Unnamed: 0
int64 2
9.3k
| sentence
stringlengths 30
941
| aspect_term_1
stringlengths 1
32
⌀ | aspect_term_2
stringlengths 2
27
⌀ | aspect_term_3
stringlengths 2
23
⌀ | aspect_term_4
stringclasses 25
values | aspect_term_5
stringclasses 7
values | aspect_term_6
stringclasses 1
value | aspect_category_1
stringclasses 9
values | aspect_category_2
stringclasses 9
values | aspect_category_3
stringclasses 9
values | aspect_category_4
stringclasses 2
values | aspect_category_5
stringclasses 1
value | aspect_term_1_polarity
stringclasses 3
values | aspect_term_2_polarity
stringclasses 3
values | aspect_term_3_polarity
stringclasses 3
values | aspect_term_4_polarity
stringclasses 3
values | aspect_term_5_polarity
stringclasses 3
values | aspect_term_6_polarity
stringclasses 1
value | aspect_category_1_polarity
stringclasses 3
values | aspect_category_2_polarity
stringclasses 3
values | aspect_category_3_polarity
stringclasses 3
values | aspect_category_4_polarity
stringclasses 1
value | aspect_category_5_polarity
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
714 | The paper is fairly clear and these extensions are reasonable[paper-POS], [CLA-POS] | paper | null | null | null | null | null | CLA | null | null | null | null | POS | null | null | null | null | null | POS | null | null | null | null |
715 | . However, I just don't think the focus on 2D grid-based navigation has sufficient interest and impact[null], [IMP-NEG] | null | null | null | null | null | null | IMP | null | null | null | null | null | null | null | null | null | null | NEG | null | null | null | null |
716 | . It's true that the original VIN paper worked in a grid-navigation domain, but they also had a domain with a fairly different structure; I believe they used the gridworld because it was a convenient initial test case, but not because of its inherent value.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
717 | So, making improvements to help solve grid-worlds better is not so motivating[null], [IMP-NEG] | null | null | null | null | null | null | IMP | null | null | null | null | null | null | null | null | null | null | NEG | null | null | null | null |
718 | . It may be possible to motivate and demonstrate the methods of this paper in other domains, however.[methods-NEU], [EMP-NEU] | methods | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
719 | The work on dynamic environments was an interesting step: it would have been interesting to see how the models learned for the dynamic environments differed from those for static environments.[null], [CMP-POS] | null | null | null | null | null | null | CMP | null | null | null | null | null | null | null | null | null | null | POS | null | null | null | null |
724 | Superior performance to recent baselines (e.g. EWC) is reported in several cases.[performance-POS], [CMP-POS] | performance | null | null | null | null | null | CMP | null | null | null | null | POS | null | null | null | null | null | POS | null | null | null | null |
726 | Unfortunately, the paper does not go beyond the relatively simplistic setup of sequential MNIST, in contrast to some of the methods used as baselines.[null], [CMP-NEU, EMP-NEG] | null | null | null | null | null | null | CMP | EMP | null | null | null | null | null | null | null | null | null | NEU | NEG | null | null | null |
727 | The proposed architecture implicitly reduces the continual learning problem to a classical multitask learning (MTL) setting for the LTM, where (in the best case scenario) i.i.d. data from all encountered tasks is available during training. This setting is not ideal, though.[architecture-NEU, setting-NEG], [EMP-NEU] | architecture | setting | null | null | null | null | EMP | null | null | null | null | NEU | NEG | null | null | null | null | NEU | null | null | null | null |
728 | There are several example of successful multitask learning, but it does not follow that a random grouping of several tasks immediately leads to successful MTL.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
729 | Indeed, there is good reason to doubt this in both supervised and reinforcement learning domains.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
731 | I agree that problems can be constructed where these assumptions hold, but this core assumption is limiting.[assumption-NEU], [EMP-NEU] | assumption | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
732 | The requirement of task labels also rules out important use cases such as following a non-stationary objective function, which is important in several realistic domains, including deep RL.[null], [EMP-NEG] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEG | null | null | null | null |
