
print(a is b)
print(hex(id(a)))
print(hex(id(b))) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 47626ce590bc1bb3358be3e243911df6 |
The constructor mechanism in Python is on the contrary very important, and it is implemented by two methods, instead of just one: new() and init(). | %%HTML
<p style="color:red;font-size: 150%;">The tasks of the two methods are very clear and distinct: __new__() shall perform actions needed when creating a new instance while __init__ deals with object initialization.</p>
class MyClass:
def __new__(cls, *args, **kwargs):
obj = super().__new__(cls, *args, **kwargs)
# do something here
obj.one = 1
return obj # instance of the container class, so __init__ is called
%%HTML
<p style="color:red;font-size: 150%;"> Anyway, __init__() will be called only if you return an instance of the container class. </p>
my_class = MyClass()
my_class.one
class MyInt:
def __new__(cls, *args, **kwargs):
obj = super().__new__(cls, *args, **kwargs)
obj.join = ':'.join
return obj
mi = MyInt()
print(mi.join(str(n) for n in range(10))) | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | c1080d1d32d97ecf6517afe3cca3b564 |
Subclassing int
Object creation is behaviour. For most classes it is enough to provide a different __init__ method, but for immutable classes one often have to provide a different __new__ method.
In this subsection, as preparation for enumerated integers, we will start to code a subclass of int that behave like bool. We will start with string representation, which is fairly easy. | class MyBool(int):
def __repr__(self):
return 'MyBool.' + ['False', 'True'][self]
t = MyBool(1)
t
bool(2) == 1
MyBool(2) == 1
%%HTML
<p style="color:red;font-size: 150%;">In many classes we use __init__ to mutate the newly constructed object, typically by storing or otherwise using the arguments to __init__. But we can’t do this with a subclass of int (or any other immuatable) because they are immutable.</p> | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | bd733091c0705cc65f87f3382d6ed632 |
The solution to the problem is to use new. Here we will show that it works, and later we will explain elsewhere exactly what happens. | bool.__doc__
class NewBool(int):
def __new__(cls, value):
# bool
return int.__new__(cls, bool(value))
y = NewBool(56)
y == 1 | content/posts/meditations/Python_objects.ipynb | dm-wyncode/zipped-code | mit | 938f9bfbe539d6de6c393596160c36be |
<b>Question 4 Do multiple languages influent the reviews of apps?</b> | multi_language = app.loc[app['multiple languages'] == 'Y']
sin_language = app.loc[app['multiple languages'] == 'N']
multi_language['overall rating'].plot(kind = "density")
sin_language['overall rating'].plot(kind = "density")
plt.xlabel('Overall Rating')
plt.legend(labels = ['multiple languages','single language'], loc='upper right')
plt.title('Distribution of overall rating among apps with multiple/single languages')
plt.show() | notebooks/Multiple Languages Effects Analysis (Q4).ipynb | jpzhangvincent/MobileAppMarketAnalysis | mit | 7e32d3b69c66003b58ddbca92fc64b12 |
<p>First, the data set is splitted into two parts, one is app with multiple languages and another is app with single language. Then the density plots for the two subsets are made and from the plots we can see that the overall rating of apps with multiple languages is generally higher than the overall rating of apps with single language. Some specific tests are still needed to perform.</p> | import scipy.stats
multi_language = list(multi_language['overall rating'])
sin_language = list(sin_language['overall rating'])
multiple = []
single = []
for each in multi_language:
if each > 0:
multiple.append(each)
for each in sin_language:
if each > 0:
single.append(each)
print(np.mean(multiple))
print(np.mean(single))
scipy.stats.ttest_ind(multiple, single, equal_var = False) | notebooks/Multiple Languages Effects Analysis (Q4).ipynb | jpzhangvincent/MobileAppMarketAnalysis | mit | 519cc0aa2d4736da505ef9d30c91f1b5 |
<p>I perform t test here. We have two samples here, one is apps with multiple languages and another is apps with single language. So I want to test whether the mean overall rating for these two samples are different.</p>
