top_category
stringclasses
1 value
sub_category
stringclasses
8 values
title
stringlengths
1
14
content
stringlengths
0
35.8k
天文学
恒星与银河系
室女座W型变星
室女座W型变星( W Virginis variables ),即星族Ⅱ的造父变星。与星族Ⅰ造父变星的主要不同点是:光变曲线在极大或下降段(在位相0.4处)有一较长的停顿;周期大致范围为2~45天,频数分布的极大值在10~20天之间,而在5~10天的则很少;周光关系的曲线类似星族Ⅰ造父变星,但零点暗1.5~2等;离银道面的距离和相对于太阳的速度比星族Ⅰ造父变星大;光强临近极大时光谱中出现亮氢线,而到极大时发射已减弱,这是星族Ⅰ造父变星所没有的;比周期相同的星族Ⅰ造父变星具有较早的光谱型。典型代表为室女座W。近年来又把它们细分为球状星团室女座 W型变星和银河星场室女座W型变星,据1978年的资料,前者周期很少在8~12天之间的。
天文学
天体力学
万有引力定律
万有引力定律(汉语拼音:wàn yǒu yǐn lì zhī dìng lǜ),(universal gravitation,law of),自然界中任何两个质点都相互吸引,这个力同两个质点的质量的乘积成正比,同它们之间的距离的二次方成反比。如用m1、m2表示两质点的质量,r表示两质点间的距离,F表示作用力的值,则F=Gm1m2/r2,式中的G是比例常量,称万有引力常量或牛顿引力常量,数值因不同单位制而异,在国际单位制中G为6.672×1011牛顿·米2/千克2。这个定律由牛顿于1687年在《原理》上首次发表,它和牛顿运动定律一起,构成了牛顿力学特别是天体力学的基础。   在牛顿公布该定律之前,胡克、惠更斯都曾根据开普勒定律推测行星和太阳间存在和距离二次方成反比的引力,但未能提出数学证明,为此胡克还和牛顿通过信,因此对定律的首创权有过争议。牛顿还曾对晚年的忘年交斯多克雷说过,1666年他在家乡避瘟疫时,曾因见苹果从树上落地而想到地球对苹果的引力是否可延伸到月球。此说传布很广,许多科学家深信不疑,并对牛顿为何推迟20年才发表有种种推测。但也有人根据牛顿晚年的精神状态,认为他对斯多克雷所说的并非真情。   一般物体之间的引力,在物体尺度远小于质心距离时,可视为质点;尺度和间距相近时,须视为质点系,用积分法求引力。但牛顿已算出一个密度均匀的圆球对附近质点的引力同把圆球的质量集中于球心时完全一致。对万有引力的起因,牛顿未作解释,把它视为超距力或以太的作用,系后人所为。爱因斯坦在广义相对论中将引力归之于时空曲率的变化。
天文学
天体力学
轨道改进
轨道改进( improvement of orbit ),一种精密测定天体轨道的方法。这种方法以天体的某一初始轨道为依据,利用尽可能多的观测资料,逐次改进轨道要素,最后求出天体的精密轨道。 概述 牛顿在他的图解法轨道计算中,就注意到逐次改进轨道的问题。高斯在轨道计算中使用了“两个日心向径变分法”,来改进轨道计算的精度。现代的轨道改进,常用微分改进法,其基本思想是哈泽在1896年首先提出的,后经勒施奈改进,当时他们采用的是直角坐标改进法。1937年埃克特和布劳威尔开始使用轨道要素改进法,为现代的轨道改进方法奠定了基础。 早期,主要是对太阳系中的自然天体进行轨道改进,改进弧段一般较短,这些天体的摄动也较小,加上当时的计算条件较差,因此,在轨道改进中一般没有考虑严格的摄动,也不进行多次迭代(见摄动理论)。1951年,埃克特等人在计算五颗外行星直角坐标时,首先成功地运用电子计算机实现了轨道改进。电子计算机的使用,为轨道改进中进行精密的摄动计算和严格的迭代解算提供了现实可能,从而为轨道改进开辟了广阔的前景。另一方面,人造天体的发射又向轨道计算提出了更高的要求,不仅需要处理诸如测距、测速等新型的观测资料,而且由于人造天体的运动快、摄动大,还提出了高精度实时测轨的要求,这些要求不仅促使传统的轨道改进方法进一步完善,而且还导致了新型测轨方法──统计测轨法的出现。 原理 目前常用的轨道改进的原理是比较简单的。设某天体的初始轨道要素为σj(j=1,2,…,6),该天体的N次观测资料为ti、Fi(i=1,2,…,N),其中Fi是ti、σj、εk的函数,即:Fi=Fi(ti,σj,εk) 式中εk是测站坐标以及其他同观测和轨道理论有关的物理常数,例如,大气对流层系数、电离层折射系数、地球引力场模式参数等。一般说来,由上式算得的Fi(用Fi(c)表示)与观测所得的Fi(用Fi(0)表示)并不相等,这不仅是因为观测本身有误差,而且还因为σj、εk等与真值均有偏差。不过在轨道改进中,通常仅认为σj有偏差,而且还认为这种偏差较小,允许忽略其高阶项。于是由一阶泰勒展开式可得: 显然,利用这些条件方程,用最小二乘法就可求得 轨道参数的改正值Δσ j,再用σ j+Δσ j作为初始 轨道进行迭代,就可求出愈益精确的 轨道要素。 在轨道改进中,偏导数дFi/дσj一般可用两种方法求得:其一是用差商代替偏导数,这样的轨道改进,称为差分改进法;其二是将Fi简化,略去其复杂的和微小的摄动部分,只求其主项,即简单的二体问题部分。此外,σj不一定是六个轨道要素,它可以是某一历元的天体的坐标和速度,也可以是轨道要素的各种组合,例如,为了克服e=0、i=0的困难而引进的各种无奇点要素。Fi也不一定是直接观测量,可以是它们的组合或投影,例如在经典的轨道改进中,将方向观测所得到的赤道坐标(α,δ)投影到另外两个互相垂直的方向,可使轨道平面的要素倾角和升交点黄经(i,Ω)与其他四个要素分开解算,从而减少了计算工作量。巴特拉科夫等人指出,如果将方向观测投影到与天体视轨道平行和垂直的两个方向,其中一个方向上的观测将与时间误差无关,这对人造卫星的轨道计算是有好处的。 人造卫星的轨道改进 利用现代无线电、激光技术得到的高精度的卫星观测资料,已广泛应用于科学研究之中,例如,卫星大地测量、多普勒测定极移等。在这些课题中,在人造卫星的轨道改进方面出现了一些新的特点。①同时改进轨道要素、测站坐标、地球引力场模式和地极坐标等。②为了补救资料归算和运动理论中物理模式的缺陷以及仪器误差等不利影响,在轨道改进中常引进一些误差常数,与轨道要素一起改进。有时还采用统计数学的方法,分配一定的模型差,从而提高了轨道测量的精度。③不断使用新的数学方法,关于误差的理论也愈益严格。例如,在卫星大地测量中使用了最小二乘配置法,解大型方程组时使用了分区回归法,严格进行观测资料的加权,求出了参数的协差阵等。
天文学
星系与宇宙学
等级式宇宙模型
等级式宇宙模型( hierarchic model ),法国天文学家沃库勒等倡导的一种宇宙学说。这种学说认为宇宙在结构上是分层次的,如恒星、星系、星系团、超星系团以至更大的集团。随着尺度的变化,集团的性质也在变化。所谓宇宙的均匀性与各向同性,对不同层次有不同涵义。十八世纪中期,德国物理学家朗伯特曾提出过天体逐级成团分布的概念。他把太阳系叫作第一级,第二级是比太阳系大得多的所谓星团,第三级是银河系。1908年瑞典天文学家沙利叶提出了等级式宇宙模型,并且指出,根据这种模型可以克服奥伯斯佯谬的困难,即:当第n+1级与n级的半径比大于n+1级所包含的n级天体的个数的平方根时,天体到达地面的总光通量就是有限的,或者说远处天体对光通量的贡献可以是任意小的数值,因而不会发生“黑夜和白天一样亮”的所谓奥伯斯佯谬现象。 沃库勒坚持并发展了他们的观点。由现代观测知道天体的分布是成团的。星系计数现可达100兆秒差距范围。沃库勒认为即使在这样大的尺度,天体分布的起伏也不是随机性的,而是存在更高级的团聚现象。他不同意宇宙学原理认为宇宙在大尺度上是均匀的和各向同性的。他认为,既然在直到目前星系计数所及的尺度上,星系的分布都有明显的非随机成团现象,不能设想一旦大于这一计数的总尺度,成团性就会消失而表现为均匀分布。根据等级式宇宙模型推出,平均密度随观测距离加大而减小,这已为20多个量级的半径范围和45个量级的密度范围的观测资料所证实,不能设想一旦超过这个范围,这种关系就不复存在而代之以某一均匀密度。沃库勒认为宇宙学原理是“由于美学上的偏见和数学上的简化”而提出来的。如果天体分布是成团的,则宇宙膨胀要受这种成团影响而出现起伏,哈勃常数要因不同密度的起伏而改变,因而宇宙模型不能作统一处理。 等级式宇宙模型目前还没有精确的数学表述和确切的理论预言,兹威基和奥尔特等许多人也不同意沃库勒的结论。他们认为成团性终止于星系团一级,至多终止于超星系团一级。
天文学
恒星与银河系
恒星的形成和演化
恒星的形成和演化( formation and evolution of stars ),恒星的形成和演化如下: 目录 1 恒星的形成 1.1 形成恒星的星云 1.2 星云的快收缩过程 1.3 星云的慢收缩过程──原恒星阶段 2 恒星的演化 2.1 星团赫罗图和星场赫罗图同演化理论的比较 2.2 恒星演化的末态 2.2.1 白矮星 2.2.2 中子星 2.2.3 黑洞 2.3 质量抛失在恒星演化中的作用 3 结束语 恒星的形成 形成恒星的星云 一般认为,恒星是由低密度的星际物质凝缩而成的。苏联天文学家阿姆巴楚米扬1955年提出相反的看法,认为恒星是由高密度的星前物质形成的,但他没有说明形成的过程,大多数天文学家不接受这种看法。 银河系星际物质的密度约为10-24~10-23克/厘米3量级。其化学成分还不能完全确定,一般认为和年轻恒星的成分相同,即氢、氦和其他元素的质量组成的比例约为0.71:0.27:0.02;其他元素按所占比例依次为:氧、碳、氮、氖、硅、镁、铁、硫、氩、铝、钙、钠等。星际物质往往凝聚成团块,称作星云。星云可分为两类:第一类,氢已完全电离,它的温度在104K左右,称作电离氢云;另一类,氢并未电离,温度约在100K以下,称作中性氢云。温度低有利于凝聚,所以凝聚成恒星的星云都是中性氢云。在这类星云中,尘埃所占比重约小于2%。星云质量可从几十个M嫯(太阳质量)到一万多个M嫯,密度比星际物质约高一个量级。 分析表明,若星云的温度在100K左右,密度为10-23~10-22克/厘米3,即每立方厘米内有10~102个氢原子,星云的质量至少需要达到103~104M嫯的量级才能收缩。由观测得知,恒星质量大多在0.1~10M嫯。范围内,平均密度大多在10-13~10克/厘米3范围内,如太阳的平均密度为1.41克/厘米3。所以星云形成恒星,除了凝聚之外,还要经历一个碎裂的过程。各种学说都企图论证这个过程,但迄今还没有一致的看法。不过,从观测得知,存在着质量在0.5~104M嫯之间、密度在10-23~10-10克/厘米3之间的各种星云,这些星云有不同程度的凝聚现象。因此可以假定,恒星形成的时候,大自然中原存在着质量为0.5~20M嫯的球状星云,这种星云具有一般中性氢云的温度10~100K,并且有足够高的密度(如不小于10-19克/厘米3)使星云收缩成为恒星。 星云的快收缩过程 从星云凝聚为恒星,半径缩小到约百万分之一,平均密度增加1016倍以上,这是一个快收缩过程,属于动态问题。直到现在,关于快收缩问题的研究成果不多,分歧较大。目前认为,在收缩过程中,由热运动形成的向外压力远远抵不住向内引力,物质急速内聚,中心密度增高更快。起初星云密度稀薄,物质是透明的,收缩所产生的热量无阻挡地向外散逸。当中心密度达到10-13克/厘米3时,中心部分逐渐变得不透明,热量就不易外逸,致使温度增加。当中心部分温度达到2,000K时,氢分子开始成为原子,吸收大量热量,使压力骤降,抵不住引力,因而中心崩陷为体积更小、密度更大的内核。外围形成一股强大的星风,速度达每秒几百公里。对大质量恒星来说,辐射压的向外作用力或许更为重要。这种作用力不仅足以阻止星云外围物质进一步落向中心,而且还会把它们驱散。散逸可能是不对称、不均匀的,因而来自中心的辐射就能穿过那些较稀薄的裂缝而形成一些亮条,这就是赫比格-阿罗天体即H-H天体的情况。全部的星周物质大约在104~105年内逐渐消失,恒星才渐渐露出面目,而为我们所见。其亮度自然是逐渐上升的。有人认为,这可能就是猎户座FU型变星的情况,这一类型的恒星会在数百天内逐渐变亮,亮度增加100倍以上。 星云的慢收缩过程──原恒星阶段 星云快收缩过程的终了,就是慢收缩过程的开始。在慢收缩过程中,星云内每小块物质所受到的向内的引力几乎和向外的压力相等,形成所谓准流体平衡状态。收缩增加内部热量,其中部分热量辐射到星云外部,部分热量使内部、尤其是中心部分的温度上升。等到中心温度升到700万度以上,氢聚变为氦的热核反应所产生的热量足以和向外辐射的热量相当时,星云便不再收缩,达到流体平衡状态,成为一颗正常的恒星,叫主序星。处于从星云过渡到主序星前慢收缩阶段的天体叫原恒星。金牛座T型变星、H-H发射线星可能正是处在这个阶段。 对原恒星的演化研究得较多,结果也较明确,而且易于用天文观测来验证。观测恒星可以测到它的亮度和颜色。如知道距离,还可以求得它的光度;经过转换,从颜色也可求得恒星的表面温度。根据这些资料可以确定恒星在赫罗图的位置。 图1表示赫罗图上星族I原恒星演化到主序星的演化程。图中曲线C1C2C3代表不同质量主序星所在的位置,称作主星序。A1B1C1、A2B2C2和A3B3C3分别代表质量为2M嫯、1M嫯和0.6M嫯的原恒星顺着箭头向主星序演变的途径,称作演化程。各演化程上的R1、R2和R3点表示原恒星内部结构开始变迁的位置。在A1R1、A2R2和A3R3演化程上,整个原恒星内部的物质处于对流状态;到达R1、R2和R3点后,原恒星中心部分的物质开始出现辐射平衡状态。到转弯处B1、B2和B3,仅中心部分那一半的质量处于辐射平衡状态。 二十世纪六十年代前,人们认为原恒星阶段处于辐射平衡,据此算得恒星的演化程大致由图1中的D1B1C1、D2B2C2和D3B3C3来代表。日本天文学家林忠四郎在研究红巨星模型的启发下,通过理论分析得出,原恒星的准平衡态在赫罗图上只能存在于一定范围内;这个范围取决于原恒星的质量,即对于质量为2M嫯、1M嫯和0.6M嫯的原恒星,准平衡态模型只能分别在A1B1、A2B2和A3B3的左方。这个理论为较多人所接受,并且把A1B1C1、A2B2C2和A3B3C3等曲线称为林忠四郎演化程。 年轻星团的赫罗图可以用来检验原恒星演化程的理论。星团中的许多恒星起源于同一个巨大星云,大致在同一时期形成,具有相近的年龄。图2中,画有林忠四郎演化程和全辐射演化程二者的等年龄线。把观测到的年轻星团 NGC2264的星画在图上,可以清楚地看到星团NGC2264的年龄很符合林忠四郎演化程的理论,即星团的年龄大致是4×105~4×106年。图2还说明不同质量的原恒星到达主星序的快慢。质量大的原恒星,光度大,演化快,到达主星序的时间较短;质量小的原恒星,光度小,演化慢,到达主星序需要较长的时间。因此,这年轻星团上段的星已到达主星序,而下段的星还未到达,尚位于主星序的上方。另外两个年轻星团NGC6530和猎户座星团的赫罗图也出现相同的情形。 图中,NGC2264星团有几颗星落在主星序的下方,按上面的理论是无法解释的。有的天文学家认为这几颗星实际上要亮得多,只是有厚的气体和尘埃层才使它们变暗。后来,用不受尘埃影响的氢吸收线轮廓来确定光度,果然亮得多,这就符合上述假说。 此外,恒星大气中锂的含量的观测结果也有利于原恒星全对流的理论。从光谱观测得到的金牛座T型星大气中锂相对于金属丰度的比值约为太阳大气中的100倍,与地球和陨石上的比值相当。这是因为金牛座T型星处在全对流阶段,中心温度低于106K,还不足以引起锂和质子的核反应;而在太阳内部,它的对流层下部温度高达3×106K,足以发生上述核反应而使锂的丰度下降。 恒星的演化 恒星演化的一般理论 图3中不同质量恒星的演化程是根据恒星内部结构理论推算出来的。这项理论主要是以流体静力平衡和热核反应供给能量为基础的。在流体静力平衡的条件下,一般恒星的中心温度和恒星质量成正比。如太阳的中心温度为1,500万度左右,在这样的高温下,能产生热核反应,保证能量来源。爱因斯坦在二十世纪初提出质量和能量之间的关系,直到三十年代末,贝特和魏茨泽克才根据核反应的实验数据和热核反应的机理,提出氢聚变为氦的碳氮循环的热核反应来说明恒星的巨大能量来源。四十年代M.史瓦西首先把碳氮循环应用到太阳内部结构的计算中,获得太阳内部温度、密度和压力的分布以及氢、氦成分并得出太阳的年龄,从此开始进行主星序上不同质量恒星的结构和演化的计算工作(按现有理论,太阳应以质子-质子反应为主)。 恒星停留在主星序阶段的时间是可以计算的。关于恒星内部结构的理论指出,在恒星中心部分氢聚变为氦的过程中,当氦的质量约占恒星总质量的12%时,恒星的结构就发生明显变化,开始离开主星序,如图3所示。另一方面,主星序上的恒星存在一项质光关系,即它的光度和质量的3.5次方成正比。因此,大质量恒星的氢的消耗快得多。