Unnamed: 0
int64
2
9.3k
sentence
stringlengths
30
941
aspect_term_1
stringlengths
1
32
aspect_term_2
stringlengths
2
27
aspect_term_3
stringlengths
2
23
aspect_term_4
stringclasses
25 values
aspect_term_5
stringclasses
7 values
aspect_term_6
stringclasses
1 value
aspect_category_1
stringclasses
9 values
aspect_category_2
stringclasses
9 values
aspect_category_3
stringclasses
9 values
aspect_category_4
stringclasses
2 values
aspect_category_5
stringclasses
1 value
aspect_term_1_polarity
stringclasses
3 values
aspect_term_2_polarity
stringclasses
3 values
aspect_term_3_polarity
stringclasses
3 values
aspect_term_4_polarity
stringclasses
3 values
aspect_term_5_polarity
stringclasses
3 values
aspect_term_6_polarity
stringclasses
1 value
aspect_category_1_polarity
stringclasses
3 values
aspect_category_2_polarity
stringclasses
3 values
aspect_category_3_polarity
stringclasses
3 values
aspect_category_4_polarity
stringclasses
1 value
aspect_category_5_polarity
stringclasses
1 value
714
The paper is fairly clear and these extensions are reasonable[paper-POS], [CLA-POS]
paper
null
null
null
null
null
CLA
null
null
null
null
POS
null
null
null
null
null
POS
null
null
null
null
715
. However, I just don't think the focus on 2D grid-based navigation has sufficient interest and impact[null], [IMP-NEG]
null
null
null
null
null
null
IMP
null
null
null
null
null
null
null
null
null
null
NEG
null
null
null
null
716
. It's true that the original VIN paper worked in a grid-navigation domain, but they also had a domain with a fairly different structure; I believe they used the gridworld because it was a convenient initial test case, but not because of its inherent value.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
717
So, making improvements to help solve grid-worlds better is not so motivating[null], [IMP-NEG]
null
null
null
null
null
null
IMP
null
null
null
null
null
null
null
null
null
null
NEG
null
null
null
null
718
. It may be possible to motivate and demonstrate the methods of this paper in other domains, however.[methods-NEU], [EMP-NEU]
methods
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
719
The work on dynamic environments was an interesting step: it would have been interesting to see how the models learned for the dynamic environments differed from those for static environments.[null], [CMP-POS]
null
null
null
null
null
null
CMP
null
null
null
null
null
null
null
null
null
null
POS
null
null
null
null
724
Superior performance to recent baselines (e.g. EWC) is reported in several cases.[performance-POS], [CMP-POS]
performance
null
null
null
null
null
CMP
null
null
null
null
POS
null
null
null
null
null
POS
null
null
null
null
726
Unfortunately, the paper does not go beyond the relatively simplistic setup of sequential MNIST, in contrast to some of the methods used as baselines.[null], [CMP-NEU, EMP-NEG]
null
null
null
null
null
null
CMP
EMP
null
null
null
null
null
null
null
null
null
NEU
NEG
null
null
null
727
The proposed architecture implicitly reduces the continual learning problem to a classical multitask learning (MTL) setting for the LTM, where (in the best case scenario) i.i.d. data from all encountered tasks is available during training. This setting is not ideal, though.[architecture-NEU, setting-NEG], [EMP-NEU]
architecture
setting
null
null
null
null
EMP
null
null
null
null
NEU
NEG
null
null
null
null
NEU
null
null
null
null
728
There are several example of successful multitask learning, but it does not follow that a random grouping of several tasks immediately leads to successful MTL.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
729
Indeed, there is good reason to doubt this in both supervised and reinforcement learning domains.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
731
I agree that problems can be constructed where these assumptions hold, but this core assumption is limiting.[assumption-NEU], [EMP-NEU]
assumption
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
732
The requirement of task labels also rules out important use cases such as following a non-stationary objective function, which is important in several realistic domains, including deep RL.[null], [EMP-NEG]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEG
null
null
null
null
740
Experiments show a clear advantage during learning when compared with a vanilla DQN. [Experiments-POS], [EMP-POS]
