File size: 3,708 Bytes
61740cb
630cdf5
61740cb
 
 
 
 
 
 
630cdf5
 
 
 
 
 
 
 
 
61740cb
120d732
 
 
 
 
 
 
9fe8f32
120d732
61740cb
 
 
 
630cdf5
61740cb
 
 
 
 
120d732
 
 
61740cb
630cdf5
868a71f
630cdf5
 
 
 
61740cb
 
 
 
61fd3f3
61740cb
630cdf5
 
 
 
61740cb
 
 
 
 
 
 
630cdf5
61740cb
 
 
 
6a58a50
 
 
61740cb
630cdf5
61740cb
 
 
 
630cdf5
61740cb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks"""
from __future__ import annotations
from pathlib import Path
import numpy as np
import torch as tr
import flow_vis
from overrides import overrides
from matplotlib.cm import hot # pylint: disable=no-name-in-module
from .multitask_dataset import NpzRepresentation
from torch.nn import functional as F

class ColorRepresentation(NpzRepresentation):
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path)
        return res.float() / 255

    def save_to_disk(self, data: tr.Tensor, path: Path):
        return super().save_to_disk((data * 255).byte(), path)

class EdgesRepresentation(NpzRepresentation):
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path).float()
        assert len(res.shape) == 3 and res.shape[-1] == 1
        return res

    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        return (x.detach().repeat(1, 1, 3) * 255).cpu().numpy().astype(np.uint8)

class DepthRepresentation(NpzRepresentation):
    """DepthRepresentation. Implements depth task-specific stuff, like hotmap."""
    def __init__(self, *args, min_depth: float, max_depth: float, **kwargs):
        super().__init__(*args, **kwargs)
        assert 0 <= min_depth < max_depth, (min_depth, max_depth)
        self.min_depth = min_depth
        self.max_depth = max_depth

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        x = x.detach().clip(0, 1).squeeze().cpu().numpy()
        y: np.ndarray = hot(x)[..., 0:3] * 255
        return y.astype(np.uint8)

    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path).squeeze().unsqueeze(-1)
        res = res.float().clip(self.min_depth, self.max_depth)
        res = (res - self.min_depth) / (self.max_depth - self.min_depth)
        return res

class OpticalFlowRepresentation(NpzRepresentation):
    """OpticalFlowRepresentation. Implements depth task-specific stuff, like using flow_vis."""
    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        return flow_vis.flow_to_color(x.squeeze().nan_to_num(0).detach().cpu().numpy())

    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path).float()
        return res

class SemanticRepresentation(NpzRepresentation):
    """SemanticRepresentation. Implements depth task-specific stuff, like using flow_vis."""
    def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs):
        super().__init__(*args, **kwargs)
        self.classes = list(range(classes)) if isinstance(classes, int) else classes
        self.n_classes = len(self.classes)
        self.color_map = color_map
        assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes)

    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path)
        if len(res.shape) == 3:
            assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}"
            res = res.argmax(-1)
        assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}"
        res = F.one_hot(res.long(), num_classes=self.n_classes).float()
        return res

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        x = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
        new_images = np.zeros((*x.shape, 3), dtype=np.uint8)
        for i in range(self.n_classes):
            new_images[x == i] = self.color_map[i]
        return new_images