在很短的时期内,中心部分氦的质量就达到恒星总质量的12%,因而停留在主星序的时间比小质量星远为短促。所以高光度、大质量的O、B型星(见恒星光谱分类)停留在主星序上只有几百万年、几千万年,而低光度、小质量的M、K型星停留在主星序上可以达几千亿年、几万亿年之久。太阳应停留在主星序阶段约100亿年,到目前已停留了50亿年左右。 在赫罗图上恒星脱离主星序向右演化,因质量不同而经历不同的演化程。图3中除标出光度和温度外,还有等半径线即虚斜线,一颗星在这图上自左向右演化,表示它的表面温度在降低,半径在增大。从图3可知,2.5、5.0和10M嫯的恒星的演化程,除了光度不同外,基本上是类似的。上述恒星中心的温度都在2,000万度以上,适宜进行碳氮循环的氢聚变为氦的热核反应。这项反应的速率和温度18次方(T18)成正比,产能高,因而温度梯度大,使中心部分形成对流核心,将物质搅混。由于热核反应,对流核心的氢含量逐渐减少,对流核外的氢含量保持不变。这种不均匀性的发展,促使恒星的结构逐渐发生变化,恒星的光度和半径逐渐增加,如图3中A1B1、A2B2和A3B3所表现的那样。 恒星中心对流核的氢含量消耗到只有1~2%时,由于热核反应的能量供应不足,恒星整体就开始收缩,如图3中B1C1、B2C2和B3C3所示。收缩使温度增高,终于使紧贴对流核心外面的薄层开始氢聚变为氦的热核反应,供给能量;这时外层温度增高,使星体膨胀起来,表现于图3中为自C1、C2和C3向右演化。质量大于10M嫯的恒星向右演化的过程中,中心温度超过1亿度,可以引起三个氦核聚变成碳核的热核反应。质量小于10M嫯的恒星要演变到红巨星顶端、光度最大、中心温度达1亿度时,才能发生这种反应。 质量小于1.5M嫯的恒星在赫罗图上的演化程表现出截然不同的情形,如图3中DEFG所描绘的那样。这是一个质量为1.2M嫯星族Ⅱ的恒星演化程。质量小的恒星,中心温度低,密度大,电子成为简并态,足以抵御外部压力,因而中心部分的收缩不象大质量恒星那样厉害。再者,由于中心温度只有一千几百万度,在氢聚变成氦的热核反应中,质子-质子反应取代碳氮循环,成为恒星能量的主要来源。质子-质子反应和温度的较低次方(T3.5)成正比,所形成的温度梯度较低,不足以产生对流核心。此外,小质量恒星的另一特征是:表面温度低,邻近表面区的不透明度大,温度梯度增大,使对流层厚度往往超过半径的一半。对流层传热快,使恒星光度逐渐增大。这一系列内部结构的变化,表现在恒星的光度和表面温度上,如图3中DEF所示。演化到达红巨星支的顶点F时,中心温度高过1亿度,三个氦核聚变为碳核的热核反应成为可能,氦突然燃烧,发生“氦闪耀”现象。此时,产生大量热量,温度更加升高,终于使中心部分的电子简并态回到非简并态,然后内部膨胀、吸热,产生“热逃逸”现象,光度骤减,使星点在赫罗图上很快从F向G下落,而中心氦核球开始稳定地燃烧。 在赫罗图上大质量恒星向右演变到红巨星之后的演化,和小质量恒星自F点下落到G后的演化的问题,是六十年代以来应用大型电子计算机进行研究的,现已得到一些很有意义的结果。大体说来,质量大的恒星,象5M嫯、7M嫯和9M嫯恒星的演化程是从右方(即红巨星)向左移,在离主星序不同距离处,又沿不同演化程回到右方,这样可以来回几次,但并不重复上次的演化程。它们来回移动时跨过赫罗图上主星序和红巨星支之间的一条不稳定区狭带,如图3所示。这条狭带就是造父变星的区域。有意义的是在计算恒星演化中,恒星进入这区域就表现出脉动不稳定性。这样就把恒星内部结构的变化同恒星表面的脉动不稳定性密切联系起来。至于小质量的恒星,象星族Ⅱ的1.2M嫯恒星的演化程,从G点下方向左行动,在到达主星序前,又折回向右,绕行一个很扁的水平圈。这水平圈的轨迹对应于由星族Ⅱ恒星所组成的球状星团赫罗图中有特征性的水平支。水平支上的不稳定区域是著名的天琴座RR型变星的位置,它的宽度△lgTθ约为0.06。细致的计算表明,不稳定区域蓝边的位置是和恒星的氢氦含量密切相关的,所以把水平支上最蓝变星的性质和不同氢氦含量的理论蓝边作比较,就可以估计出恒星大气中的氦含量。在好几个球状星团中,变星的光变周期P(单位:天)的对数lgP为-0.55~-0.60,它们的蓝边温度Tθ的对数约为3.87,由此导出的氦丰度为25%左右。这项从星族Ⅱ恒星演化理论所得的值同从变星的脉动理论、电离氢区的观测以及大爆炸宇宙学方法所得的值(22~24%)基本上一致。 星团赫罗图和星场赫罗图同演化理论的比较 同一个星团内的恒星离我们的距离可以认为都是相同的,因此它们的亮度差等于它们本身的光度差。此外,还可以认为同一个星团内的恒星差不多都是同时期形成的。小质量的恒星收缩时间长,到达主星序的时间迟;到达后,停留的时间长。所以年轻星团的星,亮星已演化到主星序上,而暗星还未到达主星序,落在主星序的上方,NGC2264即其一例。年老的星团,恰恰相反,暗星还停留在主星序上,而主星序上段已找不到亮星,即使找到,也是已弯向右方成为脱离主星序的星了。星团年龄愈老,弯向右方愈甚,刚刚弯离主星序那点的星的光度愈暗。把各种不同年龄星团的未偏离主星序的一段联接成一个完整主星序,其中最年轻的星团NGC2362在顶端,最年老的星团M67在最下段(图4)。有了这幅完整的主星序赫罗图作为标准,只要把任何依据新观测到的星团资料编成的赫罗图同它作比较,确定哪点弯离主星序,就可以定出它的年龄和恒星的本身光度。图4右面所标的年龄是相应光度的恒星停留在主星序的时间,例如绝对星等为-4等的星为6.5×106年,绝对星等为+4等的星为6.7×109年,这二者也就分别是英仙座h+x星团和M67星团的年龄,因为它们分别在绝对星等-4和+4处弯向右方。根据恒星本身的光度和视亮度就可以定出这个星团的距离。由此定出的距离误差不大,是测定星团距离的重要方法之一。 对于场星,即非星团星,用上述的恒星演化学说来说明观测到的现象也很成功。以照相星等亮于8.5星等的6,700颗恒星的赫罗图(图见第117页)为例,此图虽然受到选择作用的影响,有利于光度大的星,但在图上主要的特征(如主星序和红巨星支)还能清楚地显示出来。在图上绝大部分的星都落在主星序上,表示恒星在这阶段演变最慢。恒星脱离主星序后很快演变为红巨星,因而出现了主星序与红巨星支之间的赫氏空区。 恒星演化的末态 恒星演化到后期,星体结构愈来愈复杂,变化愈来愈剧烈。随着内部温度的升高,氦、碳、氧等核子先后参与热核反应,这些核子的热核反应属于强作用,不象氢聚变为氦(属于弱作用)那样缓慢进行,而是十分剧烈。这时,平衡态理论不再适用。在恒星演化的不同时期,演变的快慢是非常悬殊的。计算刚刚离开主星序两个相继星型的时间间隔,可以取近亿年,而在红巨星顶端F处,必须取时间间隔为2秒来进行计算。恒星的末态,即它们的归宿应该是在赫罗图上主星序的左面。从主星序极右方红巨星或红超巨星演变到它们的末态,一般要抛失质量,甚至要象新星、超新星那样大爆发,然后才演变为行星状星云的中心星、白矮星或中子星。由于星型结构复杂,所取参量和处理方法不同,这类动态的演变过程还缺乏统一的推算结果。对于恒星末态,目前并不是仔细地一步一步地从演化的过程来寻求,而是从高密物质的平衡态来探讨,即假定恒星内部各种核能已经完全耗尽,正在慢慢冷却,然后根据这种情况计算流体平衡条件下的物质分布情况。理论分析表明,在恒星演化末期将出现三类天体:白矮星、中子星和黑洞,具体是哪一类,则视质量而定。质量界限的具体值因所用的物态方程不同而异。 白矮星 恒星在核能耗尽后,如它的质量小于1.44M嫯就将成为白矮星。没有核能后,它靠引力收缩供能。等收缩到原来半径的几十分之一到百分之一时,中心密度已经很高,电子形成简并态。当电子气体的压力足以抵住引力收缩时,便达到新的平衡。这时恒星不再收缩,只靠它的剩余热量发光,这种星称为白矮星。随着它的余热逐渐消失,表面温度逐渐降低,慢慢成为红矮星、黑矮星,就无法观测到了。已观测到并确认为白矮星的恒星只有千余颗。它们的光度很小,不容易观测到,估计它们的数目应相当多,约占恒星总数十分之一左右。 中子星 恒星在核能耗尽之后,如果它的质量在1.44~2M嫯之间,就会成为中子星。按照平衡态的理论,在形成中子星前,恒星内部是由简并态电子气体和铁核构成的。铁核是经过轻核逐级聚变形成的。随着引力收缩,压力和密度增加,电子的费密能量愈来愈大,终于打进铁核,在其中组成更多中子。等到电子的费密能量超过25兆电子伏时,中子就脱离重核的束缚而放射出来,积累成为简并态中子气体。当密度接近核子密度4×1014克/厘米3时,几乎绝大部分是中子,电子和质子仅占总数的百分之一、二。这时简并态中子气体的运动顶住引力的压缩,使恒星不再收缩,就成为稳定态的中子星。 不少天文学家认为中子星的形成是超新星爆发的后果,外部的物质爆炸出去,形成星云状物质,内部坍缩,形成为中子星。模拟超新星爆发的理论计算,虽然得到一些结果,认为可以形成中子星,但也有一些结果表明,爆炸力量过于巨大,会使整个星体崩溃,不留内部残骸。这类计算,不确定的因数较多,目前没有肯定的看法。重要的是在1967年终于发现了中子星,到1978年已发现了300颗以上。 黑洞 恒星在核能耗尽后,如质量超过2M嫯,则平衡态不再存在,星体将无限制地收缩。虽然目前还没有密度大于1015克/厘米3的物质的实验数据,无法推测星体的具体结构,但根据理论可以推断,星体的半径将愈来愈小,密度将愈来愈大,终于达到临界点,这时它的引力之大足以使一切粒子,包括光子,都不能外逸,因而称为“黑洞”。质量为2M嫯的恒星,如形成黑洞,其半径不超过5.2公里。近年来,有人提出质量介于2~3.2M嫯间的恒星有可能成为反常中子星或层子星等。 质量抛失在恒星演化中的作用 恒星抛失质量在演化中起着不可忽视的作用。除了新星、超新星的大量抛失质量外,实际上,恒星在不同程度上也不断在抛失质量(见质量损失)。不过,一般而论,恒星在主星序阶段抛失的质量是微不足道的,对演化没有多大影响。但在红巨星阶段,它体积庞大,表面引力较小,对流大气中又有上升的气流,质量易于抛失。从观测获知存在不少质量小于1M嫯的白矮星,就可以证明这点。因为质量小于1M嫯的恒星要经历红巨星阶段而后演化成白矮星,所需时间要比银河系的年龄(约2×1010年)还长。这些白矮星大概是从质量较大的恒星演变成的,也就是说它们原来质量大,因而演化也快,经过质量抛失,终于形成白矮星。 在双星中,质量抛失对恒星演化所起的作用较为明显。天狼、南河三和波江座o2都是双星系统,它们都含有一颗白矮星。经长期研究表明,前两个双星中,光度亮的主星的质量比伴星(白矮星)大,且为主序星。因为俘获另一颗恒星的可能性微不足道,所以双星系统中的两颗星应当是同时形成的。质量大的那颗子星,应该演化快,但实际情况恰相反。可能的解释是伴星原来质量大,演化快,随后抛失了质量逐步演变成为白矮星。 密近双星的两颗星靠得近,它们的相互作用,更会大大影响两星的演化过程。计算表明,质量较大的星若是中心部分氢已枯竭,膨胀成红巨星,其质量会流向质量较小的恒星,演化成质量小于0.5M嫯的白矮星。自1954年发现武仙座DQ新星是双星后,接连发现了好些新星都是双星。假定双星中一个子星是白矮星,它的表面温度高,会吸积伴星流入的氢气,到达一定程度时,就有可能发生热核反应,产生足够的能量,产生爆发而抛掉所吸积的外层物质。然后,又重新吸积伴星的气体,经过同样的过程再次爆发。这是再发新星能够反复爆发的原因,例如蛇夫座RS新星在1898年、1933年和1958年三度爆发,北冕座T在1866年和1946年两度爆发。 结束语 现代天体物理学最大的成就之一就是基本上说明了恒星演化和元素演化两个重要问题。这两个问题关系十分密切。元素的核综合演化是在恒星内部完成的,可以说是恒星演化的动力。恒星的能源供应以引力收缩和热核反应两种方式交替进行。核能的供应是主要的,占90%以上。引力收缩主要是使恒星中心温度增高。随着温度的逐步升高,较重核子发生热核反应,逐级聚变形成更重的核子。恒星演化晚期,中心温度达109K时,带走绝大部分能量的是中微子而不是光子,中微子在超新星爆发中起的作用尤其重要(见中微子天文学)。所以宏观的恒星演化过程是和微观的原子核反应息息相关的,也可以说微观的核子反应过程控制着宏观的恒星演化过程。 现代恒星演化学说的成就是巨大的,但由于问题复杂、资料不够完备以及理论过于简单化,还有很多不足之处。对于星云物质的化学成分、尘埃和气体的比例以及尘埃的吸收等数据,了解得不够清楚,甚至缺乏数据。不论星云、原恒星和恒星,它们都有不同的磁场和自转运动,一般说来,磁场和自转都起着抵制收缩的作用。它们和引力效应比较起来,固然处于次要地位,但是却不能忽略不计。值得一提的是近年物理学界提出的太阳的中微子问题。太阳中心部分质子-质子反应所发射的中微子,其观测值低于理论预期值近一个量级,对此迄今还没有令人满意的解释。
天文学
星系与宇宙学
不规则星系团
不规则星系团,又称疏散星系团,它们结构松散,没有一定的形状,也没有明显的中央星系集中区,例如武仙星系团。 它们的数目比规则星系团更多。大的不规则星系团的成员星系数多达 2,500个以上;小的只包含几十个甚至更少的成员星系,本星系群就属这一类。范围比较大的不规则星系团可以有几个凝聚中心,在团内形成一种次一级的成群结构。整个团就是这些较小群的松散集合体,又可称为星云或超星系。不规则星系团总是各种类型星系的混合体,其中往往以暗星系占绝对优势,这也是与规则星系团的不同之处。另外,只有少数不规则星系团发射X射线。
天文学
天体物理学
不透明度
不透明度( opacity ),表征物质对辐射的吸收能力强弱的一种量。某种物质不透明度大,就是指该物质对辐射的吸收能力强,通常也就说这种物质对辐射是不透明的。为了定量地描述物质的不透明度,习惯上采用的是吸收系数(见恒星大气的吸收和散射),一般还采用对频率作某种加权平均所得到的平均吸收系数(见辐射转移理论)作为不透明度的量度。物质的不透明度可以由多种元过程引起,在不同物理条件下起主要作用的元过程是不同的。在恒星内部,温度可高达百万度,原子大部分已高度电离,自由电子也比较丰富,那里的不透明度主要由金属离子的K层、L层、M层等内层电子的光致电离和自由-自由跃迁,以及自由电子散射来确定。此外,对于电磁波谱的不同波段,例如射电、红外线、可见光、X射线和γ射线等波段,不透明度应由对应波段所特有的吸收机制来确定。
天文学
恒星与银河系
星等
星等( Magnitude ),表示天体相对亮度并以对数标度测量的数值。古希腊天文学家依巴谷(喜帕恰斯)编制星表(表上有1 022颗恒星)时,把全天人眼可见的星按感觉的亮度分为6等。亮的20颗星定为1等,人眼刚刚可见的最暗恒星为6等。亮度随星等数目的增加而降低。后来J.F.赫歇耳发现,1等星比6等星亮约100倍。到19世纪已意识到,人眼的感光不是线性的,而是遵守对数规则。1856年N.R.普森用公式:m2-m1=−2.5lgI2/I1联系两个天体的星等m1、m2和它们的亮度I1、I2。这个星等尺度的定义一直沿用至今。星等尺度的零点由规定某颗星的星等值来确定。 目视星等 天体光度测量直接得到的星等同天体的距离有关,称为视星等。它反映天体的视亮度。一颗很亮的星可由于距离远而显得很暗(星等数值大);而一颗实际上很暗的星可能由于距离近而显得很亮(星等数值小)。对于点光源,则代表天体在地球上的照度。星等常用m表示。对单一波长测定的单色星等差与辐射探测器的特性无关。但在一定波段内测定的星等差,随探测器的选择性而不同。因此,对应不同探测器有各种星等系统。如:①目视星等mv是人眼测定的星等。美国哈佛大学天文台规定小熊座λ星的mv=+6.55,以此来确定目视星等的零点。太阳的目视星等为−26.74,天狼星的目视星等为−1.6,天津四为1.25;满月的视星等为−12.7。目视星等为1等的星,地面的照度约等于8.3×10−9勒克斯。由现代实验测定,零等星在大气外的照度是2.54×10−6勒克斯。简单地说,光度为1烛光的点光源在相距1米处所产生的照度就是1勒克斯。为了便于认别,星等图上常根据星等的大小,将星画成不同大小,点子愈大表示愈亮,点子愈小则愈暗。②照相星等mp是用蓝敏照相底片测定的星等。国际照相星等Ipg的零点是这样规定的:令目视星等介于5.5~6.5间的A0型星的平均Ipg为mv。③仿视星等mpv、国际仿视星等Ipv是用正色底片加黄色滤光片测定的。它的分光特性与人眼相近,实际上取代了目视星等。④光电星等是用光电倍增管测定的星等。最常用的光电星等系统是UBV测光系统。U为紫外星等,B为蓝星等,V为黄星等(和目视星等相似)。⑤热星等mbol是表征天体在整个电磁波段内辐射总量的星等。不能直接由观测来确定,只能由多色测光的星等结合理论计算求得。随着各波段测光技术特别是大气外观测的发展,确定热星等的精度越来越高。 绝对星等 为了比较天体的发光强度,采用绝对星等。绝对星等M的定义是,把天体假想置于距离10秒差距处所得到的视星等。若已知天体的视差π(以角秒计)和经星际消光改正的视星等m,可按下列公式计算绝对星等:M=m+5+5lgπ对应不同系统的视星等有不同的绝对星等。
