File size: 3,708 Bytes
61740cb 630cdf5 61740cb 630cdf5 61740cb 120d732 9fe8f32 120d732 61740cb 630cdf5 61740cb 120d732 61740cb 630cdf5 868a71f 630cdf5 61740cb 61fd3f3 61740cb 630cdf5 61740cb 630cdf5 61740cb 6a58a50 61740cb 630cdf5 61740cb 630cdf5 61740cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks"""
from __future__ import annotations
from pathlib import Path
import numpy as np
import torch as tr
import flow_vis
from overrides import overrides
from matplotlib.cm import hot # pylint: disable=no-name-in-module
from .multitask_dataset import NpzRepresentation
from torch.nn import functional as F
class ColorRepresentation(NpzRepresentation):
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path)
return res.float() / 255
def save_to_disk(self, data: tr.Tensor, path: Path):
return super().save_to_disk((data * 255).byte(), path)
class EdgesRepresentation(NpzRepresentation):
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path).float()
assert len(res.shape) == 3 and res.shape[-1] == 1
return res
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
return (x.detach().repeat(1, 1, 3) * 255).cpu().numpy().astype(np.uint8)
class DepthRepresentation(NpzRepresentation):
"""DepthRepresentation. Implements depth task-specific stuff, like hotmap."""
def __init__(self, *args, min_depth: float, max_depth: float, **kwargs):
super().__init__(*args, **kwargs)
assert 0 <= min_depth < max_depth, (min_depth, max_depth)
self.min_depth = min_depth
self.max_depth = max_depth
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x = x.detach().clip(0, 1).squeeze().cpu().numpy()
y: np.ndarray = hot(x)[..., 0:3] * 255
return y.astype(np.uint8)
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path).squeeze().unsqueeze(-1)
res = res.float().clip(self.min_depth, self.max_depth)
res = (res - self.min_depth) / (self.max_depth - self.min_depth)
return res
class OpticalFlowRepresentation(NpzRepresentation):
"""OpticalFlowRepresentation. Implements depth task-specific stuff, like using flow_vis."""
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
return flow_vis.flow_to_color(x.squeeze().nan_to_num(0).detach().cpu().numpy())
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path).float()
return res
class SemanticRepresentation(NpzRepresentation):
"""SemanticRepresentation. Implements depth task-specific stuff, like using flow_vis."""
def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs):
super().__init__(*args, **kwargs)
self.classes = list(range(classes)) if isinstance(classes, int) else classes
self.n_classes = len(self.classes)
self.color_map = color_map
assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes)
@overrides
def load_from_disk(self, path: Path) -> tr.Tensor:
res = super().load_from_disk(path)
if len(res.shape) == 3:
assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}"
res = res.argmax(-1)
assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}"
res = F.one_hot(res.long(), num_classes=self.n_classes).float()
return res
@overrides
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
x = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
new_images = np.zeros((*x.shape, 3), dtype=np.uint8)
for i in range(self.n_classes):
new_images[x == i] = self.color_map[i]
return new_images
|