File size: 39,461 Bytes
a8d541b 2ca2b34 5875666 2ca2b34 274a568 5875666 da9a6dd 5875666 da9a6dd 5875666 da9a6dd 274a568 5875666 84d0e86 5875666 84d0e86 5875666 84d0e86 274a568 5875666 c5b68d2 5875666 c5b68d2 5875666 c5b68d2 274a568 5875666 1265a69 5875666 1265a69 5875666 1265a69 274a568 5875666 69161f4 5875666 69161f4 5875666 69161f4 274a568 5875666 274a568 5875666 ad92772 5875666 ad92772 5875666 ad92772 5875666 6c6691c 5875666 6c6691c 5875666 6c6691c 274a568 5875666 274a568 5875666 274a568 5875666 8ae3aa1 5875666 8ae3aa1 5875666 8ae3aa1 274a568 5875666 199ff7d 5875666 199ff7d 5875666 199ff7d 5875666 e7c6273 5875666 e7c6273 5875666 e7c6273 5875666 f2a08c5 5875666 f2a08c5 5875666 f2a08c5 5875666 da9a6dd 84d0e86 c5b68d2 1265a69 69161f4 ad92772 6c6691c 8ae3aa1 199ff7d e7c6273 da9a6dd 5875666 f2a08c5 a8d541b 2ca2b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
---
language:
- en
- fr
- ru
- ja
- it
- da
- es
- de
- pt
- sl
- ur
- eu
license: mit
size_categories:
- 1M<n<10M
task_categories:
- summarization
- text2text-generation
- text-generation
pretty_name: MultiSim
tags:
- medical
- legal
- wikipedia
- encyclopedia
- science
- literature
- news
- websites
configs:
- config_name: ASSET
data_files:
- split: train
path: ASSET/train-*
- split: validation
path: ASSET/validation-*
- split: test
path: ASSET/test-*
- config_name: AdminIt
data_files:
- split: train
path: AdminIt/train-*
- split: validation
path: AdminIt/validation-*
- split: test
path: AdminIt/test-*
- config_name: CLEAR
data_files:
- split: train
path: CLEAR/train-*
- split: validation
path: CLEAR/validation-*
- split: test
path: CLEAR/test-*
- config_name: EasyJapanese
data_files:
- split: train
path: EasyJapanese/train-*
- split: validation
path: EasyJapanese/validation-*
- split: test
path: EasyJapanese/test-*
- config_name: EasyJapaneseExtended
data_files:
- split: train
path: EasyJapaneseExtended/train-*
- split: validation
path: EasyJapaneseExtended/validation-*
- split: test
path: EasyJapaneseExtended/test-*
- config_name: GEOLinoTest
data_files:
- split: train
path: GEOLinoTest/train-*.parquet
- split: validation
path: GEOLinoTest/validation-*.parquet
- split: test
path: GEOLinoTest/test-*.parquet
- config_name: PaCCSS-IT
data_files:
- split: train
path: PaCCSS-IT/train-*
- split: validation
path: PaCCSS-IT/validation-*
- split: test
path: PaCCSS-IT/test-*
- config_name: PorSimples
data_files:
- split: train
path: PorSimples/train-*
- split: validation
path: PorSimples/validation-*
- split: test
path: PorSimples/test-*
- config_name: RSSE
data_files:
- split: train
path: RSSE/train-*.parquet
- split: validation
path: RSSE/validation-*.parquet
- split: test
path: RSSE/test-*.parquet
- config_name: RuAdaptEncy
data_files:
- split: train
path: RuAdaptEncy/train-*.parquet
- split: validation
path: RuAdaptEncy/validation-*.parquet
- split: test
path: RuAdaptEncy/test-*.parquet
- config_name: RuAdaptFairytales
data_files:
- split: train
path: RuAdaptFairytales/train-*.parquet
- split: validation
path: RuAdaptFairytales/validation-*.parquet
- split: test
path: RuAdaptFairytales/test-*.parquet
- config_name: RuWikiLarge
data_files:
- split: train
path: RuWikiLarge/train-*.parquet
- split: validation
path: RuWikiLarge/validation-*.parquet
- split: test
path: RuWikiLarge/test-*.parquet
- config_name: SimpitikiWiki
data_files:
- split: train
path: SimpitikiWiki/train-*
- split: validation
path: SimpitikiWiki/validation-*
- split: test
path: SimpitikiWiki/test-*
- config_name: TSSlovene
data_files:
- split: train
path: TSSlovene/train-*.parquet
- split: validation
path: TSSlovene/validation-*.parquet
- split: test
path: TSSlovene/test-*.parquet
- config_name: Teacher
data_files:
- split: train
path: Teacher/train-*
- split: validation
path: Teacher/validation-*
- split: test
path: Teacher/test-*
- config_name: Terence
data_files:
- split: train
path: Terence/train-*
- split: validation
path: Terence/validation-*
- split: test
path: Terence/test-*
- config_name: TextComplexityDE
data_files:
- split: train
path: TextComplexityDE/train-*.parquet