天文学
恒星与银河系
参宿四
参宿四(Betelgeuse),猎户座肩膀上(从北半球看,在猎户座的左上方)的一颗明亮红色恒星。参宿四又叫做猎户座α,是一颗距离200秒差距的红超巨星,它的直径是太阳直径的800倍,是直接用干涉测量法得到的。
天文学
恒星与银河系
红外星
红外星(infrared star),辐射能量主要在红外区的恒星。根据普朗克定律,黑体的温度越低,辐射的主要部分就越向长波区(即红区)移动,因此相当多的红外星是有效温度很低的晚型星。还有一些红外星,它们辐射能量分布不符合黑体辐射定律,而有明显的红外超。其原 因是这些恒星周围存在的尘埃和气体分子云,被中心星的紫外线和可见光加热,再发出红外辐射。这些星周物质可能是形成恒星或行星的剩余物,也可能是恒星以连续或间断的方式抛射出来的。不管这些星的红外发射是否在全部辐射能中占主导地位,它们的研究对了解恒星演化过程是很有意义的。红外天文卫星探测到的24.6万个红外源中,大约65%是恒星。资料分析表明,大部分恒星的红外辐射与它们的光球温度所期望的一致,具有红外超的恒星约占10%。
天文学
恒星与银河系
球状体
球状体(globule),一种较密的、球状的气体-尘埃暗云。某些小球状体在电离氢的辐射背景上显示出暗的轮廓;另一些较大的球状体,由于尘埃的消光,使天空背景出现没有恒星的“洞”,但一氧化碳射电谱线观测表明洞里存在物质。球状体的角直径约3′~20′天文单位,线直径103~105天文单位,估计质量为0.1~750太阳质量,温度约7~15K,主要成分为H2、CO以及一些有机分子。在太阳附近500秒差距内,观测到200多个大的球状体,由此推测银河系中有2.5万个。它们可能是处在引力收缩阶段的原恒星。也有人认为从质量估计推断球状体密度很低,不足以产生引力坍缩。然而,大球状体的分子谱线观测表明,它们包含引力坍缩所需的足够质量。红外天文卫星探测到某些小球状体的红外辐射,提供了那里恒星正在形成的证据。例如在球状体巴纳德5中发现了几个质量约1太阳质量,年龄几十万年的恒星。
天文学
星系与宇宙学
大数假设
大数假设(汉语拼音:Dɑshu Jiashe;英语:large number hypothesis),20 世纪30年代,英国物理学家 P.A.M. 狄拉克注意到,由电子电荷e、电子质量m、质子质量M和万有引力常数G组成的无量纲量e2/GmM的数值是1040,而以原子尺度为单位的宇宙半径也是 1040。他认为这一事实不是偶然的巧合,而是反映了宇宙的内在联系,并称之为大数假设。   此外,还可以用物理常数和宇宙学量组成其他一些无量纲的大数。这些大数之间有着简单的代数关系。如宇宙中的粒子数约1080,宇宙膨胀到极大时的半径与基本粒子的大小之比值约 1040,静电力与万有引力之比值约1040,基本粒子大小与普朗克长度之比值约 1020,宇宙中的光子数与重子数之比约 1010,等等。为什么存在这些简单关系?大数究竟变不变?都是宇宙学要探讨的问题。
天文学
星系与宇宙学
棒旋星系
棒旋星系(barred spiral),旋涡星系的一类,其旋臂与一个由恒星组成并通过星系中心的直棒相连。
天文学
恒星与银河系
天鹅座P型星
天鹅座P型星(汉语拼音:Tianezuo P Xingxing;英语:PCygni Stars),以天鹅座P为原型的一类星。天鹅座P是B1型超巨星,光谱中有强发射线,有的谱线由一条发射线和一条吸收子线组成,发射线通常没有位移,而吸收子线向蓝端位移,这称为天鹅P型谱线轮廓。光谱中至少有两种不同元素的谱线显示出天鹅P型谱线轮廓的星才能算天鹅座P型星,如今已知有几十颗。这类星光谱型在O6和A4之间,绝对目视星等从-3~-8.5等,有不规则的小幅度小变,其中只有天鹅座P和船底座AG的变幅超过2等。天鹅P型谱线轮廓可用向外膨胀的气壳来解释。天鹅座P型星的质量损失率很大,为10-5~10-4太阳质量/年。
天文学
天文学
银河
银河(汉语拼音:Yinhe;英语:Milky Way),横跨星空的一条淡淡发光的带。中国古代又称天河、银汉、星河。银河在天鹰座与天赤道相交,在北半天球,它经过天鹅、蝎虎、仙王、仙后、英仙、御夫、金牛、双子和猎户等星座,跨入天赤道的麒麟座,再往南经过大犬、船尾、船帆、船底、南十字、半人马、圆规、矩尺、天蝎、人马和盾牌等星座,返回天鹰座。银河各部分的宽窄和明暗程度相差很大。银河在天球上勾画出一条宽窄不一的带,称为银道带。它的最宽处达30°,最窄处只有4°~5°,平均约20°。银河有些部分很明亮,如盾牌、人马那一段。有些部分则非常暗,如天鹰、天鹅座以南的大分叉和南十字座附近的“煤袋”。大分叉非常暗,银河在那里好像被分成了两条支流。已得知,银河实际上是银河系主体部分在天球上的投影。因此,当用望远镜观测时,可以看见银河由数量众多的恒星和星云组成。
天文学
天体测量学
天文摆钟
天文摆钟(汉语拼音:Tianwen Baizhong;英语:Astronomical Clock),利用摆的机械振荡产生稳定频率,以此作为频率标准制成的计时仪器。16世纪中叶C.惠更斯根据伽利略发现的摆的等时性原理,发明了摆钟。摆钟是天文观测中的计时工具,也是时间服务中的守时工具。早期摆钟的走时误差约每天0.1秒;经过不断改进,到20世纪20年代误差约每天几毫秒,当时的天文学家曾依据天文摆钟指示的相对均匀的时间发现了地球自转的不均匀性。当钟摆在一定的幅度内摆动时,其周期只与摆长有关,摆长随温度的变化给走时带来误差。克服这一缺陷的途径在于稳定摆杆的长度,采取的措施有:摆杆用温度系数小的材料(如铟钢、石英等)制造或用两种膨胀系数不同的金属(如黄铜和钢)熔合在一起以补偿温度变化,而且将钟安放在恒温室内,罩入真空罩中,实行钟体(母钟)与钟面(子钟)分离,由母钟控制子钟指示时刻。20世纪50年代初期,天文摆钟已完全由精度更高的石英钟取代。
天文学
光学天文学
四色测光系统
四色测光系统( four-colour photometry system ),斯特龙根在五十年代提出的一种中波带测光系统,又称uυby系统。他用RCA1P21光电倍增管配合滤光片观测。滤光片的特性: u位于巴耳末跳变波长之外, υ的极大几乎和 Н δ线重合, b位于Нγ和Н β之间, y的平均波长和 UBV 测光系统的 V一致。有时补充观测Н β线的强度 β。在假设消光系数和恒星的光谱型、光度级以及 星际红化无关的前提下,对观测结果作消光改正,给出色指数 b-y和两个 色指数之差: c1=(u-υ)-(υ-b) m1=(υ-b)-(b-y) 现在,就观测的星数来说,四色系统仅次于UBV系统。四色测光能得到关于恒星的基本物理信息。就这一点来说,四色系统优于UBV系统。分析四色测光的结果,可以较准确地估计星际红化,可以进行恒星的二维或三维分类;对B型星有可能得到绝对星等和温度;对某些A~F型星(见恒星光谱分类)还可得到表面重力。
天文学
恒星与银河系
赫罗图
赫罗图( HR diagram ),用恒星的表面温度(或光谱型或颜色)和光度(或绝对星等)作为坐标轴画出的图。赫罗图代表天文学和天体物理学中对观测的最大综合。它是天体物理学家最有用的关系图和非常有价值的诊断恒星的工具。一颗恒星在赫罗图中的位置决定于它的质量和年龄,赫罗图以绝妙的方式找到了恒星演化的规律,既提供了对恒星演化理论一个最严格的检验,又提供了研究银河系整体历史的一个最有力的工具。赫罗图的原始形式是绝对仿视星等与光谱型的关系曲线,现在更常用的是它的变体,用一个连续的坐标代替不连续的光谱型。观测上,最有用的形式是颜色–星等图(CM)图,它是一个颜色与星等的关系曲线。 创建 赫罗图是丹麦天文学家E.赫茨普龙和美国天文学家H.N.罗素创制的。赫茨普龙在1905年和1907年的论文中指出,一般蓝星是亮的,而红星却有亮、暗两种。他把亮星称为巨星,把暗星称为矮星。1911年他测定了几个银河星团(如昴星团、毕星团)中的恒星的光度和颜色,并将这二者作为纵坐标和横坐标。结果表明,这些星点大都落在一条连续带上,其余的星(巨星)则形成小群。罗素研究了恒星的光度和光谱,画出一系列表明恒星光度和光谱型之间的关系图,于1914年在《自然》上发表(图1)。经过对比,发现颜色等价于光谱型或表面温度。他们两人的图所表示的是同一回事。因此,后来将这类光度–表面温度(光谱型或颜色)图称为赫茨普龙–罗素图,简称赫罗图。赫罗图的根本特征是建立了恒星的颜色与亮度的关系。图中亮度由下向上(图的y轴)量度,温度在左右方向(图的x轴)量度,并规定较冷的星偏向右方。这样选择温度量度方向与光谱型O B A F G K M分类序列对应。赫罗图右下角的恒星是暗弱的红色冷星,左上角的恒星是明亮的蓝白色热星(温度高于25 000K)。大多数恒星落在左上角到右下角的带内,该带称主序,它对应像太阳那样通过将中心区的氢核合成为氦核释放能量的一切恒星。宽波段UBV测光系统测定暗星的颜色,比用光谱方法容易,所以后来逐渐用色指数代替光谱型作为赫罗图的横坐标。色指数可转换成表面温度。观测得到的视星等,经过距离改正后成为绝对星等(见星等),可再转换为光度。有了星的表面温度和光度,理论工作者便可计算恒星的内部结构,也就是建立所谓恒星模型。随着时间的推移,恒星的内部结构逐渐演变,并在它的光度和表面温度(简称温度)上表现出来,这样恒星在赫罗图上的位置便沿一定路径移动,描出“演化程”。因此,赫罗图不仅能给各类型恒星以特定的位置,而且能显示出它们各自的演化程,成为研究恒星必不可少的重要手段之一。 图1 罗素绘制的绝对星等–光谱型图 星团和场星的赫罗图 赫罗图中的恒星不是平均分布,而是形成一定的序列的。因为光度和表面温度之间存在着内在的关系:如果压力、不透明度和产能率只是温度、密度和化学成分的函数,则恒星的结构由它的质量和化学成分决定;如果化学成分给定,则每一恒星质量便对应着一定的光度和温度值。因而只要在某一质量范围内存在着光度和温度的关系,赫罗图上就会出现相应的序列。同样质量范围内的恒星,在赫罗图上出现在不同的序列,必然是由化学成分不同引起的;而化学成分的不同可以是原始化学成分的不同,也可以是恒星处在不同的演化阶段。因此,赫罗图中的一些序列,可用来研究恒星的形成和演化。图2是太阳附近6 700颗恒星的赫罗图。图中有两个密集序列,一个从左上向右下,称为主星序,又称矮星序;另一个是相当密集的一群星,接近右上角,差不多呈水平走向,称为巨星序。此外,还有不少星分散在图的上部,称为超巨星序。主星序下面是亚矮星序。图的底部有一特殊分支,称为白矮星序。巨星序和矮星序并不相接,中间留有相当明显的空隙,称为赫氏空区,只有为数很少的恒星落在空区以内。赫罗图中的图形受到不少测量误差的影响。恒星的质量差别不大,大多数恒星的质量在太阳质量0.1~10倍范围内。恒星化学成分的差别也不大,按质量计大致氢占71%,氦占27%,其他重元素占2%。所以,取决于质量和化学成分的恒星结构在赫罗图中呈现出明显的规律性。恒星密集的区域代表它们演化缓慢的阶段,主星序是演化最慢的阶段,大致占恒星寿命的90%。为了免受恒星化学成分不同和年龄不同这两个因素的影响,可举星团的赫罗图来说明。图3是昴星团的赫罗图。这个星团内形成的恒星,可认为它们的化学成分和年龄是相同的。再者,一般星团各成员星离地球的距离基本相同,这样观测到的成员星的视星等差值也就是它们绝对星等的差值,不受距离误差的影响。星团距离的不确定性导致绝对星等的零点不确定,只能使整个图上下移动,而不会影响昴星团的赫罗图中星点的相对位置。图3中的星点代表昴星团的主星序,其中没有红巨星,表示昴星团年龄还轻,成员星还没有演化到脱离主星序的阶段。 图2 亮于8.5照相视星等的6 700颗恒星的赫罗图 图3 昴星团的赫罗图 把质量不同但年龄相同的许多恒星画在赫罗图上,图的形状便与年龄有关。这一点在球状星团的赫罗图上表现得很明显,因为一个球状星团中的全部恒星确实是在一个巨大气体云坍缩时一起形成的。主序左上端的最亮恒星最先消耗完燃料,因为它们每秒钟需要很多能量以求避免最终的引力坍缩,所以它们最先离开主序朝红巨星支移动。用同一星团在不同年龄画赫罗图,则随着星团年龄增大,主序将从上往下缩短,这些赫罗图的主序从右下角向上仅仅延伸一段后即折向右边。折向点的准确位置取决于星团的年龄,由此定出的年龄是银河系最年老恒星的最可靠的年龄测定之一。赫罗图也能用来测定星团的距离,因为恒星在主序上的位置和它们的绝对星等有关,星团离我们越远,它的恒星发来的光显得越弱,它的主序就越是靠近赫罗图的下部。利用这一点,天文学家得以找出恒星视星等的校准值,使之正好与标准主序相符,并从这个校准值导出星团的距离。 不同化学成分的星团在赫罗图上的分布 图4画出银河星团M67的成员星同两个球状星团M3和M92的成员星在赫罗图上的位置,以便进行比较。它们都是年老的星团,但M67属于星族Ⅰ,M3和M92属于星族Ⅱ。星族Ⅰ的星含重元素较多,占总质量的2%~3%,而星族Ⅱ的星所含的重元素的含量仅占0.1%~0.2%,或更少。图中左下方的黑粗斜线代表主星序,3个星团巨星支都从主星序相同的部位脱离,表明它们的年龄相近(为4×109~6×109年)。M3有明显的水平支,这是球状星团的一般特征。赫罗图可获得大量信息。除了上述的两个星序外,各种类型的变星也有特定区域。此外,还可利用星团在赫罗图上的“转向点”来估计星团的年龄和距离。不同质量的星族Ⅰ和星族Ⅱ的星,在赫罗图上都有它们特定的演化程序。 图4 银河星团M67同球状星团M3和M92在赫罗图中的比较
天文学
天体测量学
子午环
子午环 子午环( meridian circle ),用来精密测定天体过子午圈的时刻和天顶距,借以求得天体赤径和赤纬的一种光学仪器。子午环曾被誉为最精密的天文仪器。二百年来,它一直是编制基本星表的主要仪器。它的主要部分是一架口径15~20厘米、焦距约2米的折射望远镜,其有效视场约为0°3。镜筒的中部是一个坚固而中空的立方体,侧面有水平轴,沿东西方向放置,使镜筒能在子午面内转动。水平轴的两外端为精密轴颈,置于V形轴承架上。在水平轴上套有直径较大的精密垂直度盘,用4~6台对称排列的读数显微镜读取望远镜的天顶距。读数也可由照相机记录。在新型子午环上已开始使用光学度盘或分辨率达0.″05的感应式传感器来代替金属度盘。望远镜和水平轴的绝大部分重量由专门的平衡机构承托,以减轻压在V形轴承上的重量。仪器的基墩须有深固的防震地基。在望远镜的焦平面上装有精密的测微器。测微器有垂直移动和水平移动的动丝。观测者转动测微轮带动水平动丝来对准星像,测出它偏离测微器中心水平丝的角距。将这个自动记录下来的角距加到垂直度盘的读数上,并作大气折射改正后,就得到这颗星中天时的天顶距。此外,控制驱动垂直丝的小电动机的速率,对准并跟踪水平移动的星像,配以恒星钟的秒脉冲,自动记录垂直动丝的位置,来推算出恒星经过子午圈的时刻,即这颗星的赤经。一颗星的观测时间一般不超过两分钟。 有的子午环已采用光电记录法,不再由人眼瞄准星像,而且观测数据也直接输入电子计算机。观测和归算正在逐渐转向全部自动化。子午环配有水银地平、准直管和方位标等附属装置,用它们分别定出天底点的位置、视准线的准直差以及水平轴的方位差。实际上,子午环观测还需校正多种误差。子午环一般可观测亮于9等的恒星。观测一颗星一次中天的均方误差为:赤经±0.″20~±0.″30,赤纬±0.″30~±0.″45。 子午环与中星仪的主要差别在于前者有测天顶距的精密度盘和不采用频繁的转轴观测法。为了定出绝对测定所需的赤经零点──春分点(见分至点),子午环还应观测太阳、行星和某些亮的小行星。
天文学
天文学
恒星大气理论
