markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
hash
stringlengths
32
32
Next, we need to set the hp tuning values used to train our model. Check HyperparameterSpec for more info. In this config file several key things are set: * maxTrials - How many training trials should be attempted to optimize the specified hyperparameters. * maxParallelTrials: 5 - The number of training trials to run concurrently. * params - The set of parameters to tune.. These are the different parameters to pass into your model and the specified ranges you wish to try. * parameterName - The parameter name must be unique amongst all ParameterConfigs * type - The type of the parameter. [INTEGER, DOUBLE, ...] * minValue & maxValue - The range of values that this parameter could be. * scaleType - How the parameter should be scaled to the hypercube. Leave unset for categorical parameters. Some kind of scaling is strongly recommended for real or integral parameters (e.g., UNIT_LINEAR_SCALE).
%%writefile ./hptuning_config.yaml #!/usr/bin/env python # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # hyperparam.yaml trainingInput: hyperparameters: goal: MAXIMIZE maxTrials: 30 maxParallelTrials: 5 hyperparameterMetricTag: my_metric_tag enableTrialEarlyStopping: TRUE params: - parameterName: max_depth type: INTEGER minValue: 3 maxValue: 8 - parameterName: n_estimators type: INTEGER minValue: 50 maxValue: 200 - parameterName: booster type: CATEGORICAL categoricalValues: [ "gbtree", "gblinear", "dart" ]
notebooks/xgboost/HyperparameterTuningWithXGBoostInCMLE.ipynb
GoogleCloudPlatform/cloudml-samples
apache-2.0
f38cd20e31b506adf054a7f1b6e61b23
Lastly, we need to install the dependencies used in our model. Check adding_standard_pypi_dependencies for more info. To do this, AI Platform uses a setup.py file to install your dependencies.
%%writefile ./setup.py #!/usr/bin/env python # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import find_packages from setuptools import setup REQUIRED_PACKAGES = ['cloudml-hypertune'] setup( name='auto_mpg_hp_tuning', version='0.1', install_requires=REQUIRED_PACKAGES, packages=find_packages(), include_package_data=True, description='Auto MPG XGBoost HP tuning training application' )
notebooks/xgboost/HyperparameterTuningWithXGBoostInCMLE.ipynb
GoogleCloudPlatform/cloudml-samples
apache-2.0
2a8a8afdef7437e232e9b9d208f3322e
Submit the training job.
! gcloud ml-engine jobs submit training auto_mpg_hp_tuning_$(date +"%Y%m%d_%H%M%S") \ --job-dir $JOB_DIR \ --package-path $TRAINER_PACKAGE_PATH \ --module-name $MAIN_TRAINER_MODULE \ --region $REGION \ --runtime-version=$RUNTIME_VERSION \ --python-version=$PYTHON_VERSION \ --scale-tier basic \ --config $HPTUNING_CONFIG
notebooks/xgboost/HyperparameterTuningWithXGBoostInCMLE.ipynb
GoogleCloudPlatform/cloudml-samples
apache-2.0
168794e6b901b0ce6ea258ee681e09f1
[Optional] StackDriver Logging You can view the logs for your training job: 1. Go to https://console.cloud.google.com/ 1. Select "Logging" in left-hand pane 1. In left-hand pane, go to "AI Platform" and select Jobs 1. In filter by prefix, use the value of $JOB_NAME to view the logs On the logging page of your model, you can view the different results for each HP tuning job. Example: { "trialId": "15", "hyperparameters": { "booster": "dart", "max_depth": "7", "n_estimators": "102" }, "finalMetric": { "trainingStep": "1000", "objectiveValue": 0.9259230441279733 } } [Optional] Verify Model File in GCS View the contents of the destination model folder to verify that all 30 model files have indeed been uploaded to GCS. Note: The model can take a few minutes to train and show up in GCS.
! gsutil ls $JOB_DIR/*
notebooks/xgboost/HyperparameterTuningWithXGBoostInCMLE.ipynb
GoogleCloudPlatform/cloudml-samples
apache-2.0
20cbab3b58e5bbc745fcf31edc4f444a
Going from a vector back to the metadata reference: By keeping an 'id_list', we can look up the identifier for any vector in the list from the database we've made for this clustering attemp. This lets us look up what the reference for that is, and where we can find it:
from clustering import ClusterDB db = ClusterDB(DBFILE) print(dict(db.vecidtoitem(id_list[-1]))) print(data.toarray()[-1]) from burney_data import BurneyDB bdb = BurneyDB("burney.db") bdb.get_title_row(titleAbbreviation="B0574REMEMBRA")
Clustering running notepad.ipynb
BL-Labs/poetryhunt
mit
f8ae3ca56214406b8dc531981b98ddcb
Initial data woes There was a considerable discrepancy between the x1 average indent and the column "box" left edge. Looking at the data, the presence of a few outliers can really affect this value. Omitting the 2 smallest and largest x values might be enough to avoid this biasing the sample too badly. Also, the initial 'drift correction' (adjustments made to correct warped or curved columns) seemed to add more issues than it solved, so the dataset was remade without it.
from scipy import cluster from matplotlib import pyplot as plt import numpy as np # Where is the K-means 'elbow'? # Try between 1 and 10 # use only the x1 and x2 variences vset = [cluster.vq.kmeans(data.toarray()[:, [3,6]], i) for i in range(1,10)] plt.plot([v for (c,v) in vset]) plt.show()
Clustering running notepad.ipynb
BL-Labs/poetryhunt
mit
30c14e987b4a99aa1e05a7e50e66017e
Seems the elbow is quite wide and not sharply defined, based on just the line variences. Let's see what it looks like in general.
# Mask off leaving just the front and end variance columns npdata = data.toarray() mask = np.ones((8), dtype=bool) mask[[0,1,2,4,5,7]] = False marray = npdata[:,mask]
Clustering running notepad.ipynb
BL-Labs/poetryhunt
mit
35706b184b5ffa3c965de6d6c5857804
Attempting K-Means What sort of clustering algorithm to employ is actually a good question. K-means can give fairly meaningless responses if the data is of a given sort. Generally, it can be useful but cannot be used blindly. Given the data above, it might be a good start however.
#trying a different KMeans from sklearn.cluster import KMeans estimators = {'k_means_3': KMeans(n_clusters=3), 'k_means_5': KMeans(n_clusters=5), 'k_means_8': KMeans(n_clusters=8),} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(8, 8)) plt.clf() plt.cla() est.fit(marray) labels = est.labels_ plt.scatter(marray[:,0], marray[:,1], c=labels.astype(np.float)) fignum = fignum + 1 plt.show()
Clustering running notepad.ipynb
BL-Labs/poetryhunt
mit
e86e20b827fbd9886662714d7da2dff2
Interesting! The lack of really well defined clusters bolstered the "elbow" test above. K-means is likely not put to good use here, with just these two variables. The left edge of the scatterplot is a region that contains those blocks of text with lines aligned to the left edge of the paper's column, but have some considerable variation to the length of the line. For example, I'd expect text looking like the following: Qui quis at ex voluptatibus cupiditate quod quia. Quas fuga quasi sit mollitia quos atque. Saepe atque officia sed dolorem. Numquam quas aperiam eaque nam sunt itaque est. Sed expedita maxime fugiat mollitia error necessitatibus quam soluta. Amet laborum eius sequi quae sit sit. This is promising (as long as the data is realistic and there isn't a bug in generating that...) Now, I wonder if including the "margin" (x1ave-ledge: average x1 coordinate minus the leftmost edge) might help find or distinguish these further?
mpld3.disable_notebook() # switch off the interactive graph functionality which doesn't work well with the 3D library from mpl_toolkits.mplot3d import Axes3D X = npdata[:, [3,5,6]] fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(8, 8)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=5, azim=30) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:,0], X[:,2], X[:,1], c=labels.astype(np.float)) ax.set_xlabel('x1 varience') ax.set_ylabel('x2 varience') ax.set_zlabel('Average indent') fignum = fignum + 1 plt.show()
Clustering running notepad.ipynb
BL-Labs/poetryhunt
mit
539193863179b8c66c4caa15e2965336
How about the area density? In other words, what does it look like if the total area of the block is compared to the area taken up by just the words themselves?
X = npdata[:, [3,0,6]] fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(8, 8)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=25, azim=40) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:,0], X[:,2], X[:,1], c=labels.astype(np.float)) ax.set_xlabel('x1 varience') ax.set_ylabel('x2 varience') ax.set_zlabel('Density') fignum = fignum + 1 plt.show()
Clustering running notepad.ipynb
BL-Labs/poetryhunt
mit
c263ed3ed337e3b70c1a65471705a97e
More outliers skewing the results. This time for blocks with nearly zero varience at either end, but a huge amount of letter area attributed to it by the ocr, but sweeping out a very small overall area. Perhaps mask out the columns which aren't actually columns but dividers mistaken for text? ie skip all blocks that are narrow under 100px perhaps. Another way might be to ignore blocks which are under approximately 40 words (40 words * 5 characters)
mask = npdata[:,1] > 40 * 5 # mask based on the ltcount value print(mask) print("Amount of vectors: {0}, Vectors with ltcount < 50: {1}".format(len(npdata), sum([1 for item in mask if item == False]))) m_npdata = npdata[mask, :] X = m_npdata[:, [3,0,6]] # Let's just plot one graph to see: est = estimators['k_means_8'] fig = plt.figure(fignum, figsize=(8, 8)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=25, azim=40) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:,0], X[:,2], X[:,1], c=labels.astype(np.float)) ax.set_xlabel('x1 varience') ax.set_ylabel('x2 varience') ax.set_zlabel('Density') plt.show()
Clustering running notepad.ipynb
BL-Labs/poetryhunt
mit
312919f3cb51c14602ff48b486661466
What country are most billionaires from? For the top ones, how many billionaires per billion people?
df['citizenship'].value_counts().head() df.groupby('citizenship')['networthusbillion'].sum().sort_values(ascending=False) us_pop = 318.9 #billion (2014) us_bill = df[df['citizenship'] == 'United States'] print("There are", us_pop/len(us_bill), "billionaires per billion people in the United States.") germ_pop = 0.08062 #(2013) germ_bill = df[df['citizenship'] == 'Germany'] print("There are", germ_pop/len(germ_bill), "billionaires per billion people in Germany.") china_pop = 1.357 #(2013) china_bill = df[df['citizenship'] == 'China'] print("There are", china_pop/len(china_bill), "billionaires per billion people in China.") russia_pop = 0.1435 #(2013) russia_bill = df[df['citizenship'] == 'Russia'] print("There are", russia_pop/len(russia_bill), "billionaires per billion people in Russia.") japan_pop = 0.1273 # 2013 japan_bill = df[df['citizenship'] == 'Japan'] print("There are", japan_pop/len(japan_bill), "billionaires per billion people in Japan.") print(df.columns)
07/billionaires.ipynb
M0nica/python-foundations-hw
mit
7564f8d135a80e9aff04cb4f061dbcdd
Who are the top 10 richest billionaires?