740 | Experiments show a clear advantage during learning when compared with a vanilla DQN. [Experiments-POS], [EMP-POS] | Experiments | null | null | null | null | null | EMP | null | null | null | null | POS | null | null | null | null | null | POS | null | null | null | null |
741 | Nonetheless, there are some criticisms than can be made of both the method and the evaluations:[method-NEU, evaluations-NEU], [EMP-NEU] | method | evaluations | null | null | null | null | EMP | null | null | null | null | NEU | NEU | null | null | null | null | NEU | null | null | null | null |
742 | The fear radius threshold k_r seems to add yet another hyperparameter that needs tuning.[null], [EMP-NEG] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEG | null | null | null | null |
743 | Judging from the description of the experiments this parameter is important to the performance of the method and needs to be set experimentally.[description-NEU, experiments-NEU, parameter-NEU, performance-NEU, method-NEU], [EMP-NEU] | description | experiments | parameter | performance | method | null | EMP | null | null | null | null | NEU | NEU | NEU | NEU | NEU | null | NEU | null | null | null | null |
744 | There seems to be no way of a priori determine a good distance as there is no way to know in advance when a catastrophe becomes unavoidable.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
745 | No empirical results on the effect of the parameter are given.[empirical results-NEG], [SUB-NEG, EMP-NEG] | empirical results | null | null | null | null | null | SUB | EMP | null | null | null | NEG | null | null | null | null | null | NEG | NEG | null | null | null |
746 | The experimental results support the claim that this technique helps to avoid catastrophic states during initial learning.[experimental results-POS, claim-NEU, technique-POS], [EMP-POS] | experimental results | claim | technique | null | null | null | EMP | null | null | null | null | POS | NEU | POS | null | null | null | POS | null | null | null | null |
747 | The paper however, also claims to address the longer term problem of revisiting these states once the learner forgets about them, since they are no longer part of the data generated by (close to) optimal policies.[paper-NEU], [IMP-NEU] | paper | null | null | null | null | null | IMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
748 | This problem does not seem to be really solved by this method.[problem-NEU, method-NEG], [EMP-NEG] | problem | method | null | null | null | null | EMP | null | null | null | null | NEU | NEG | null | null | null | null | NEG | null | null | null | null |
749 | Danger and safe state replay memories are kept, but are only used to train the catastrophe classifier.[null], [EMP-NEG] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEG | null | null | null | null |
750 | While the catastrophe classifier can be seen as an additional external memory, it seems that the learner will still drift away from the optimal policy and then need to be reminded by the classifier through penalties.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
751 | As such the method wouldn't prevent catastrophic forgetting, it would just prevent the worst consequences by penalizing the agent before it reaches a danger state.[method-NEG], [EMP-NEG] | method | null | null | null | null | null | EMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
752 | It would therefore be interesting to see some long running experiments and analyse how often catastrophic states (or those close to them) are visited.[experiments-NEU], [EMP-NEU] | experiments | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
753 | Overall, the current evaluations focus on performance and give little insight into the behaviour of the method.[evaluations-NEG, performance-NEU, method-NEU], [SUB-NEG, EMP-NEG] | evaluations | performance | method | null | null | null | SUB | EMP | null | null | null | NEG | NEU | NEU | null | null | null | NEG | NEG | null | null | null |
755 | In general the explanations in the paper often often use confusing and imprecise language, even in formal derivations, e.g. 'if the fear model reaches arbitrarily high accuracy' or 'if the probability is negligible'.[explanations-NEG], [CLA-NEG] | explanations | null | null | null | null | null | CLA | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
756 | It is wasn't clear to me that the properties described in Theorem 1 actually hold.[Theorem-NEG], [CLA-NEG] | Theorem | null | null | null | null | null | CLA | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
757 | The motivation in the appendix is very informal and no clear derivation is provided.[motivation-NEG], [PNF-NEG] | motivation | null | null | null | null | null | PNF | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