<p>The null hypothesis is mean overall rating for apps with multiple languages and mean overall rating for apps with single language are the same and the alternative hypothesis is that the mean overall rating for these two samples are not the same.</p>
<p>From the result we can see that the p value is 1.7812330368645647e-26, which is smaller than 0.05, so we should reject null hypothesis at significance level 0.05, that is, we should conclude that the mean of overall rating for these two samples are not the same and multiple languages do influent the rating of an app.</p> | scipy.stats.f_oneway(multiple, single) | notebooks/Multiple Languages Effects Analysis (Q4).ipynb | jpzhangvincent/MobileAppMarketAnalysis | mit | 665b5eb914c4608592024388b73627a7 |
<p>I also perform one-way ANOVA test here.</p>
<p>The null hypothesis is mean overall rating for apps with multiple languages and mean overall rating for apps with single language are the same and the alternative hypothesis is that the mean overall rating for these two samples are not the same.</p>
<p>From the result we can see that the p value is 3.0259308024434954e-26, which is smaller than 0.05, so we should reject null hypothesis at significance level 0.05, that is, we should conclude that the mean of overall rating for these two samples are not the same and multiple languages do influent the rating of an app.</p> | scipy.stats.kruskal(multiple, single) | notebooks/Multiple Languages Effects Analysis (Q4).ipynb | jpzhangvincent/MobileAppMarketAnalysis | mit | 2718d7bb04dfeac4d8783e8cad7084ed |
<span>
Let's parse
</span> | from hit.process.processor import ATTMatrixHitProcessor
from hit.process.processor import ATTPlainHitProcessor
plainProcessor = ATTPlainHitProcessor()
matProcessor = ATTMatrixHitProcessor() | notebooks/Hit Processor.ipynb | Centre-Alt-Rendiment-Esportiu/att | gpl-3.0 | 1faaacdac956bca3e6f2595f22139fef |
<span>
Parse a Hit with Plain Processor
</span> | plainHit = plainProcessor.parse_hit("hit: {0:25 1549:4 2757:4 1392:4 2264:7 1764:7 1942:5 2984:5 r}")
print plainHit | notebooks/Hit Processor.ipynb | Centre-Alt-Rendiment-Esportiu/att | gpl-3.0 | 51a83719ed1571fdbd4905bfe01dc8df |
<span>
Compute diffs:
</span> | plainDiffs = plainProcessor.hit_diffs(plainHit["sensor_timings"])
print plainDiffs | notebooks/Hit Processor.ipynb | Centre-Alt-Rendiment-Esportiu/att | gpl-3.0 | d70f8172710ad2a1fb21cc6bf12a7947 |
<span>
Parse a Hit with Matrix Processor
</span> | matHit = matProcessor.parse_hit("hit: {0:25 1549:4 2757:4 1392:4 2264:7 1764:7 1942:5 2984:5 r}")
print matHit | notebooks/Hit Processor.ipynb | Centre-Alt-Rendiment-Esportiu/att | gpl-3.0 | cfd3302e85ab494dc3f240472318dace |
<span>
Compute diffs:
</span> | matDiffs = matProcessor.hit_diffs((matHit["sensor_timings"]))
print matDiffs
matDiffs | notebooks/Hit Processor.ipynb | Centre-Alt-Rendiment-Esportiu/att | gpl-3.0 | b624d4290a88dec94e7d588ae1513b6c |
Tensor multiplication with transpose in numpy and einsum | w = np.arange(6).reshape(2,3).astype(np.float32)
x = np.ones((1,3), dtype=np.float32)
print("w:\n", w)
print("x:\n", x)
y = np.matmul(w, np.transpose(x))
print("y:\n", y)
y = einsum('ij,kj->ik', w, x)
print("y:\n", y) | versions/2022/tools/python/einsum_demo.ipynb | roatienza/Deep-Learning-Experiments | mit | f4b2f322cda34de45f3c7c506cfd3f01 |
Properties of square matrices in numpy and einsum
We demonstrate diagonal. | w = np.arange(9).reshape(3,3).astype(np.float32)
d = np.diag(w)
print("w:\n", w)
print("d:\n", d)
d = einsum('ii->i', w)
print("d:\n", d) | versions/2022/tools/python/einsum_demo.ipynb | roatienza/Deep-Learning-Experiments | mit | 019ab1867f001899c1645601d73950cf |
Trace. | t = np.trace(w)
print("t:\n", t)
t = einsum('ii->', w)
print("t:\n", t) | versions/2022/tools/python/einsum_demo.ipynb | roatienza/Deep-Learning-Experiments | mit | 8de3bd0945585b8d789dc1086d3c2119 |
Sum along an axis. | s = np.sum(w, axis=0)
print("s:\n", s)
s = einsum('ij->j', w)
print("s:\n", s) | versions/2022/tools/python/einsum_demo.ipynb | roatienza/Deep-Learning-Experiments | mit | 47c0ba9c419deb81b965a4045ec0974f |
Let us demonstrate tensor transpose. We can also use w.T to transpose w in numpy. | t = np.transpose(w)
print("t:\n", t)