recent = df[df['year'] == 2014] # if it is not recent then there are duplicates for diff years recent.sort_values('rank').head(10) recent['networthusbillion'].describe()
07/billionaires.ipynb
M0nica/python-foundations-hw
mit
33d0163f14f8ae0a899123fb6371dbeb
Maybe plot their net worth vs age (scatterplot) Make a bar graph of the top 10 or 20 richest
recent.plot(kind='scatter', x='networthusbillion', y='age') recent.plot(kind='scatter', x='age', y='networthusbillion', alpha = 0.2)
07/billionaires.ipynb
M0nica/python-foundations-hw
mit
b99a46fdeb4ed4362223538e551001f3
Designing a music-generating class The rhythm-makers we studied yesterday help us think about rhythm in a formal way. Today we'll extend the rhythm-makers' pattern with pitches, articulations and dynamics. In this notebook we'll develop the code we need; in the next notebook we'll encapsulate our work in a class. Making notes and rests We start by re-implementing the basic note-making functionality of the talea rhythm-maker "by hand." Beginning with a talea object that models a cycle of durations:
pairs = [(4, 4), (3, 4), (7, 16), (6, 8)] time_signatures = [abjad.TimeSignature(_) for _ in pairs] durations = [_.duration for _ in time_signatures] time_signature_total = sum(durations) counts = [1, 2, -3, 4] denominator = 16 talea = rmakers.Talea(counts, denominator) talea_index = 0
day-3/1-making-music.ipynb
Abjad/intensive
mit
56dcb5e7cc9f458fdc4bec7f0e43f952
We can ask our talea for as many durations as we want. (Taleas output nonreduced fractions instead of durations. This is to allow talea output to model either durations or time signatures, depending on the application.) We include some negative values, which we will later interpret as rests. We can ask our talea for ten durations like this:
talea[:10]
day-3/1-making-music.ipynb
Abjad/intensive
mit
194bf88aadf659313c84093cdb0e3795
Let's use our talea to make notes and rests, stopping when the duration of the accumulated notes and rests sums to that of the four time signatures defined above:
events = [] accumulated_duration = abjad.Duration(0) while accumulated_duration < time_signature_total: duration = talea[talea_index] if 0 < duration: pitch = abjad.NamedPitch("c'") else: pitch = None duration = abs(duration) if time_signature_total < (duration + accumulated_duration): duration = time_signature_total - accumulated_duration events_ = abjad.LeafMaker()([pitch], [duration]) events.extend(events_) accumulated_duration += duration talea_index += 1 staff = abjad.Staff(events) abjad.show(staff)
day-3/1-making-music.ipynb
Abjad/intensive
mit
1f29233588342107196ed7b54eb77897
To attach the four time signatures defined above, we must split our notes and rests at measure boundaries. Then we can attach a time signature to the first note or rest in each of the four selections that result:
selections = abjad.mutate.split(staff[:], time_signatures, cyclic=True) for time_signature, selection in zip(time_signatures, selections): first_leaf = abjad.get.leaf(selection, 0) abjad.attach(time_signature, first_leaf) abjad.show(staff)
day-3/1-making-music.ipynb
Abjad/intensive
mit
349129cb9879ae1fff40c7f702b35af3
Then we group our notes and rests by measure, and metrically respell each group:
measure_selections = abjad.select(staff).leaves().group_by_measure() for time_signature, measure_selection in zip(time_signatures, measure_selections): abjad.Meter.rewrite_meter(measure_selection, time_signature) abjad.show(staff)
day-3/1-making-music.ipynb
Abjad/intensive
mit
a3d20aa9454db535c377c653e30b2f04
Pitching notes We can pitch our notes however we like. First we define a cycle of pitches:
string = "d' fs' a' d'' g' ef'" strings = string.split() pitches = abjad.CyclicTuple(strings)
day-3/1-making-music.ipynb
Abjad/intensive
mit
8c4c00d98c35f4abced32d17890f0e6f
Then we loop through pitched logical ties, pitching notes as we go:
plts = abjad.select(staff).logical_ties(pitched=True) for i, plt in enumerate(plts): pitch = pitches[i] for note in plt: note.written_pitch = pitch abjad.show(staff)
day-3/1-making-music.ipynb
Abjad/intensive
mit
fc8607f613f1aa7504ac1874a6ea840c
Attaching articulations and dynamics Abjad's run selector selects notes and chords, separated by rests:
for selection in abjad.select(staff).runs(): print(selection)
day-3/1-making-music.ipynb
Abjad/intensive
mit
05ab9bc9f89ca09dd2b66f811dabc19c
We can use Abjad's run selector to loop through the runs in our music, attaching articulations and dynamics along the way:
for selection in abjad.select(staff).runs(): articulation = abjad.Articulation("tenuto") abjad.attach(articulation, selection[0]) if 3 <= len(selection): abjad.hairpin("p < f", selection) else: dynamic = abjad.Dynamic("ppp") abjad.attach(dynamic, selection[0]) abjad.override(staff).dynamic_line_spanner.staff_padding = 4 abjad.show(staff)
day-3/1-making-music.ipynb
Abjad/intensive
mit
7c7005aef6783e2c4a3d185558efa856
Read in the total SFRs from https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/sfrs.html . These SFRs are derived from spectra but later aperture corrected using Salim et al.(2007)'s method.
# data with the galaxy information data_gals = mrdfits(UT.dat_dir()+'gal_info_dr7_v5_2.fit.gz') # data with the SFR information data_sfrs = mrdfits(UT.dat_dir()+'gal_totsfr_dr7_v5_2.fits.gz') if len(data_gals.ra) != len(data_sfrs.median): raise ValueError("the data should have the same number of galaxies")
centralms/notebooks/notes_SFRmpajhu_uncertainty.ipynb
changhoonhahn/centralMS
mit
9fc89c965e34e3c407793ebb9b83803e
spherematch using 3'' for 10,000 galaxies. Otherwise laptop explodes.
#ngal = len(data_gals.ra) ngal = 10000 matches = spherematch(data_gals.ra[:10000], data_gals.dec[:10000], data_gals.ra[:10000], data_gals.dec[:10000], 0.000833333, maxmatch=0) m0, m1, d_m = matches n_matches = np.zeros(ngal) sfr_list = [[] for i in range(ngal)] for i in range(ngal): ism = (i == m0) n_matches[i] = np.sum(ism) if n_matches[i] > 1: #print '#', data_gals.ra[i], data_gals.dec[i], data_sfrs.median[i] sfr_list[i] = data_sfrs.median[m1[np.where(ism)]] #for r,d,s in zip(data_gals.ra[m1[np.where(ism)]], data_gals.dec[m1[np.where(ism)]], data_sfrs.median[m1[np.where(ism)]]): # print r, d, s #sfr_list[i] = data_sfrs.median[:10000][ism] for i in np.where(n_matches > 1)[0][:5]: print sfr_list[i] print np.mean(sfr_list[i]), np.std(sfr_list[i]) fig = plt.figure() sub = fig.add_subplot(111) sigs = [] for i in np.where(n_matches > 1)[0]: if -99. in sfr_list[i]: continue sub.scatter([np.mean(sfr_list[i])], [np.std(sfr_list[i], ddof=1)], c='k', s=2) sigs.append(np.std(sfr_list[i], ddof=1)) sub.set_xlim([-3., 3.]) sub.set_xlabel('log SFR', fontsize=25) sub.set_ylim([0., 0.6]) sub.set_ylabel('$\sigma_\mathrm{log\,SFR}$', fontsize=25) plt.show() plt.hist(np.array(sigs), bins=40, range=[0.0, 0.6], normed=True, histtype='step') plt.xlim([0., 0.6]) plt.xlabel('$\sigma_\mathrm{log\,SFR}$', fontsize=25)
centralms/notebooks/notes_SFRmpajhu_uncertainty.ipynb
changhoonhahn/centralMS
mit
9e160d8551cf775bc5bb59bdd529c445
The task: Identify patients with pulmonary embolism from radiology reports Step 1: how is the concept of pulmonary embolism represented in the reports - fill in the list below with literals you want to use.
mytargets = itemData.itemData() mytargets.extend([["pulmonary embolism", "CRITICAL_FINDING", "", ""], ["pneumonia", "CRITICAL_FINDING", "", ""]]) print(mytargets) !pip install -U radnlp==0.2.0.8
IntroductionToPyConTextNLP.ipynb
chapmanbe/nlm_clinical_nlp
mit
00c9aa571af15318c83d9f7def0cd455
Sentence Splitting pyConTextNLP operates on a sentence level and so the first step we need to take is to split our document into individual sentences. pyConTextNLP comes with a simple sentence splitter class.
import pyConTextNLP.helpers as helpers spliter = helpers.sentenceSplitter() spliter.splitSentences("This is Dr. Chapman's first sentence. This is the 2.0 sentence.")
IntroductionToPyConTextNLP.ipynb
chapmanbe/nlm_clinical_nlp
mit
e1fe7c8a3e910249467fa32f73715f8b
However, sentence splitting is a common NLP task and so most full-fledged NLP applications provide sentence splitters. We usually rely on the sentence splitter that is part of the TextBlob package, which in turn relies on the Natural Language Toolkit (NLTK). So before proceeding we need to download some NLTK resources with the following command.
!python -m textblob.download_corpora
IntroductionToPyConTextNLP.ipynb
chapmanbe/nlm_clinical_nlp
mit
6a78507a2aa3b9d805ba5cc36d8d4df3
Combining cross_fields and best_fields Based on previous tuning, we have the following optimal parameters for each multi_match query type.
cross_fields_params = { 'operator': 'OR', 'minimum_should_match': 50, 'tie_breaker': 0.25, 'url|boost': 1.0129720302556104, 'title|boost': 5.818478716515356, 'body|boost': 3.736613263685484, } best_fields_params = { 'tie_breaker': 0.3936135232328522, 'url|boost': 0.0, 'title|boost': 8.63280262513067, 'body|boost': 10.0, }
Machine Learning/Query Optimization/notebooks/Appendix B - Combining queries.ipynb
elastic/examples
apache-2.0
4b819278f26e0892181020a718cdb848
We've seen the process to optimize field boosts on two different multi_match queries but it would be interesting to see if combining them in some way might actually result in even better MRR@100. Let's give it a shot and find out. Side note: Combining queries where each sub-query is always executed may improve relevance but it will hurt performance and the query times will be quite a lot higher than with a single, simpler query. Keep this in mind when building complex queries for production!
def prefix_keys(d, prefix): return {f'{prefix}{k}': v for k, v in d.items()} # prefix key of each sub-query # add default boosts all_params = { **prefix_keys(cross_fields_params, 'cross_fields|'), 'cross_fields|boost': 1.0, **prefix_keys(best_fields_params, 'best_fields|'), 'best_fields|boost': 1.0, } all_params
Machine Learning/Query Optimization/notebooks/Appendix B - Combining queries.ipynb
elastic/examples
apache-2.0
558120dae06fbe1975937ad2ff7db008
Baseline evaluation
%%time _ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, params=all_params)
Machine Learning/Query Optimization/notebooks/Appendix B - Combining queries.ipynb
elastic/examples
apache-2.0
64a0535420c9320601bee30bb856f0ef
Query tuning Here we'll just tune the boosts for each sub-query. Note that this takes twice as long as tuning individual queries because we have two queries combined.