758 | The authors seem to indicate that a minimal return can be guaranteed because the optimal policy spends a maximum of epsilon amount of time in the catastrophic states and the alternative policy simply avoids these states.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
759 | However, as the alternative policy is learnt on a different reward, it can have a very different state distribution, even for the non-catastrophics states.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
760 | It might attach all its weight to a very poor reward state in an effort to avoid the catastrophe penalty.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
761 | It is therefore not clear to me that any claims can be made about its performance without additional assumptions.[performance-NEU, assumptions-NEU], [EMP-NEG] | performance | assumptions | null | null | null | null | EMP | null | null | null | null | NEU | NEU | null | null | null | null | NEG | null | null | null | null |
767 | This seems to contradict the theorem.[theorem-NEG], [EMP-NEG] | theorem | null | null | null | null | null | EMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
768 | It wasn't clear what assumptions the authors make to exclude situations like this.[assumptions-NEG], [EMP-NEG] | assumptions | null | null | null | null | null | EMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
776 | However, I have the following concerns about the quality and the significance: - The proposed formulation in Equation (2) is questionable.[Equation-NEU], [EMP-NEU] | Equation | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
779 | Since this approach is not straightforward, more theoretical analysis of the proposed method is desirable.[approach-NEU, theoretical analysis-NEU], [EMP-NEU] | approach | theoretical analysis | null | null | null | null | EMP | null | null | null | null | NEU | NEU | null | null | null | null | NEU | null | null | null | null |
780 | - In addition to the above point, I guess the expectation is needed as the original formulation of GAN.[null], [SUB-NEU] | null | null | null | null | null | null | SUB | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
781 | Otherwise the proposed formulation does not make sense as it receives only specific data points and how to accumulate objective values across data points is not defined.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
782 | - In experiments, although the authors say lots of datasets are used, only two datasets are used, which is not enough to examine the performance of outlier detection methods.[experiments-NEG, datasets-NEG], [SUB-NEG] | experiments | datasets | null | null | null | null | SUB | null | null | null | null | NEG | NEG | null | null | null | null | NEG | null | null | null | null |
783 | Moreover, outliers are artificially generated in these datasets, hence there is no evaluation on pure real-world datasets.[evaluation-NEG, datasets-NEU], [EMP-NEG] | evaluation | datasets | null | null | null | null | EMP | null | null | null | null | NEG | NEU | null | null | null | null | NEG | null | null | null | null |
784 | To achieve the better quality of the paper, I recommend to add more real-world datasets in experiments.[experiments-NEU], [SUB-NEU] | experiments | null | null | null | null | null | SUB | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
785 | - As discussed in Section 2, there are already many outlier detection methods, such as distance-based outlier detection methods, but they are not compared in experiments.[Section-NEU, experiments-NEU], [CMP-NEG] | Section | experiments | null | null | null | null | CMP | null | null | null | null | NEU | NEU | null | null | null | null | NEG | null | null | null | null |
786 | Although the authors argue that distance-based outlier detection methods do not work well for high-dimensional data, this is not always correct[null], [EMP-NEG] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEG | null | null | null | null |
787 | . Please see the paper: -- Zimek, A., Schubert, E., Kriegel, H.-P., A survey on unsupervised outlier detection in high-dimensional numerical data, Statistical Analysis and Data Mining (2012) This paper shows that the performance gets even better for higher dimensional data if each feature is relevant.[performance-NEU], [CMP-NEU] | performance | null | null | null | null | null | CMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
788 | I recommend to add some distance-based outlier detection methods as baselines in experiments.[baselines-NEU], [CMP-NEU] | baselines | null | null | null | null | null | CMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
789 | - Since parameter tuning by cross validation cannot be used due to missing information of outliers, it is important to examine the sensitivity of the proposed method with respect to changes in its parameters (a_new, lambda, and others).[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