t = einsum("ij->ji", w)
print("t:\n", t) | versions/2022/tools/python/einsum_demo.ipynb | roatienza/Deep-Learning-Experiments | mit | fddb9bd19b9f7a1f7c1fdbf4f2b179b9 |
Dot, inner and outer products in numpy and einsum. | a = np.ones((3,), dtype=np.float32)
b = np.ones((3,), dtype=np.float32) * 2
print("a:\n", a)
print("b:\n", b)
d = np.dot(a,b)
print("d:\n", d)
d = einsum("i,i->", a, b)
print("d:\n", d)
i = np.inner(a, b)
print("i:\n", i)
i = einsum("i,i->", a, b)
print("i:\n", i)
o = np.outer(a,b)
print("o:\n", o)
o = einsum("i,j->ij", a, b)
print("o:\n", o)
| versions/2022/tools/python/einsum_demo.ipynb | roatienza/Deep-Learning-Experiments | mit | 30ea59eb0e7a1eef720456d744a5690c |
Inheritance
Inheritance is an OOP practice where a certain class(called subclass/child class) inherits the properties namely data and behaviour of another class(called superclass/parent class). Let us see through an example. | # BITSian class
class BITSian():
def __init__(self, name, id_no, hostel):
self.name = name
self.id_no = id_no
self.hostel = hostel
def get_name(self):
return self.name
def get_id(self):
return self.id_no
def get_hostel(self):
return self.hostel
# IITian class
class IITian():
def __init__(self, name, id_no, hall):
self.name = name
self.id_no = id_no
self.hall = hall
def get_name(self):
return self.name
def get_id(self):
return self.id_no
def get_hall(self):
return self.hall | Week 4/Lecture_9_Inheritance_Overloading_Overidding.ipynb | bpgc-cte/python2017 | mit | 4e35c52d527898ec951906fba4ab4248 |
While writing code you must always make sure that you keep it as concise as possible and avoid any sort of repitition. Now, we can clearly see the commonalitites between BITSian and IITian classes.
It would be natural to assume that every college student whether from BITS or IIT or pretty much any other institution in the world will have a name and a unique ID number.
Such a degree of commonality means that there could be a higher level of abstraction to describe both BITSian and IITian to a decent extent. | class CollegeStudent():
def __init__(self, name, id_no):
self.name = name
self.id_no = id_no
def get_name(self):
return self.name
def get_id(self):
return self.id_no
# BITSian class
class BITSian(CollegeStudent):
def __init__(self, name, id_no, hostel):
self.name = name
self.id_no = id_no
self.hostel = hostel
def get_hostel(self):
return self.hostel
# IITian class
class IITian(CollegeStudent):
def __init__(self, name, id_no, hall):
self.name = name
self.id_no = id_no
self.hall = hall
def get_hall(self):
return self.hall
a = BITSian("Arif", "2015B4A70370G", "AH-5")
b = IITian("Abhishek", "2213civil32K", "Hall-10")
print(a.get_name())
print(b.get_name())
print(a.get_hostel())
print(b.get_hall()) | Week 4/Lecture_9_Inheritance_Overloading_Overidding.ipynb | bpgc-cte/python2017 | mit | 9bf11fa27b7fa279bb8075a371099c4b |
So, the class definition is as such : class SubClassName(SuperClassName):
Using super()
The main usage of super() in Python is to refer to parent classes without naming them expicitly. This becomes really useful in multiple inheritance where you won't have to worry about parent class name. | class Student():
def __init__(self, name):
self.name = name
def get_name(self):
return self.name
class CollegeStudent(Student):
def __init__(self, name, id_no):
super().__init__(name)
self.id_no = id_no
def get_id(self):
return self.id_no
# BITSian class
class BITSian(CollegeStudent):
def __init__(self, name, id_no, hostel):
super().__init__(name, id_no)
self.hostel = hostel
def get_hostel(self):
return self.hostel
# IITian class
class IITian(CollegeStudent):
def __init__(self, name, id_no, hall):
super().__init__(name, id_no)
self.hall = hall
def get_hall(self):
return self.hall
a = BITSian("Arif", "2015B4A70370G", "AH-5")
b = IITian("Abhishek", "2213civil32K", "Hall-10")
print(a.get_name())
print(b.get_name())
print(a.get_hostel())
print(b.get_hall()) | Week 4/Lecture_9_Inheritance_Overloading_Overidding.ipynb | bpgc-cte/python2017 | mit | f75063e4457e7da0cb7603bb5b52fe6a |
You may come across the following constructor call for a superclass on the net : super(self.__class__, self).__init__(). Please do not do this. It can lead to infinite recursion.