- split: validation
path: TextComplexityDE/validation-*.parquet
- split: test
path: TextComplexityDE/test-*.parquet
- config_name: WikiAutoEN
data_files:
- split: train
path: WikiAutoEN/train-*
- split: validation
path: WikiAutoEN/validation-*
- split: test
path: WikiAutoEN/test-*
- config_name: WikiLargeFR
data_files:
- split: train
path: WikiLargeFR/train-*
- split: validation
path: WikiLargeFR/validation-*
- split: test
path: WikiLargeFR/test-*
dataset_info:
- config_name: ASSET
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 4293614
num_examples: 19000
- name: validation
num_bytes: 123502
num_examples: 100
- name: test
num_bytes: 411019
num_examples: 359
download_size: 2900461
dataset_size: 4828135
- config_name: AdminIt
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 287476
num_examples: 588
- name: validation
num_bytes: 31917
num_examples: 48
- name: test
num_bytes: 31142
num_examples: 49
download_size: 143833
dataset_size: 350535
- config_name: CLEAR
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 1334806
num_examples: 4196
- name: validation
num_bytes: 95136
num_examples: 294
- name: test
num_bytes: 31618
num_examples: 100
download_size: 877717
dataset_size: 1461560
- config_name: EasyJapanese
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 4924255
num_examples: 48000
- name: validation
num_bytes: 102150
num_examples: 1000
- name: test
num_bytes: 101364
num_examples: 999
download_size: 2778292
dataset_size: 5127769
- config_name: EasyJapaneseExtended
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 4458335
num_examples: 33269
- name: validation
num_bytes: 139441
num_examples: 1000
- name: test
num_bytes: 51193
num_examples: 100
download_size: 2741056
dataset_size: 4648969
- config_name: PaCCSS-IT
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 5848946
num_examples: 60485
- name: validation
num_bytes: 114014
num_examples: 1061
- name: test
num_bytes: 114519
num_examples: 1061
download_size: 3168114
dataset_size: 6077479
- config_name: PorSimples
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 1256127
num_examples: 6290
- name: validation
num_bytes: 119369
num_examples: 420
- name: test
num_bytes: 119016
num_examples: 420
download_size: 929247
dataset_size: 1494512
- config_name: SimpitikiWiki
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 382373
num_examples: 460
- name: validation
num_bytes: 42592
num_examples: 52
- name: test
num_bytes: 47257
num_examples: 51
download_size: 323122
dataset_size: 472222
- config_name: Teacher
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 29726
num_examples: 136
- name: validation
num_bytes: 3822
num_examples: 17
- name: test
num_bytes: 3983
num_examples: 17
download_size: 37041
dataset_size: 37531
- config_name: Terence
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 168652
num_examples: 809
- name: validation
num_bytes: 20942
num_examples: 102
- name: test
num_bytes: 19918
num_examples: 101
download_size: 143025
dataset_size: 209512
- config_name: WikiAutoEN
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 142873905
num_examples: 576126
- name: validation
num_bytes: 1265282
num_examples: 4988
- name: test
num_bytes: 1243704
num_examples: 5002
download_size: 103589347
dataset_size: 145382891
- config_name: WikiLargeFR
features:
- name: original
dtype: string
- name: simple
sequence: string
splits:
- name: train
num_bytes: 80861778
num_examples: 296402
- name: validation
num_bytes: 257078
num_examples: 878
- name: test
num_bytes: 100283
num_examples: 345
download_size: 55581692
dataset_size: 81219139
---
# Dataset Card for MultiSim Benchmark
## Dataset Description
- **Repository:https://github.com/XenonMolecule/MultiSim/tree/main**
- **Paper:https://aclanthology.org/2023.acl-long.269/ https://arxiv.org/pdf/2305.15678.pdf**
- **Point of Contact: michaeljryan@stanford.edu**
### Dataset Summary
The MultiSim benchmark is a growing collection of text simplification datasets targeted at sentence simplification in several languages. Currently, the benchmark spans 12 languages.