%%time _, _, final_params_boosts, metadata_boosts = optimize_query_mrr100(es, max_concurrent_searches, index, template_id, config_space=Config.parse({ 'num_iterations': 30, 'num_initial_points': 15, 'space': { 'cross_fields|boost': { 'low': 0.0, 'high': 5.0 }, 'best_fields|boost': { 'low': 0.0, 'high': 5.0 }, }, 'default': all_params, })) _ = plot_objective(metadata_boosts, sample_source='result')
Machine Learning/Query Optimization/notebooks/Appendix B - Combining queries.ipynb
elastic/examples
apache-2.0
5b3a78ce8989c0269e8b4101d79ef45c
Seems that there's not much to tune here, but let's keep going.
%%time _ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, params=final_params_boosts)
Machine Learning/Query Optimization/notebooks/Appendix B - Combining queries.ipynb
elastic/examples
apache-2.0
3da00c8ffefd99388715b3434cbf0bbc
So that's the same as without tuning. What's going on? Debugging Plot scores from each sub-query to determine why we don't really see an improvement over individual queries.
import matplotlib.pyplot as plt from itertools import chain from qopt.notebooks import ROOT_DIR from qopt.search import temporary_search_template, search_template from qopt.trec import load_queries_as_tuple_list, load_qrels def collect_scores(): def _search(template_id, query_string, params, doc_id): res = search_template(es, index, template_id, query={ 'id': 0, 'params': { 'query_string': query_string, **params, }, }) return [hit['score'] for hit in res['hits'] if hit['id'] == doc_id] queries = load_queries_as_tuple_list(os.path.join(ROOT_DIR, 'data', 'msmarco-document-sampled-queries.1000.tsv')) qrels = load_qrels(os.path.join(ROOT_DIR, 'data', 'msmarco', 'document', 'msmarco-doctrain-qrels.tsv')) template_file = os.path.join(ROOT_DIR, 'config', 'msmarco-document-templates.json') size = 100 cross_field_scores = [] best_field_scores = [] with temporary_search_template(es, template_file, 'cross_fields', size) as cross_fields_template_id: with temporary_search_template(es, template_file, 'best_fields', size) as best_fields_template_id: for query in queries: doc_id = list(qrels[query[0]].keys())[0] cfs = _search(cross_fields_template_id, query[1], cross_fields_params, doc_id) bfs = _search(best_fields_template_id, query[1], best_fields_params, doc_id) # keep just n scores to make sure the lists are the same length length = min(len(cfs), len(bfs)) cross_field_scores.append(cfs[:length]) best_field_scores.append(bfs[:length]) return cross_field_scores, best_field_scores cfs, bfs = collect_scores() # plot scores cfs_flat = list(chain(*cfs)) bfs_flat = list(chain(*bfs)) plt.scatter(cfs_flat, bfs_flat) plt.show()
Machine Learning/Query Optimization/notebooks/Appendix B - Combining queries.ipynb
elastic/examples
apache-2.0
3d601c3772d05d0f4b010280b45b3450
Check the dataframe to see which columns contain 0's. Based on the data type of each column, do these 0's all make sense? Which 0's are suspicious?
for name in names: print(name, ':', any(df.loc[:, name] == 0))
python-machine-learning/code/ch04exercises.ipynb
jeancochrane/learning
mit
1fb02289e1fcd03e3068e936ed176e0b
Answer: Columns 2-6 (glucose, blood pressure, skin fold thickness, insulin, and BMI) all contain zeros, but none of these measurements should ever be 0 in a human. Assume that 0s indiciate missing values, and fix them in the dataset by eliminating samples with missing features. Then run a logistic regression, and measure the performance of the model.
import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression for i in range(1,6): df.loc[df.loc[:, names[i]] == 0, names[i]] = np.nan df_no_nan = df.dropna(axis=0, how='any') X = df_no_nan.iloc[:, :8].values y = df_no_nan.iloc[:, 8].values def fit_and_score_rlr(X, y, normalize=True): if normalize: scaler = StandardScaler().fit(X) X_std = scaler.transform(X) else: X_std = X X_train, X_test, y_train, y_test = train_test_split(X_std, y, test_size=0.33, random_state=42) rlr = LogisticRegression(C=1) rlr.fit(X_train, y_train) return rlr.score(X_test, y_test) fit_and_score_rlr(X, y)
python-machine-learning/code/ch04exercises.ipynb
jeancochrane/learning
mit
370170b195a81c0f64ae7b4973ff5dbd
Next, replace missing features through mean imputation. Run a regression and measure the performance of the model.
from sklearn.preprocessing import Imputer imputer = Imputer(missing_values='NaN', strategy='mean', axis=1) X = imputer.fit_transform(df.iloc[:, :8].values) y = df.iloc[:, 8].values fit_and_score_rlr(X, y)
python-machine-learning/code/ch04exercises.ipynb
jeancochrane/learning
mit
8579248ae7dfe8c421248b32fabf592c
Comment on your results. Answer: Interestingly, there's not a huge performance improvement between the two approaches! In my run, using mean imputation corresponded to about a 3 point increase in model performance. Some ideas for why this might be: This is a small dataset to start out with, so removing ~half its samples doesn't change performance very much There's not much information contained in the features with missing data There are other effects underlying poor performance of the model (e.g. regularization parameters) that are having a greater impact Preprocessing categorical variables Load the TA evaluation dataset. As before, the data and header are split into two files, so you'll have to combine them yourself.
data_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/tae/tae.data' names = ['native_speaker', 'instructor', 'course', 'season', 'class_size', 'rating'] df = pandas.read_csv(data_url, header=None, index_col=False, names=names) print(df)
python-machine-learning/code/ch04exercises.ipynb
jeancochrane/learning
mit
bcb9bceb5155b28fc0f45d898f5340e4
Which of the features are categorical? Are they ordinal, or nominal? Which features are numeric? Answer: According to the documentation: Native speaker: categorical (nominal) Instructor: categorical (nominal) Course: categorical (nominal) Season: categorical (nominal) Class size: numeric Rating: categorical (ordinal) Encode the categorical variables in a naive fashion, by leaving them in place as numerics. Run a classification and measure performance against a test set.
X = df.iloc[:, :-1].values y = df.iloc[:, -1].values fit_and_score_rlr(X, y, normalize=True)
python-machine-learning/code/ch04exercises.ipynb
jeancochrane/learning
mit
6b16bfa43161cf0a7454534e85680156
Now, encode the categorical variables with a one-hot encoder. Again, run a classification and measure performance.
from sklearn.preprocessing import OneHotEncoder enc = OneHotEncoder(categorical_features=range(5)) X_encoded = enc.fit_transform(X) fit_and_score_rlr(X_encoded, y, normalize=False)
python-machine-learning/code/ch04exercises.ipynb
jeancochrane/learning
mit
b9b3c807c03a3c7cf776beea31c46f14
Comment on your results. Feature scaling Raschka mentions that decision trees and random forests do not require standardized features prior to classification, while the rest of the classifiers we've seen so far do. Why might that be? Explain the intuition behind this idea based on the differences between tree-based classifiers and the other classifiers we've seen. Now, we'll test the two scaling algorithms on the wine dataset. Start by loading the wine dataset. Scale the features via "standardization" (as Raschka describes it). Classify and measure performance. Scale the features via "normalization" (as Raschka describes it). Again, classify and measure performance. Comment on your results. Feature selection Implement SBS below. Then, run the tests.
class SBS(object): """ Class to select the k-best features in a dataset via sequential backwards selection. """ def __init__(self): """ Initialize the SBS model. """ pass def fit(self): """ Fit SBS to a dataset. """ pass def transform(self): """ Transform a dataset based on the model. """ pass def fit_transform(self): """ Fit SBS to a dataset and transform it, returning the k-best features. """ pass
python-machine-learning/code/ch04exercises.ipynb
jeancochrane/learning
mit
bb24ee5a4f088f9bf44116f5ec0396c6
Train SVM on features Using the multiclass SVM code developed earlier in the assignment, train SVMs on top of the features extracted above; this should achieve better results than training SVMs directly on top of raw pixels.
# Use the validation set to tune the learning rate and regularization strength from cs231n.classifiers.linear_classifier import LinearSVM learning_rates = [1e-9, 1e-8, 1e-7] regularization_strengths = [5e4, 5e5, 5e6] #learning_rates = list(map(lambda x: x*1e-9, np.arange(0.9, 2, 0.1))) #regularization_strengths = list(map(lambda x: x*1e4, np.arange(1, 10))) results = {} best_val = -1 best_svm = None iters = 2000 ################################################################################ # TODO: # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the SVM; save # # the best trained classifer in best_svm. You might also want to play # # with different numbers of bins in the color histogram. If you are careful # # you should be able to get accuracy of near 0.44 on the validation set. # ################################################################################ for lr in learning_rates: for reg in regularization_strengths: print('Training with lr={0}, reg={1}'.format(lr, reg)) svm = LinearSVM() loss_hist = svm.train(X_train_feats, y_train, learning_rate=lr, reg=reg, num_iters=iters) y_train_pred = svm.predict(X_train_feats) y_val_pred = svm.predict(X_val_feats) train_accuracy = np.mean(y_train == y_train_pred) validation_accuracy = np.mean(y_val == y_val_pred) if validation_accuracy > best_val: best_val = validation_accuracy best_svm = svm results[(lr, reg)] = (validation_accuracy, train_accuracy) ################################################################################ # END OF YOUR CODE # ################################################################################ # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val) # Evaluate your trained SVM on the test set y_test_pred = best_svm.predict(X_test_feats) test_accuracy = np.mean(y_test == y_test_pred) print(test_accuracy) # An important way to gain intuition about how an algorithm works is to # visualize the mistakes that it makes. In this visualization, we show examples # of images that are misclassified by our current system. The first column # shows images that our system labeled as "plane" but whose true label is # something other than "plane". examples_per_class = 8 classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for cls, cls_name in enumerate(classes): idxs = np.where((y_test != cls) & (y_test_pred == cls))[0] idxs = np.random.choice(idxs, examples_per_class, replace=False) for i, idx in enumerate(idxs): plt.subplot(examples_per_class, len(classes), i * len(classes) + cls + 1) plt.imshow(X_test[idx].astype('uint8')) plt.axis('off') if i == 0: plt.title(cls_name) plt.show()
assignment1/features.ipynb
miguelfrde/stanford-cs231n
mit
a003fffd5ab93dd7ffd17d69ca73dab1
Inline question 1: Describe the misclassification results that you see. Do they make sense? It makes sense given that we are using color histogram features, so for some results the background seems to affect. For example, blue background/flat background for a plane, trucks as cars (street + background) and the other way, etc. Neural Network on image features Earlier in this assigment we saw that training a two-layer neural network on raw pixels achieved better classification performance than linear classifiers on raw pixels. In this notebook we have seen that linear classifiers on image features outperform linear classifiers on raw pixels. For completeness, we should also try training a neural network on image features. This approach should outperform all previous approaches: you should easily be able to achieve over 55% classification accuracy on the test set; our best model achieves about 60% classification accuracy.