790 | Otherwise in practice how to set these parameters to get better results is not obvious.[results-NEU], [EMP-NEU] | results | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
791 | * The clarity of this paper is not high as the proposed method is not well explained.[clarity-NEG, proposed method-NEG], [CLA-NEG, EMP-NEG] | clarity | proposed method | null | null | null | null | CLA | EMP | null | null | null | NEG | NEG | null | null | null | null | NEG | NEG | null | null | null |
792 | In particular, please mathematically formulate each proposed technique in Section 4.[Section-NEU], [EMP-NEU] | Section | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
793 | * Since the proposed formulation is not convincing due to the above reasons and experimental evaluation is not thorough, the originality is not high.[originality-NEG], [NOV-NEU] | originality | null | null | null | null | null | NOV | null | null | null | null | NEG | null | null | null | null | null | NEU | null | null | null | null |
794 | Minor comments: - P.1, L.5 in the third paragraph: architexture -> architecture[null], [PNF-NEG] | null | null | null | null | null | null | PNF | null | null | null | null | null | null | null | null | null | null | NEG | null | null | null | null |
797 | Although the paper has been improved, I keep my rating due to the insufficient experimental evaluation.[rating-NEU, experimental evaluation-NEG], [REC-NEU, EMP-NEG] | rating | experimental evaluation | null | null | null | null | REC | EMP | null | null | null | NEU | NEG | null | null | null | null | NEU | NEG | null | null | null |
802 | The idea has some novelty and the results on several tasks attempting to prove its effectiveness against systems that handle named entities in a static way.[idea-POS, results-POS], [NOV-POS] | idea | results | null | null | null | null | NOV | null | null | null | null | POS | POS | null | null | null | null | POS | null | null | null | null |
803 | One thing I hope the author could provide more clarification is the use of NER.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
804 | For example, the experimental result on structured QA task (section 3.1), where it states that the performance different between models of With-NE-Table and W/O-NE-Table is positioned on the OOV NEs not present in the training subset.[experimental result-NEG], [EMP-NEG] | experimental result | null | null | null | null | null | EMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
805 | To my understanding, because of the presence of the NER in the With-NE-Table model, you could directly do update to the NE embeddings and query from the DB using a combination of embedding and the NE words (as the paper does), whereas the W/O-NE-Table model cannot because of lack of the NER.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
806 | This seems to prove that an NER is useful for tasks where DB queries are needed, rather than that the dynamic NE-Table construction is useful.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
807 | You could use an NER for W/O-NE-Table and update the NE embeddings, and it should be as good as With-NE-Table model (and fairer to compare with too).[null], [CMP-NEU, EMP-NEU] | null | null | null | null | null | null | CMP | EMP | null | null | null | null | null | null | null | null | null | NEU | NEU | null | null | null |
808 | That said, overall the paper is a nice contribution to dialogue and QA system research by pointing out a simple way of handling named entities by dynamically updating their embeddings.[contribution-POS], [IMP-POS] | contribution | null | null | null | null | null | IMP | null | null | null | null | POS | null | null | null | null | null | POS | null | null | null | null |
809 | It would be better if the paper could point out the importance of NER for user utterances, and the fact that using the knowledge of which words are NEs in dialogue models could help in tasks where DB queries are necessary.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
814 | Although I found the results useful and potentially promising,[results-POS], [EMP-POS] | results | null | null | null | null | null | EMP | null | null | null | null | POS | null | null | null | null | null | POS | null | null | null | null |
815 | I did not find much insight in this paper.[insight-NEU], [EMP-NEU] | insight | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
816 | It was not clear to me why scatter (the way it is defined in the paper) would be a useful performance proxy anywhere but the first classification layer.[null], [EMP-NEG] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEG | null | null | null | null |
817 | Once the signals from different windows are intermixed, how do you even define the windows?[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