恒星大气理论( theory of stellar atmospheres ),主要通过对恒星光谱的解释来研究恒星大气的结构、物理过程和化学组成的理论。天体物理中的重要组成部分。恒星上能被直接观测到的表面层称为恒星大气。太阳是一颗典型的恒星,而且是离地球最近从而可对其表面不同区域的光谱进行详细观测和分析的唯一恒星。因此常以太阳大气的研究作为恒星大气研究的范畴。对于非常遥远不能作区域分解观测的恒星,只能对可见半球积分辐射的光谱进行观测和研究。包括太阳在内的正常恒星辐射功率基本上集中在可见区和近红外波段。光谱的主要特征是在连续光谱的背景上叠置许多吸收谱线。对连续谱和吸收谱线的观测和理论分析可获得关于恒星大气的知识,不过各有不同的分析方法和适用范围。 连续光谱研究 太阳和恒星的连续光谱是由它们的低层大气——光球层产生的。为了从观测太阳连续谱获得光球的知识,必须先从理论上建立太阳连续谱辐射强度随波长的变化(又称为连续能谱分布),以及从日面中心至日面边缘的光谱变化与光球中各种物理参数随深度变化的关系。光球中能量是以辐射方式传输的。辐射从内部向外部传输过程中不断与光球物质相互作用,也就是经历了不断吸收与再输运,直至由光球表面自由地向外空辐射。研究这种物质对辐射的吸收和再发射过程,就可建立上述关系。为此通常假定: ①太阳和其他恒星为球对称,大气中各种物理参数仅为深度的函数。同时,它们的辐射是稳定的,不随时间变化。 ②太阳和恒星光球处于局部热动平衡态。所谓局部热动平衡态就是光球内任一小体积元中可用单一温度来描述辐射场和物态。小体积之中粒子和光子的能态分布由该温度对应的麦克斯韦分布、萨哈方程和玻耳兹曼方程以及普朗克函数确定。但温度本身则是空间位置的函数,在球对称假定下仅是深度的函数。 上述假定下可推导出太阳和恒星大气中辐射通过既能吸收又能发射的物质时辐射强度变化所遵循的方程式,通常称为辐射转移方程,其形式为: 式中 θ为辐射方向对 恒星径向的偏离角, τ λ为波长 λ处的光学厚度,其微分定义为d τ λ=− κ λ ρd r,其中 ρ为 大气密度,d r为径向上的路程微元, κ λ为波长 λ处单位质量 大气的吸收系数。 I λ( τ λ, θ)就是在波长为 λ、光学厚度为 τ λ和对径向偏角为 θ的方向上的辐射强度。而: 称为 源函数,其中 j λ为单位质量 大气的发射率。可见源函数就是物质发射与吸收的比值。吸收系数 κ λ依赖 恒星 大气的吸收机制,而源函数 S λ既与 大气的吸收机制有关也与 大气的发射机制有关。因此它们都包含着 恒星 大气结构和物理过程的信息。 恒星大气的发射机制主要包括离子与电子复合、电子在离子的库仑力场中减速以及原子或离子因吸收光子或其他粒子碰撞而跃迁到高能级后再向低能级跃迁产生的辐射。恒星大气的吸收可分为真吸收和散射两种形式。真吸收是指原子吸收光子后不再发射出去的吸收,如因光致电离导致原子能级的束缚、自由跃迁和导致电子动能增大的自由–自由跃迁。散射则只涉及光子的方向或波长变化。光子波长不变而只改变光子方向的散射称为相干散射,如原子从某方向吸收光子而跃迁到高能级后重新跃迁到原先的低能级,并向各方向发射同一波长的光子,以及电子对光子的汤姆逊散射,均为相干散射;而涉及改变光子波长的散射,则称为非相干散射,如原子吸收光子跃迁到很高的能级后再逐级向下跃迁的级联散射就是非相干散射。但两种散射都将导致在入射方向上和一定波长处的辐射减弱,因此表现为吸收。 求解辐射传能方程,可得到从太阳或恒星表面向外的辐射强度表示式为: 只有知道源函数: 的具体形式和某些假定之后,才能具体计算出太阳和 恒星表面的辐射强度 I λ( θ)。实际上太阳表面任一点与日轮中心点在太阳球心的张角就是 θ。因此对某一确定的波长 λ I λ( θ)表示在此波长处太阳表面辐射强度从日轮中心向日轮边缘的变化。实测结果和 理论计算均表明,太阳辐射主要功率所在的可见光和近红外波段, I λ( θ)从日轮中心( θ=0)向日轮边缘( θ=90°)过渡时, λ I λ( θ)逐渐变小。在日轮中心附近减小不太明显,但到边缘附近 λ I λ( θ)迅速下降。故在可见光和近红外波段拍摄的太阳照片上可看到太阳边缘明显变暗,这一现象称为太阳的 临边昏暗。 理论分析得知,日轮中心附近的辐射主要来自光球低层,那里温度较高,辐射较强,显得较亮;而日轮边缘附近的辐射来自光球上层,该处温度较低,辐射较弱,显得较暗。因此太阳临边昏暗现象是光球温度随高度增大而下降的直接反映。另一方面,对于日轮上任一固定测点( θ确定), λ I λ( θ)表示该测点处辐射强度随波长的变化,就是连续光谱的能量分布。而 λ I λ( θ)对 θ的积分就表示整个日轮上所有点辐射总合成的平均能谱分布,相当于不可分辨的遥远 恒星的情况。因此,通过实测得到的太阳表面辐射中连续能谱分布及其临边昏暗规律,与通过某些假定和源函数 S λ的具体形式后求解辐射转移方程得到的 理论 λ I λ( θ)进行比较,可探求太阳 大气中各种物理参数如温度、压力、密度和电离度等随深度的变化,亦即建立太阳或 恒星的 大气模型。 吸收谱线研究 正常恒星的光谱是连续光谱上叠加许多暗黑的谱线,称吸收线。吸收线中的辐射强度并非为零,但比附近连续光谱的辐射弱,显得暗黑。不同吸收线有不同的强度和宽度。吸收线的中心波长对应于各种原子和离子的能级跃迁。恒星光谱中存在离散的吸收谱线的事实表明,恒星大气除了能对辐射作连续波长变化的吸收(称为连续吸收)外,还存在与能级跃迁相对应的特定波长的非连续吸收(称为选择吸收)。虽然吸收线所涉及的辐射能量在恒星大气的能量平衡中作用不大,然而观测和研究吸收线往往可比分析连续谱获得更为详尽的恒星大气知识。首先是研究吸收线可获知恒星大气的化学组成。而且,吸收线中辐射强度随波长的变化(称为谱线轮廓)和整条谱线的总强度(称为谱线等值宽度)中同样包含着恒星大气结构和物理过程的丰富信息。研究太阳表面不同区域光谱和恒星光谱中吸收线的轮廓和等值宽度,可推测吸收线形成区中温度、密度、压力、物质运动速度甚至磁场分布等更为详细的知识。不过与连续谱研究相比,谱线的研究在观测上和理论上遇到的困难更多。观测方面必须得到具有足够高色散和分辨率的光谱资料,因此对观测设备有较高的要求;而在理论上,为了准确地解释观测到的谱线轮廓,在多数场合必须考虑太阳或恒星大气中的不均匀性和动力学特性,有时还会涉及处理非局部热动平衡态问题。 吸收谱线的研究可分为谱线轮廓和生长曲线两种。在谱线轮廓方面,主要是建立适用于谱线波长范围的谱线辐射转移方程。为此除了考虑连续吸收系数外,还需要引入表明谱线存在的选择吸收系数,并确定谱线特有的源函数。确定选择吸收系数时,必须讨论复杂的谱线加宽机制问题。源函数则涉及恒星大气模型的应用。然后在某些基本假定下,求解谱线的辐射转移方程,得到理论的吸收谱线轮廓,再与实际观测到的谱线轮廓相比较,获取关于恒星大气结构和物理过程的知识。 在生长曲线的研究中,则是先从理论上推导出表征吸收线总强度的谱线等值宽度与产生该谱线的低能级原子数目的关系,称为理论生长曲线。另一方面,利用观测到的多重谱线得到一系列观测谱线等值宽度数据,构成观测生长曲线。把观测生长曲线与理论生长曲线进行比较,就可推测出恒星大气的化学组成、原子的激发温度、热运动速度、湍流速度和阻尼常数等。生长曲线方法的优点就是无须利用高色散的光谱观测资料,这一点尤其适用于暗弱恒星光谱的分析。 少数恒星光谱中除了吸收线外,还存在发射谱线,有些恒星甚至以发射线为其光谱的主要特征。发射线一般是由离星体较远处的稀薄气体,即星周气体产生的,而星周气体往往是由星体抛射出去的。发射谱线的强度和轮廓与星周气体的大小、形状、密度和运动方式等密切相关。因此对恒星发射线的观测和研究可获得关于星周气体结构和物理过程的知识。恒星发射线的研究也是恒星大气理论研究中的一个重要课题,其研究方法与吸收谱线的研究有些类似。
天文学
光学天文学
缩焦器
缩焦器( focal reducer ),在望远镜的焦点处配置的使焦距缩小的光学系统。望远镜的通光口径是一定的,焦距缩短,相对口径就增大,即光力增强。缩焦器常由折反射系统构成,但也有用折射系统的。它通常加在卡塞格林焦点和主焦点(或牛顿焦点)处。加在卡塞格林焦点的缩焦器,常使它产生相当于主焦点的、或更大的相对口径。加在主焦点(或牛顿焦点)上的缩焦器,则产生比主焦点系统更大的相对口径(大到等于1,甚至更大)。通过缩焦器可进行强光力的直接照相等工作。也常在缩焦器前加准直镜系统,使光先变成平行光,以加入需要在平行光中工作的光学元件,如法布里-珀罗干涉仪等,然后再让光进入缩焦器。
天文学
光学天文学
折反射望远镜
折反射望远镜( catadioptric telescope ),物镜由反射和透射元件相组合的光学望远镜。鉴于单一的折射元件或反射元件都不能良好地成像,19世纪初曾有多人提出过在透镜组中间置入反射镜,以期达到比消色差透镜更好的成像效果的设想。1931年,德国光学家B.V.施密特发明了在球面反射镜前置一非球面薄透镜的望远镜光学系统,不仅光力强、视场大,而且像差小,成为世界上第一个也是最佳的一种折反射望远镜。后人称之为施密特望远镜(见天文仪器)。按此种光学系统制作的照相设备称为施密特照相机,广泛用于照相巡天,为天文学的进展作出重大贡献。20世纪30年代之后,还发明了马克苏托夫系统、贝克–纳恩系统、贝克–施密特系统、超施密特系统等类似的折反射望远镜。折反射望远镜的大小通常用通光口径和反射镜口径表示,如80/120厘米、60/90厘米。
天文学
恒星与银河系
巨星
巨星(汉语拼音:jù xīng),(giant),体积和光度比相同光谱型的主序星大,比超巨星小的恒星。在赫罗图上,巨星分布在主序星和超巨星之间,在MK二元光谱分类系统中(见恒星光谱分类),光度级为Ⅲ。肉眼可见的大角、五车二等都是巨星。从恒星演化的观点,巨星是继主序之后的一个演化阶段。一个太阳质量的恒星在主序阶段将待上100亿年,而只有1000万年的时间作为一个红巨星存在。这种巨星的结构明显不同于主序星,按模型计算,它具有每立方厘米105克的中央高密度,离中心1/10半径时,密度降到1克/厘米3以下,它的主要部分是比地球大气还要稀薄的气体。
天文学
天体测量学
空间天体测量学
空间天体测量学( space astrometry ),利用现代空间技术将望远镜发送到地球外层空间进行天体测量的一门学科,是在人造卫星诞生后才兴起的天体测量学的新分支。长期以来,天体测量工作都是在地面上进行的。地面观测受到各种外界因素的干扰,主要是大气和重力的影响。和地面观测相比,空间天体测量有下列优点:①由于没有大气折射,可消除折射带来的观测误差;②由于不存在大气对某些波段的选择吸收,能用可见光和其他所有波段进行天体测量;③由于没有大气漫射,天空总是黑的,在仪器工作期间可连续进行观测;④由于没有大气闪烁,得到的星像质量较好,角距离很小的双星和暗星也可观测到(见天文宁静度);⑤由于没有重力,望远镜镜筒不会弯曲。 空间天体测量可以通过载有望远镜的卫星进行巡天观测,借以获得有关卫星运动和恒星间相互位置的参数,其精度大大高于地面观测。这种观测不是相对于赤道和春分点进行的,所以只能得到天体之间的相对位置,还必须通过射电观测等方式,才能得到绝对位置。 利用空间天体测量的优点,可进行多方面的研究工作。例如,改进基本星表FK4的系统(见星表),并把它同将来由射电天体测量建立的惯性参考系联系起来,测定天体的视差和自行,进而精确地确定银河系的距离尺度,并确定光度大的恒星和某些特殊恒星的绝对星等;测定星等11~12等的恒星和星系核的角直径;对彼此距离很近、地面观测无法分开的分光双星进行观测,确定天体的质量,从而改进大质量恒星的质光关系。
天文学
太阳与太阳系
闪光谱
闪光谱( flash spectrum ),日全食的食既和生光的瞬间,在太阳边缘闪现的色球发射线光谱。日食时光球的光被月球掩盖,散射光很小,色球底的起点定得比非日食时准,所以这种资料非常珍贵。 可以用有缝的或无缝的摄谱仪拍摄闪光谱,但有缝摄谱仪的狭缝对太阳的位置不易定准,所以多用无缝摄谱仪来拍摄。食既和生光时由月球边缘遮蔽太阳边缘所构成的细眉形色球本身,就起了狭缝的作用,一条条光谱线实际上就是色球那部分的单色像(见太阳单色像)。闪光谱持续时间很短,约几秒钟,拍到的是日面上各个高度在视线方向的累积强度,要把两张相继拍得的底片谱线强度相减,才可得出相应的色球层次的发射光谱。因此,观测时要求快速拍片以取得高空间分辨率的资料。 太阳闪光光谱 分析闪光谱,首先应把不同的谱线在不同高度处的强度标出来,并算出其梯度值。不同的谱线强度随高度变化的情况各不相同。低激发谱线在1,500公里处强度就已经降得很低,而高激发谱线可延伸到6,000公里或更高处。这可能是因为温度从色球底层极小处开始回升,直至106K。闪光谱底片上不仅有许多发射线,而且还有弱的连续辐射。它们是由负氢离子发射和汤姆孙散射(见恒星大气的吸收和散射)造成的。在巴耳末系限的短波侧,还重迭有自由电子跳到氢第二能态而产生的巴耳末连续辐射。各个波区不同高度的连续辐射资料中蕴藏着很多信息,利用它们同电子密度、氢密度依赖关系的差别,可求出电子温度、电子密度随高度分布的情况,从而建立色球模型。闪光谱中氢线占很突出的地位。现在拍到的最高项巴耳末线已达H37,因为低项巴耳末线自吸收比较大,所以分析起来比较困难。研究氦线的困难要小一些,因为可见光区的氦线自吸收都较小。从这些谱线的研究中发现,色球并不处于热动平衡状态,而色球的静力学平衡也被破坏。把氦线与巴耳末连续带加以分析比较,就可得出太阳大气中氢与氦的含量比:在3,000公里以上高度大约为10:1,它并不随高度变化。经过分析,针状物(日芒)中的氢-氦含量比也是如此,不过在1,000~3,000公里高度空间,针状物中氢的含量较大。这一现象尚无确定的解释。闪光谱中数量最多的是金属线,它们的梯度值相差非常大,除了电离钙的共振线之外,金属线的强度下降得很快。即使如此,其标高(见太阳大气标高)也有250~300公里,比静力学平衡预计的100公里要大得多,原因尚不清楚,可能是湍流的作用。
天文学
天文学
行星
太阳系的行星和矮行星。图中唯大小依照比例,距离未依比例 水星,太阳系八大行星之一 金星,太阳系八大行星之一 地球,太阳系八大行星之一 火星,太阳系八大行星之一 木星,太阳系八大行星之一 土星,太阳系八大行星之一 天王星,太阳系八大行星之一 海王星,太阳系八大行星之一。旅行者二号星际探测器在1989年7月拍摄的照片。海王星大气层的甲烷优先吸收了红色光束,使得整个星球呈现蓝色   行星(汉语拼音:xíng xīng;英语:planet),通常指自身不发光,环绕着恒星的天体。其公转方向常与所绕恒星的自转方向相同(由西向东)。一般来说行星需具有一定质量,行星的质量要足够的大(相对于月球)且近似于圆球状,自身不能像恒星那样发生核聚变反应。2007年5月,麻省理工学院一组太空科学研究队发现了已知最热的行星(摄氏2040度)。远在古代人们就注意到,在天穹上除太阳和月球外,还有5颗明亮的星也不断地穿行于众多星辰之间,遂将彼此之间的相对位置几乎永不改变的星称为恒星,而将时时变化方位的金星、木星、水星、火星和土星这5颗星称为行星。   随着一些具有冥王星大小的天体被发现,“行星”一词的科学定义似乎更形逼切。历史上行星名字来自于它们的位置(与恒星的相对位置)在天空中不固定,就好像它们在星空中行走一般。太阳系内肉眼可见的5颗行星水星、金星、火星、木星和土星早在史前就已经被人类发现了。16世纪后日心说取代了地心说,人类了解到地球本身也是一颗行星。望远镜被发明和万有引力被发现后,人类又发现了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分类为类冥天体)还有为数不少的小行星。20世纪末人类在太阳系外的恒星系统中也发现了行星,截至2013年7月12日,人类已发现910颗太阳系外的行星。   2006年国际天文学联合会(IAU)第26届大会通过了一个《行星定义》,凡满足以下三个判据的天体定义为行星:①绕日运行;②近球形状;③轨道清空。满足①、②两个判据且不定卫星的天体定义为矮行星;仅满足①一个判据的天体定义为太阳系小天体。根据上述《行星定义》,太阳系共有八个行星,即水星、金星、地球、火星、木星、土星、天王星和海王星。   人类对行星的认识和研究可以追溯到遥远的古代,例如在中国的甲骨文里就有关于木星的记载。战国时期有了“五星”的说法,即:辰星、太白、荧惑、岁星、镇星(或填星),它们是这五颗行星在古代更为通用的名称。以后又有“五行”、“游星”、“惑星”以及把日、月和五星合称为“七曜”。在古代西方,五大行星很早就以神话人物的名字来命名。 目录 1 行星的定义 2 行星的名称及来历 3 太阳系内的行星 4 其它恒星系的行星 5 研究历史 5.1 古典时代 5.2 日心说时代 5.3 新发现时代 5.4 太阳系外时代 6 行星概观 6.1 最古老的行星:“M4”的星团内行星 6.2 最年轻的行星:金牛座内行星 6.3 最受注目的行星:火星 6.4 最大的行星:“TrES-4” 6.5 最具居住条件的行星:“581c” 6.6 最靠近地球的行星:金星 6.7 距地球最远的行星:“OGLE-TR-56b” 6.8 最怪的行星:“HAT-P-2b” 6.9 卫星最多的太阳系行星:木星 7 搜寻太阳系外行星的方法 7.1 看看恒星是否在跳摇摆舞 7.2 观测恒星的光谱 7.3 观察恒星的光度变化 7.4 利用天然望远镜方法 行星的定义   行星定义直到2006年8月24日才有了一个比较明确且可以被接受的文字叙述。在这之前,仅管行星一词已经被使用了数千年,但令人惊讶的是,科学界始终没有给过行星明确的定义。进入21世纪后,行星的认定成为一个备受争议的主题,这才迫使天文学界不得不为行星做出定义。   数千年来,“行星”一词只被用在太阳系内。当时天文学家尚未在太阳系以外发现任何行星。但从1992年起,人类陆续发现了许多比海王星更遥远的小天体,而且其中也不乏与冥王星大小相当者,这使得有资格成为行星的天体由原有的9颗增加至数打之多。1995年,科学家发现了第一个太阳系外行星飞马座51。之后,陆续发现的太阳系外行星已经有数百颗之多。这些新发现不仅增加了潜在行星的数量,且由于这些行星具有迥异的性质──有些大小足以成为恒星,有些又比我们的月球还小──使得长久以来模糊不清的行星概念,越来越有明确定义的必要性。   