![Figure showing four complex and simple sentence pairs. One pair in English, one in Japanese, one in Urdu, and one in Russian. The English complex sentence reads "He settled in London, devoting himself chiefly to practical teaching." which is paired with the simple sentence "He lived in London. He was a teacher."](MultiSimEx.png "MultiSim Example")
### Supported Tasks
- Sentence Simplification
### Usage
```python
from datasets import load_dataset
dataset = load_dataset("MichaelR207/MultiSim")
```
### Citation
If you use this benchmark, please cite our [paper](https://aclanthology.org/2023.acl-long.269/):
```
@inproceedings{ryan-etal-2023-revisiting,
title = "Revisiting non-{E}nglish Text Simplification: A Unified Multilingual Benchmark",
author = "Ryan, Michael and
Naous, Tarek and
Xu, Wei",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.269",
pages = "4898--4927",
abstract = "Recent advancements in high-quality, large-scale English resources have pushed the frontier of English Automatic Text Simplification (ATS) research. However, less work has been done on multilingual text simplification due to the lack of a diverse evaluation benchmark that covers complex-simple sentence pairs in many languages. This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs. This benchmark will encourage research in developing more effective multilingual text simplification models and evaluation metrics. Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings. We observe strong performance from Russian in zero-shot cross-lingual transfer to low-resource languages. We further show that few-shot prompting with BLOOM-176b achieves comparable quality to reference simplifications outperforming fine-tuned models in most languages. We validate these findings through human evaluation.",
}
```
### Contact
**Michael Ryan**: [Scholar](https://scholar.google.com/citations?user=8APGEEkAAAAJ&hl=en) | [Twitter](http://twitter.com/michaelryan207) | [Github](https://github.com/XenonMolecule) | [LinkedIn](https://www.linkedin.com/in/michael-ryan-207/) | [Research Gate](https://www.researchgate.net/profile/Michael-Ryan-86) | [Personal Website](http://michaelryan.tech/) | [michaeljryan@stanford.edu](mailto://michaeljryan@stanford.edu)
### Languages
- English
- French
- Russian
- Japanese
- Italian
- Danish (on request)
- Spanish (on request)
- German
- Brazilian Portuguese
- Slovene
- Urdu (on request)
- Basque (on request)
## Dataset Structure
### Data Instances
MultiSim is a collection of 27 existing datasets:
- AdminIT
- ASSET
- CBST
- CLEAR
- DSim
- Easy Japanese
- Easy Japanese Extended
- GEOLino
- German News
- Newsela EN/ES
- PaCCSS-IT
- PorSimples
- RSSE
- RuAdapt Encyclopedia
- RuAdapt Fairytales
- RuAdapt Literature
- RuWikiLarge
- SIMPITIKI
- Simple German
- Simplext
- SimplifyUR
- SloTS
- Teacher
- Terence
- TextComplexityDE
- WikiAuto
- WikiLargeFR
![Table 1: Important properties of text simplification parallel corpora](Table1.png "Table 1")
### Data Fields
In the train set, you will only find `original` and `simple` sentences. In the validation and test sets you may find `simple1`, `simple2`, ... `simpleN` because a given sentence can have multiple reference simplifications (useful in SARI and BLEU calculations)
### Data Splits
The dataset is split into a train, validation, and test set.
![Table 2: MultiSim splits. *Original splits preserved](Table2.png "Table 2")
## Dataset Creation
### Curation Rationale
I hope that collecting all of these independently useful resources for text simplification together into one benchmark will encourage multilingual work on text simplification!
### Source Data
#### Initial Data Collection and Normalization
Data is compiled from the 27 existing datasets that comprise the MultiSim Benchmark. For details on each of the resources please see Appendix A in the [paper](https://aclanthology.org/2023.acl-long.269.pdf).
#### Who are the source language producers?
Each dataset has different sources. At a high level the sources are: Automatically Collected (ex. Wikipedia, Web data), Manually Collected (ex. annotators asked to simplify sentences), Target Audience Resources (ex. Newsela News Articles), or Translated (ex. Machine translations of existing datasets).