Go through this link for more clarification : Understanding Python Super with init methods
Method Overidding
This is a phenomenon where a subclass method with the same name is executed in preference to it's superclass method with a similar name. | class Student():
def __init__(self, name):
self.name = name
def get_name(self):
return "Student : " + self.name
class CollegeStudent(Student):
def __init__(self, name, id_no):
super().__init__(name)
self.id_no = id_no
def get_id(self):
return self.id_no
def get_name(self):
return "College Student : " + self.name
class BITSian(CollegeStudent):
def __init__(self, name, id_no, hostel):
super().__init__(name, id_no)
self.hostel = hostel
def get_hostel(self):
return self.hostel
def get_name(self):
return "Gen BITSian --> " + self.name
class IITian(CollegeStudent):
def __init__(self, name, id_no, hall):
super().__init__(name, id_no)
self.hall = hall
def get_hall(self):
return self.hall
def get_name(self):
return "IITian --> " + self.name
a = BITSian("Arif", "2015B4A70370G", "AH-5")
b = IITian("Abhishek", "2213civil32K", "Hall-10")
print(a.get_name())
print(b.get_name())
print()
print(super(BITSian, a).get_name())
print(super(IITian, b).get_name())
print(super(CollegeStudent, a).get_name()) | Week 4/Lecture_9_Inheritance_Overloading_Overidding.ipynb | bpgc-cte/python2017 | mit | 09fd57c39be7da236874a86df2b97a83 |
In my experience it's more convenient to build the model with a log-softmax output using nn.LogSoftmax or F.log_softmax (documentation). Then you can get the actual probabilites by taking the exponential torch.exp(output). With a log-softmax output, you want to use the negative log likelihood loss, nn.NLLLoss (documentation).
Exercise: Build a model that returns the log-softmax as the output and calculate the loss using the negative log likelihood loss. | ## Solution
# Build a feed-forward network
model = nn.Sequential(nn.Linear(784, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 10),
nn.LogSoftmax(dim=1))
# Define the loss
criterion = nn.NLLLoss()
# Get our data
images, labels = next(iter(trainloader))
# Flatten images
images = images.view(images.shape[0], -1)
# Forward pass, get our log-probabilities
logps = model(images)
# Calculate the loss with the logps and the labels
loss = criterion(logps, labels)
print(loss) | DEEP LEARNING/Pytorch from scratch/MLP/Part 3 - Training Neural Networks (Solution).ipynb | Diyago/Machine-Learning-scripts | apache-2.0 | d6facf227404f259cb24853945682fd0 |
Autograd
Now that we know how to calculate a loss, how do we use it to perform backpropagation? Torch provides a module, autograd, for automatically calculating the gradients of tensors. We can use it to calculate the gradients of all our parameters with respect to the loss. Autograd works by keeping track of operations performed on tensors, then going backwards through those operations, calculating gradients along the way. To make sure PyTorch keeps track of operations on a tensor and calculates the gradients, you need to set requires_grad = True on a tensor. You can do this at creation with the requires_grad keyword, or at any time with x.requires_grad_(True).
You can turn off gradients for a block of code with the torch.no_grad() content:
```python
x = torch.zeros(1, requires_grad=True)
with torch.no_grad():
... y = x * 2
y.requires_grad
False
```
Also, you can turn on or off gradients altogether with torch.set_grad_enabled(True|False).
The gradients are computed with respect to some variable z with z.backward(). This does a backward pass through the operations that created z. | x = torch.randn(2,2, requires_grad=True)
print(x)
y = x**2
print(y) | DEEP LEARNING/Pytorch from scratch/MLP/Part 3 - Training Neural Networks (Solution).ipynb | Diyago/Machine-Learning-scripts | apache-2.0 | f8eff0b74e393b98b194a3c381e36a94 |
These gradients calculations are particularly useful for neural networks. For training we need the gradients of the weights with respect to the cost. With PyTorch, we run data forward through the network to calculate the loss, then, go backwards to calculate the gradients with respect to the loss. Once we have the gradients we can make a gradient descent step.
Loss and Autograd together
When we create a network with PyTorch, all of the parameters are initialized with requires_grad = True. This means that when we calculate the loss and call loss.backward(), the gradients for the parameters are calculated. These gradients are used to update the weights with gradient descent. Below you can see an example of calculating the gradients using a backwards pass. | # Build a feed-forward network
model = nn.Sequential(nn.Linear(784, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 10),
nn.LogSoftmax(dim=1))
criterion = nn.NLLLoss()
images, labels = next(iter(trainloader))
images = images.view(images.shape[0], -1)
logps = model(images)
loss = criterion(logps, labels)
print('Before backward pass: \n', model[0].weight.grad)
loss.backward()
print('After backward pass: \n', model[0].weight.grad) | DEEP LEARNING/Pytorch from scratch/MLP/Part 3 - Training Neural Networks (Solution).ipynb | Diyago/Machine-Learning-scripts | apache-2.0 | e820d04afa29bcf0a2c9751e91a4d4c4 |
Training the network!