2005年,一颗外海王星天体,阋神星(当时编号为2003 UB313)的发现,使得对行星做明确定义的必要性升至顶点,因为它的体积比冥王星(在当时是已被定义为行星的天体中最小者)还要大。国际天文学联合会(IAU),由各国的天文学家组成负责为天体命名与分类的组织,在2006年对此问题做出了回应,发布了行星的定义。依据这最新的定义,行星是环绕太阳(恒星)运行的天体,它们有足够大的质量使自身因为重力而成为圆球体,并且能清除邻近的小天体。未能清除轨道内小天体的则被纳入一个新创的分类,称做矮行星。除了以上两类,其他围绕太阳运行的天体则被称为“太阳系小天体”。   按照以上定义,太阳系有八个行星:水星、金星、地球、火星、木星、土星、天王星和海王星,而冥王星被排除在外。至2007年7月为止,已获承认的矮行星则有冥王星、谷神星和阋神星,2008年7月才增加了第四颗鸟神星,又于同年9月增加了第五颗妊神星。但国际天文学联合会的这项决议并无法弭平所有争议,部分 第26届国际天文联会中国代表的译稿   2006年8月24日星期四晚在布拉格召开的国际天文学联合会已就行星和太阳系中的其它天体做出了最后的定义。以下是最终决议:   现代的观测正在改变着我们对行星系统的认识。天体的命名应当反映这些最新的知识,这一点特别适用于行星这个名词。名词“行星”源自描画“漫游者”,那时只知道它们是天空中移动的光点。最近的发现使我们能用新得到的科学信息创建新的定义。   IAU决议把行星和太阳系中的其它天体定义为如下不同的三类:   (1)行星(planet)(注1)是一个具有如下性质的天体:   (a)位于围绕太阳的轨道上,   (b)有足够大的质量来克服固体应力以达到流体静力平衡的形状(近于球形),以及   (c)已经清空了其轨道附近的区域。   (2)“矮行星”(dwarf planet)是一个具有如下性质的天体:   (a)位于围绕太阳的轨道上,   (b)有足够大的质量来克服固体应力以达到流体静力平衡的形状(近于球形)(注2),   (c)还没有清空了其轨道附近的区域,以及(d)不是一颗卫星。   (3)其他所有围绕太阳运动的天体(注3)被定义成“太阳系小天体”(small solar system bodies)。   注1:八颗行星是:水星、金星、地球、火星、木星、土星、天王星和海王星。   注2:IAU将建立一个程序对接近“矮行星”和其他分类边界的天体进行评估。   注3:目前这些天体包括绝大多数的太阳系小行星(asteroid)、绝大多数的海外天体(TNO)、彗星和其他小天体。   IAU进一步决议:   根据上述的定义冥王星(Pluto)是一颗“矮行星”,并且被认定成新一类海外天体的原型。(twg) 行星的名称及来历   在中国,根据西汉《史记、历书》记载“黄帝考定星历,建立五行,起消息(修正历法,订出正月起始)。”   《尚书·舜典》:“在璇玑玉衡以齐七政。”孔颖达疏:“七政,其政有七,于玑衡察之,必在天者,知七政谓日月与五星也。木曰岁星,火曰荧惑星,土曰镇星,金曰太白星,水曰辰星。   在西方,行星(planet)一词首见于古希腊语,指在固定的星空中游荡的天体(asteres planetai)。这不仅包含当时已知的五个目前被认为是行星的天体(水星、金星、火星、木星和土星),也包含太阳和月亮。但是,在当时已经使用五大和七大这样的修饰词来指明是否包含太阳和月亮,因为行星一词在当时就有歧义。   在日心说取代地心说成为被普遍接受的天文学理论时,太阳不再被列为行星,而地球替代了它的名额。在1610年伽利略发现木星的卫星(史称伽利略卫星)、1659年发现土星的卫星泰坦、1673年又发现土卫五(Rhea)和土卫八(Iapetus)之后,月亮也被从行星中除名。但是这些新发现的土星和木星的卫星最初也被称为行星,因为卫星一词(moon)当时只被用来称呼月球。   在1781年,天文学家威廉·赫协尔于搜寻双星时,在金牛座中发现一颗他认为是彗星的天体,当时他没有想到这个天体会是一颗行星。因为完美的宇宙中只有五颗行星的观念深植在当时的科学界中。但是,不同于彗星的是,这个天体以接近圆的轨道在黄道面上绕着太阳。最后,这个天体成为太阳系的第七颗行星,并被命名为天王星。   1846年海王星的发现,是由于造成天王星轨道不规则的变化,科学家认为这是由于天王星外尚有其他行星,其引力造成的天王星轨道的扰动。但海王星轨道的计算位置也与观测位置不能符合,这导致了1930年冥王星的发现。后来发现冥王星的质量太小,不足以造成海王星的轨道扰动,但航海家2号测量的结论是海王星的质量被高估了。   冥王星的一些特征不同于旧有的行星:轨道不能被视为圆形、质量不足以造成轨道摄动、而且不在黄道面上。天文学家因此开始思考如何给行星一个定义。 太阳系内的行星   由于1801年元旦被意大利天文学家皮亚齐发现谷神星时,曾依据“提丢斯─波得定则”来定义它为行星,但后来以望远镜观测看不到视圆面,以此定其直径比月球还小,在1802年起短短六年间,相继发现类似轨道之三颗小行星,在18年纪的首数十年间曾同时并列在行星之列(在1850年曾出现18颗行星的纪录),至1847年发现5号小行星“义神星”后,欧洲天文学家始为该组陆续发现之小天体另外归类为“小行星”,以“行星爆炸论”为由把该组小行星降格为与彗星、行星卫星的一类统称为“小行星”(minor planets)并沿用至今。   而1930年发现冥王星后,太阳系的行星被约定俗成为9颗(亦即九大行星),但经测定,其质量、直径、偏心率相对其它八颗相距甚远,根本不能称为“大行星”,而自1992年起陆续发现冥王星外与冥王星相若的天体;1999年初,有传媒报道部分天文学家曾提倡把体积与其他行星相比较悬殊的冥王星剔除太阳系之列,IAU曾为此于该年2月5日澄清并无此事,但社会与科学界亦开始讨论冥王星应否列入行星与一直只被约定俗成的行星定义。而此时亦开始陆续发现多颗在库伯带内绕太阳公转的天体。   自2005年7月公布发现冥外天体阋神星(当时暂称“齐娜”)以后,因其比冥王星直径还大,以往曾闹得沸沸扬扬的“十大行星”的话题亦甚嚣尘上,为此IAU在2006年初组织“行星定义委员会”,因为更动名字将会影响至所有相关科学书籍、百科全书、中小学教科书以至相关设备带来更动,因而社会十分重视。   2006年8月24日在捷克首都布拉格举行之第26届国际天文学联会上的定义,初时曾提出包括阋神星、冥卫一与谷神星的十二行星,但争议与反响颇大,亦引起天文爱好者与民间热烈讨论;至8月24日下午第26届国际天文学联会上的定义:太阳系有八颗行星(决议时曾出现“经典行星”一词,指的也是这八颗),分别为水星、金星、地球、火星、木星、土星、天王星与海王星。质量不够的将会被IAU会议决议归类为矮行星(如冥王星)或太阳系内小天体(如小行星、彗星等)。    以行星表面岩质划分 类地行星(又称“岩质行星”)──即水星、金星、地球和火星,表面是岩石固体。 类木行星(又称“气体行星”)──即木星、土星、天王星和海王星,主要成分是气体。   以行星视运动规律划分(此分类方法因以地球为界,故必会忽略地球) 内侧行星─太阳系中地球轨道内侧的行星,包括水星与金星。 外侧行星─太阳系中地球轨道外侧的行星,包括火星、木星、土星、天王星、海王星。 其它恒星系的行星   至2009年2月,人们在其他恒星身上一共发现了339颗系外行星,不少均拥有比木星高的质量。也有一些行星,其体积比较小,例如脉冲星PSR B1257+12、天琴座μ星、巨蟹座55及GJ 436均各自拥有与地球差不多质量的小型行星,而Gliese 876一颗达地球质量6至8倍的行星,可能拥有岩石结构。   人们对新发现的大型系外行星仍未完全了解,大多估计其物质构成与太阳系的大型行星类似,又或是从未见过的大型氨行星或碳行星。值得注意的是,一些大型行星在极接近恒星的地方公转,拥有近乎完美的圆形轨道,这些行星被称为“热木星”,它们比太阳系的大型行星接受更大量的太阳辐射,造成其表面温度极高。也有一种热木星,其大气会被恒星的热力逐步蒸发并流失,并以彗尾形态释出,它们被分为Chthonian型行星。   太阳系外行星 (Extrasolar planet) 是环绕其他恒星公转的行星,长久以来,人们认为其他恒星和太阳一样,均有行星环绕其恒星公转,但一直未能证实。直至1992年PSR B1257+12被证实以来,至今已有百多个太阳系外行星被发现。这些发现增加了对外星人存在与否的问题提出了支持的观点。   现时在其他恒星发现的行星大多是类似木星的气体行星,有的质量甚至比木星还要大。质量较小的行星有脉冲星PSR B1257+12的三颗与类地行星相若的天体,以及位于天坛座μ星的一颗有14个地球质量的行星。   也有一种行星,没有围绕特定的恒星公转,它们像是宇宙的流浪客,称为星际行星(Interstellar planet)。现时人们并没有发现任何此类行星,只能靠使用电脑模拟来推测。   现时人类的科技仅能侦测质量较大、公转周期较短的行星。但随着科技的进步,更强的望远镜得以建造,在未来可望能发现更多质量较小及公转周期较长的行星。 研究历史   从古典时代的神圣的游星演化到科学时代的实在的实体,人们对行星的认识是随着历史在不停地进化的。行星的概念已经不仅延伸到太阳系,而且还到达了其他太阳系外系统。对行星定义的内在的模糊性已经导致了不少科学争论。 古典时代   古人观察星空,发现天体分作两类:一类固定在天球上,组成各个星座,形成一幅永恒的天空背景,称之为恒星;另一类天体在黄道附近运行,不断穿过黄道上的十二个星座,称之为行星。这些行星包括七颗,分别是太阳和太阴(月球),以及金木水火土五个肉眼可见的经典行星。它们在天空中极为特殊:一方面,它们不断运行,不断进入不同的星座;另一方面,它们极为明亮,全天成千上万颗星体中,七颗行星亮度分别排行第1,2,3,4,5,6,9。他们对神学、宗教宇宙学和古代天文学都有重要的影响。在古代,天文学家记录了一些特定的光点是相对于其他星星如何移动跨越天空。古希腊人把这些光点叫做“πλάνητες ἀστέρες”(即planetes asteres,游星)或简单的称为“πλανήτοι”(planētoi,漫游者),今天的英文名称行星(planet)就是由此演化出来的。在古代希腊、中国、巴比伦和实际上所有前现代文明中,是人们几乎普遍的相信,地球是宇宙的中心,并且所有的“行星”都围绕着地球旋转。会有这种认识的原因是,人们每天都看到星星围绕着地球旋转,而且看起来好像是常识的认为,地球是坚实且稳定的,应该是静止的而不是会移动的。 日心说时代   日心说确立了太阳在天空中心的地位,太阳不动而地球在运行,因此地球就取代了太阳的地位成为行星,太阳则被归入恒星。   卫星的概念在稍后也随着伽利略卫星的发现逐渐被接受,有一个短暂时期,这些卫星都被认为是行星,很快行星被限定必须直接围绕太阳运行,因此月球也被排除在行星行列之外。   最终,日月金木水火土七大行星变为地金木水火土六大行星。 新发现时代   1781年,第七颗行星天王星被发现;   1801年,谷神星被发现,有长达49年之久的时间被称为第8颗行星;   1846年,第八颗行星海王星被发现;   1930年,冥王星被发现,有长达76年之久的时间被称为第9颗行星;   新时代发现新的大行星,同时也发现新的绕日运行的较小天体。1850年,谷神星因尺寸太小,且发现一系列更小的同类型星体,其行星地位被免除,同时行星的定义出现一个不成文的概念:并非所有直接绕太阳公转的天体都是行星,行星必须足够大且卓尔不群。20世纪发现的冥王星与谷神星的地位非常相似,它也因尺寸太小,且发现一系列更小的同类型星体(还包括一颗较大的同类型星体阋神星),而于2006年被降格为矮行星。冥王星的行星地位之争,把原有不成文的概念确立成准确定义:直接绕太阳公转、流体静力平衡(足够大)、清空其轨道(卓尔不群)。 太阳系外时代   虽然我们无法通过天文望远镜直接观测系外行星,但通过间接手段,包括观测恒星运动、掩星等等,天文学家已发现数百颗太阳系外的行星。 行星概观 最古老的行星:“M4”的星团内行星 “M4”的星团内行星,位于球状星团M4的核心处,围绕着白矮星和脉冲星(左下方两个亮点)转动,这两颗天体曾经分别是恒星和中子星   2003年,天文学家发现了一颗寿命为127亿年的行星,这也是迄今为止人类所知的最古老行星。这颗气状行星大小与木星相当,质量相当于木星的2.5倍,处于代号为“M4”的球状星团核心区域附近。该星团包含的恒星数量在10万颗以上,位于距地球约5600光年的天蝎星座。   这颗行星的年龄是地球以及其他所知行星的两倍,几乎与宇宙“同岁”。它围绕由一颗脉冲星和一颗白矮星组成的双星系统运转。最初,科学家在定义它的身份时,存在诸多争议,后来还是在“哈勃”望远镜的帮助下,科学家们才精确地推算出它质量仅为木星的2.5倍,用恒星或褐矮星的标准来衡量都显得太小,只能是一颗行星。   值得一提的是,这颗行星几乎是气体的,上面没有生命存在,因为它围绕的是一颗垂死的恒星,无法向地球一样接收到生命所需的光和热。然而这颗行星的早年是在类似太阳的年轻恒星身边度过的,所以它很可能曾经是另一个地球,当我们的太阳甚至还没有亮起来的时候,它已经存在了孕育生命的机会。   正是基于它的发现,科学家们也不得不重新考虑行星形成的时间和方式,以及生命形成的时间。 最年轻的行星:金牛座内行星   美国航天航空局2004年对外宣布,他们发现了一颗形成不超过一百万年的“婴儿”行星。这颗行星很可能是目前已知的所有行星中最为“年轻”的。   这颗“婴儿”行星大约诞生在100万年前,属于距地球420光年的金牛座,并围绕着一颗年龄与之接近的恒星公转。目前研究人员已经发现了100多颗太阳系外的行星,但这些行星基本都在10亿岁以上。而我们生活的地球则有45亿岁,已经进入中年。   说起这颗行星的发现,过程颇为有趣。天文学家最初利用“斯皮策”红外线望远镜对金牛座5颗恒星进行观察。科学家在金牛座“CoKu4号”恒星周围的灰尘带发现了一个类似炸面圈的洞,尘埃盘上发现一个环状区域没有尘埃。专家们根据目前通行的行星形成理论推断,这可能意味着该处的尘埃物质已经聚集形成了一颗行星。这颗行星可能是通过把周围的灰尘凝聚在一起而产生的。 最受注目的行星:火星   提起火星,人们总会联想到科幻电影里的外星人。或许是因为火星在太多电影和小说中充当主角,人们在现实生活中也对火星的探测活动充满了期待。40多年来,前苏联、美国、日本和欧洲共计划了30多次火星探测,尽管其中2/3的活动以失败告终,但科学家期望在火星上寻找生命迹象的热情却从未因此而减退。   火星是太阳系九大行星之一。除金星以外,火星离地球最近。与地球相比,火星的质量比地球质量小1/9,半径仅为地球半径的1/2左右。但火星在许多方面与地球较为相像。   火星是唯一能用望远镜看得很清楚的类地行星。通过望远镜,火星看起来像个橙色的球,随着季节变化,南北两极会出现白色极冠,在火星表面上能看到一些明暗交替、时而改变形状的区域。空间探测显示,火星上至今仍保留着大洪水冲刷的痕迹。科学家推测,火星曾比现在更温暖潮湿,可能出现过生命。 最大的行星:“TrES-4” TrES-4,图注:红矮星Gliese 581的三颗行星模拟图,图中最显著的为“581c”,蓝色的为“581b”,而最远处红色的为“581d”   “TrES-4”是天文科学家日前最新发现的一颗行星,也是迄今为止人类发现的宇宙中最大的一颗行星。在距离地球约1435光年外的太空围绕一颗恒星转动。它的直径估计是太阳系最大行星——木星——的1.7倍,体积接近于木星的2倍,表面温度高达1327摄氏度,是一颗主要由氢气组成的巨大球体。   令科学家啧啧称奇的是,“TrES-4”的体积足足有地球的20倍,但密度却低得惊人。它的密度只有0.2克每立方厘米,如同一种轻质木材,与岩石构造、密度高达5.52克每立方厘米的地球相比相去甚远。正是因为其密度低,这颗行星对其外部大气的吸引力相对较弱,因此一些大气可能逃逸了出去,形成了彗星状的拖尾。   不仅如此,这颗星球上可能还是个松软的“棉花球”,无法提供一块坚硬的表面,一旦重物踏上去可能就有陷进去的危险。追究其原因,连科学家也解释不出所以然。 最具居住条件的行星:“581c”   地球是宇宙中人类唯一能栖居的星球吗?这个困惑推动着天文学家不断望向宇宙深处。科学家宣布首次在太阳系外发现了一颗可能适合人类居住的星球,它的温度、体积估计与地球相似,而且还可能有液态水。这一发现被认为是“搜寻宇宙生命的一个重要里程碑”。   这颗新发现的行星被命名为“581c”。它围绕着一颗叫Gliese581的红矮星运转。红矮星是一种低能量的、体积较小的恒星。红矮星发射暗弱的红光,比太阳持续存在的时间长。Gliese581的质量是太阳的1/3,亮度只有太阳的1/50。   “581c”上温度适宜,平均温度在0到40摄氏度之间。