These sources can be seen in Table 1 pictured above (Section: `Dataset Structure/Data Instances`) and further discussed in section 3 of the [paper](https://aclanthology.org/2023.acl-long.269.pdf). Appendix A of the paper has details on specific resources.
### Annotations
#### Annotation process
Annotators writing simplifications (only for some datasets) typically follow an annotation guideline. Some example guidelines come from [here](https://dl.acm.org/doi/10.1145/1410140.1410191), [here](https://link.springer.com/article/10.1007/s11168-006-9011-1), and [here](https://link.springer.com/article/10.1007/s10579-017-9407-6).
#### Who are the annotators?
See Table 1 (Section: `Dataset Structure/Data Instances`) for specific annotators per dataset. At a high level the annotators are: writers, translators, teachers, linguists, journalists, crowdworkers, experts, news agencies, medical students, students, writers, and researchers.
### Personal and Sensitive Information
No dataset should contain personal or sensitive information. These were previously collected resources primarily collected from news sources, wikipedia, science communications, etc. and were not identified to have personally identifiable information.
## Considerations for Using the Data
### Social Impact of Dataset
We hope this dataset will make a greatly positive social impact as text simplification is a task that serves children, second language learners, and people with reading/cognitive disabilities. By publicly releasing a dataset in 12 languages we hope to serve these global communities.
One negative and unintended use case for this data would be reversing the labels to make a "text complification" model. We beleive the benefits of releasing this data outweigh the harms and hope that people use the dataset as intended.
### Discussion of Biases
There may be biases of the annotators involved in writing the simplifications towards how they believe a simpler sentence should be written. Additionally annotators and editors have the choice of what information does not make the cut in the simpler sentence introducing information importance bias.
### Other Known Limitations
Some of the included resources were automatically collected or machine translated. As such not every sentence is perfectly aligned. Users are recommended to use such individual resources with caution.
## Additional Information
### Dataset Curators
**Michael Ryan**: [Scholar](https://scholar.google.com/citations?user=8APGEEkAAAAJ&hl=en) | [Twitter](http://twitter.com/michaelryan207) | [Github](https://github.com/XenonMolecule) | [LinkedIn](https://www.linkedin.com/in/michael-ryan-207/) | [Research Gate](https://www.researchgate.net/profile/Michael-Ryan-86) | [Personal Website](http://michaelryan.tech/) | [michaeljryan@stanford.edu](mailto://michaeljryan@stanford.edu)
### Licensing Information
MIT License
### Citation Information
Please cite the individual datasets that you use within the MultiSim benchmark as appropriate. Proper bibtex attributions for each of the datasets are included below.
#### AdminIT
```
@inproceedings{miliani-etal-2022-neural,
title = "Neural Readability Pairwise Ranking for Sentences in {I}talian Administrative Language",
author = "Miliani, Martina and
Auriemma, Serena and
Alva-Manchego, Fernando and
Lenci, Alessandro",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-main.63",
pages = "849--866",
abstract = "Automatic Readability Assessment aims at assigning a complexity level to a given text, which could help improve the accessibility to information in specific domains, such as the administrative one. In this paper, we investigate the behavior of a Neural Pairwise Ranking Model (NPRM) for sentence-level readability assessment of Italian administrative texts. To deal with data scarcity, we experiment with cross-lingual, cross- and in-domain approaches, and test our models on Admin-It, a new parallel corpus in the Italian administrative language, containing sentences simplified using three different rewriting strategies. We show that NPRMs are effective in zero-shot scenarios ({\textasciitilde}0.78 ranking accuracy), especially with ranking pairs containing simplifications produced by overall rewriting at the sentence-level, and that the best results are obtained by adding in-domain data (achieving perfect performance for such sentence pairs). Finally, we investigate where NPRMs failed, showing that the characteristics of the training data, rather than its size, have a bigger effect on a model{'}s performance.",
}
```
#### ASSET
```
@inproceedings{alva-manchego-etal-2020-asset,
title = "{ASSET}: {A} Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations",
author = "Alva-Manchego, Fernando and
Martin, Louis and
Bordes, Antoine and
Scarton, Carolina and