print(X_train_feats.shape) from cs231n.classifiers.neural_net import TwoLayerNet input_dim = X_train_feats.shape[1] hidden_dim = 500 num_classes = 10 best_net = None ################################################################################ # TODO: Train a two-layer neural network on image features. You may want to # # cross-validate various parameters as in previous sections. Store your best # # model in the best_net variable. # ################################################################################ learning_rates = np.arange(0.1, 1.6, 0.1) regularization_params = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1] results = {} best_val_accuracy = 0 for lr in learning_rates: for reg in regularization_params: net = TwoLayerNet(input_dim, hidden_dim, num_classes) stats = net.train(X_train_feats, y_train, X_val_feats, y_val, num_iters=2000, batch_size=200, learning_rate=lr, learning_rate_decay=0.95, reg=reg) val_accuracy = (net.predict(X_val_feats) == y_val).mean() if val_accuracy > best_val_accuracy: best_val_accuracy = val_accuracy best_net = net print('LR: {0} REG: {1} ACC: {2}'.format(lr, reg, val_accuracy)) print('best validation accuracy achieved during cross-validation: {0}'.format(best_val_accuracy)) net = best_net ################################################################################ # END OF YOUR CODE # ################################################################################ # Run your neural net classifier on the test set. You should be able to # get more than 55% accuracy. test_acc = (best_net.predict(X_test_feats) == y_test).mean() print(test_acc)
assignment1/features.ipynb
miguelfrde/stanford-cs231n
mit
03647fe42af213cfdce83051eb5fce78
First, I made a mistake naming the data set! It's 2015 data, not 2014 data. But yes, still use 311-2014.csv. You can rename it. Importing and preparing your data Import your data, but only the first 200,000 rows. You'll also want to change the index to be a datetime based on the Created Date column - you'll want to check if it's already a datetime, and parse it if not.
df=pd.read_csv("311-2014.csv", nrows=200000) dateutil.parser.parse(df['Created Date'][0]) def parse_date(str_date): return dateutil.parser.parse(str_date) df['created_datetime']=df['Created Date'].apply(parse_date) df.index=df['created_datetime']
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
8b744cff532a22a2ecb87ba598a0aff4
What was the most popular type of complaint, and how many times was it filed?
df['Complaint Type'].describe()
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
08c83b30d87241824e5c7c1b9538bed4
Make a horizontal bar graph of the top 5 most frequent complaint types.
df.groupby(by='Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(5).plot(kind='barh').invert_yaxis()
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
3ffc9dacfba255aa29457326cec52baa
Which borough has the most complaints per capita? Since it's only 5 boroughs, you can do the math manually.
df.groupby(by='Borough')['Borough'].count() boro_pop={ 'BRONX': 1438159, 'BROOKLYN': 2621793, 'MANHATTAN': 1636268, 'QUEENS': 2321580, 'STATEN ISLAND': 473279} boro_df=pd.Series.to_frame(df.groupby(by='Borough')['Borough'].count()) boro_df['Population']=pd.DataFrame.from_dict(boro_pop, orient='index') boro_df['Complaints']=boro_df['Borough'] boro_df.drop('Borough', axis=1, inplace=True) boro_df['Per Capita']=boro_df['Complaints']/boro_df['Population'] boro_df['Per Capita'].plot(kind='bar')
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
2cd00b7ae15b23fa293cf42424dd108e
According to your selection of data, how many cases were filed in March? How about May?
df['2015-03']['Created Date'].count() df['2015-05']['Created Date'].count()
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
a26d4de7b68698512af452d7f593372c
What was the most popular type of complaint on April 1st?
df['2015-04-01'].groupby(by='Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(1)
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
e3002e928521725ac9a4bf8658c57c62
What were the most popular three types of complaint on April 1st
df['2015-04-01'].groupby(by='Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(3)
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
d008fbb5e87826ff26915eca36c431c4
What month has the most reports filed? How many? Graph it.
df.resample('M')['Unique Key'].count().sort_values(ascending=False) df.resample('M').count().plot(y='Unique Key')
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
0411bf9ed6c33655228ddf97f18ae77e
What week of the year has the most reports filed? How many? Graph the weekly complaints.
df.resample('W')['Unique Key'].count().sort_values(ascending=False).head(5) df.resample('W').count().plot(y='Unique Key')
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
644a3a36fdf0c5f54ebc4c263ac82e5a
Noise complaints are a big deal. Use .str.contains to select noise complaints, and make an chart of when they show up annually. Then make a chart about when they show up every day (cyclic).
noise_df=df[df['Complaint Type'].str.contains('Noise')] noise_df.resample('M').count().plot(y='Unique Key') noise_df.groupby(by=noise_df.index.hour).count().plot(y='Unique Key')
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
8272405d36a297c3196f446a828bddaf
What hour of the day are the most complaints? Graph a day of complaints.
df['Unique Key'].groupby(by=df.index.hour).count().sort_values(ascending=False) df['Unique Key'].groupby(df.index.hour).count().plot()
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
c8aa0702770a882c56f33ceb2f3738a0
One of the hours has an odd number of complaints. What are the most common complaints at that hour, and what are the most common complaints the hour before and after?
df[df.index.hour==0].groupby(by='Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(5) df[df.index.hour==1].groupby(by='Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(5) df[df.index.hour==11].groupby(by='Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(5)
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
87bd36c147d6cac4c7e6dc5a2551ad7e
So odd. What's the per-minute breakdown of complaints between 12am and 1am? You don't need to include 1am.
midnight_df = df[df.index.hour==0] midnight_df.groupby(midnight_df.index.minute)['Unique Key'].count().sort_values(ascending=False)
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
61d8ca20d67b73cd61e74cbd6e1c2f7c
Looks like midnight is a little bit of an outlier. Why might that be? Take the 5 most common agencies and graph the times they file reports at (all day, not just midnight).
df.groupby('Agency')['Unique Key'].count().sort_values(ascending=False).head(5) ax=df[df['Agency']=='NYPD'].groupby(df[df['Agency']=='NYPD'].index.hour)['Unique Key'].count().plot(legend=True, label='NYPD') df[df['Agency']=='HPD'].groupby(df[df['Agency']=='HPD'].index.hour)['Unique Key'].count().plot(ax=ax, legend=True, label='HPD') df[df['Agency']=='DOT'].groupby(df[df['Agency']=='DOT'].index.hour)['Unique Key'].count().plot(ax=ax, legend=True, label='DOT') df[df['Agency']=='DPR'].groupby(df[df['Agency']=='DPR'].index.hour)['Unique Key'].count().plot(ax=ax, legend=True, label='DPR') df[df['Agency']=='DOHMH'].groupby(df[df['Agency']=='DOHMH'].index.hour)['Unique Key'].count().plot(ax=ax, legend=True, label='DOHMH')
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
c53568ff69dcb2e981e3726f0ba6e9ce
Graph those same agencies on an annual basis - make it weekly. When do people like to complain? When does the NYPD have an odd number of complaints?
ax=df[df['Agency']=='NYPD'].groupby(df[df['Agency']=='NYPD'].index.week)['Unique Key'].count().plot(legend=True, label='NYPD') df[df['Agency']=='HPD'].groupby(df[df['Agency']=='HPD'].index.week)['Unique Key'].count().plot(ax=ax, legend=True, label='HPD') df[df['Agency']=='DOT'].groupby(df[df['Agency']=='DOT'].index.week)['Unique Key'].count().plot(ax=ax, legend=True, label='DOT') df[df['Agency']=='DPR'].groupby(df[df['Agency']=='DPR'].index.week)['Unique Key'].count().plot(ax=ax, legend=True, label='DPR') df[df['Agency']=='DOHMH'].groupby(df[df['Agency']=='DOHMH'].index.week)['Unique Key'].count().plot(ax=ax, legend=True, label='DOHMH')
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
3a8a5d2283da7b122f53f5b6a2885ca5
Maybe the NYPD deals with different issues at different times? Check the most popular complaints in July and August vs the month of May. Also check the most common complaints for the Housing Preservation Bureau (HPD) in winter vs. summer.
nypd=df[df['Agency']=='NYPD'] nypd[(nypd.index.month==7) | (nypd.index.month==8)].groupby('Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(5) nypd[nypd.index.month==5].groupby('Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(5) # seems like mostly noise complaints and bad parking to me hpd=df[df['Agency']=='HPD'] hpd[(hpd.index.month>=6) & (hpd.index.month<=8)].groupby('Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(5) # i would consider summer to be june to august. hpd[(hpd.index.month==12) | (hpd.index.month<=2)].groupby('Complaint Type')['Complaint Type'].count().sort_values(ascending=False).head(5) # pretty similar list, but people probably notice a draft from their bad window or door in the winter more easily than summer
12/homework 12 - 311 time series homework.ipynb
spm2164/foundations-homework
artistic-2.0
39f459c8be723a3abb122c667ad8ae71
You should see the output "Hello World!". Once you've verfied this, interupt the above running cell by hitting the stop button. Create and build a Docker image Now we will create a docker image called hello_node.docker that will do the following: Start from the node image found on the Docker hub by inhereting from node:6.9.2 Expose port 8000 Copy the ./src/server.js file to the image Start the node server as we previously did manually Save your Dockerfile in the folder labeled dockerfiles. Your finished Dockerfile should look something like this ```bash FROM node:6.9.2 EXPOSE 8000 COPY ./src/server.js . CMD node server.js ``` Next, build the image in your project using docker build.
import os PROJECT_ID = "your-gcp-project-here" # REPLACE WITH YOUR PROJECT NAME os.environ["PROJECT_ID"] = PROJECT_ID %%bash docker build -f dockerfiles/hello_node.docker -t gcr.io/${PROJECT_ID}/hello-node:v1 .
notebooks/docker_and_kubernetes/solutions/3_k8s_hello_node.ipynb
GoogleCloudPlatform/asl-ml-immersion
apache-2.0
d985071cf1997548b2b0cb17de5b6754
A declarative approach is being used here. Rather than starting or stopping new instances, you declare how many instances should be running at all times. Kubernetes reconciliation loops makes sure that reality matches what you requested and takes action if needed. Here's a diagram summarizing the state of your Kubernetes cluster: <img src='../assets/k8s_cluster.png' width='60%'> Roll out an upgrade to your service At some point the application that you've deployed to production will require bug fixes or additional features. Kubernetes helps you deploy a new version to production without impacting your users. First, modify the application by opening server.js so that the response is bash response.end("Hello Kubernetes World!"); Now you can build and publish a new container image to the registry with an incremented tag (v2 in this case). Note: Building and pushing this updated image should be quicker since caching is being taken advantage of.