There's one last piece we need to start training, an optimizer that we'll use to update the weights with the gradients. We get these from PyTorch's optim package. For example we can use stochastic gradient descent with optim.SGD. You can see how to define an optimizer below. | from torch import optim
# Optimizers require the parameters to optimize and a learning rate
optimizer = optim.SGD(model.parameters(), lr=0.01) | DEEP LEARNING/Pytorch from scratch/MLP/Part 3 - Training Neural Networks (Solution).ipynb | Diyago/Machine-Learning-scripts | apache-2.0 | 754ed5ef799f52d419d2a9357c5f443d |
Now we know how to use all the individual parts so it's time to see how they work together. Let's consider just one learning step before looping through all the data. The general process with PyTorch:
Make a forward pass through the network
Use the network output to calculate the loss
Perform a backward pass through the network with loss.backward() to calculate the gradients
Take a step with the optimizer to update the weights
Below I'll go through one training step and print out the weights and gradients so you can see how it changes. Note that I have a line of code optimizer.zero_grad(). When you do multiple backwards passes with the same parameters, the gradients are accumulated. This means that you need to zero the gradients on each training pass or you'll retain gradients from previous training batches. | print('Initial weights - ', model[0].weight)
images, labels = next(iter(trainloader))
images.resize_(64, 784)
# Clear the gradients, do this because gradients are accumulated
optimizer.zero_grad()
# Forward pass, then backward pass, then update weights
output = model(images)
loss = criterion(output, labels)
loss.backward()
print('Gradient -', model[0].weight.grad)
# Take an update step and few the new weights
optimizer.step()
print('Updated weights - ', model[0].weight) | DEEP LEARNING/Pytorch from scratch/MLP/Part 3 - Training Neural Networks (Solution).ipynb | Diyago/Machine-Learning-scripts | apache-2.0 | 51ce9e98a3f7052fa0ac787c8390163f |
Training for real
Now we'll put this algorithm into a loop so we can go through all the images. Some nomenclature, one pass through the entire dataset is called an epoch. So here we're going to loop through trainloader to get our training batches. For each batch, we'll doing a training pass where we calculate the loss, do a backwards pass, and update the weights.
Exercise: Implement the training pass for our network. If you implemented it correctly, you should see the training loss drop with each epoch. | model = nn.Sequential(nn.Linear(784, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 10),
nn.LogSoftmax(dim=1))
criterion = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.003)
epochs = 5
for e in range(epochs):
running_loss = 0
for images, labels in trainloader:
# Flatten MNIST images into a 784 long vector
images = images.view(images.shape[0], -1)
# TODO: Training pass
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
print(f"Training loss: {running_loss/len(trainloader)}") | DEEP LEARNING/Pytorch from scratch/MLP/Part 3 - Training Neural Networks (Solution).ipynb | Diyago/Machine-Learning-scripts | apache-2.0 | ff749e44f419eda49f9e082fd564f9b8 |
With the network trained, we can check out it's predictions. | %matplotlib inline
import helper
images, labels = next(iter(trainloader))
img = images[0].view(1, 784)
# Turn off gradients to speed up this part
with torch.no_grad():
logps = model(img)
# Output of the network are log-probabilities, need to take exponential for probabilities
ps = torch.exp(logps)
