dronescapes / scripts /evaluate_semantic_segmentation.py
Meehai's picture
evaluate semantic segmentation script
2351499
raw
history blame
5.14 kB
"""
Evaluation script for semantic segmentation for dronescapes. Outputs F1Score and mIoU for the 8 classes and each frame.
Usage: ./evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv
"""
import sys
import os
from loguru import logger
from pathlib import Path
from argparse import ArgumentParser, Namespace
from tempfile import TemporaryDirectory
from functools import partial
from torchmetrics.functional.classification import multiclass_stat_scores
from tqdm import trange
import torch as tr
import numpy as np
import pandas as pd
sys.path.append(Path(__file__).parents[1].__str__())
from dronescapes_reader import MultiTaskDataset, SemanticRepresentation
def compute_metrics(tp: np.ndarray, fp: np.ndarray, tn: np.ndarray, fn: np.ndarray) -> pd.DataFrame:
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2 * precision * recall / (precision + recall)
iou = tp / (tp + fp + fn)
return pd.DataFrame([precision, recall, f1, iou], index=["precision", "recall", "f1", "iou"]).T
def do_one_class(df: pd.DataFrame, class_name: str) -> pd.DataFrame:
df = df.query("class_name == @class_name").drop(columns="class_name")
df.loc["all"] = df.sum()
df[["precision", "recall", "f1", "iou"]] = compute_metrics(df["tp"], df["fp"], df["tn"], df["fn"])
df.insert(0, "class_name", class_name)
df = df.fillna(0).round(3)
return df
def compute_raw_stats_per_class(reader: MultiTaskDataset, classes: list[str]) -> pd.DataFrame:
res = tr.zeros((len(reader), 8, 4)).long() # (N, 8, 4)
index = []
for i in trange(len(reader)):
x = reader[i]
y, gt = x[0]["pred"], x[0]["gt"]
res[i] = multiclass_stat_scores(y, gt, num_classes=len(classes), average=None)[:, 0:4]
index.append(x[1])
res = res.reshape(len(reader) * len(classes), 4)
df = pd.DataFrame(res, index=np.repeat(index, len(classes)), columns=["tp", "fp", "tn", "fn"])
df.insert(0, "class_name", np.array(classes)[:, None].repeat(len(index), 1).T.flatten())
return df
def compute_final_per_scene(res: pd.DataFrame, scene: str, classes: list[str],
class_weights: list[float]) -> tuple[float, float]:
df = res.iloc[[x.startswith(scene) for x in res.index]]
# aggregate for this class all the individual predictions
df_scene = df[["class_name", "tp", "fp", "tn", "fn"]].groupby("class_name") \
.apply(lambda x: x.sum(), include_groups=False).loc[classes]
df_metrics = compute_metrics(df_scene["tp"], df_scene["fp"], df_scene["tn"], df_scene["fn"])
iou_weighted = (df_metrics["iou"] * class_weights).sum()
f1_weighted = (df_metrics["f1"] * class_weights).sum()
return scene, iou_weighted, f1_weighted
def get_args() -> Namespace:
parser = ArgumentParser()
parser.add_argument("y_dir", type=lambda p: Path(p).absolute())
parser.add_argument("gt_dir", type=lambda p: Path(p).absolute())
parser.add_argument("--output_path", "-o", type=Path, required=True)
parser.add_argument("--classes", required=True, nargs="+")
parser.add_argument("--class_weights", nargs="+", type=float)
parser.add_argument("--scenes", nargs="+", default=["all"], help="each scene will get separate metrics if provided")
args = parser.parse_args()
if args.class_weights is None:
args.class_weights = [1 / len(args.classes)] * len(args.classes)
assert (a := len(args.class_weights)) == (b := len(args.classes)), (a, b)
assert np.fabs(sum(args.class_weights) - 1) < 1e-3, (args.class_weights, sum(args.class_weights))
assert args.output_path.suffix == ".csv", f"Prediction file must end in .csv, got: '{args.output_path.suffix}'"
if len(args.scenes) > 0:
logger.info(f"Scenes: {args.scenes}")
return args
def main(args: Namespace):
temp_dir = Path(TemporaryDirectory().name)
temp_dir.mkdir(exist_ok=False)
os.symlink(args.y_dir, temp_dir / "pred")
os.symlink(args.gt_dir, temp_dir / "gt")
if not args.output_path.exists():
sema_repr = partial(SemanticRepresentation, classes=args.classes, color_map=[[0, 0, 0]] * len(args.classes))
reader = MultiTaskDataset(temp_dir, handle_missing_data="drop", task_types={"pred": sema_repr, "gt": sema_repr})
df = compute_raw_stats_per_class(reader, args.classes)
res = pd.concat([do_one_class(df, class_name) for class_name in args.classes])
res.to_csv(args.output_path)
logger.info(f"Stored raw metrics file to: '{args.output_path}'")
else:
logger.info(f"Loading raw metris from: '{args.output_path}'. Delete this file if you want to recompute.")
res = pd.read_csv(args.output_path, index_col=0)
final_agg = []
for scene in args.scenes:
final_agg.append(compute_final_per_scene(res, scene, classes=args.classes, class_weights=args.class_weights))
final_agg = pd.DataFrame(final_agg, columns=["scene", "iou", "f1"]).set_index("scene")
if len(args.scenes) > 1:
final_agg.loc["mean"] = final_agg.mean()
final_agg = (final_agg * 100).round(3)
print(final_agg)
if __name__ == "__main__":
main(get_args())