818 | Minor Second line of Section 2.1: "lesser" -> less or fewer [Second line-NEU, Section-NEU], [PNF-NEU] | Second line | Section | null | null | null | null | PNF | null | null | null | null | NEU | NEU | null | null | null | null | NEU | null | null | null | null |
823 | What I like about the approach is the investigation of the interplay between unsupervised and hierarchical supervised learning in a biological context.[approach-POS], [EMP-POS] | approach | null | null | null | null | null | EMP | null | null | null | null | POS | null | null | null | null | null | POS | null | null | null | null |
824 | I agree with the authors that an integrated view of self-organization and learning across layers is presumably required to better understand biological learning.[null], [EMP-POS] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | POS | null | null | null | null |
825 | The general methodology also makes sense to me.[methodology-POS], [EMP-POS] | methodology | null | null | null | null | null | EMP | null | null | null | null | POS | null | null | null | null | null | POS | null | null | null | null |
826 | However, I do have concerns including two major concerns: (A) delimitation of results from earlier work; (B) numerical results (especially Tab. 1).[results-NEG, earlier work-NEU], [CMP-NEG] | results | earlier work | null | null | null | null | CMP | null | null | null | null | NEG | NEU | null | null | null | null | NEG | null | null | null | null |
827 | (A) The paper derives the main update equation of W which combines self-organization and label-sensitive learning - Eqn. 15.[paper-NEU, Eqn-NEU], [CMP-NEU] | paper | Eqn | null | null | null | null | CMP | null | null | null | null | NEU | NEU | null | null | null | null | NEU | null | null | null | null |
829 | The paper also states (Secs. 1 and 2) that the the network studied here is based on Hartono et al, 2015, with the main difference of the sigmoidal ouput layer being replaced by a softmax layer.[paper-NEU], [CMP-NEU] | paper | null | null | null | null | null | CMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
830 | What is missing is a discussion of the differences regarding the later numerical experiments, and a clear delimitation to Hartono et al., 2015, when Eqn. 15 is discussed.[discussion-NEG, numerical experiments-NEU], [SUB-NEG] | discussion | numerical experiments | null | null | null | null | SUB | null | null | null | null | NEG | NEU | null | null | null | null | NEG | null | null | null | null |
831 | What is the major structural difference to their Eqn. 13 which is discussed along very similar lines as Eqn. 15 of this paper.[Eqn-NEU], [CMP-NEU] | Eqn | null | null | null | null | null | CMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
833 | (B) A further difference to Hartono et al, 2015, are comparisons with multi-layer networks, and the presentation and discussion of this comparison is my strongest concern.[presentation-NEG, discussion-NEG, comparison-NEG], [CMP-NEG, PNF-NEG] | presentation | discussion | comparison | null | null | null | CMP | PNF | null | null | null | NEG | NEG | NEG | null | null | null | NEG | NEG | null | null | null |
836 | What I do not understand are then the high classification errors reported in Tab. 1.[errors-NEG, Tab-NEU], [EMP-NEG] | errors | Tab | null | null | null | null | EMP | null | null | null | null | NEG | NEU | null | null | null | null | NEG | null | null | null | null |
837 | It is known that even basic multi-layer perceptrons (MLPs) result in much lower classification errors, e.g., for MNIST. LeCun et al., 1998, is a classical example with less then 3% error on MNIST with many later examples that improve on these.[errors-NEU], [EMP-NEU, CMP-NEU] | errors | null | null | null | null | null | EMP | CMP | null | null | null | NEU | null | null | null | null | null | NEU | NEU | null | null | null |
839 | Why are the classification errors for DBN and MLP in the Tab 1 so high?[errors-NEG], [EMP-NEG] | errors | null | null | null | null | null | EMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
840 | And if they are in reality much lower, then competitiveness of s-rRBF in terms of classification results to these systems is questionable.[classification results-NEG], [EMP-NEG] | classification results | null | null | null | null | null | EMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
841 | The table makes me having doubts regarding the competitiveness of S-rRBF.[table-NEG], [EMP-NEG] | table | null | null | null | null | null | EMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