它是迄今发现的一颗最小行星,也是第一颗位于母星可居住地带的行星,因此增加了它表面存在液态水甚至生命的可能。 最靠近地球的行星:金星   天亮前后,东方地平线上有时会看到一颗特别明亮的“晨星”,人们叫它“启明星”;而在黄昏时分,西方余辉中有时会出现一颗非常明亮的“昏星”,人们叫它“长庚星”。这两颗星其实是一颗,即金星。金星是太阳系的八大行星之一,按离太阳由近及远的次序是第二颗。它是离地球最近的行星。   尽管是地球的“近邻”,人类对于金星的了解却并不比其他行星多。金星有可能是太阳系行星中最热的一颗,表面平均温度达到了470摄氏度。那里没有水,大气中95%都是二氧化碳,而且浓密的云雾和二氧化碳使金星上的温室效应让人窒息。   炎热、昏暗,一片荒漠且充满了暴风,气压比地球上高出100倍,金星的诸多特征使得科学家们的探测工作困难重重。然而围绕在金星上的诸多谜团,比如金星的自转是逆向的,即由东向西,周期约243天,比它绕太阳公转周期225天还长18.3天,这些因素令学者们始终无法放弃对它的探索。   这样的努力终于在2006年4月有了新发现。通过欧洲航天局发射的“金星快车”探测器发回的照片,科学家们惊讶地发现,金星被浓厚的云层完全笼罩,云层的厚度超过20公里。金星南极地区上空竟然有深色的旋涡状结构,周围还有大团苍白的云在旋转。 距地球最远的行星:“OGLE-TR-56b” HAT-P-2b   美国哈佛大学天文学家2003年曾对外宣布说,他们运用一种新的科技发现了一颗名为“OGLE-TR-56b”的行星,这是迄今为止人类发现的距离地球最远的行星。   这颗新发现的行星位于人马星座,与地球相距5000光年。它比以前发现的太阳系外最远的行星还要远30倍,体积比木星稍小,每29小时绕自己的恒星转一周。据观测,“OGLE-TR-56b”表面覆盖着大量铁水,气候环境十分恶劣。 最怪的行星:“HAT-P-2b”   以色列科学家对外宣布说,他们发现了太阳系外的一颗新行星“HAT-P-2b”。它与母星(距离地球大约400光年)非常靠近,它的一年等于地球上的5.6天,因此行星上的气候变化非常大。   令科学家感到怪异的是,“HAT-P-2b”的平均密度是水的6.6倍,比木星的密度大8倍。要知道人类迄今已经发现大约200颗太阳系外的行星,其中14颗沿着椭圆形轨道围绕母星运行。所有已经被发现的行星密度与木星或水的密度大致相同。   此外,这颗新发现的行星轨道也与众不同,与太阳系行星和太阳之间的距离相比,它与其母星之间的距离更短,仅为地球和太阳之间距离的7%。 卫星最多的太阳系行星:木星   木星堪称太阳系内第一大家族,至少有58颗卫星环绕在周围,而且它的这些卫星大多都是最近几年才发现的。木星四颗最大的卫星,最早由伽利略于17世纪发现,技术的发展,使得科学家们在太阳系行星周围观测到的卫星数量不断增多。土星曾经被认为是太阳系中卫星总数最多的行星,目前已知的土星卫星有30颗,但是它最终还是将这一名号拱手让给了木星。 搜寻太阳系外行星的方法   行星自身不发光,而只能反射恒星的光芒。如果把恒星比喻为一台功率强大的探照灯,那么行星就只是站在探照灯边缘的一只小小荧火虫。“探照灯”是如此耀眼,“荧火虫”当然就毫不起眼了。所以我们不能直接看到它们,这是寻找它们最大的难题。科学家意识到,我们必须使用一种间接的方法,现在,科学家已经摸索出四种间接的方法来寻找日外行星。 看看恒星是否在跳摇摆舞   恒星的质量比行星大,所以它的引力也更加强大,它会把行星束缚在自己身边,让行星围绕着自己运转,这已经是尽人皆知的事实,但行星也以自己的引力对恒星施加着影响。从遥远的地方看上去,行星会使恒星的轨道发生周期性的摆动。行星每转一圈。恒星就会“摇摆”一下;从稍稍偏向一边转而稍稍偏向另一边。   实施这种方法的时候,我们可以选定一片天空,透过望远镜拍摄其图像;测定其中各星球的相对位置;然后每过一段时间,对同一片天空重复同样的操作……最后,比较多次拍摄到的图像,观察各星球的运动是呈线形模式还是呈“摇摆”模式。   当然,“摇摆”的幅度是非常微小的,就连比地球大1000倍的木星对太阳产生的影响也十分难辨。只要测量恒星是否有周期性的摆动,就可以判定它是否有行星。第一颗日外星就是这样发现的。   1995年10月,瑞士日内瓦天文台以梅厄为首的天文学家郑重地宣布;距我们40光年远的飞马座51有一颗行星,称为飞马座51B,这颗与太阳光谱相同的恒星以每秒60米的幅度来回摇摆,而且在一年半多的时间里十分稳定,这样稳定的摇摆周期表明它有一个行星。到现在为止,绝大多数行星都是通过这种方法发现的。 观测恒星的光谱   在发现日外行星的道路上,除了使用引力定律之外,还有另一种依靠光学的方法,这就是观测恒星的光谱。遥远的星光带给我们许多信息,它们不仅可以告诉我们它所包含的化学成分,还可以告诉我们许多其他的信息,这就交给我们另一种寻找日外行星的方法。这种方法就是要观察恒星颜色的改变,因为颜色的变化也表明恒星在运动。   美国天文学家乔夫·马西每次观测恒星时,都会把恒星之光分解成光谱,而恒星大气层所吸收的波长则以线条的形式出现于其中,被称为“吸收线”。通过记录“吸收线”,马西就为星光录下了“指纹”,因为这一“指纹”与恒星所处的位置一一对应。假如恒星受到了不可见的行星的拉动,那么光谱中的“吸收线”也会移动。   当一颗恒星向着观测者靠近时,辐射的光波会变短,向蓝端移动,称为蓝移。反之,则会向红端移动,称为红移。只要恒星的光谱中出现了这种变化,那就表明它有行星,是行星对他的拉动才使它的光谱发生了变化。所以通过检测一个恒星的光谱变化,也可以知道它是否有行星。 观察恒星的光度变化   肉眼无法直接观察到光谱的变化,它需要使用到相关的仪器,但是还有另一种利用光学的方法,这种方法比较简单,也更加易于理解。   太阳系的金星在围绕着太阳运行的时候,会跑到太阳的前面,这个时候,它就超出了太阳的光芒,我们会看到,太阳上面出现了一个黑点,这个黑点就是金星。发生这种现象被称之为“金星凌日”,当“金星凌日”发生时,太阳的光芒会略微减弱。天文学家们认为,太阳系外行星在围绕各自的恒星运转时,也会发生类似的现象。通过大型望远镜,我们可以记录下来恒星光芒减弱的过程,这无疑是最可靠的方法。   但是,这种方法有一个弱点,这个恒星系必须要跟我们的视线位于同一个轨道平面上。这样才可以看到它从恒星的表面经过,也正是因为这个原因,它发生的机会很少。所以,迄今,人们在太阳系外总共找到了120多颗,其中只有3颗是根据恒星光芒受遮挡而发现的。   有人认为,在太空中,空间望远镜可以克服地球大气层的影响,可以明确地发现这样的行星,但是试验的结果证明,这样做跟地球上的同行相比,丝毫也没有什么优势。   此外,根据恒星光芒削弱的程度,可以测算出太阳系外行星的质量;根据恒星光谱的变化,可以推算出行星大气的成分。飞马座HD209458有一颗质量与木星相当的行星,与所有其它日外行星不同的是,它与我们的视线位于几乎同一平面,公转周期是3.5254天,当它从恒星表面经过的时候,恒星的光芒就会减弱一点,这个时候,我们就可以检验它的大气成分。检验结果表明,这颗行星含有大量的钠元素,与科学家预言的基本相符,这是首次辨别出日外行星的化学组成。 利用天然望远镜方法   还有一种更加巧妙的方法,这种方法就是利用一种天然的宇宙望远镜,它又被称之为引力透镜。   当一颗行星运行到一颗恒星的前面时间,它会使恒星的光芒减弱,这是因为行星距离恒星太近了。当这颗行星距离恒星足够远的时候,就会发生另一种情况,一种完全相反的变化,那就是它会使恒星的光芒增强,行星就像是一个放大镜,可以汇聚恒星的光芒。   这种情况大大出乎我们的传统理念,但是它又合情合理,符合有关的引力定理。它被称之为引力透镜,这种情况已经被证明确实存在。但是这种情况的发生需要有好几个先决条件,它对行星的质量和行星距离恒星的距离都有着严格的要求,而且它们还跟地球到这个系统之间的距离也有关系,所以这种情况发生的可能性极少,天文学家观测了很多年,一直没有什么结果。   但是,2004年4月,终于有一颗恒星出现了这种情况,于是,第一个用引力透镜方法找到的行星出现了。这颗行星的质量跟木星差不多,隐藏在银河系的中心,距离我们1.7万光年。它和它的母恒星一起组成了一个透镜,让一个更加遥远的恒星光芒变亮了好几天。所以这是一个复杂的引力透镜,这也是用引力透镜这种方法不好使用的一个根本原因。   目前天文学家发现日外行星,只有这四种方法可以使用,其中使用摇摆法是最为可靠的方法,因为不管在哪里,引力定律都适用,恒星和行星相互之间的引力必然要暴露出它们之间的轨道关系。但是这种方法也又一个缺陷,那就是我们只能发现一些大质量的行星,对于那些小质量的行星,它对恒星的引力太小了,它使恒星摇摆的幅度太小,很难发现它们。   在不久的未来,观测日外行星的技术还要获得大发展。技术的中心,将是发展光学技术,也就是要把恒星的光尽量减弱,同时,要把行星的光芒尽量增强。这样的技术将会使更多的行星暴露在天文学家的视野里。   由于用天文仪器搜寻太阳系外行星的难度极大,天文学家一般采用间接的方法:   天体测量法(Astrometry) 天体测量法是搜寻太阳系外行星最古老的方法。这个方法是精确地测量恒星在天空的位置及观察那个位置如何随着时间的改变而改变。如果恒星有一颗行星,则行星的重力将造成恒星在一条微小的圆形轨道上移动。这样一来,恒星和行星围绕着它们共同的质心旋转。由于恒星的质量比行星大得多,它的运行轨道比行星小得多。   视向速度法(Radial Velocity) 视向速度法利用了恒星在行星重力的作用下在一条微小的圆形轨道上移动这个事实,目标现在是测量恒星向着地球或离开地球的运动速度。根据多普勒效应,恒星的视向速度可以从恒星光谱线的移动推导出来。   凌日法(Transit Method) 当行星运行到恒星前方的时候,恒星的光芒会相应减弱。光芒减弱的程度取决于恒星和行星的体积。在恒星HD 209458的例子中,它的光芒减弱了1.7%。天文学家用凌日法发现了恒星HD 209458的行星HD 209458b。   脉冲星计时法(Pulsar Timing) 通过观察脉冲星的信号周期以推断行星是否存在。一般来说,脉冲星的自转周期,也就是它的信号周期是稳定的。如果脉冲星有一颗行星,脉冲星信号周期会发生变化。   重力微透镜法(Gravitational Microlensing) 用重力透镜效应来发现行星的方法。比如行星OGLE-2005-BLG-390Lb就是用这种方法发现的。
天文学
星系与宇宙学
射电星系
射电星系(radio galaxy),探测到射电辐射的星系。一般的星系都有射电辐射。通常系指发出强烈的射电辐射(比一般的星系强102~106倍)的星系。射电星系的射电连续谱一般为幂律谱,且有偏振,谱指数平均为0.75。射电辐射具有非热性质,起源于相对论性电子在磁场中运动时产生的同步加速辐射。有些射电星系的射电辐射流量和偏振常有变化。射电星系的射电形态多种多样,可分为致密型、核晕型、双瓣型、头尾型和包含多个子源的复杂性。射电星系大多为椭圆星系、巨椭圆星系和超巨椭圆星系。射电星系的光谱很像塞佛特星系,多数类似于Ⅱ型塞佛特星系,少数类似于Ⅰ型塞佛特星系。不过,塞佛特星系却是旋涡星系。射电星系同其他也发出强烈射电辐射的星系,如类星体、N型星系 、塞佛特星系、蝎虎座BL型天 体等的关系,尚有待研究。有些射电星系还发出强烈的红外辐射和X射线。
天文学
天体物理学
斯塔克效应
斯塔克效应(Stark effect),原子或分子在外电场作用下能级和光谱发生分裂的现象。为1913年J.斯塔克发现。原子或分子存在固有电偶极矩,在外电场作用下引起附加能量,造成能级分裂,裂距与电场强度成正比,称为一级斯塔克效应;不存在固有电偶极矩的原子或分子受电场作用,产生感生电矩,在电场中引起能级分裂,与电场强度平方成正比,称为二级斯塔克效应,一般二级效应比一级效应小得多。斯塔克分裂的谱线是偏振的。对斯塔克效应的圆满解释是早期量子力学的重大胜利。斯塔克效应应用于原子分子结构的研究。斯塔克效应是谱线增宽的原因之一,当气体放电电流密度较大时,产生大量带电离子,它们对发光原子产生较强的内部电场,引起谱线斯塔克分裂;离子与发光原子的距离不同,谱线分裂的大小不同,叠加的结果导致谱线增宽。等离子谱线的斯塔克增宽可用于内部电场强度和带电粒子密度的测定。
天文学
天文学
星系际物质
星系际物质( intergalactic matter ),存在于星系与星系之间的气体和尘埃。它们有的聚集于两个互相邻近的星系之间,构成星系之间的物质桥;有的位于星系团内,组成星系团的隐匿物质;有的位于星系团之间,形成星系团际物质。星系际物质的气体成分可能是中性气体,也可能是电离气体。星系际物质也和星际物质一样具有消光效应。在一些星系际物质较密集的地方也会形成星系际暗云。目前已发现几个可能是星系际暗云的区域。星系际物质的研究对宇宙学和星系的演化都有极密切的关系。在宇宙学中,宇宙临界密度与宇宙总密度的比值决定空间的几何特征,而星系际物质在宇宙的总密度中占有一定的份量。在星系演化中,一些激扰星系可以抛出物质,进入星系际空间,形成星系际物质。星系际物质也可以为正常星系吸积,或形成新的星系。星系际物质的密度约在5×10-30克/厘米3(在星系团中心附近)到2×10-34克/厘米3(在一般空间)之间。
天文学
恒星与银河系
五车二
五车二(Capella),御夫座a,距离地球43光年。由一对黄巨星组成的密近双星,轨道周期104.023天。由于五车二又近又亮,不仅有很强的光学辐射,也有射电、X射线和红外辐射,各种新的天体物理技术常常把它作为优先考虑的观测对象。爱丁顿研究质光关系时也曾用过五车二的基本参量。两子星的半径分别约为太阳半径的14倍和9倍,质量分别为2.67太阳质量和2.55太阳质量。两子星都有比较强的色球活动和星冕活动。
天文学
太阳与太阳系
太阳巡视
太阳巡视( solar patrol ),对太阳所作的多样化的连续观测。为了监视太阳的各种活动现象,特别是新活动区的出现、特大活动区的形成以及太阳耀斑和爆发日珥等对地球具有重要影响的活动现象,研究它们的发生和发展规律,进而对它们进行预报,许多天文台都对太阳进行从日出至日落的不间断观测。通常都用透过氢原子谱线Hα单色光的色球望远镜(滤光器的透过带半宽大多在0.025~0.05纳米之间)监视太阳活动最频繁的色球层。这些色球望远镜一般配备35毫米照相机或CCD摄像机和屏幕显示。除目视监测外,通常每5分钟左右拍摄一张照片或CCD摄像。当发现太阳耀斑或爆发日珥等剧变现象时,就每分钟甚至半分钟拍照一次。此外,还对各种波段的太阳射电辐射从日出至日落连续观测,记录太阳射电爆发情况。通常至少每天一次或多次用白光拍摄太阳光球,主要是发现新出现的黑子群并跟踪它们的发展情况。
天文学
恒星与银河系
心宿二
心宿二(汉语拼音:Xin Su Er;英语:Antares),天蝎座α,α Sco,Alpha Scorpii,又称大火,一个红超巨星。它是一个光变明显的半规则变星,并与一个蓝矮星组成一个目视双星系统。心宿二还是射电源。
天文学
光学天文学
物端光栅
物端光栅,是置于望远镜入射光瞳处的一种透射光栅,作用同物端棱镜相似,装在小口径望远镜物镜前端。 物端光栅分为两种:一种是间距较大的粗光栅,多用于天体相中的双星定位工作;另一种刻线较密,作用与物端棱镜类似,用来拍摄天体的低色散光谱。
天文学
恒星与银河系
周光关系
周光关系(汉语拼音:Zhou Guang Guanxi;英语:Period-luminosity relation),造父变星的光变周期和光度之间的关系。20世纪初,美国女天文学家H.S.勒维特对小麦哲伦云中的25颗造父变星的研究发现,这些星的视星等几乎线性地随周期的对数的增加而减小。由于它们都在小麦哲伦云中,到太阳的距离近似相等,这实际上反映了绝对星等和周期对数之间的线性关系,后来被称为造父变星的周期光度关系,简称周光关系。由视星等和周期的关系转化为绝对星等和周期的关系,实际上是周光关系的零点问题或定标问题。1915年,美国天文学家H.沙普利率先解决了这个问题。几十年来,周光关系的零点不断改进,还发现周光关系也跟造父变星的颜色有关。利用周光关系,可根据造父变星的光变周期求得其绝对星等,通过与它的视星等的比较,可求得该造父变星或它所在的恒星系统的距离。这是测量星团和星系距离的主要方法之一,故造父变星有量天尺之美称。
天文学
天体力学
开普勒定律