Experiments
null
null
null
null
null
EMP
null
null
null
null
POS
null
null
null
null
null
POS
null
null
null
null
741
Nonetheless, there are some criticisms than can be made of both the method and the evaluations:[method-NEU, evaluations-NEU], [EMP-NEU]
method
evaluations
null
null
null
null
EMP
null
null
null
null
NEU
NEU
null
null
null
null
NEU
null
null
null
null
742
The fear radius threshold k_r seems to add yet another hyperparameter that needs tuning.[null], [EMP-NEG]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEG
null
null
null
null
743
Judging from the description of the experiments this parameter is important to the performance of the method and needs to be set experimentally.[description-NEU, experiments-NEU, parameter-NEU, performance-NEU, method-NEU], [EMP-NEU]
description
experiments
parameter
performance
method
null
EMP
null
null
null
null
NEU
NEU
NEU
NEU
NEU
null
NEU
null
null
null
null
744
There seems to be no way of a priori determine a good distance as there is no way to know in advance when a catastrophe becomes unavoidable.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
745
No empirical results on the effect of the parameter are given.[empirical results-NEG], [SUB-NEG, EMP-NEG]
empirical results
null
null
null
null
null
SUB
EMP
null
null
null
NEG
null
null
null
null
null
NEG
NEG
null
null
null
746
The experimental results support the claim that this technique helps to avoid catastrophic states during initial learning.[experimental results-POS, claim-NEU, technique-POS], [EMP-POS]
experimental results
claim
technique
null
null
null
EMP
null
null
null
null
POS
NEU
POS
null
null
null
POS
null
null
null
null
747
The paper however, also claims to address the longer term problem of revisiting these states once the learner forgets about them, since they are no longer part of the data generated by (close to) optimal policies.[paper-NEU], [IMP-NEU]
paper
null
null
null
null
null
IMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
748
This problem does not seem to be really solved by this method.[problem-NEU, method-NEG], [EMP-NEG]
problem
method
null
null
null
null
EMP
null
null
null
null
NEU
NEG
null
null
null
null
NEG
null
null
null
null
749
Danger and safe state replay memories are kept, but are only used to train the catastrophe classifier.[null], [EMP-NEG]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEG
null
null
null
null
750
While the catastrophe classifier can be seen as an additional external memory, it seems that the learner will still drift away from the optimal policy and then need to be reminded by the classifier through penalties.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
751
As such the method wouldn't prevent catastrophic forgetting, it would just prevent the worst consequences by penalizing the agent before it reaches a danger state.[method-NEG], [EMP-NEG]
method
null
null
null
null
null
EMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
752
It would therefore be interesting to see some long running experiments and analyse how often catastrophic states (or those close to them) are visited.[experiments-NEU], [EMP-NEU]
experiments
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
753
Overall, the current evaluations focus on performance and give little insight into the behaviour of the method.[evaluations-NEG, performance-NEU, method-NEU], [SUB-NEG, EMP-NEG]
evaluations
performance
method
null
null
null
SUB
EMP
null
null
null
NEG
NEU
NEU
null
null
null
NEG
NEG
null
null
null
755
In general the explanations in the paper often often use confusing and imprecise language, even in formal derivations, e.g. 'if the fear model reaches arbitrarily high accuracy' or 'if the probability is negligible'.[explanations-NEG], [CLA-NEG]
explanations
null
null
null
null
null
CLA
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
756
It is wasn't clear to me that the properties described in Theorem 1 actually hold.[Theorem-NEG], [CLA-NEG]
Theorem
null
null
null
null
null
CLA
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
757
The motivation in the appendix is very informal and no clear derivation is provided.[motivation-NEG], [PNF-NEG]
motivation
null
null
null
null
null
PNF
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
758