%%bash docker build -f dockerfiles/hello_node.docker -t gcr.io/${PROJECT_ID}/hello-node:v2 . docker push gcr.io/${PROJECT_ID}/hello-node:v2
notebooks/docker_and_kubernetes/solutions/3_k8s_hello_node.ipynb
GoogleCloudPlatform/asl-ml-immersion
apache-2.0
ad7db5514f947970d6aeff71e928aa73
OpenSpiel This Colab gets you started the basics of OpenSpiel. OpenSpiel is a framework for reinforcement learning in games. The code is hosted on github. There is an accompanying video tutorial that works through this colab. It will be linked here once it is live. There is also an OpenSpiel paper with more detail. Install The following command will install OpenSpiel via pip. Only the required dependencies are installed. You may need other dependencies if you use some of the algorithms. There is a the complete list of packages and versions we install for the CI tests, which can be installed as necessary.
!pip install --upgrade open_spiel
open_spiel/colabs/OpenSpielTutorial.ipynb
deepmind/open_spiel
apache-2.0
6b0a25b107f6f72f847e62f692dd5ec3
Part 1. OpenSpiel API Basics.
# Importing pyspiel and showing the list of supported games. import pyspiel print(pyspiel.registered_names()) # Loading a game (with no/default parameters). game = pyspiel.load_game("tic_tac_toe") print(game) # Some properties of the games. print(game.num_players()) print(game.max_utility()) print(game.min_utility()) print(game.num_distinct_actions()) # Creating initial states. state = game.new_initial_state() print(state) # Basic information about states. print(state.current_player()) print(state.is_terminal()) print(state.returns()) print(state.legal_actions()) # Playing the game: applying actions. state = game.new_initial_state() state.apply_action(1) print(state) print(state.current_player()) state.apply_action(2) state.apply_action(4) state.apply_action(0) state.apply_action(7) print(state) print(state.is_terminal()) print(state.player_return(0)) # win for x (player 0) print(state.current_player()) # Different game: Breakthrough with default parameters (number of rows and columns are both 8) game = pyspiel.load_game("breakthrough") state = game.new_initial_state() print(state) # Parameterized games: loading a 6x6 Breakthrough. game = pyspiel.load_game("breakthrough(rows=6,columns=6)") state = game.new_initial_state() print(state) print(state.legal_actions()) print(game.num_distinct_actions()) for action in state.legal_actions(): print(f"{action} {state.action_to_string(action)}")
open_spiel/colabs/OpenSpielTutorial.ipynb
deepmind/open_spiel
apache-2.0
e6bf9c5d2b5cbec48a4364606a9a76f3
Part 2. Normal-form Games and Evolutionary Dynamics in OpenSpiel.
import pyspiel game = pyspiel.create_matrix_game([[1, -1], [-1, 1]], [[-1, 1], [1, -1]]) print(game) # name not provided: uses a default state = game.new_initial_state() print(state) # action names also not provided; defaults used # Normal-form games are 1-step simultaneous-move games. print(state.current_player()) # special player id print(state.legal_actions(0)) # query legal actions for each player print(state.legal_actions(1)) print(state.is_terminal()) # Applying a joint action (one action per player) state.apply_actions([0, 0]) print(state.is_terminal()) print(state.returns()) # Evolutionary dynamics in Rock, Paper, Scissors from open_spiel.python.egt import dynamics from open_spiel.python.egt.utils import game_payoffs_array import numpy as np game = pyspiel.load_matrix_game("matrix_rps") # load the Rock, Paper, Scissors matrix game payoff_matrix = game_payoffs_array(game) # convert any normal-form game to a numpy payoff matrix dyn = dynamics.SinglePopulationDynamics(payoff_matrix, dynamics.replicator) x = np.array([0.2, 0.2, 0.6]) # population heavily-weighted toward scissors dyn(x) # Choose a step size and apply the dynamic alpha = 0.01 x += alpha * dyn(x) print(x) x += alpha * dyn(x) print(x) x += alpha * dyn(x) x += alpha * dyn(x) x += alpha * dyn(x) x += alpha * dyn(x) print(x)
open_spiel/colabs/OpenSpielTutorial.ipynb
deepmind/open_spiel
apache-2.0
cd6c8fda459a76d85b46b37b718a4c29
Part 3. Chance Nodes and Partially-Observable Games.
# Kuhn poker: simplified poker with a 3-card deck (https://en.wikipedia.org/wiki/Kuhn_poker) import pyspiel game = pyspiel.load_game("kuhn_poker") print(game.num_distinct_actions()) # bet and fold # Chance nodes. state = game.new_initial_state() print(state.current_player()) # special chance player id print(state.is_chance_node()) print(state.chance_outcomes()) # distibution over outcomes as a list of (outcome, probability) pairs # Applying chance node outcomes: same function as applying actions. state.apply_action(0) # let's choose the first card (jack) print(state.is_chance_node()) # still at a chance node (player 2's card). print(state.chance_outcomes()) # jack no longer a possible outcome state.apply_action(1) # second player gets the queen print(state.current_player()) # no longer chance node, time to play! # States vs. information states print(state) # ground/world state (all information open) print(state.legal_actions()) for action in state.legal_actions(): print(state.action_to_string(action)) print(state.information_state_string()) # only current player's information! # Take an action (pass / check), second player's turn. # Information state tensor is vector of floats (often bits) representing the information state. state.apply_action(0) print(state.current_player()) print(state.information_state_string()) # now contains second player's card and the public action sequence print(state.information_state_tensor()) # Leduc poker is a larger game (6 cards, two suits), 3 actions: fold, check/call, raise. game = pyspiel.load_game("leduc_poker") print(game.num_distinct_actions()) state = game.new_initial_state() print(state) state.apply_action(0) # first player gets first jack state.apply_action(1) # second player gets second jack print(state.current_player()) print(state.information_state_string()) print(state.information_state_tensor()) # Let's check until the second round. print(state.legal_actions_mask()) # Helper function for neural networks. state.apply_action(1) # check state.apply_action(1) # check print(state) print(state.chance_outcomes()) # public card (4 left in the deck) state.apply_action(2) print(state.information_state_string()) # player 0's turn again.
open_spiel/colabs/OpenSpielTutorial.ipynb
deepmind/open_spiel
apache-2.0
8615366719cb8285857bddf1a28b919e
Part 4. Basic RL: Self-play Q-Learning in Tic-Tac-Toe.
# Let's do independent Q-learning in Tic-Tac-Toe, and play it against random. # RL is based on python/examples/independent_tabular_qlearning.py from open_spiel.python import rl_environment from open_spiel.python import rl_tools from open_spiel.python.algorithms import tabular_qlearner # Create the environment env = rl_environment.Environment("tic_tac_toe") num_players = env.num_players num_actions = env.action_spec()["num_actions"] # Create the agents agents = [ tabular_qlearner.QLearner(player_id=idx, num_actions=num_actions) for idx in range(num_players) ] # Train the Q-learning agents in self-play. for cur_episode in range(25000): if cur_episode % 1000 == 0: print(f"Episodes: {cur_episode}") time_step = env.reset() while not time_step.last(): player_id = time_step.observations["current_player"] agent_output = agents[player_id].step(time_step) time_step = env.step([agent_output.action]) # Episode is over, step all agents with final info state. for agent in agents: agent.step(time_step) print("Done!") # Evaluate the Q-learning agent against a random agent. from open_spiel.python.algorithms import random_agent eval_agents = [agents[0], random_agent.RandomAgent(1, num_actions, "Entropy Master 2000") ] time_step = env.reset() while not time_step.last(): print("") print(env.get_state) player_id = time_step.observations["current_player"] # Note the evaluation flag. A Q-learner will set epsilon=0 here. agent_output = eval_agents[player_id].step(time_step, is_evaluation=True) print(f"Agent {player_id} chooses {env.get_state.action_to_string(agent_output.action)}") time_step = env.step([agent_output.action]) print("") print(env.get_state) print(time_step.rewards)
open_spiel/colabs/OpenSpielTutorial.ipynb
deepmind/open_spiel
apache-2.0
977f57882c64a2126db575815ac61d2d
<a id = "section1">Data Generation and Visualization</a> Transformation of features to Shogun format using <a href="http://www.shogun-toolbox.org/doc/en/current/classshogun_1_1DenseFeatures.html">RealFeatures</a> and <a href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1BinaryLabels.html">BinaryLables</a> classes.
shogun_feats_linear = sg.create_features(sg.read_csv(os.path.join(SHOGUN_DATA_DIR, 'toy/classifier_binary_2d_linear_features_train.dat'))) shogun_labels_linear = sg.create_labels(sg.read_csv(os.path.join(SHOGUN_DATA_DIR, 'toy/classifier_binary_2d_linear_labels_train.dat'))) shogun_feats_non_linear = sg.create_features(sg.read_csv(os.path.join(SHOGUN_DATA_DIR, 'toy/classifier_binary_2d_nonlinear_features_train.dat'))) shogun_labels_non_linear = sg.create_labels(sg.read_csv(os.path.join(SHOGUN_DATA_DIR, 'toy/classifier_binary_2d_nonlinear_labels_train.dat'))) feats_linear = shogun_feats_linear.get('feature_matrix') labels_linear = shogun_labels_linear.get('labels') feats_non_linear = shogun_feats_non_linear.get('feature_matrix') labels_non_linear = shogun_labels_non_linear.get('labels')
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
0802990ab27ae33b95c33a6698caba76
Data visualization methods.