开普勒定律( Kepler’s laws ),关于行星运动的三大定律。德国天文学家J.开普勒仔细分析和归算了B.第谷对行星特别是火星的长时间的观测资料,总结出这三大定律。 ①所有行星的运动轨道都是椭圆,太阳位于椭圆的一个焦点。在以太阳S为极点、近日点方向SP为极轴的极坐标中,行星相对于太阳的运动轨迹为椭圆PP1P2P1′P′,PSP′=2a表示椭圆的长径。 ②行星的向径(太阳中心到行星中心的连线)在相等的时间内所扫过的面积相等,即面积定律。由于扇形P1SP2和P1′SP′的面积相等,因此行星在近日点附近比远日点附近移动得更快。 面积定律示意图 这两条定律是在1609年出版的《新天文学》一书中提出的。 ③行星围绕太阳运动的公转周期的平方与它们的轨道半长径的立方成正比。设T为行星公转周期,则a3/T 2=常数。这条定律是在 1619年出版的开普勒另一著作《宇宙谐和论》中提出的。 这三条定律为万有引力定律的发现奠定了基础。从万有引力定律和牛顿运动定律也可以推出开普勒定律,只是需要对其中第三定律进行修正,即改成: 式中 C为常数, M和 m分别为太阳和行星的质量。
天文学
太阳与太阳系
俘获说
俘获说( capture hypothesis ),太阳系起源学说的一种。这种学说认为构成行星和卫星的物质是太阳形成后从太阳邻近区域或从银河系空间俘获来的。1944年,苏联天文学家О.Ю.施米特提出了“陨星说”。他认为,几十亿年前,太阳在绕银河系转动时,进入一个直径为10光年、与太阳相对速度为每秒5公里的星际云。太阳在云中运行了60万年,俘获了约为太阳质量3%的星际物质。这些物质慢慢形成一个扁平的、由尘粒组成的星云盘,行星和卫星就是在这个盘内形成的。由于原来云内的固体微粒的轨道是各种各样的,彼此碰撞使轨道要素“平均化”,因而所形成的行星轨道就有共面性、同向性、近圆性等特点。他还认为卫星的形成是行星形成的附带结果,而所有行星都是“冷起源”的。还有一些人提出了其他类型的俘获说,如爱尔兰的埃奇沃思、英国的彭德雷和威廉斯以及印度的米特拉等,他们虽然都主张太阳从恒星际空间俘获物质,但他们描述的图像和处理方法彼此间却有相当大的差别。提出俘获说的目的之一是为了说明太阳系角动量分布异常的问题,但计算表明,这种俘获的概率极其微小。同时,这类学说也无法解释太阳系的拉普拉斯不变平面与银道面的交角会大到近62°的问题。
天文学
星系与宇宙学
哈勃距离
哈勃距离(汉语拼音:Ha bo ju li;英语:Hubble distance),指哈勃常数H的倒数H-1具有时间的量纲 。H-1 称为哈勃时间。光在哈勃时间内走过的距离称为哈勃距离。又称哈勃半径。如果取H=50千米/(秒·百万秒差距),则哈勃距离为6000百万秒差距,或200亿光年。对于宇宙年龄小于或等于哈勃时间的那些宇宙模型,哈勃距离就是可以观测到的最大距离。对于其他宇宙模型,哈勃距离没有什么特殊意义。
天文学
天文学
恒星
数以百万计的恒星聚集在一起,图片由哈勃太空望远镜摄得 Fomalhaut是南鱼座方向上一颗明亮、年轻的恒星,与我们的距离不过25光年。早期,红外线观测辨认出一个冷物质带环绕着这颗恒星,近来,其细节被哈勃太空望远镜记录了下来。哈勃摄像机的日冕观测仪有一个遮光板覆盖了来自这颗恒星的眩光。图中环绕着Fomalhaut的偏心环的整齐而清晰的内边缘是轨道上运行着巨大行星的强有力证据,因为只有存在一个巨大行星才能形成和保持细碎天体物质所形成的环状带内边缘的整齐状态。 这个环到Fomalhaut的距离是133个天文单位,被认为是我们太阳系Kuiper带的早期状态   恒星(汉语拼音:hengxing;英语:Star),由自身引力维持,靠内部的核聚变而发光的炽热气体组成的球状或类球状天体。银河系拥有几千亿颗恒星,但在晴朗无月的夜晚,在远离城市的地球表面用肉眼大约可以看到3,000多颗恒星。借助于望远镜,可看到几十万乃至几百万颗以上的恒星。恒星并非不动,因为离地球实在太远,不借助特殊工具和特殊方法,很难发现它们在天球上的位置变化,因此古代人把它们称作恒星。   恒星是大质量、明亮的等离子体球。太阳就是一颗典型的恒星,离地球最近。白天由于有太阳照耀,无法看到其他的恒星;只有在夜晚的时间,才能在天空中看见其他的恒星。恒星一生的大部分时间,都因为核心的核聚变而发光。核聚变所释放出的能量,从内部传输到表面,然后辐射至外太空。几乎所有比氢和氦更重的元素都是在恒星的核聚变过程中产生的。   天文学家经由观测恒星的光谱、光度和在空间中的运动,可以测量恒星的质量、年龄、金属量和许多其他的性质。恒星的总质量是决定恒星演化和最后命运的主要因素。其他特征,包括直径、自转、运动和温度,都可以在演变的历史中进行测量。描述许多恒星的温度对光度关系的图,也就是赫罗图(HR图),可以测量恒星的年龄和演化的阶段。   恒星诞生于以氢为主,并且有氦和微量其他重元素的云气坍缩。一旦核心有足够的密度,有些氢就可以经由核聚变的过程稳定的转换成氦。恒星内部多余的能量经过辐射和对流组合的携带作用传输出来;恒星内部的压力则阻止了恒星在自身引力下的崩溃。一旦在核心的氢燃料耗尽,质量不少于0.5太阳质量的恒星,将膨胀成为红巨星,在某些情况下更重的化学元素会在核心或包围着核心的几层燃烧。这样的恒星将发展进入简并状态,部分被回收进入星际空间环境的物质,将使下一代恒星诞生时正元素的比例增加。   恒星并非平均分布在星系之中,多数恒星会彼此受引力影响而形成聚星,如双星、三合星、甚至形成星团等由数万至数百万计的恒星组成的恒星集团。当两颗双星的轨道非常接近时,其引力作用或会对它们的演化产生重大的影响,例如一颗白矮星从它的伴星获得吸积盘气体成为新星。   天文学家对宇宙中恒星的数量一直有不同的估算。最著名的一个说法是美国天文学家卡尔·萨根在他的著作《千亿的千亿》中提出的一个猜测,认为宇宙中有1000亿个星系,每个星系有1000亿个恒星。而据此天文学家又进一步推测各星系恒星数量约为1000亿的一万亿倍。美国天文学家彼得·范·多昆和天体物理学家查理·康罗伊对来自星系的光强度分析后认为大约有3×1023。 目录 1 基本物理参量 1.1 星等 1.2 恒星光谱 1.3 直径 1.4 质量 1.5 压力 1.6 磁场 2 化学组成 3 物理特性的变化 4 恒星的分类 5 结构和演化 5.1 恒星的结构 5.2 恒星的形成 5.3 原恒星形成 5.4 主序星 5.5 红巨星 5.5.1 大质量恒星 5.5.2 坍缩 6 观测简史 7 恒星命名 基本物理参量   描述恒星物理特性的基本参量有距离、亮度(视星等)、光度(绝对星等)、质量、直径、温度、压力和磁场等。测定恒星距离最基本的方法是三角视差法,先测得地球轨道半长径在恒星处的张角(叫作周年视差),再经过简单的运算,即可求出恒星的距离。这是测定距离最直接的方法。但对大多数恒星说来,这个张角太小,无法测准。所以测定恒星距离常使用一些间接的方法,如分光视差法、星团视差法、统计视差法以及由造父变星的周光关系确定视差等。这些间接的方法都是以三角视差法为基础的。 星等   恒星的亮度常用星等来表示。恒星越亮,星等数值越小。地球上测出的星等称视星等;归算到离地球10秒差距处的星等称绝对星等。使用对不同波段敏感的检测组件所测得的同一恒星的星等,一般是不相等的。最通用的星等系统之一是U(紫外)、B(蓝)、V(黄)三色系统;B和V分别接近照相星等和目视星等。二者之差就是常用的色指数。太阳的V=-26.74,绝对目视星等Mv=+4.83,色指数B-V=0.63,U-B=0.12。由色指数可确定色温度。恒星表面的温度一般用有效温度来表示,它等于有相同直径、相同总辐射的绝对黑体的温度。 恒星光谱   有关恒星的知识主要来自能揭示其物质成分、表面温度和运动状态的光谱研究。恒星的光谱能量分布与有效温度有关,由此可定出O、B、A、F、G、K、M等光谱型(也可称作温度型)。温度相同的恒星,体积越大,总辐射流量(即光度)越大,绝对星等越小。恒星的光度级可分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ,依次称为超巨星、亮巨星、巨星、亚巨星、主序星(或矮星)、亚矮星、白矮星。太阳的光谱型为G2V,颜色偏黄,有效温度约5,770K。A0V型星的色指数平均为零,温度约10,000K。恒星大气的有效温度由早O型的几万度到晚M型的几千度,差别很大。 直径   恒星的真直径可根据恒星的视直径(角直径)和距离计算出来。常用的干涉仪或月掩星方法可测出小到0″.001的恒星的角直径,更小的恒星不容易测准,加上测量距离的误差,所以恒星的真直径可靠的不多。根据食双星兼分光双星的轨道资料,也可得出某些恒星直径。有些恒星也可根据绝对星等和有效温度来推算其真直径。用各种方法求出的不同恒星的直径,有的小到几千米,有的大到109千米以上。 质量   多数恒星存在于双星系统中。天文学家根据某些特殊的双星系统能测出恒星的质量;经过多年的观测,又确定了质光关系。一般恒星质量能根据质光关系进行估算。总的说来,各种不同类型恒星模型代表的质量,与能够通过现实恒星精确测量的对应质量是符合的,这可确信建立的模型的正确性。已测出的恒星质量大多介于太阳质量的百分之几到120倍之间,但大多数恒星的质量在0.1~10个太阳质量之间。恒星的密度可根据直径和质量求出,密度的量级大约介于10-9g/cm3(红超巨星)到1013~1016g/cm3(中子星)之间。 压力   恒星表面的大气压和电子压可通过光谱分析来确定。中性元素与电离元素谱线的强度比,不仅同温度和元素的丰度有关,也同电子压力密切相关。电子压与气体压之间存在着固定的关系,二者都取决于恒星表面的重力加速度,因而同恒星的光度也有密切的关系。见恒星大气理论。 磁场   根据恒星光谱中谱线的塞曼分裂(见塞曼效应)或一定波段内连续谱的圆偏振情况,可测定恒星的磁场。太阳表面的普遍磁场很弱,仅约1~2高斯,有些恒星的磁场则很强,能达数万高斯。白矮星和中子星具有更强的磁场。 化学组成   与在地面实验室进行光谱分析一样,对恒星的光谱也可进行分析,借以确定恒星大气中形成各种谱线的元素的含量。多年来的实测结果表明,正常恒星大气的化学组成与太阳大气差不多。按质量计算,氢最多,氦次之,其余按含量依次大致是氧、碳、氮、氖、硅、镁、铁、硫等。但也有一部分恒星大气的化学组成与太阳大气不同,如沃尔夫–拉叶星,就有含碳丰富和含氮丰富之分(即有碳序和氮序之分)。金属线星和A型特殊星中,若干金属元素和超铀元素的谱线显得特别强。理论分析表明,演化过程中恒星内部的化学组成会随着热核反应过程的改变而逐渐改变,重元素的含量会越来越多。见恒星化学组成。 物理特性的变化   观测发现,有些恒星的光度、光谱和磁场等物理特性都随时间发生周期的、半规则的或无规则的变化。这种恒星叫作变星。变星分为两大类:一类是由于几个天体间的几何位置发生变化而造成的几何变星;另一类是由于恒星自身内部的物理过程而造成的物理变星。几何变星中,最为熟悉的是两个恒星互相绕转,因而发生变光现象的食变星(即食双星)。它们分为大陵五型、天琴座β(渐台二)型和大熊座W型三种。几何变星中还包括椭球变星(因自身为椭球形,亮度的变化是由于自转时观测者所见发光面积的变化而造成的)。物理变星,按变光的物理机制,主要分为脉动变星和爆发变星两类。脉动变星的变光原因是恒星在经过漫长的主星序阶段以后(见赫罗图),自身的大气层发生周期性的或非周期性的膨胀和收缩,引起光度的脉动性变化。理论计算表明,脉动周期与恒星密度的平方根成反比,因此那些重复周期为几百乃至几千天的晚型不规则变星、半规则变星和长周期变星都是体积巨大而密度很小的晚型巨星或超巨星。周期约在1~50天之间的经典造父变星和周期约在0.05~1.5天之间的天琴座RR型变星(又称星团变星)是两种最重要的脉动变星。观测表明,造父变星的绝对星等随周期增长而变小(这是与密度和周期的关系相适应的),因而可通过精确测定它们的变光周期来推求它们自身以及它们所在的恒星集团的距离,所以造父变星又有宇宙中的“灯塔”或“量天尺”之称。天琴座RR型变星也有量天尺的作用。   还有一些周期短于0.3天的脉动变星(包括盾牌座δ型变星、船帆座AI型变星和仙王座β型变星等),它们的大气分成若干层,各层都以不同的周期和形式进行脉动,因而其光度变化规律是几种周期变化的叠合,光变曲线的形状变化很大,光变同视向速度曲线的关系也有差异。盾牌座δ型变星和船帆座AI型变星可能是质量较小、密度较大的恒星,仙王座β型变星属于高温巨星或亚巨星一类。   爆发变星按爆发规模可分为超新星、新星、矮新星、类新星和耀星等几类。超新星的亮度会在很短期间内增大数亿倍,然后在数月到1~2年内变得非常暗弱。这是恒星演化到晚期的现象。超新星的外部壳层形成一个逐渐扩大而稀薄的星云(超新星遗迹);内部则因极度压缩而形成密度非常大的中子星。最著名的银河超新星是1054年在金牛座发现的“天关客星”。现在可在该处看到著名的蟹状星云,其中心有一颗周期约33毫秒的脉冲星。   新星在可见光波段的光度在几天内会突然增强大约9个星等或更多,然后在若干年内逐渐恢复原状。1975年8月在天鹅座发现的新星是迄今已知的光变幅度最大的一颗。光谱观测表明,新星的气壳以每秒500~2,000千米的速度向外膨胀。一般认为,新星爆发只是壳层的爆发,质量损失仅占总质量的千分之一左右,因此不足以使恒星发生质变。有些爆发变星会再次作相当规模的爆发,称为再发新星。   矮新星和类新星变星的光度变化情况与新星类似,但变幅仅为2~6个星等,发亮周期也短得多,大多是双星中的子星之一。因而有人认为,这一类变星的爆发是由双星中某种物质的吸积过程引起的。   耀星是一些光度在数秒到数分钟间突然增亮而又很快回复原状的一些很不规则的快变星。它们被认为是一些低温的主序前星。   随着观测技术的发展和观测波段的扩大,还发现了射电波段有变化的射电变星和X射线辐射流量变化的X射线变星等。 恒星的分类   目前所用的恒星分类系统源起于20世纪初期,当时是以氢的谱线从A排列至Q,那时还不知道温度是影响谱线最主要的因素,而当依照温度重新排列时,就与现在使用的完全一致了。   根据恒星光谱的差异,以不同的单一字母来表示类型,O型是温度最高的,到了M型,温度已经低至分子可能存在于恒星的大气层内。依据温度由高至低,主要的类型为:O、B、A、F、G、K和M,各种各样罕见的光谱类型还有特殊的分类。最常见的特殊类型是L和T,是温度最低的低质量恒星和棕矮星。每个字母还以数字从0至9,以温度递减再分为10个细分类。然而,这个系统在极端高温的一端仍不完整:迄今还没有被分类为O0和O1的恒星。   另一方面,也发现恒星的谱线恒星可以根据光度作用再分类,这对应到它们在空间的大小和表面的重力。它们的范围从0(超巨星)经过III'(巨星)到V(主序带矮星)和VII(白矮星)。大部分的恒星都属于主序带,这是在绝对星等和光谱图(赫罗图)的对角线上窄而长的范围,包含在其中的都是进行氢燃烧的恒星。我们的太阳是主序带上分类为G2V的黄色矮星,是一般平常的大小和温度中等的恒星。太阳被作为恒星的典型样本,并非因为它很特别,只因它是离我们最近的恒星,且其它恒星的许多特征都能以太阳作为一个单位来加之比较。   附加于光谱类型之后的小写字母可以显示出光谱的特殊性质。例如,“e”表示有发射谱线,“m”代表金属的强度异常,“var”意味着光谱的类型会改变。   白矮星有自己专属的分类,均以字母D为首,再依据光谱中最明显的谱线特征细分为DA、DB、DC、DO、DZ、和DQ,还可以附随一个依据温度索引的数值。 结构和演化   根据实际观测和光谱分析,恒星大气的基本结构可分为日冕、色球层,再向内为光球层。光球大气吸收更内层高温气体的连续辐射而形成吸收线。历史上曾把高层光球大气叫作反变层,而把发射连续谱的高温层叫作光球。光球这一层相当厚,其中各个分层均有发射和吸收。光球与反变层不能截然分开。太阳型恒星的光球内,有一个平均约1/10半径或更厚的对流层。在上主星序恒星和下主星序恒星的内部,对流层的位置很不相同。能量传输在光球层内以辐射为主,在对流层内则以对流为主。   对于光球和对流层,常利用根据实测的物理特性和化学组成建立模型进行研究。可从流体静力学平衡和热力学平衡的基本假设出发,建立起若干关系式,用以求解星体不同区域的压力、温度、密度、不透明度、产能率和化学组成等。恒星的中心温度可高达数百万度乃至数亿度,在那里进行着不同的产能反应。一般认为恒星是由星云凝缩而成,主星序以前的恒星因温度不够高,不能发生热核反应,只能靠引力收缩来产能。进入主星序之后,中心温度高达700万度以上,开始发生氢聚变成氦的热核反应。这个过程很长,是恒星生命中最长的阶段。氢燃烧完毕后,恒星内部收缩,外部膨胀,演变成表面温度低而体积庞大的红巨星。那些内部温度上升到近亿度的恒星,开始发生其他核反应。这些演化过程中恒星的温度和光度按一定规律变化,从而在赫罗图上形成一定的径迹。最后,一部分恒星发生超新星爆炸,气壳飞走,核心压缩成中子星一类的致密星而趋于“死亡”。 恒星的结构   一颗稳定的恒星内部是在流体静力平衡的状态下:在任何一个小体积内的力量相互之间几乎确定都是完全平衡的。平衡的力是向内的万有引力和恒星内部由于压力梯度产生向外的压力。压力梯度是由等离子体的温差建立的,因为外的的部份温度会比内部核心的低。主序星或巨星的核心温度至少有107K,这样的温度在主序列恒星的核心要燃烧氢进行核聚变反应是绰绰有余的,并且能产生足够的能量防止恒星进一部的崩溃。   