Sagot, Beno{\^\i}t and
Specia, Lucia",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.424",
pages = "4668--4679",
}
```
#### CBST
```
@article{10.1007/s10579-017-9407-6,
title={{The corpus of Basque simplified texts (CBST)}},
author={Gonzalez-Dios, Itziar and Aranzabe, Mar{\'\i}a Jes{\'u}s and D{\'\i}az de Ilarraza, Arantza},
journal={Language Resources and Evaluation},
volume={52},
number={1},
pages={217--247},
year={2018},
publisher={Springer}
}
```
#### CLEAR
```
@inproceedings{grabar-cardon-2018-clear,
title = "{CLEAR} {--} Simple Corpus for Medical {F}rench",
author = "Grabar, Natalia and
Cardon, R{\'e}mi",
booktitle = "Proceedings of the 1st Workshop on Automatic Text Adaptation ({ATA})",
month = nov,
year = "2018",
address = "Tilburg, the Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-7002",
doi = "10.18653/v1/W18-7002",
pages = "3--9",
}
```
#### DSim
```
@inproceedings{klerke-sogaard-2012-dsim,
title = "{DS}im, a {D}anish Parallel Corpus for Text Simplification",
author = "Klerke, Sigrid and
S{\o}gaard, Anders",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/270_Paper.pdf",
pages = "4015--4018",
abstract = "We present DSim, a new sentence aligned Danish monolingual parallel corpus extracted from 3701 pairs of news telegrams and corresponding professionally simplified short news articles. The corpus is intended for building automatic text simplification for adult readers. We compare DSim to different examples of monolingual parallel corpora, and we argue that this corpus is a promising basis for future development of automatic data-driven text simplification systems in Danish. The corpus contains both the collection of paired articles and a sentence aligned bitext, and we show that sentence alignment using simple tf*idf weighted cosine similarity scoring is on line with state―of―the―art when evaluated against a hand-aligned sample. The alignment results are compared to state of the art for English sentence alignment. We finally compare the source and simplified sides of the corpus in terms of lexical and syntactic characteristics and readability, and find that the one―to―many sentence aligned corpus is representative of the sentence simplifications observed in the unaligned collection of article pairs.",
}
```
#### Easy Japanese
```
@inproceedings{maruyama-yamamoto-2018-simplified,
title = "Simplified Corpus with Core Vocabulary",
author = "Maruyama, Takumi and
Yamamoto, Kazuhide",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1185",
}
```
#### Easy Japanese Extended
```
@inproceedings{katsuta-yamamoto-2018-crowdsourced,
title = "Crowdsourced Corpus of Sentence Simplification with Core Vocabulary",
author = "Katsuta, Akihiro and
Yamamoto, Kazuhide",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1072",
}
```
#### GEOLino
```
@inproceedings{mallinson2020,
title={Zero-Shot Crosslingual Sentence Simplification},
author={Mallinson, Jonathan and Sennrich, Rico and Lapata, Mirella},
year={2020},
booktitle={2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)}
}
```
#### German News
```
@inproceedings{sauberli-etal-2020-benchmarking,
title = "Benchmarking Data-driven Automatic Text Simplification for {G}erman",
author = {S{\"a}uberli, Andreas and
Ebling, Sarah and
Volk, Martin},
booktitle = "Proceedings of the 1st Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI)",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.readi-1.7",
pages = "41--48",
abstract = "Automatic text simplification is an active research area, and there are first systems for English, Spanish, Portuguese, and Italian. For German, no data-driven approach exists to this date, due to a lack of training data. In this paper, we present a parallel corpus of news items in German with corresponding simplifications on two complexity levels. The simplifications have been produced according to a well-documented set of guidelines. We then report on experiments in automatically simplifying the German news items using state-of-the-art neural machine translation techniques. We demonstrate that despite our small parallel corpus, our neural models were able to learn essential features of simplified language, such as lexical substitutions, deletion of less relevant words and phrases, and sentence shortening.",
language = "English",
ISBN = "979-10-95546-45-0",
}
```
#### Newsela EN/ES
```
@article{xu-etal-2015-problems,
title = "Problems in Current Text Simplification Research: New Data Can Help",
author = "Xu, Wei and
Callison-Burch, Chris and
Napoles, Courtney",
journal = "Transactions of the Association for Computational Linguistics",
volume = "3",
year = "2015",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q15-1021",
doi = "10.1162/tacl_a_00139",
pages = "283--297",