def plot_binary_data(plot,X_train, y_train): """ This function plots 2D binary data with different colors for different labels. """ plot.xlabel(r"$x$") plot.ylabel(r"$y$") plot.plot(X_train[0, np.argwhere(y_train == 1)], X_train[1, np.argwhere(y_train == 1)], 'ro') plot.plot(X_train[0, np.argwhere(y_train == -1)], X_train[1, np.argwhere(y_train == -1)], 'bo') def compute_plot_isolines(classifier,feats,size=200,fading=True): """ This function computes the classification of points on the grid to get the decision boundaries used in plotting """ x1 = np.linspace(1.2*min(feats[0]), 1.2*max(feats[0]), size) x2 = np.linspace(1.2*min(feats[1]), 1.2*max(feats[1]), size) x, y = np.meshgrid(x1, x2) plot_features = sg.create_features(np.array((np.ravel(x), np.ravel(y)))) if fading == True: plot_labels = classifier.apply_binary(plot_features).get('current_values') else: plot_labels = classifier.apply(plot_features).get('labels') z = plot_labels.reshape((size, size)) return x,y,z def plot_model(plot,classifier,features,labels,fading=True): """ This function plots an input classification model """ x,y,z = compute_plot_isolines(classifier,features,fading=fading) plot.pcolor(x,y,z,cmap='RdBu_r') plot.contour(x, y, z, linewidths=1, colors='black') plot_binary_data(plot,features, labels) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Linear Features") plot_binary_data(plt,feats_linear, labels_linear) plt.subplot(122) plt.title("Non Linear Features") plot_binary_data(plt,feats_non_linear, labels_non_linear)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
a970057b6cc82f6cfa522f267a535067
<a id="section2" href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1SVM.html">Support Vector Machine</a> <a id="section2a" href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1LibLinear.html">Linear SVM</a> Shogun provide <a href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1LibLinear.html">Liblinear</a> which is a library for large-scale linear learning focusing on SVM used for classification
plt.figure(figsize=(15,5)) c = 0.5 epsilon = 1e-3 svm_linear = sg.create_machine("LibLinear", C1=c, C2=c, labels=shogun_labels_linear, epsilon=epsilon, liblinear_solver_type="L2R_L2LOSS_SVC") svm_linear.train(shogun_feats_linear) classifiers_linear.append(svm_linear) classifiers_names.append("SVM Linear") fadings.append(True) plt.subplot(121) plt.title("Linear SVM - Linear Features") plot_model(plt,svm_linear,feats_linear,labels_linear) svm_non_linear = sg.create_machine("LibLinear", C1=c, C2=c, labels=shogun_labels_non_linear, epsilon=epsilon, liblinear_solver_type="L2R_L2LOSS_SVC") svm_non_linear.train(shogun_feats_non_linear) classifiers_non_linear.append(svm_non_linear) plt.subplot(122) plt.title("Linear SVM - Non Linear Features") plot_model(plt,svm_non_linear,feats_non_linear,labels_non_linear)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
a1c64f243e4afeb4a8938a50e6ec8ae4
SVM - Kernels Shogun provides many options for using kernel functions. Kernels in Shogun are based on two classes which are <a href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1Kernel.html">Kernel</a> and <a href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1KernelMachine.html">KernelMachine</a> base class. <a id ="section2b" href = "http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1GaussianKernel.html">Gaussian Kernel</a>
gaussian_c = 0.7 gaussian_kernel_linear = sg.create_kernel("GaussianKernel", width=20) gaussian_svm_linear = sg.create_machine('LibSVM', C1=gaussian_c, C2=gaussian_c, kernel=gaussian_kernel_linear, labels=shogun_labels_linear) gaussian_svm_linear.train(shogun_feats_linear) classifiers_linear.append(gaussian_svm_linear) fadings.append(True) gaussian_kernel_non_linear = sg.create_kernel("GaussianKernel", width=10) gaussian_svm_non_linear=sg.create_machine('LibSVM', C1=gaussian_c, C2=gaussian_c, kernel=gaussian_kernel_non_linear, labels=shogun_labels_non_linear) gaussian_svm_non_linear.train(shogun_feats_non_linear) classifiers_non_linear.append(gaussian_svm_non_linear) classifiers_names.append("SVM Gaussian Kernel") plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("SVM Gaussian Kernel - Linear Features") plot_model(plt,gaussian_svm_linear,feats_linear,labels_linear) plt.subplot(122) plt.title("SVM Gaussian Kernel - Non Linear Features") plot_model(plt,gaussian_svm_non_linear,feats_non_linear,labels_non_linear)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
8e3332e0597fa23c12064c35d42f08a4
<a id ="section2c" href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CSigmoidKernel.html">Sigmoid Kernel</a>
sigmoid_c = 0.9 sigmoid_kernel_linear = sg.create_kernel("SigmoidKernel", cache_size=200, gamma=1, coef0=0.5) sigmoid_kernel_linear.init(shogun_feats_linear, shogun_feats_linear) sigmoid_svm_linear = sg.create_machine('LibSVM', C1=sigmoid_c, C2=sigmoid_c, kernel=sigmoid_kernel_linear, labels=shogun_labels_linear) sigmoid_svm_linear.train() classifiers_linear.append(sigmoid_svm_linear) classifiers_names.append("SVM Sigmoid Kernel") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("SVM Sigmoid Kernel - Linear Features") plot_model(plt,sigmoid_svm_linear,feats_linear,labels_linear) sigmoid_kernel_non_linear = sg.create_kernel("SigmoidKernel", cache_size=400, gamma=2.5, coef0=2) sigmoid_kernel_non_linear.init(shogun_feats_non_linear, shogun_feats_non_linear) sigmoid_svm_non_linear = sg.create_machine('LibSVM', C1=sigmoid_c, C2=sigmoid_c, kernel=sigmoid_kernel_non_linear, labels=shogun_labels_non_linear) sigmoid_svm_non_linear.train() classifiers_non_linear.append(sigmoid_svm_non_linear) plt.subplot(122) plt.title("SVM Sigmoid Kernel - Non Linear Features") plot_model(plt,sigmoid_svm_non_linear,feats_non_linear,labels_non_linear)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
d7028a6aae7ac5ce39aa91391fb89c27
<a id ="section2d" href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CPolyKernel.html">Polynomial Kernel</a>
poly_c = 0.5 degree = 4 poly_kernel_linear = sg.create_kernel('PolyKernel', degree=degree, c=1.0) poly_kernel_linear.init(shogun_feats_linear, shogun_feats_linear) poly_svm_linear = sg.create_machine('LibSVM', C1=poly_c, C2=poly_c, kernel=poly_kernel_linear, labels=shogun_labels_linear) poly_svm_linear.train() classifiers_linear.append(poly_svm_linear) classifiers_names.append("SVM Polynomial kernel") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("SVM Polynomial Kernel - Linear Features") plot_model(plt,poly_svm_linear,feats_linear,labels_linear) poly_kernel_non_linear = sg.create_kernel('PolyKernel', degree=degree, c=1.0) poly_kernel_non_linear.init(shogun_feats_non_linear, shogun_feats_non_linear) poly_svm_non_linear = sg.create_machine('LibSVM', C1=poly_c, C2=poly_c, kernel=poly_kernel_non_linear, labels=shogun_labels_non_linear) poly_svm_non_linear.train() classifiers_non_linear.append(poly_svm_non_linear) plt.subplot(122) plt.title("SVM Polynomial Kernel - Non Linear Features") plot_model(plt,poly_svm_non_linear,feats_non_linear,labels_non_linear)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
1e313d156ace1010643cb91c7b585c59
<a id ="section3" href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1GaussianNaiveBayes.html">Naive Bayes</a>
multiclass_labels_linear = shogun_labels_linear.get('labels') for i in range(0,len(multiclass_labels_linear)): if multiclass_labels_linear[i] == -1: multiclass_labels_linear[i] = 0 multiclass_labels_non_linear = shogun_labels_non_linear.get('labels') for i in range(0,len(multiclass_labels_non_linear)): if multiclass_labels_non_linear[i] == -1: multiclass_labels_non_linear[i] = 0 shogun_multiclass_labels_linear = sg.MulticlassLabels(multiclass_labels_linear) shogun_multiclass_labels_non_linear = sg.MulticlassLabels(multiclass_labels_non_linear) naive_bayes_linear = sg.create_machine("GaussianNaiveBayes") naive_bayes_linear.put('features', shogun_feats_linear) naive_bayes_linear.put('labels', shogun_multiclass_labels_linear) naive_bayes_linear.train() classifiers_linear.append(naive_bayes_linear) classifiers_names.append("Naive Bayes") fadings.append(False) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Naive Bayes - Linear Features") plot_model(plt,naive_bayes_linear,feats_linear,labels_linear,fading=False) naive_bayes_non_linear = sg.create_machine("GaussianNaiveBayes") naive_bayes_non_linear.put('features', shogun_feats_non_linear) naive_bayes_non_linear.put('labels', shogun_multiclass_labels_non_linear) naive_bayes_non_linear.train() classifiers_non_linear.append(naive_bayes_non_linear) plt.subplot(122) plt.title("Naive Bayes - Non Linear Features") plot_model(plt,naive_bayes_non_linear,feats_non_linear,labels_non_linear,fading=False)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
d1ca66561703b35cfdcbb6083f57eeb8
<a id ="section4" href="http://www.shogun-toolbox.org/doc/en/current/classshogun_1_1KNN.html">Nearest Neighbors</a>
number_of_neighbors = 10 distances_linear = sg.create_distance('EuclideanDistance') distances_linear.init(shogun_feats_linear, shogun_feats_linear) knn_linear = sg.create_machine("KNN", k=number_of_neighbors, distance=distances_linear, labels=shogun_labels_linear) knn_linear.train() classifiers_linear.append(knn_linear) classifiers_names.append("Nearest Neighbors") fadings.append(False) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Nearest Neighbors - Linear Features") plot_model(plt,knn_linear,feats_linear,labels_linear,fading=False) distances_non_linear = sg.create_distance('EuclideanDistance') distances_non_linear.init(shogun_feats_non_linear, shogun_feats_non_linear) knn_non_linear = sg.create_machine("KNN", k=number_of_neighbors, distance=distances_non_linear, labels=shogun_labels_non_linear) knn_non_linear.train() classifiers_non_linear.append(knn_non_linear) plt.subplot(122) plt.title("Nearest Neighbors - Non Linear Features") plot_model(plt,knn_non_linear,feats_non_linear,labels_non_linear,fading=False)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
d4b2dee9b414e22321c69b941cde3d21
<a id ="section5" href="http://www.shogun-toolbox.org/doc/en/current/classshogun_1_1CLDA.html">Linear Discriminant Analysis</a>
gamma = 0.1 lda_linear = sg.create_machine('LDA', gamma=gamma, labels=shogun_labels_linear) lda_linear.train(shogun_feats_linear) classifiers_linear.append(lda_linear) classifiers_names.append("LDA") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("LDA - Linear Features") plot_model(plt,lda_linear,feats_linear,labels_linear) lda_non_linear = sg.create_machine('LDA', gamma=gamma, labels=shogun_labels_non_linear) lda_non_linear.train(shogun_feats_non_linear) classifiers_non_linear.append(lda_non_linear) plt.subplot(122) plt.title("LDA - Non Linear Features") plot_model(plt,lda_non_linear,feats_non_linear,labels_non_linear)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
4937caea85e195b70fb33ad4d5ed32ab
<a id ="section6" href="http://www.shogun-toolbox.org/doc/en/current/classshogun_1_1QDA.html">Quadratic Discriminant Analysis</a>
qda_linear = sg.create_machine("QDA", labels=shogun_multiclass_labels_linear) qda_linear.train(shogun_feats_linear) classifiers_linear.append(qda_linear) classifiers_names.append("QDA") fadings.append(False) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("QDA - Linear Features") plot_model(plt,qda_linear,feats_linear,labels_linear,fading=False) qda_non_linear = sg.create_machine("QDA", labels=shogun_multiclass_labels_non_linear) qda_non_linear.train(shogun_feats_non_linear) classifiers_non_linear.append(qda_non_linear) plt.subplot(122) plt.title("QDA - Non Linear Features") plot_model(plt,qda_non_linear,feats_non_linear,labels_non_linear,fading=False)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
dfdd5ac097e7791f7cb25905dd856394
<a id ="section7" href="http://www.shogun-toolbox.org/doc/en/current/classshogun_1_1GaussianProcessBinaryClassification.html">Gaussian Process</a> <a id ="section7a">Logit Likelihood model</a> Shogun's <a href= "http://www.shogun-toolbox.org/doc/en/current/classshogun_1_1LogitLikelihood.html">LogitLikelihood</a> and <a href="http://www.shogun-toolbox.org/doc/en/current/classshogun_1_1EPInferenceMethod.html">EPInferenceMethod</a> classes are used.