helper.view_classify(img.view(1, 28, 28), ps) | DEEP LEARNING/Pytorch from scratch/MLP/Part 3 - Training Neural Networks (Solution).ipynb | Diyago/Machine-Learning-scripts | apache-2.0 | cbd95b79def701acd35a43024232b17b |
Build LSI Model | model_tfidf = models.TfidfModel(corpus)
corpus_tfidf = model_tfidf[corpus] | Gensim - Word2Vec.ipynb | banyh/ShareIPythonNotebook | gpl-3.0 | f39b27817dbf704ec3eebc865b95cd58 |
LsiModel的參數
num_topics=200: 設定SVD分解後要保留的維度
id2word: 提供corpus的字典,方便將id轉換為word
chunksize=20000: 在記憶體中一次處理的量,值越大則占用記憶體越多,處理速度也越快
decay=1.0: 因為資料會切成chunk來計算,所以會分成新舊資料,當新的chunk進來時,decay是舊chunk的加權,如果設小於1.0的值,則舊的資料會慢慢「遺忘」
distributed=False: 是否開啟分散式計算,每個core會分到一塊chunk
onepass=True: 設為False強制使用multi-pass stochastic algoritm
power_iters=2: 在multi-pass時設定power iteration,越大則accuracy越高,但時間越久
令$X$代表corpus的TF-IDF矩陣,作完SVD分解後,會得到左矩陣lsi.projection.u及singular value lsi.projection.s。
$X = USV^T$, where $U \in \mathbb{R}^{|V|\times m}$, $S \in \mathbb{R}^{m\times m}$, $V \in \mathbb{R}^{m\times |D|}$
lsi[X]等同於$U^{-1}X=VS$。所以要求$V$的值,可以用$S^{-1}U^{-1}X$,也就是lsi[X]除以$S$。
因為lsi[X]本身沒有值,只是一個generator,要先透過gensim.matutils.corpus2dense轉換成numpy array,再除以lsi.projection.s。 | model_lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=200)
corpus_lsi = model_lsi[corpus_tfidf]
# 計算V的方法,可以作為document vector
docvec_lsi = gensim.matutils.corpus2dense(corpus_lsi, len(model_lsi.projection.s)).T / model_lsi.projection.s
# word vector直接用U的column vector
wordsim_lsi = similarities.MatrixSimilarity(model_lsi.projection.u, num_features=model_lsi.projection.u.shape[1])
# 第二個版本,word vector用U*S
wordsim_lsi2 = similarities.MatrixSimilarity(model_lsi.projection.u * model_lsi.projection.s,
num_features=model_lsi.projection.u.shape[1])
def lsi_query(query, use_ver2=False):
qvec = model_lsi[model_tfidf[dictionary.doc2bow(query.split())]]
if use_ver2:
s = wordsim_lsi2[qvec]
else:
s = wordsim_lsi[qvec]
return [dictionary[i] for i in s.argsort()[-10:]]
print lsi_query('energy')
print lsi_query('energy', True) | Gensim - Word2Vec.ipynb | banyh/ShareIPythonNotebook | gpl-3.0 | 45e13283e8744919b035f66802d20135 |
Build Word2Vec Model
Word2Vec的參數
sentences: 用來訓練的list of list of words,但不是必要的,因為可以先建好model,再慢慢丟資料訓練
size=100: vector的維度
alpha=0.025: 初始的學習速度
window=5: context window的大小
min_count=5: 出現次數小於min_count的單字直接忽略
max_vocab_size: 限制vocabulary的大小,如果單字太多,就忽略最少見的單字,預設為無限制
sample=0.001: subsampling,隨機刪除機率小於0.001的單字,兼具擴大context windows與減少stopword的功能
seed=1: 隨機產生器的random seed
workers=3: 在多核心的系統上,要用幾個核心來train
min_alpha=0.0001: 學習速度最後收斂的最小值
sg=0: 0表示用CBOW,1表示用skip-gram
hs=0: 1表示用hierarchical soft-max,0表示用negative sampling
negative=5: 表示使用幾組negative sample來訓練
cbow_mean=1: 在使用CBOW的前提下,0表示使用sum作為hidden layer,1表示使用mean作為hidden layer
hashfxn=<build-in hash function>: 隨機初始化weights使用的hash function
iter=5: 整個corpus要訓練幾次
trim_rule: None表示小於min_count的單字會被忽略,也可以指定一個function(word, count, min_count),這個function的傳回值有三種,util.RULE_DISCARD、util.RULE_KEEP、util.RULE_DEFAULT。這個參數會影響dictionary的生成
sorted_vocab=1: 1表示在指定word index前,先按照頻率將單字排序
batch_words=10000: 要傳給worker的單字長度
訓練方法
先產生一個空的model
model_w2v = models.Word2Vec(size=200, sg=1)
傳入一個list of words更新vocabulary
sent = [['first','sent'], ['second','sent']]
model_w2v.build_vocab(sent)
傳入一個list of words更新model
model_w2v.train(sent) | all_text = [doc.split() for doc in documents]
model_w2v = models.Word2Vec(size=200, sg=1)
%timeit model_w2v.build_vocab(all_text)
%timeit model_w2v.train(all_text)
model_w2v.most_similar_cosmul(['deep','learning']) | Gensim - Word2Vec.ipynb | banyh/ShareIPythonNotebook | gpl-3.0 | 78713f0ec606946f866fce54b2279c73 |
Build Doc2Vec Model
Doc2Vec的參數
documents=None: 用來訓練的document,可以是list of TaggedDocument,或TaggedDocument generator
size=300: vector的維度
alpha=0.025: 初始的學習速度
window=8: context window的大小
min_count=5: 出現次數小於min_count的單字直接忽略