abstract = "Simple Wikipedia has dominated simplification research in the past 5 years. In this opinion paper, we argue that focusing on Wikipedia limits simplification research. We back up our arguments with corpus analysis and by highlighting statements that other researchers have made in the simplification literature. We introduce a new simplification dataset that is a significant improvement over Simple Wikipedia, and present a novel quantitative-comparative approach to study the quality of simplification data resources.",
}
```
#### PaCCSS-IT
```
@inproceedings{brunato-etal-2016-paccss,
title = "{P}a{CCSS}-{IT}: A Parallel Corpus of Complex-Simple Sentences for Automatic Text Simplification",
author = "Brunato, Dominique and
Cimino, Andrea and
Dell{'}Orletta, Felice and
Venturi, Giulia",
booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D16-1034",
doi = "10.18653/v1/D16-1034",
pages = "351--361",
}
```
#### PorSimples
```
@inproceedings{aluisio-gasperin-2010-fostering,
title = "Fostering Digital Inclusion and Accessibility: The {P}or{S}imples project for Simplification of {P}ortuguese Texts",
author = "Alu{\'\i}sio, Sandra and
Gasperin, Caroline",
booktitle = "Proceedings of the {NAACL} {HLT} 2010 Young Investigators Workshop on Computational Approaches to Languages of the {A}mericas",
month = jun,
year = "2010",
address = "Los Angeles, California",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W10-1607",
pages = "46--53",
}
```
```
@inproceedings{10.1007/978-3-642-16952-6_31,
author="Scarton, Carolina and Gasperin, Caroline and Aluisio, Sandra",
editor="Kuri-Morales, Angel and Simari, Guillermo R.",
title="Revisiting the Readability Assessment of Texts in Portuguese",
booktitle="Advances in Artificial Intelligence -- IBERAMIA 2010",
year="2010",
publisher="Springer Berlin Heidelberg",
address="Berlin, Heidelberg",
pages="306--315",
isbn="978-3-642-16952-6"
}
```
#### RSSE
```
@inproceedings{sakhovskiy2021rusimplesenteval,
title={{RuSimpleSentEval-2021 shared task:} evaluating sentence simplification for Russian},
author={Sakhovskiy, Andrey and Izhevskaya, Alexandra and Pestova, Alena and Tutubalina, Elena and Malykh, Valentin and Smurov, Ivana and Artemova, Ekaterina},
booktitle={Proceedings of the International Conference “Dialogue},
pages={607--617},
year={2021}
}
```
#### RuAdapt
```
@inproceedings{Dmitrieva2021Quantitative,
title={A quantitative study of simplification strategies in adapted texts for L2 learners of Russian},
author={Dmitrieva, Anna and Laposhina, Antonina and Lebedeva, Maria},
booktitle={Proceedings of the International Conference “Dialogue},
pages={191--203},
year={2021}
}
```
```
@inproceedings{dmitrieva-tiedemann-2021-creating,
title = "Creating an Aligned {R}ussian Text Simplification Dataset from Language Learner Data",
author = {Dmitrieva, Anna and
Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.bsnlp-1.8",
pages = "73--79",
abstract = "Parallel language corpora where regular texts are aligned with their simplified versions can be used in both natural language processing and theoretical linguistic studies. They are essential for the task of automatic text simplification, but can also provide valuable insights into the characteristics that make texts more accessible and reveal strategies that human experts use to simplify texts. Today, there exist a few parallel datasets for English and Simple English, but many other languages lack such data. In this paper we describe our work on creating an aligned Russian-Simple Russian dataset composed of Russian literature texts adapted for learners of Russian as a foreign language. This will be the first parallel dataset in this domain, and one of the first Simple Russian datasets in general.",
}
```
#### RuWikiLarge
```
@inproceedings{sakhovskiy2021rusimplesenteval,
title={{RuSimpleSentEval-2021 shared task:} evaluating sentence simplification for Russian},
author={Sakhovskiy, Andrey and Izhevskaya, Alexandra and Pestova, Alena and Tutubalina, Elena and Malykh, Valentin and Smurov, Ivana and Artemova, Ekaterina},
booktitle={Proceedings of the International Conference “Dialogue},
pages={607--617},
year={2021}
}
```
#### SIMPITIKI
```
@article{tonelli2016simpitiki,
title={SIMPITIKI: a Simplification corpus for Italian},
author={Tonelli, Sara and Aprosio, Alessio Palmero and Saltori, Francesca},
journal={Proceedings of CLiC-it},
year={2016}
}
```
#### Simple German
```
@inproceedings{battisti-etal-2020-corpus,
title = "A Corpus for Automatic Readability Assessment and Text Simplification of {G}erman",
author = {Battisti, Alessia and
Pf{\"u}tze, Dominik and
S{\"a}uberli, Andreas and
Kostrzewa, Marek and
Ebling, Sarah},
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.404",
pages = "3302--3311",