The authors seem to indicate that a minimal return can be guaranteed because the optimal policy spends a maximum of epsilon amount of time in the catastrophic states and the alternative policy simply avoids these states.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
759
However, as the alternative policy is learnt on a different reward, it can have a very different state distribution, even for the non-catastrophics states.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
760
It might attach all its weight to a very poor reward state in an effort to avoid the catastrophe penalty.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
761
It is therefore not clear to me that any claims can be made about its performance without additional assumptions.[performance-NEU, assumptions-NEU], [EMP-NEG]
performance
assumptions
null
null
null
null
EMP
null
null
null
null
NEU
NEU
null
null
null
null
NEG
null
null
null
null
767
This seems to contradict the theorem.[theorem-NEG], [EMP-NEG]
theorem
null
null
null
null
null
EMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
768
It wasn't clear what assumptions the authors make to exclude situations like this.[assumptions-NEG], [EMP-NEG]
assumptions
null
null
null
null
null
EMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
776
However, I have the following concerns about the quality and the significance: - The proposed formulation in Equation (2) is questionable.[Equation-NEU], [EMP-NEU]
Equation
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
779
Since this approach is not straightforward, more theoretical analysis of the proposed method is desirable.[approach-NEU, theoretical analysis-NEU], [EMP-NEU]
approach
theoretical analysis
null
null
null
null
EMP
null
null
null
null
NEU
NEU
null
null
null
null
NEU
null
null
null
null
780
- In addition to the above point, I guess the expectation is needed as the original formulation of GAN.[null], [SUB-NEU]
null
null
null
null
null
null
SUB
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
781
Otherwise the proposed formulation does not make sense as it receives only specific data points and how to accumulate objective values across data points is not defined.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
782
- In experiments, although the authors say lots of datasets are used, only two datasets are used, which is not enough to examine the performance of outlier detection methods.[experiments-NEG, datasets-NEG], [SUB-NEG]
experiments
datasets
null
null
null
null
SUB
null
null
null
null
NEG
NEG
null
null
null
null
NEG
null
null
null
null
783
Moreover, outliers are artificially generated in these datasets, hence there is no evaluation on pure real-world datasets.[evaluation-NEG, datasets-NEU], [EMP-NEG]
evaluation
datasets
null
null
null
null
EMP
null
null
null
null
NEG
NEU
null
null
null
null
NEG
null
null
null
null
784
To achieve the better quality of the paper, I recommend to add more real-world datasets in experiments.[experiments-NEU], [SUB-NEU]
experiments
null
null
null
null
null
SUB
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
785
- As discussed in Section 2, there are already many outlier detection methods, such as distance-based outlier detection methods, but they are not compared in experiments.[Section-NEU, experiments-NEU], [CMP-NEG]
Section
experiments
null
null
null
null
CMP
null
null
null
null
NEU
NEU
null
null
null
null
NEG
null
null
null
null
786
Although the authors argue that distance-based outlier detection methods do not work well for high-dimensional data, this is not always correct[null], [EMP-NEG]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEG
null
null
null
null
787
. Please see the paper: -- Zimek, A., Schubert, E., Kriegel, H.-P., A survey on unsupervised outlier detection in high-dimensional numerical data, Statistical Analysis and Data Mining (2012) This paper shows that the performance gets even better for higher dimensional data if each feature is relevant.[performance-NEU], [CMP-NEU]
performance
null
null
null
null
null
CMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
788
I recommend to add some distance-based outlier detection methods as baselines in experiments.[baselines-NEU], [CMP-NEU]
baselines
null
null
null
null
null
CMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
789
- Since parameter tuning by cross validation cannot be used due to missing information of outliers, it is important to examine the sensitivity of the proposed method with respect to changes in its parameters (a_new, lambda, and others).[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