max_vocab_size=None: 限制vocabulary的大小,如果單字太多,就忽略最少見的單字,預設為無限制
sample=0: subsampling,隨機刪除機率小於sample的單字,兼具擴大context windows與減少stopword的功能
seed=1: 隨機產生器的random seed
workers=1: 在多核心的系統上,要用幾個核心來train
min_alpha=0.0001: 學習速度最後收斂的最小值
hs=1: 1表示用hierarchical soft-max,0表示用negative sampling
negative=0: 表示使用幾組negative sample來訓練
dbow_words=0: 1表示同時訓練出word-vector(用skip-gram)及doc-vector(用DBOW),0表示只訓練doc-vector
dm=1: 1表示用distributed memory(PV-DM)來訓練,0表示用distributed bag-of-word(PV-DBOW)來訓練
dm_concat=0: 1表示不要sum/average而用concatenation of context vectors,0表示用sum/average。使用concatenation會產生較大的model,而且輸入的vector長度會變長
dm_mean=0: 在使用DBOW而且dm_concat=0的前提下,0表示使用sum作為hidden layer,1表示使用mean作為hidden layer
dm_tag_count=1: 當dm_concat=1時,預期每個document有幾個document tags
trim_rule=None: None表示小於min_count的單字會被忽略,也可以指定一個function(word, count, min_count),這個function的傳回值有三種,util.RULE_DISCARD、util.RULE_KEEP、util.RULE_DEFAULT。這個參數會影響dictionary的生成 | from gensim.models.doc2vec import Doc2Vec, TaggedDocument
class PatentDocGenerator(object):
def __init__(self, filename):
self.filename = filename
def __iter__(self):
f = codecs.open(self.filename, 'r', 'UTF-8')
for line in f:
text, appnum = docs_out(line)
yield TaggedDocument(text.split(), appnum.split())
doc = PatentDocGenerator('/share/USPatentData/tokenized_appDate_2013/2013USPTOPatents_by_skip_1.txt.tokenized')
%timeit model_d2v = Doc2Vec(doc, size=200, window=8, sample=1e-5, hs=0, negative=5)
doc = PatentDocGenerator('/share/USPatentData/tokenized_appDate_2013/2013USPTOPatents_by_skip_1.txt.tokenized')
model_d2v = Doc2Vec(doc, size=200, window=8, sample=1e-5, hs=0, negative=5)
model_d2v.docvecs.most_similar(['20140187118'])
m = Doc2Vec(size=200, window=8, sample=1e-5, hs=0, negative=5)
m.build_vocab(doc)
m.train(doc)
m.docvecs.most_similar(['20140187118']) | Gensim - Word2Vec.ipynb | banyh/ShareIPythonNotebook | gpl-3.0 | 8cedc5327cd0d58cfb92915f9b9300a1 |
Build Doc2Vec Model from 2013 USPTO Patents | from gensim.models.doc2vec import Doc2Vec, TaggedDocument
class PatentDocGenerator(object):
def __init__(self, filename):
self.filename = filename
def __iter__(self):
f = codecs.open(self.filename, 'r', 'UTF-8')
for line in f:
text, appnum = docs_out(line)
yield TaggedDocument(text.split(), appnum.split())
model_d2v = Doc2Vec(size=200, window=8, sample=1e-5, hs=0, negative=5)
root = '/share/USPatentData/tokenized_appDate_2013/'
for fn in sorted(listdir(root)):
doc = PatentDocGenerator(os.path.join(root, fn))
start = dt.now()
model_d2v.build_vocab(doc)
model_d2v.train(doc)
logging.info('{} training time: {}'.format(fn, str(dt.now() - start)))
model_d2v.save("doc2vec_uspto_2013.model") | Gensim - Word2Vec.ipynb | banyh/ShareIPythonNotebook | gpl-3.0 | 52c8ad4c77e37747ebd63e9698ba219e |
To start we'll need some basic libraries. First numpy will be needed for basic array manipulation. Since we will be visualising the results we will need matplotlib and seaborn. Finally we will need umap for doing the dimension reduction itself. | !pip install numpy matplotlib seaborn umap-learn | notebooks/AnimatingUMAP.ipynb | lmcinnes/umap | bsd-3-clause | 717d0097e68c191c1ed9b9b99219f6b6 |
To start let's load everything we'll need | %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib import animation
from IPython.display import HTML
import seaborn as sns
import itertools
sns.set(style='white', rc={'figure.figsize':(14, 12), 'animation.html': 'html5'})
# Ignore UserWarnings
import warnings
warnings.simplefilter('ignore', UserWarning)
from sklearn.datasets import load_digits
from umap import UMAP | notebooks/AnimatingUMAP.ipynb | lmcinnes/umap | bsd-3-clause | d00367c3ba28c68334fb02e136929cc5 |