abstract = "In this paper, we present a corpus for use in automatic readability assessment and automatic text simplification for German, the first of its kind for this language. The corpus is compiled from web sources and consists of parallel as well as monolingual-only (simplified German) data amounting to approximately 6,200 documents (nearly 211,000 sentences). As a unique feature, the corpus contains information on text structure (e.g., paragraphs, lines), typography (e.g., font type, font style), and images (content, position, and dimensions). While the importance of considering such information in machine learning tasks involving simplified language, such as readability assessment, has repeatedly been stressed in the literature, we provide empirical evidence for its benefit. We also demonstrate the added value of leveraging monolingual-only data for automatic text simplification via machine translation through applying back-translation, a data augmentation technique.",
language = "English",
ISBN = "979-10-95546-34-4",
}
```
#### Simplext
```
@article{10.1145/2738046,
author = {Saggion, Horacio and \v{S}tajner, Sanja and Bott, Stefan and Mille, Simon and Rello, Luz and Drndarevic, Biljana},
title = {Making It Simplext: Implementation and Evaluation of a Text Simplification System for Spanish},
year = {2015},
issue_date = {June 2015}, publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {6},
number = {4},
issn = {1936-7228},
url = {https://doi.org/10.1145/2738046},
doi = {10.1145/2738046},
journal = {ACM Trans. Access. Comput.},
month = {may},
articleno = {14},
numpages = {36},
keywords = {Spanish, text simplification corpus, human evaluation, readability measures}
}
```
#### SimplifyUR
```
@inproceedings{qasmi-etal-2020-simplifyur,
title = "{S}implify{UR}: Unsupervised Lexical Text Simplification for {U}rdu",
author = "Qasmi, Namoos Hayat and
Zia, Haris Bin and
Athar, Awais and
Raza, Agha Ali",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.428",
pages = "3484--3489",
language = "English",
ISBN = "979-10-95546-34-4",
}
```
#### SloTS
```
@misc{gorenc2022slovene,
title = {Slovene text simplification dataset {SloTS}},
author = {Gorenc, Sabina and Robnik-{\v S}ikonja, Marko},
url = {http://hdl.handle.net/11356/1682},
note = {Slovenian language resource repository {CLARIN}.{SI}},
copyright = {Creative Commons - Attribution 4.0 International ({CC} {BY} 4.0)},
issn = {2820-4042},
year = {2022}
}
```
#### Terence and Teacher
```
@inproceedings{brunato-etal-2015-design,
title = "Design and Annotation of the First {I}talian Corpus for Text Simplification",
author = "Brunato, Dominique and
Dell{'}Orletta, Felice and
Venturi, Giulia and
Montemagni, Simonetta",
booktitle = "Proceedings of the 9th Linguistic Annotation Workshop",
month = jun,
year = "2015",
address = "Denver, Colorado, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W15-1604",
doi = "10.3115/v1/W15-1604",
pages = "31--41",
}
```
#### TextComplexityDE
```
@article{naderi2019subjective,
title={Subjective Assessment of Text Complexity: A Dataset for German Language},
author={Naderi, Babak and Mohtaj, Salar and Ensikat, Kaspar and M{\"o}ller, Sebastian},
journal={arXiv preprint arXiv:1904.07733},
year={2019}
}
```
#### WikiAuto
```
@inproceedings{acl/JiangMLZX20,
author = {Chao Jiang and
Mounica Maddela and
Wuwei Lan and
Yang Zhong and
Wei Xu},
editor = {Dan Jurafsky and
Joyce Chai and
Natalie Schluter and
Joel R. Tetreault},
title = {Neural {CRF} Model for Sentence Alignment in Text Simplification},
booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, {ACL} 2020, Online, July 5-10, 2020},
pages = {7943--7960},
publisher = {Association for Computational Linguistics},
year = {2020},
url = {https://www.aclweb.org/anthology/2020.acl-main.709/}
}
```
#### WikiLargeFR
```
@inproceedings{cardon-grabar-2020-french,
title = "{F}rench Biomedical Text Simplification: When Small and Precise Helps",
author = "Cardon, R{\'e}mi and
Grabar, Natalia",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.62",
doi = "10.18653/v1/2020.coling-main.62",
pages = "710--716",
abstract = "We present experiments on biomedical text simplification in French. We use two kinds of corpora {--} parallel sentences extracted from existing health comparable corpora in French and WikiLarge corpus translated from English to French {--} and a lexicon that associates medical terms with paraphrases. Then, we train neural models on these parallel corpora using different ratios of general and specialized sentences. We evaluate the results with BLEU, SARI and Kandel scores. The results point out that little specialized data helps significantly the simplification.",
}
```
## Data Availability
### Public Datasets
Most of the public datasets are available as a part of this MultiSim Repo. A few are still pending availability. For all resources we provide alternative download links.