# create Gaussian kernel with width = 5.0 kernel = sg.create_kernel("GaussianKernel", width=5.0) # create zero mean function zero_mean = sg.create_gp_mean("ZeroMean") # create logit likelihood model likelihood = sg.create_gp_likelihood("LogitLikelihood") # specify EP approximation inference method inference_model_linear = sg.create_gp_inference("EPInferenceMethod",kernel=kernel, features=shogun_feats_linear, mean_function=zero_mean, labels=shogun_labels_linear, likelihood_model=likelihood) # create and train GP classifier, which uses Laplace approximation gaussian_logit_linear = sg.create_gaussian_process("GaussianProcessClassification", inference_method=inference_model_linear) gaussian_logit_linear.train() classifiers_linear.append(gaussian_logit_linear) classifiers_names.append("Gaussian Process Logit") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Gaussian Process - Logit - Linear Features") plot_model(plt,gaussian_logit_linear,feats_linear,labels_linear) inference_model_non_linear = sg.create_gp_inference("EPInferenceMethod", kernel=kernel, features=shogun_feats_non_linear, mean_function=zero_mean, labels=shogun_labels_non_linear, likelihood_model=likelihood) gaussian_logit_non_linear = sg.create_gaussian_process("GaussianProcessClassification", inference_method=inference_model_non_linear) gaussian_logit_non_linear.train() classifiers_non_linear.append(gaussian_logit_non_linear) plt.subplot(122) plt.title("Gaussian Process - Logit - Non Linear Features") plot_model(plt,gaussian_logit_non_linear,feats_non_linear,labels_non_linear)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
ffd6587613d7b30131cdcab75c15ec94
<a id ="section7b">Probit Likelihood model</a> Shogun's <a href="http://www.shogun-toolbox.org/doc/en/current/classshogun_1_1ProbitLikelihood.html">ProbitLikelihood</a> class is used.
likelihood = sg.create_gp_likelihood("ProbitLikelihood") inference_model_linear = sg.create_gp_inference("EPInferenceMethod", kernel=kernel, features=shogun_feats_linear, mean_function=zero_mean, labels=shogun_labels_linear, likelihood_model=likelihood) gaussian_probit_linear = sg.create_gaussian_process("GaussianProcessClassification", inference_method=inference_model_linear) gaussian_probit_linear.train() classifiers_linear.append(gaussian_probit_linear) classifiers_names.append("Gaussian Process Probit") fadings.append(True) plt.figure(figsize=(15,5)) plt.subplot(121) plt.title("Gaussian Process - Probit - Linear Features") plot_model(plt,gaussian_probit_linear,feats_linear,labels_linear) inference_model_non_linear = sg.create_gp_inference("EPInferenceMethod", kernel=kernel, features=shogun_feats_non_linear, mean_function=zero_mean, labels=shogun_labels_non_linear, likelihood_model=likelihood) gaussian_probit_non_linear = sg.create_gaussian_process("GaussianProcessClassification", inference_method=inference_model_non_linear) gaussian_probit_non_linear.train() classifiers_non_linear.append(gaussian_probit_non_linear) plt.subplot(122) plt.title("Gaussian Process - Probit - Non Linear Features") plot_model(plt,gaussian_probit_non_linear,feats_non_linear,labels_non_linear)
doc/ipython-notebooks/classification/Classification.ipynb
geektoni/shogun
bsd-3-clause
bddc73749b528105044e6e6a42fcd79e
Run the modification of check_test_score.py so that it can work with superclass representation.
import numpy as np import pylearn2.utils import pylearn2.config import theano import neukrill_net.dense_dataset import neukrill_net.utils import sklearn.metrics import argparse import os import pylearn2.config.yaml_parse
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
19204a72cfda187de0459f711db80a0e
Check which core is free.
%env THEANO_FLAGS = 'device=gpu3,floatX=float32,base_compiledir=~/.theano/stonesoup3' verbose = False augment = 1 settings = neukrill_net.utils.Settings("settings.json")
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
56aff0630903ab715cd6963b4f6d97d3
Give the path to .json.
run_settings = neukrill_net.utils.load_run_settings('run_settings/alexnet_based_extra_convlayer_with_superclasses.json', settings, force=True) model = pylearn2.utils.serial.load(run_settings['pickle abspath']) # format the YAML yaml_string = neukrill_net.utils.format_yaml(run_settings, settings) # load proxied objects proxied = pylearn2.config.yaml_parse.load(yaml_string, instantiate=False) # pull out proxied dataset proxdata = proxied.keywords['dataset'] # force loading of dataset and switch to test dataset proxdata.keywords['force'] = True proxdata.keywords['training_set_mode'] = 'test' proxdata.keywords['verbose'] = False # then instantiate the dataset dataset = pylearn2.config.yaml_parse._instantiate(proxdata) if hasattr(dataset.X, 'shape'): N_examples = dataset.X.shape[0] else: N_examples = len(dataset.X) batch_size = 500 while N_examples%batch_size != 0: batch_size += 1 n_batches = int(N_examples/batch_size) model.set_batch_size(batch_size) X = model.get_input_space().make_batch_theano() Y = model.fprop(X) f = theano.function([X],Y) import neukrill_net.encoding as enc hier = enc.get_hierarchy() lengths = sum([len(array) for array in hier]) y = np.zeros((N_examples*augment,lengths)) # get the data specs from the cost function using the model pcost = proxied.keywords['algorithm'].keywords['cost'] cost = pylearn2.config.yaml_parse._instantiate(pcost) data_specs = cost.get_data_specs(model) i = 0 for _ in range(augment): # make sequential iterator iterator = dataset.iterator(batch_size=batch_size,num_batches=n_batches, mode='even_sequential', data_specs=data_specs) for batch in iterator: if verbose: print(" Batch {0} of {1}".format(i+1,n_batches*augment)) y[i*batch_size:(i+1)*batch_size,:] = f(batch[0]) i += 1
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
727cb3fa23bca9ea8993123d364881e6
Best .pkl scores as:
logloss = sklearn.metrics.log_loss(dataset.y[:, :len(settings.classes)], y[:, :len(settings.classes)]) print("Log loss: {0}".format(logloss))
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
fa83a63678103f9eb39f5b9cb510604b
Recent .pkl scores as: (rerun relevant cells with a different path)
logloss = sklearn.metrics.log_loss(dataset.y[:, :len(settings.classes)], y[:, :len(settings.classes)]) print("Log loss: {0}".format(logloss)) %env THEANO_FLAGS = device=gpu2,floatX=float32,base_compiledir=~/.theano/stonesoup2 %env
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
337a2ff6d9cce033233b417185bb5cf9
Check the same model with 8 augmentation.
import numpy as np import pylearn2.utils import pylearn2.config import theano import neukrill_net.dense_dataset import neukrill_net.utils import sklearn.metrics import argparse import os import pylearn2.config.yaml_parse verbose = False augment = 1 settings = neukrill_net.utils.Settings("settings.json") run_settings = neukrill_net.utils.load_run_settings('run_settings/alexnet_based_extra_convlayer_with_superclasses_aug.json', settings, force=True) model = pylearn2.utils.serial.load(run_settings['pickle abspath']) # format the YAML yaml_string = neukrill_net.utils.format_yaml(run_settings, settings) # load proxied objects proxied = pylearn2.config.yaml_parse.load(yaml_string, instantiate=False) # pull out proxied dataset proxdata = proxied.keywords['dataset'] # force loading of dataset and switch to test dataset proxdata.keywords['force'] = True proxdata.keywords['training_set_mode'] = 'test' proxdata.keywords['verbose'] = False # then instantiate the dataset dataset = pylearn2.config.yaml_parse._instantiate(proxdata) if hasattr(dataset.X, 'shape'): N_examples = dataset.X.shape[0] else: N_examples = len(dataset.X) batch_size = 500 while N_examples%batch_size != 0: batch_size += 1 n_batches = int(N_examples/batch_size) model.set_batch_size(batch_size) X = model.get_input_space().make_batch_theano() Y = model.fprop(X) f = theano.function([X],Y) import neukrill_net.encoding as enc hier = enc.get_hierarchy() lengths = sum([len(array) for array in hier]) y = np.zeros((N_examples*augment,lengths)) # get the data specs from the cost function using the model pcost = proxied.keywords['algorithm'].keywords['cost'] cost = pylearn2.config.yaml_parse._instantiate(pcost) data_specs = cost.get_data_specs(model) i = 0 for _ in range(augment): # make sequential iterator iterator = dataset.iterator(batch_size=batch_size,num_batches=n_batches, mode='even_sequential', data_specs=data_specs) for batch in iterator: if verbose: print(" Batch {0} of {1}".format(i+1,n_batches*augment)) y[i*batch_size:(i+1)*batch_size,:] = f(batch[0]) i += 1
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
28c0561b8cb8ca54e712b12fecba7859
Best .pkl scored as:
logloss = sklearn.metrics.log_loss(dataset.y[:, :len(settings.classes)], y[:, :len(settings.classes)]) print("Log loss: {0}".format(logloss))
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
b3877d7a4b72a501db4d9f9df1cb8da0
Strange. Not as good as we hoped. Is there a problem with augmentation? Let's plot the nll.