790
Otherwise in practice how to set these parameters to get better results is not obvious.[results-NEU], [EMP-NEU]
results
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
791
* The clarity of this paper is not high as the proposed method is not well explained.[clarity-NEG, proposed method-NEG], [CLA-NEG, EMP-NEG]
clarity
proposed method
null
null
null
null
CLA
EMP
null
null
null
NEG
NEG
null
null
null
null
NEG
NEG
null
null
null
792
In particular, please mathematically formulate each proposed technique in Section 4.[Section-NEU], [EMP-NEU]
Section
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
793
* Since the proposed formulation is not convincing due to the above reasons and experimental evaluation is not thorough, the originality is not high.[originality-NEG], [NOV-NEU]
originality
null
null
null
null
null
NOV
null
null
null
null
NEG
null
null
null
null
null
NEU
null
null
null
null
794
Minor comments: - P.1, L.5 in the third paragraph: architexture -> architecture[null], [PNF-NEG]
null
null
null
null
null
null
PNF
null
null
null
null
null
null
null
null
null
null
NEG
null
null
null
null
797
Although the paper has been improved, I keep my rating due to the insufficient experimental evaluation.[rating-NEU, experimental evaluation-NEG], [REC-NEU, EMP-NEG]
rating
experimental evaluation
null
null
null
null
REC
EMP
null
null
null
NEU
NEG
null
null
null
null
NEU
NEG
null
null
null
802
The idea has some novelty and the results on several tasks attempting to prove its effectiveness against systems that handle named entities in a static way.[idea-POS, results-POS], [NOV-POS]
idea
results
null
null
null
null
NOV
null
null
null
null
POS
POS
null
null
null
null
POS
null
null
null
null
803
One thing I hope the author could provide more clarification is the use of NER.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
804
For example, the experimental result on structured QA task (section 3.1), where it states that the performance different between models of With-NE-Table and W/O-NE-Table is positioned on the OOV NEs not present in the training subset.[experimental result-NEG], [EMP-NEG]
experimental result
null
null
null
null
null
EMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
805
To my understanding, because of the presence of the NER in the With-NE-Table model, you could directly do update to the NE embeddings and query from the DB using a combination of embedding and the NE words (as the paper does), whereas the W/O-NE-Table model cannot because of lack of the NER.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
806
This seems to prove that an NER is useful for tasks where DB queries are needed, rather than that the dynamic NE-Table construction is useful.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
807
You could use an NER for W/O-NE-Table and update the NE embeddings, and it should be as good as With-NE-Table model (and fairer to compare with too).[null], [CMP-NEU, EMP-NEU]
null
null
null
null
null
null
CMP
EMP
null
null
null
null
null
null
null
null
null
NEU
NEU
null
null
null
808
That said, overall the paper is a nice contribution to dialogue and QA system research by pointing out a simple way of handling named entities by dynamically updating their embeddings.[contribution-POS], [IMP-POS]
contribution
null
null
null
null
null
IMP
null
null
null
null
POS
null
null
null
null
null
POS
null
null
null
null
809
It would be better if the paper could point out the importance of NER for user utterances, and the fact that using the knowledge of which words are NEs in dialogue models could help in tasks where DB queries are necessary.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
814
Although I found the results useful and potentially promising,[results-POS], [EMP-POS]
results
null
null
null
null
null
EMP
null
null
null
null
POS
null
null
null
null
null
POS
null
null
null
null
815
I did not find much insight in this paper.[insight-NEU], [EMP-NEU]
insight
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
816
It was not clear to me why scatter (the way it is defined in the paper) would be a useful performance proxy anywhere but the first classification layer.[null], [EMP-NEG]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEG
null
null
null
null
817
Once the signals from different windows are intermixed, how do you even define the windows?[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
818
Minor Second line of Section 2.1: "lesser" -> less or fewer [Second line-NEU, Section-NEU], [PNF-NEU]
Second line
Section
null
null
null
null
PNF
null
null
null
null
NEU
NEU
null
null
null
null
NEU
null
null
null
null
823
What I like about the approach is the investigation of the interplay between unsupervised and hierarchical supervised learning in a biological context.[approach-POS], [EMP-POS]
approach
null
null
null
null
null
EMP
null
null
null
null
POS
null
null
null
null
null
POS
null
null
null
null
824
I agree with the authors that an integrated view of self-organization and learning across layers is presumably required to better understand biological learning.[null], [EMP-POS]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
POS
null
null
null
null
825
The general methodology also makes sense to me.[methodology-POS], [EMP-POS]
methodology
null
null
null
null
null
EMP
null
null
null
null
POS
null
null
null
null
null
POS
null
null
null
null
826
However, I do have concerns including two major concerns: (A) delimitation of results from earlier work; (B) numerical results (especially Tab. 1).[results-NEG, earlier work-NEU], [CMP-NEG]
results
earlier work
null
null
null
null
CMP
null
null
null
null
NEG
NEU
null
null
null
null
NEG
null
null
null
null
827
(A) The paper derives the main update equation of W which combines self-organization and label-sensitive learning - Eqn. 15.[paper-NEU, Eqn-NEU], [CMP-NEU]
paper
Eqn
null
null
null
null
CMP
null
null
null
null
NEU
NEU
null
null
null
null
NEU
null
null
null
null
829
The paper also states (Secs. 1 and 2) that the the network studied here is based on Hartono et al, 2015, with the main difference of the sigmoidal ouput layer being replaced by a softmax layer.[paper-NEU], [CMP-NEU]
paper
null
null
null
null
null
CMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
830
What is missing is a discussion of the differences regarding the later numerical experiments, and a clear delimitation to Hartono et al., 2015, when Eqn. 15 is discussed.[discussion-NEG, numerical experiments-NEU], [SUB-NEG]
discussion
numerical experiments
null
null
null
null
SUB
null
null
null
null
NEG
NEU
null
null
null
null
NEG
null
null
null
null
831
What is the major structural difference to their Eqn. 13 which is discussed along very similar lines as Eqn. 15 of this paper.[Eqn-NEU], [CMP-NEU]
Eqn
null
null
null
null
null
CMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
833
(B) A further difference to Hartono et al, 2015, are comparisons with multi-layer networks, and the presentation and discussion of this comparison is my strongest concern.[presentation-NEG, discussion-NEG, comparison-NEG], [CMP-NEG, PNF-NEG]
presentation
discussion
comparison
null
null
null
CMP
PNF
null
null
null
NEG
NEG
NEG
null
null
null
NEG
NEG
null
null
null
836
What I do not understand are then the high classification errors reported in Tab. 1.[errors-NEG, Tab-NEU], [EMP-NEG]
errors
Tab
null
null
null
null
EMP
null
null
null
null
NEG
NEU
null
null
null
null
NEG
null
null
null
null
837
It is known that even basic multi-layer perceptrons (MLPs) result in much lower classification errors, e.g., for MNIST. LeCun et al., 1998, is a classical example with less then 3% error on MNIST with many later examples that improve on these.[errors-NEU], [EMP-NEU, CMP-NEU]
errors
null
null
null
null
null
EMP
CMP
null
null
null
NEU
null
null
null
null
null
NEU
NEU
null
null
null
839
Why are the classification errors for DBN and MLP in the Tab 1 so high?[errors-NEG], [EMP-NEG]
errors
null
null
null
null
null
EMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
840
And if they are in reality much lower, then competitiveness of s-rRBF in terms of classification results to these systems is questionable.[classification results-NEG], [EMP-NEG]
classification results
null
null
null
null
null
EMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
841
The table makes me having doubts regarding the competitiveness of S-rRBF.[table-NEG], [EMP-NEG]
table
null
null
null
null
null
EMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
842