842 | I therefore disagree with the conclusion that this paper has shown that S-rRBFs are comparable to the best performer for most of the diverse benchmark applications (last paragraph in Conclusion).[conclusion-NEG], [CMP-NEG] | conclusion | null | null | null | null | null | CMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
844 | More generally, putting the biological arguments aside, why would a 2D neighborhood relationship be helpful?[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
846 | Also, if there is an intrinsic 2D hidden structure in the data, then imposing a 2D representation can help (as a sort of a prior).[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
847 | But in general there may not be a 2D intrinsic property, or there is a higher dimensional hidden structure - so why not 3D or more? Related to this, why not using an objective that would result in a dynamics similar to a growing neural gas instead of an SOM?[objective-NEU], [EMP-NEG] | objective | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEG | null | null | null | null |
848 | Minor: The work is first introduced as multi-layer but only the single hidden layer case is actually discussed.[work-NEU], [EMP-NEU] | work | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
849 | I would suggest to either really add multi-hidden-layer results (which is not really doable in a conference revision), or state multi-layer work as outlook.[results-NEU], [EMP-NEU, SUB-NEG] | results | null | null | null | null | null | EMP | SUB | null | null | null | NEU | null | null | null | null | null | NEU | NEG | null | null | null |
850 | Fig. 5, bad readability of axes labels.[Fig-NEG], [CLA-NEG, PNF-NEG] | Fig | null | null | null | null | null | CLA | PNF | null | null | null | NEG | null | null | null | null | null | NEG | NEG | null | null | null |
851 | is a hierarchical -> are hierarchical yields -> yield twice otherwise after Eqn. 7 are can be viewed they occurs can can readily expanded transfer transform [Eqn-NEG], [CLA-NEG] | Eqn | null | null | null | null | null | CLA | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
855 | This paper reads well and the results appear sound.[paper-POS], [CLA-POS] | paper | null | null | null | null | null | CLA | null | null | null | null | POS | null | null | null | null | null | POS | null | null | null | null |
856 | Unfortunately, the contribution seems rather small to be accepted for ICLR.[contribution-NEG], [APR-NEG] | contribution | null | null | null | null | null | APR | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
857 | This is a straight application and combination of existing pieces with not much originality and without being backed up by very strong experimental results.[originality-NEU, experimental results-NEU], [NOV-NEU, EMP-NEU] | originality | experimental results | null | null | null | null | NOV | EMP | null | null | null | NEU | NEU | null | null | null | null | NEU | NEU | null | null | null |
858 | * Having only results on new datasets makes it hard to compare the objective quality of the DistMult baselines and hence of the improvements due to the multimodal info.[results-NEG], [CMP-NEG] | results | null | null | null | null | null | CMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
859 | Isn't there any existing benchmark where this could have an impact?[benchmark-NEU], [IMP-NEU] | benchmark | null | null | null | null | null | IMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
860 | * The much better performance of ConvE is worrying there.[performance-NEU], [CMP-NEU, EMP-NEU] | performance | null | null | null | null | null | CMP | EMP | null | null | null | NEU | null | null | null | null | null | NEU | NEU | null | null | null |
861 | It is suggested that the proposed approach could be incorporated in ConvE to lead to similar improvements than on DistMult. The paper would be much stronger with those.[proposed approach-NEU], [EMP-NEU] | proposed approach | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
862 | * Are we sure that the textual description do not explicitly contain the information of the triple to be predicted?[description-NEU], [EMP-NEU] | description | null | null | null | null | null | EMP | null | null | null | null | NEU | null | null | null | null | null | NEU | null | null | null | null |
863 | This would explain the massive gains in Yago.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |
864 | * For Table 8, the similarities are not striking.[Table-NEG], [EMP-NEG] | Table | null | null | null | null | null | EMP | null | null | null | null | NEG | null | null | null | null | null | NEG | null | null | null | null |
865 | What were the nearest neighboring posters in the original VGG space? They should not be that bad too.[null], [EMP-NEU] | null | null | null | null | null | null | EMP | null | null | null | null | null | null | null | null | null | null | NEU | null | null | null | null |