To try this out we'll needs a reasonably small dataset (so embedding runs don't take too long since we'll be doing a lot of them). For ease of reproducibility for everyone else I'll use the digits dataset from sklearn. If you want to try other datasets just drop them in here -- COIL20 might be interesting, or you might have your own data. | digits = load_digits()
data = digits.data
data | notebooks/AnimatingUMAP.ipynb | lmcinnes/umap | bsd-3-clause | be5ec579fbad1016ffb0d35c8dbfd406 |
We need to move the points in between the embeddings given by different parameter values. There are potentially fancy ways to do this (Something using rotation and reflection to get an initial alignment might be interesting), but we'll use straighforward linear interpolation between the two embeddings. To do this we'll need a simple function that can turn out intermediate embeddings for the in-between frames of the animation. | def tween(e1, e2, n_frames=20):
for i in range(5):
yield e1
for i in range(n_frames):
alpha = i / float(n_frames - 1)
yield (1 - alpha) * e1 + alpha * e2
for i in range(5):
yield(e2)
return | notebooks/AnimatingUMAP.ipynb | lmcinnes/umap | bsd-3-clause | 4ef097d4a455e7b94a72fbb82d48873e |
Now that we can fill in intermediate frame we just need to generate all the embeddings. We'll create a function that can take an argument and set of parameter values and then generate all the embeddings including the in-between frames. | def generate_frame_data(data, arg_name='n_neighbors', arg_list=[]):
result = []
es = []
for arg in arg_list:
kwargs = {arg_name:arg}
if len(es) > 0:
es.append(UMAP(init=es[-1], negative_sample_rate=3, **kwargs).fit_transform(data))
else:
es.append(UMAP(negative_sample_rate=3, **kwargs).fit_transform(data))
for e1, e2 in zip(es[:-1], es[1:]):
result.extend(list(tween(e1, e2)))
return result | notebooks/AnimatingUMAP.ipynb | lmcinnes/umap | bsd-3-clause | b9d182c28852775af8b099cd0a36f965 |
Next we just need to create a function to actually generate the animation given a list of embeddings (one for each frame). This is really just a matter of workign through the details of how matplotlib generates animations -- I would refer you again to Jake's tutorial if you are interested in the detailed mechanics of this. | def create_animation(frame_data, arg_name='n_neighbors', arg_list=[]):
fig, ax = plt.subplots()
all_data = np.vstack(frame_data)
frame_bounds = (all_data[:, 0].min() * 1.1,
all_data[:, 0].max() * 1.1,
all_data[:, 1].min() * 1.1,
all_data[:, 1].max() * 1.1)
ax.set_xlim(frame_bounds[0], frame_bounds[1])
ax.set_ylim(frame_bounds[2], frame_bounds[3])
points = ax.scatter(frame_data[0][:, 0], frame_data[0][:, 1],
s=5, c=digits.target, cmap='Spectral', animated=True)
title = ax.set_title('', fontsize=24)
ax.set_xticks([])
ax.set_yticks([])
cbar = fig.colorbar(
points,
cax=make_axes_locatable(ax).append_axes("right", size="5%", pad=0.05),
orientation="vertical",
values=np.arange(10),
boundaries=np.arange(11)-0.5,
ticks=np.arange(10),
drawedges=True,
)
cbar.ax.yaxis.set_ticklabels(np.arange(10), fontsize=18)
def init():
points.set_offsets(frame_data[0])
arg = arg_list[0]
arg_str = f'{arg:.3f}' if isinstance(arg, float) else f'{arg}'
title.set_text(f'UMAP with {arg_name}={arg_str}')
return (points,)
def animate(i):
points.set_offsets(frame_data[i])
if (i + 15) % 30 == 0:
arg = arg_list[(i + 15) // 30]
arg_str = f'{arg:.3f}' if isinstance(arg, float) else f'{arg}'
title.set_text(f'UMAP with {arg_name}={arg_str}')
return (points,)
anim = animation.FuncAnimation(fig, animate, init_func=init, frames=len(frame_data), interval=20, blit=True)
plt.close()
return anim | notebooks/AnimatingUMAP.ipynb | lmcinnes/umap | bsd-3-clause | 11ab210e4319a665e11ec6b428233744 |