| Dataset | Language | Availability in MultiSim Repo | Alternative Link |
|---|---|---|---|
| ASSET | English | Available | https://huggingface.co/datasets/asset |
| WikiAuto | English | Available | https://huggingface.co/datasets/wiki_auto |
| CLEAR | French | Available | http://natalia.grabar.free.fr/resources.php#remi |
| WikiLargeFR | French | Available | http://natalia.grabar.free.fr/resources.php#remi |
| GEOLino | German | Available | https://github.com/Jmallins/ZEST-data |
| TextComplexityDE | German | Available | https://github.com/babaknaderi/TextComplexityDE |
| AdminIT | Italian | Available | https://github.com/Unipisa/admin-It |
| Simpitiki | Italian | Available | https://github.com/dhfbk/simpitiki# |
| PaCCSS-IT | Italian | Available | http://www.italianlp.it/resources/paccss-it-parallel-corpus-of-complex-simple-sentences-for-italian/ |
| Terence and Teacher | Italian | Available | http://www.italianlp.it/resources/terence-and-teacher/ |
| Easy Japanese | Japanese | Available | https://www.jnlp.org/GengoHouse/snow/t15 |
| Easy Japanese Extended | Japanese | Available | https://www.jnlp.org/GengoHouse/snow/t23 |
| RuAdapt Encyclopedia | Russian | Available | https://github.com/Digital-Pushkin-Lab/RuAdapt |
| RuAdapt Fairytales | Russian | Available | https://github.com/Digital-Pushkin-Lab/RuAdapt |
| RuSimpleSentEval | Russian | Available | https://github.com/dialogue-evaluation/RuSimpleSentEval |
| RuWikiLarge | Russian | Available | https://github.com/dialogue-evaluation/RuSimpleSentEval |
| SloTS | Slovene | Available | https://github.com/sabina-skubic/text-simplification-slovene |
| SimplifyUR | Urdu | Pending | https://github.com/harisbinzia/SimplifyUR |
| PorSimples | Brazilian Portuguese | Available | [sandra@icmc.usp.br](mailto:sandra@icmc.usp.br) |
### On Request Datasets
The authors of the original papers must be contacted for on request datasets. Contact information for the authors of each dataset is provided below.
| Dataset | Language | Contact |
|---|---|---|
| CBST | Basque | http://www.ixa.eus/node/13007?language=en <br/> [itziar.gonzalezd@ehu.eus](mailto:itziar.gonzalezd@ehu.eus) |
| DSim | Danish | [sk@eyejustread.com](mailto:sk@eyejustread.com) |
| Newsela EN | English | [https://newsela.com/data/](https://newsela.com/data/) |
| Newsela ES | Spanish | [https://newsela.com/data/](https://newsela.com/data/) |
| German News | German | [ebling@cl.uzh.ch](mailto:ebling@cl.uzh.ch) |
| Simple German | German | [ebling@cl.uzh.ch](mailto:ebling@cl.uzh.ch) |
| Simplext | Spanish | [horacio.saggion@upf.edu](mailto:horacio.saggion@upf.edu) |
| RuAdapt Literature | Russian | Partially Available: https://github.com/Digital-Pushkin-Lab/RuAdapt <br/> Full Dataset: [anna.dmitrieva@helsinki.fi](mailto:anna.dmitrieva@helsinki.fi) | |