import pylearn2.utils import pylearn2.config import theano import neukrill_net.dense_dataset import neukrill_net.utils import numpy as np %matplotlib inline import matplotlib.pyplot as plt #import holoviews as hl #load_ext holoviews.ipython import sklearn.metrics m = pylearn2.utils.serial.load( "/disk/scratch/neuroglycerin/models/alexnet_based_extra_convlayer_with_superclasses_aug_recent.pkl") channel = m.monitor.channels["valid_y_y_1_nll"] plt.plot(channel.example_record,channel.val_record)
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
6ad4b75f3e26c8c4d0f281e40bf4ad4e
Looks like it's pretty stable at 4 and had this random strange glitch which gave the best result. Look at the best pkl of the none-aug model again: (just to confirm that it was indeed good)
import numpy as np import pylearn2.utils import pylearn2.config import theano import neukrill_net.dense_dataset import neukrill_net.utils import sklearn.metrics import argparse import os import pylearn2.config.yaml_parse verbose = False augment = 1 settings = neukrill_net.utils.Settings("settings.json") run_settings = neukrill_net.utils.load_run_settings('run_settings/alexnet_based_extra_convlayer_with_superclasses.json', settings, force=True) model = pylearn2.utils.serial.load(run_settings['pickle abspath']) # format the YAML yaml_string = neukrill_net.utils.format_yaml(run_settings, settings) # load proxied objects proxied = pylearn2.config.yaml_parse.load(yaml_string, instantiate=False) # pull out proxied dataset proxdata = proxied.keywords['dataset'] # force loading of dataset and switch to test dataset proxdata.keywords['force'] = True proxdata.keywords['training_set_mode'] = 'test' proxdata.keywords['verbose'] = False # then instantiate the dataset dataset = pylearn2.config.yaml_parse._instantiate(proxdata) if hasattr(dataset.X, 'shape'): N_examples = dataset.X.shape[0] else: N_examples = len(dataset.X) batch_size = 500 while N_examples%batch_size != 0: batch_size += 1 n_batches = int(N_examples/batch_size) model.set_batch_size(batch_size) X = model.get_input_space().make_batch_theano() Y = model.fprop(X) f = theano.function([X],Y) import neukrill_net.encoding as enc hier = enc.get_hierarchy() lengths = sum([len(array) for array in hier]) y = np.zeros((N_examples*augment,lengths)) # get the data specs from the cost function using the model pcost = proxied.keywords['algorithm'].keywords['cost'] cost = pylearn2.config.yaml_parse._instantiate(pcost) data_specs = cost.get_data_specs(model) i = 0 for _ in range(augment): # make sequential iterator iterator = dataset.iterator(batch_size=batch_size,num_batches=n_batches, mode='even_sequential', data_specs=data_specs) for batch in iterator: if verbose: print(" Batch {0} of {1}".format(i+1,n_batches*augment)) y[i*batch_size:(i+1)*batch_size,:] = f(batch[0]) i += 1 logloss = sklearn.metrics.log_loss(dataset.y[:, :len(settings.classes)], y[:, :len(settings.classes)]) print("Log loss: {0}".format(logloss))
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
bfd7e39d3df73df2691126468c68ca7a
It was. Annoying. Let's plot the nll too:
m = pylearn2.utils.serial.load( "/disk/scratch/neuroglycerin/models/alexnet_based_extra_convlayer_with_superclasses.pkl") channel = m.monitor.channels["valid_y_y_1_nll"] plt.plot(channel.example_record,channel.val_record)
notebooks/model_run_and_result_analyses/Analyse hierarchy-based model with no augmentation or 8 augmentation.ipynb
Neuroglycerin/neukrill-net-work
mit
dbeedccb089c3ba6df1ba0b54a65f3c1
The SeqRecord Object The SeqRecord (Sequence Record) class is defined in the Bio.SeqRecord module. This class allows higher level features such as identifiers and features to be associated with a sequence, and is the basic data type for the Bio.SeqIO sequence input/output interface. The SeqRecord class itself is quite simple, and offers the following information as attributes: .seq - The sequence itself, typically a Seq object. .id - The primary ID used to identify the sequence - a string. In most cases this is something like an accession number. .name - A 'common' name/id for the sequence - a string. In some cases this will be the same as the accession number, but it could also be a clone name. I think of this as being analogous to the LOCUS id in a GenBank record. .description - A human readable description or expressive name for the sequence - a string. .letter_annotations - Holds per-letter-annotations using a (restricted) dictionary of additional information about the letters in the sequence. The keys are the name of the information, and the information is contained in the value as a Python sequence (i.e. a list, tuple or string) with the same length as the sequence itself. This is often used for quality scores or secondary structure information (e.g. from Stockholm/PFAM alignment files). .annotations - A dictionary of additional information about the sequence. The keys are the name of the information, and the information is contained in the value. This allows the addition of more 'unstructured' information to the sequence. .features - A list of SeqFeature objects with more structured information about the features on a sequence (e.g. position of genes on a genome, or domains on a protein sequence). .dbxrefs - A list of database cross-references as strings. Creating a SeqRecord Using a SeqRecord object is not very complicated, since all of the information is presented as attributes of the class. Usually you won't create a SeqRecord 'by hand', but instead use Bio.SeqIO to read in a sequence file for you and the examples below). However, creating SeqRecord can be quite simple. SeqRecord objects from scratch To create a SeqRecord at a minimum you just need a Seq object:
from Bio.Seq import Seq simple_seq = Seq("GATC") simple_seq_r = SeqRecord(simple_seq)
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
eec4508b0e439e4e7c73c9853ee49b14
Additionally, you can also pass the id, name and description to the initialization function, but if not they will be set as strings indicating they are unknown, and can be modified subsequently:
simple_seq_r.id simple_seq_r.id = "AC12345" simple_seq_r.description = "Made up sequence I wish I could write a paper about" print(simple_seq_r.description) simple_seq_r.seq print(simple_seq_r.seq)
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
8cd3636e3818b9d02dc6af38c4574684
Including an identifier is very important if you want to output your SeqRecord to a file. You would normally include this when creating the object:
simple_seq = Seq("GATC") simple_seq_r = SeqRecord(simple_seq, id="AC12345")
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
2639bfc884623c96a9a0066e2a1d3876
As mentioned above, the SeqRecord has an dictionary attribute annotations. This is used for any miscellaneous annotations that doesn't fit under one of the other more specific attributes. Adding annotations is easy, and just involves dealing directly with the annotation dictionary:
simple_seq_r.annotations["evidence"] = "None. I just made it up." print(simple_seq_r.annotations) print(simple_seq_r.annotations["evidence"])
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
47422c98c371ac9ab07f29ec828163dc
Working with per-letter-annotations is similar, letter_annotations is a dictionary like attribute which will let you assign any Python sequence (i.e. a string, list or tuple) which has the same length as the sequence:
simple_seq_r.letter_annotations["phred_quality"] = [40, 40, 38, 30] print(simple_seq_r.letter_annotations) print(simple_seq_r.letter_annotations["phred_quality"])
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
6d515541ed6003e7bcaa4e90b42ecc8e
The dbxrefs and features attributes are just Python lists, and should be used to store strings and SeqFeature objects (discussed later) respectively. SeqRecord objects from FASTA files This example uses a fairly large FASTA file containing the whole sequence for \textit{Yersinia pestis biovar Microtus} str. 91001 plasmid pPCP1, originally downloaded from the NCBI. This file is included with the Biopython unit tests under the GenBank folder, or online (http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.fna) from our website. The file starts like this - and you can check there is only one record present (i.e. only one line starting with a greater than symbol): &gt;gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus ... pPCP1, complete sequence TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC ... In a previous notebook you will have seen the function Bio.SeqIO.parse used to loop over all the records in a file as SeqRecord objects. The Bio.SeqIO module has a sister function for use on files which contain just one record which we'll use here:
from Bio import SeqIO record = SeqIO.read("data/NC_005816.fna", "fasta") record
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
7f50d75a9e9984e8faeffdb4a4362cd1
Now, let's have a look at the key attributes of this SeqRecord individually - starting with the seq attribute which gives you a Seq object:
record.seq
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
d9137a92dfd45a8dd732ad4f9580e884
Next, the identifiers and description:
record.id record.name record.description
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
10a78ec8d2018d59f48ea933cd58a4e6
As you can see above, the first word of the FASTA record's title line (after removing the greater than symbol) is used for both the id and name attributes. The whole title line (after removing the greater than symbol) is used for the record description. This is deliberate, partly for backwards compatibility reasons, but it also makes sense if you have a FASTA file like this: &gt;Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1 TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC ... Note that none of the other annotation attributes get populated when reading a FASTA file:
record.dbxrefs record.annotations record.letter_annotations record.features
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
ad792695927b47f5af1f47a9457691a4
In this case our example FASTA file was from the NCBI, and they have a fairly well defined set of conventions for formatting their FASTA lines. This means it would be possible to parse this information and extract the GI number and accession for example. However, FASTA files from other sources vary, so this isn't possible in general. SeqRecord objects from GenBank files As in the previous example, we're going to look at the whole sequence for Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, originally downloaded from the NCBI, but this time as a GenBank file. This file contains a single record (i.e. only one LOCUS line) and starts: LOCUS NC_005816 9609 bp DNA circular BCT 21-JUL-2008 DEFINITION Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence. ACCESSION NC_005816 VERSION NC_005816.1 GI:45478711 PROJECT GenomeProject:10638 ... Again, we'll use Bio.SeqIO to read this file in, and the code is almost identical to that for used above for the FASTA file:
record = SeqIO.read("data/NC_005816.gb", "genbank") record
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
ee9c56fc0d2677e1ac476bd8d3dd7dcd
You should be able to spot some differences already! But taking the attributes individually, the sequence string is the same as before, but this time Bio.SeqIO has been able to automatically assign a more specific alphabet:
record.seq
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
025dda9d4aaa44e7906da537d87ff880
The name comes from the LOCUS line, while the \verb|id| includes the version suffix. The description comes from the DEFINITION line:
record.id record.name record.description
notebooks/04 - Sequence Annotation objects.ipynb
tiagoantao/biopython-notebook
mit
f6d1839230b34718069c2fab16a9af17