I therefore disagree with the conclusion that this paper has shown that S-rRBFs are comparable to the best performer for most of the diverse benchmark applications (last paragraph in Conclusion).[conclusion-NEG], [CMP-NEG]
conclusion
null
null
null
null
null
CMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
844
More generally, putting the biological arguments aside, why would a 2D neighborhood relationship be helpful?[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
846
Also, if there is an intrinsic 2D hidden structure in the data, then imposing a 2D representation can help (as a sort of a prior).[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
847
But in general there may not be a 2D intrinsic property, or there is a higher dimensional hidden structure - so why not 3D or more? Related to this, why not using an objective that would result in a dynamics similar to a growing neural gas instead of an SOM?[objective-NEU], [EMP-NEG]
objective
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEG
null
null
null
null
848
Minor: The work is first introduced as multi-layer but only the single hidden layer case is actually discussed.[work-NEU], [EMP-NEU]
work
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
849
I would suggest to either really add multi-hidden-layer results (which is not really doable in a conference revision), or state multi-layer work as outlook.[results-NEU], [EMP-NEU, SUB-NEG]
results
null
null
null
null
null
EMP
SUB
null
null
null
NEU
null
null
null
null
null
NEU
NEG
null
null
null
850
Fig. 5, bad readability of axes labels.[Fig-NEG], [CLA-NEG, PNF-NEG]
Fig
null
null
null
null
null
CLA
PNF
null
null
null
NEG
null
null
null
null
null
NEG
NEG
null
null
null
851
is a hierarchical -> are hierarchical yields -> yield twice otherwise after Eqn. 7 are can be viewed they occurs can can readily expanded transfer transform [Eqn-NEG], [CLA-NEG]
Eqn
null
null
null
null
null
CLA
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
855
This paper reads well and the results appear sound.[paper-POS], [CLA-POS]
paper
null
null
null
null
null
CLA
null
null
null
null
POS
null
null
null
null
null
POS
null
null
null
null
856
Unfortunately, the contribution seems rather small to be accepted for ICLR.[contribution-NEG], [APR-NEG]
contribution
null
null
null
null
null
APR
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
857
This is a straight application and combination of existing pieces with not much originality and without being backed up by very strong experimental results.[originality-NEU, experimental results-NEU], [NOV-NEU, EMP-NEU]
originality
experimental results
null
null
null
null
NOV
EMP
null
null
null
NEU
NEU
null
null
null
null
NEU
NEU
null
null
null
858
* Having only results on new datasets makes it hard to compare the objective quality of the DistMult baselines and hence of the improvements due to the multimodal info.[results-NEG], [CMP-NEG]
results
null
null
null
null
null
CMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
859
Isn't there any existing benchmark where this could have an impact?[benchmark-NEU], [IMP-NEU]
benchmark
null
null
null
null
null
IMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
860
* The much better performance of ConvE is worrying there.[performance-NEU], [CMP-NEU, EMP-NEU]
performance
null
null
null
null
null
CMP
EMP
null
null
null
NEU
null
null
null
null
null
NEU
NEU
null
null
null
861
It is suggested that the proposed approach could be incorporated in ConvE to lead to similar improvements than on DistMult. The paper would be much stronger with those.[proposed approach-NEU], [EMP-NEU]
proposed approach
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
862
* Are we sure that the textual description do not explicitly contain the information of the triple to be predicted?[description-NEU], [EMP-NEU]
description
null
null
null
null
null
EMP
null
null
null
null
NEU
null
null
null
null
null
NEU
null
null
null
null
863
This would explain the massive gains in Yago.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null
864
* For Table 8, the similarities are not striking.[Table-NEG], [EMP-NEG]
Table
null
null
null
null
null
EMP
null
null
null
null
NEG
null
null
null
null
null
NEG
null
null
null
null
865
What were the nearest neighboring posters in the original VGG space? They should not be that bad too.[null], [EMP-NEU]
null
null
null
null
null
null
EMP
null
null
null
null
null
null
null
null
null
null
NEU
null
null
null
null