在核心的原子核聚变时,产生的能量会以γ射线辐射出去。这些光子与包围在周围的等离子体相互作用,增加了核心的温度。在主序代的恒星将氢转换成氦,缓慢但是稳定的增加核心内氦的比率。最后,氦成为核心最主要的成分,并且核心不再产生能量。取代的是,质量大于0.4太阳质量的恒星,核聚变慢慢的在包围着氦核心的氢壳层扩展开来。   除了流体静力平衡之外,在稳定的恒星内部也要维持着热平衡的能量平衡。在内部的辐射温度梯度造成热能向外流动。在任何一层向外流出的能量,与邻接其下方那一层向外传送的能量是完全相等的。   辐射层是在恒星内部能以辐射充分且有效率传送能量的区域,在这个区域内等离子体没有任何的扰动,也不会任何质量的运动。如果不是这样,等离子体就会变得不稳定,并且开始产生对流运动成为对流层。这种情况很可能发生,例如,在某一个区域产生了非常高的能量流动,例如在核心区域或在外面非常不透明的包层附近。   主序带上的恒星能否在外面的包层产生对流,主要取决于恒星的质量。质量是太阳数倍的恒星有着深入恒星内部的对流层而辐射层在外面。较小的恒星,像太阳这样的则正好相反,是对流层在外面。红矮星的质量低于0.4太阳质量,整个都是对流层,阻止了氦在核心堆积成氦核,多数恒星的对流层都会随着恒星老化而改变内部的结构和发生变化。   恒星能够让观测者看见的部份是光球层,这是恒星的等离子体变得透明可以用光子传送能量的一层。在此处,从核心传递过来的能量变成可以自由进入太空中的光子,因此在光球层上的太阳黑子,或是温度低于平均值的区域,就会出现。   在光球层之上是恒星大气层。向太阳这种在主序带上的恒星,最低层的大气是色球层,针状突起和闪焰会出现在这儿。包围在外面的是过渡区,温度在不到100公里的距离内很快的窜升,在上面就是日冕,由大量高热的等离子体组成,巨大的体积可以向外伸展出数百万公里。日冕的存在看来是依靠着恒星外面数层的对流区。尽管它的温度很高,日冕只发出微弱的光。太阳的日冕平常只有在日全食的时候才能看见。   从日冕吹出的恒星风是来自恒星的等离子体质点,会继续向外扩张直至遭遇到星际物质。对太阳而言,受到太阳风扩张影响所及的气泡状范围称为太阳圈。 恒星的形成 哈勃空间望远镜上新安装的大视场照相机3拍摄的星系M83核心附近猛烈的恒星形成。标准模型无法解释其中所出现的大质量蓝色恒星以及它们将能量返还给其母星云的方式。版权:NASA, ESA, R. O'Connell (Universityof Virginia), B. Whitmore (STScI), M. Dopita(Australian National University), and the WideField Camera 3 Science Oversight Committee   恒星形成依然是当今天体物理学中最活跃的领域之一。它始于星际空间中漂浮着的巨大气体、尘埃云。如果这片星云——或者,通常把星云中某个高密度部分称为“云核”——的温度足够低、密度足够大,向内的引力就会超过向外的气体压强,于是它就会在自身的重量下坍缩。这片星云或者这个云核的密度和温度会变得越来越高,最终点燃核聚变。由聚变产生的热量会使得内部压强升高,进而停止坍缩。于是这颗新诞生的恒星就会进入可持续数百万乃至上万亿年的动态平衡状态。   这一恒星形成理论是自洽的,并且和大量的观测相符。但它还远未完善。有四个问题特别困扰着天文学家。 如果高密度的云核是孵出恒星的“蛋”,那么下蛋的“母鸡”在哪里?星云自身必定来自某个地方,而它们的形成过程还没有被很好地认识。 是什么使得云核开始坍缩?无论最初的机制是什么,它决定了恒星的形成率以及恒星的最终质量。 胚胎期的恒星如何彼此影响?标准理论描述的都是孤立的单颗恒星;它并没有告诉我们,当恒星密集形成的时候会发生什么,而这却是绝大多数情况。最近的发现预示,我们的太阳形成于一个已经瓦解的星团之中。在拥挤的托儿所里长大和当一个独子之间会有什么不同? 大质量恒星到底是怎样形成的?标准理论只能用于质量小于20个太阳质量的恒星,对于更大的恒星则不适用,它们巨大的光度会在初生的恒星积聚到足够的物质前将星云吹散。此外,大质量恒星会通过紫外辐射、高速外流和超音速激波来作用于它们周围的环境。这一能量反馈会使得星云瓦解,但标准理论并没有考虑这一点。   解决这些问题的呼声正在日益高涨。从星系形成到行星起源,恒星形成几乎是天文学中一切的基础。如果不了解它,天文学家就无法剖析遥远的星系或者是认识太阳系外的行星。虽然最终的回答还仍然扑朔迷离,但有一点已经取得共识:一个更精湛的恒星形成理论必须要考虑环境对其的影响。新生恒星的最终状态将不单单取决于云核中的初始条件,还和其周围的环境以及其他恒星随后对它的影响有关。这是一场宇宙尺度上的先天和后天之争。   恒星在星际物质扩张的密度较高的地区内形成,但是那儿的密度仍然低于地球上人造的真空。这样的地区称为 分子云 ,其中的成分绝大部分是氢,大约23%-28%是氦,还有少许的重元素。猎户座大星云就是恒星形成区的一个例子。 当大质量的恒星在分子云内形成,它们将照亮那云气,也会使氢电离,创造出HII区。 原恒星形成   恒星的形成从分子云内部的引力不稳定开始,通常是因为超新星(大质量恒星爆炸)的冲激波触发或两个星系的碰撞(像是星爆星系)。一但某个区域的密度达到或满足金斯不稳定性的标准,它就会因为自身的引力开始坍缩。   分子云一但开始坍缩,密集的尘土和气体就会形成一个个我们所知道的包克球,它们可以拥有50倍太阳质量的物质。当小球继续坍缩时,密度持续增加,引力位能被转换成热,并且使温度上升。当原恒星云趋近于流体静力平衡的状态时,原恒星就在核心形成了。这些主序前星经常都有原恒星盘著,引力收缩的期间至少要经历一千万至一千五百万年。   早期恒星质量低于2倍太阳质量的属于金牛T星,较大的则属于赫比格Ae/Be星。这些新生的恒星由自转轴的两极喷出的喷流,会形成所谓的赫比格-哈罗天体。 主序星   恒星一生的90%都是在核心以高温和高压将氢聚变成氦。像这样的恒星在主序带上,称为矮星。从零龄主序星开始,氦在核心的比率稳定的增加。结果,为了维持在核心的核聚变,恒星会缓慢的增加温度和光度。以太阳为例,估计从46亿年进入主序带迄今,光度已经增加了40%。   每一颗恒星都会吹出恒星风将微粒持续的送入太空中。对多数的恒星,经由这样流失的质量是可以忽略不计的,太阳每年流失的只有10−14太阳质量,或是它一生所消耗质量的0.01%。但是大质量恒星每年所流失的可能达到10−7至10−5太阳质量,对它们的演化会有重大的影响。开始时有50倍太阳质量的恒星可能会在主序带的阶段丧失一半的质量。   恒星在主序带上所经历的时间取决于他的燃料和消耗燃料的速率,换言之就是开始的光度和质量,对太阳来说,估计他的生命有一百亿年。大质量的恒星燃烧燃料的速度快,生命期就短;小的恒星(像是红矮星)燃烧燃料的速度很慢,至少可以维持数兆年,而当生命结束时也只是单纯的越来越黯淡。但是因为这种恒星的生命期远大于现在的宇宙年龄(137亿岁),所以还没有这样的恒星死亡。   除了质量,比氦重的元素在恒星演化中也扮演着重要的角色。在天文学中,比氦重的元素都被视为"金属",而这些元素在化学上的浓度称为金属量。金属量可能影响恒星燃烧燃料的速率、控制磁场的形成,和改变恒星风的强度。由于形成恒星的分子云成份不同,年老的,第二星族星的金属量就比年轻的第一星族星低(当老的恒星死去并将大气层洒落至分子云中,重元素的量就会随着时间过去变得越来越丰富。) 红巨星   质量不低于0.5太阳质量以上的恒星在核心供应的氢耗尽之后,外层的气体开始膨胀并冷却形成红巨星。例如大约50亿年后的太阳,当太阳成为红巨星时,它的最大半经将是目前的250倍(1天文单位(150,000,000千米))。成为巨星时,太阳大约已失去目前质量的30%。   对一个达到2.25太阳质量的红巨星,氢聚变会在包围着核心外的数层壳曾内进行。最后核心被压缩至可以进行氦聚变,同时恒星的半径逐渐收缩而且表面的温度增加。更大的恒星,核心的区域会直接进行氢聚变与氦聚变。   在恒星核心的氦也耗尽之后,核聚变继续在包围着高热的碳和氧核心的气壳层内进行,然后循着与原来的红巨星阶段平行,但是表面温度较高的路径继续演化。 大质量恒星   在氦燃烧阶段,许多超过10倍太阳质量的大质量恒星膨胀成为红超巨星,一但核心的燃料耗尽,它们会继续燃烧比氦更重的元素。   核心继续收缩直到温度和压力能够让碳融合。这个过程会继续,满足下依步骤燃烧氖、氧、和硅。接近恒星生命的终点,核聚变在恒星内部可能延着数层像洋葱壳一样的壳层中发生。每一层燃烧着不同的燃料,燃烧的最外层是氢,第二层是氦,依序向内。   当铁被制造出来就到达了最后的阶段。因为铁核的束缚能比任何更重的元素都大,如果程序继续,铁核的燃烧不仅不会释放出能量,相反的还要消耗能量。同样的,它也比较轻的元素紧密,铁核的分裂也不会释放出能量。比较老、质量比较大的恒星,在恒星的核心就会累积比较多的铁。在这些恒星的重元素或可能会随着自身的运作方式到达恒星的表面,发展形成所知的沃尔夫-拉叶星,从大气层向外吹送出密度较高的恒星风。 坍缩   在发展中,平均大小的恒星会将外面数层的气层扩散成为行星状星云。如果在外层的大气层散发之后剩余的质量低于1.4倍太阳质量,它将缩小成一个小天体(大小如同地球),但没有足够的质量继续压缩,这就是所知的白矮星。虽然一般的恒星都是等离子体,但在白矮星内的电子简并物质已不是等离子体。在经历非常漫长的时间之后,白矮星最后会暗淡至成为黑矮星 。   更大的恒星,核聚变会继续进行,直到铁核有了足够的大小(大于1.4倍太阳质量)而不再能支撑自身的质量。这时核心会突然的坍缩使电子进入质子之内,在反β衰变或电子捕获的爆发之后形成中子和中微子。由这种突然的坍缩产生的激震波造成恒星剩余的部分产生超新星的爆炸。当它们发生在银河系内,就是历史上曾经以肉眼看见和记载的,在以前不存在的“新恒星”。   这颗恒星的大部分物质都在超新星爆炸中飞散出去(形成像蟹状星云这种的云气)而还剩下的就是中子星(有些被证明是波霎或是X-射线爆发),或是质量更大的就形成黑洞(剩余的质量必须大于4倍太阳质量)。 在中子星内的物质是中子简并物质,和一种可能存在核心且极不稳定的简并物质,QCD物质。在黑洞核心的这种物质所处在的状态是迄今仍不了解的。   这颗死亡恒星外层被抛出的物质包括一些重元素,可能在新恒星形成的世代交替中成为原料,而这些重元素可以形成岩石的行星。超新星和大恒星恒星风的抛出物是构成星际物质的重要成分。 观测简史   人类对恒星的观测历史悠久。古埃及以天狼星在东方地平线的出现,预示尼罗河泛滥的日子。中国商朝就设立专门官员观测大火在东方的出现,确定岁首的时刻,与作物播种与收割并列在卜辞中。而中国明朝的航海家们则利用航海九星来判断方向。美国的阿波罗11号飞船设有光学定位仪,利用恒星来确定位置。   在历史上,恒星在世界各地的文明中都曾占有重要的地位,它们被作为宗教上的实践并用于天文导航上指示方向。许多古代的天文学家都相信恒星被固定在永恒的天球上(球形的天空),并且永远不会变化。经由相约成俗,天文学家将一群一群的恒星集合组成星座,并且用它们来追踪行星在天空中的运动和臆测太阳的位置。太阳在星空背景(和地平线)被用来创造了历法,可以用来实践农业的调控。现在几乎全球都在使用的格里历就是依据最靠近地球的恒星,太阳为基础建立的。.   最古老的,标有精确日期的星图出现在西元前1534年的古埃及。伊斯兰天文学家为许多恒星取的阿拉伯文名称一直到今天都还在使用,他们还发明了许多天文仪器可以测量和计算恒星的位置。在11世纪,阿布·拉伊汉·比鲁尼描述银河系像是由有恒星的云气组成的许多碎片,在1019年的月食也测量了一些恒星的纬度。   中国至晚在春秋时期已了解恒星是由气体构成,并知道还是有新的恒星可能出现。早期的一些欧洲天文学家,像是第谷,就在夜空中辨认出一颗新的恒星(后来称为新星),因此认为天空不是永恒不变的。在1584年,焦尔达诺·布鲁诺认为恒星像太阳一样,也可能有其他行星,甚至有像地球一样的,环绕着它们,古代的希腊哲学家德谟克利特和伊比鸠鲁也曾经提出和他一样的想法。在进入下个世纪前,天文学家已经取得了一致的看法,认为恒星是遥远的太阳。神学家李察·宾特利质疑这些恒星为何没有对太阳系施加万有引力,艾萨克·牛顿解释认为在每个方向分布的恒星将引力彼此互相抵销掉了。   意大利天文学家Geminiano Montanari在1667年观测和记录了大陵五的光度变化,爱德蒙·哈雷出版一对邻近“恒星”自行的测量报告,显示出从古希腊天文学家托勒密和喜帕恰斯迄今,它们的位置已经改变了。白塞尔在1838年首度利用视差的技术测出一颗恒星(天鹅座61)的距离是11.4光年,显示了天空的广大和天体距离的遥远。   威廉·赫歇尔是第一位尝试确定恒星在天空中分布状态的天文学家。在1780年代,他用量测器对600个方向进行了一系列的测量,计算沿着视线方向可以看见的恒星数目。透过这样的研究,他推论出恒星的数量平稳的向着天空的一侧增加,这个方向就是银河的中心。他的儿子约翰·赫歇尔在南半球的天空重复他的研究,也得到向着同一方向增加的相同结果。除了这些还有其他的成就,威廉·赫歇尔还注意到有些恒星不仅是在相同的方向上,彼此之间还是物理上的伙伴形成了联星系统。   约瑟夫·夫琅禾费和安吉洛·西奇开创了科学的恒星分光学,经由比较天狼星和太阳的光谱,他们发现有不同数量和强度的吸收谱线 —恒星光谱中黑暗的谱线是由大气层吸收特定频率的波长造成的。西奇从1865年开始分依据光谱类型对恒星做分类。不过,现代的恒星分类系统是安妮·坎农在1900年代建立的。   在19世纪双星观测所获得的成就使重要性也增加了。在1834年,白塞尔观测到天狼星自行的变化,因而推测有一颗隐藏的伴星;爱德华·皮克林在1899年观测开阳周期性分裂的光谱线时发现第一颗光谱双星,周期是104天。天文学家斯特鲁维和S. W. Burnham仔细的观察和收集了许多联星的资料,使得可以从被确定的轨道要素推算出恒星的质量。第一个获得解答的是1827年由Felix Savary透过望远镜的观测得到的联星轨道。   对恒星的科学研究在20世纪获得快速的进展,相片成为天文学上很有价值的工具。卡尔·史瓦西发现经由比较视星等和摄影星等的差别,可以得到恒星的颜色和它的温度。1921年,光电光度计的发展可以在不同的波长间隔上非常精密的测量星等。阿尔伯特·迈克耳孙在胡克望远镜第一次使用干涉仪测量出恒星的直径。   在20世纪的第一个十年里,恒星物理概念性的重要工作开始进展。在1913年,赫罗图发展出来,推动了恒星在天文物理上的研究。解释恒星内部和恒星演化的模型被成功的发展出来;恒星光谱也因为量子物理学的进展而得以成功的解释;恒星大气中的化学成分也能够被确定。   除了超新星之外,各别的恒星都在我们的银河系所在的本星系群中被观测到,特别是在可以看见的银河部分。但是有些距离地球一亿光年远,在室女座星系团M100星系内的恒星也被观测到。在本超星系团也有一些星团被观测到,并且现代的望远镜原则上可以观察到本星系群内单独的微弱恒星— 被解晰出来最遥远的恒星距离在一亿光年。然而在本超星系团之外的星系中,无论是单独的恒星或星团都未曾被观测过,唯一的例外是在十亿光年外的一个拥有数十万颗恒星的巨大星团曾留下微弱的影像—距离十倍于以前曾观测过最遥远的星团。 恒星命名 中国   每一颗恒星都要给它取一个独特的名字,才能够便于研究和识别。中国在战国时代起已命名肉眼能辨别到的恒星或是以它所在星官(包括三垣以及二十八宿)命名,如天关星、北河二、心宿二等;或是根据传说命名,例如织女星(织女一)、牛郎星(河鼓二)、老人星等,构成一个不严谨的独立体系。 西方   星座的概念在巴比伦时期就已经存在,古代的观星人将哪些比较显著的恒星和自然或神话等特定的景物结合,想像成不同的形状。位于黄道带上的12个星座就成了占星学的依据,许多明显的单独恒星也被赋予专属的名字,特别是以阿拉伯文和拉丁文标示的名称。   而且有些星座和太阳还有它们自己整体的神话,它们被认为是亡者或神的灵魂,例如大陵五就代表着蛇发女怪梅杜莎。   到了古希腊,已经知道有些星星是行星(意思是“漫游者”),代表着各式各样重要的神祇,这些行星的名字是水星、金星、火星、木星、和土星[23](天王星和海王星虽然也是希腊和罗马神话中的神祇,但是它们的光度暗淡,因此古代人并未发现,它们的名字是后来才由天文学家命名的。)。   大约在1600年代,星座的名称、范围以及恒星的名字还是由各个地区自己命名的。1603年,德国天文学家约翰·拜耳创造了以希腊字母序列与星座结合的拜耳命名法,为星座内的每一颗恒星命名。然后英国天文学家约翰·佛兰斯蒂德发明出了数字系统的命名法,这就是佛兰斯蒂德命名法。从此以后许多其他的系统的星表都被创造出来。 其他   科学界唯一认可能够为恒星或天体命名的机构是国际天文联合会。很多的私人公司(例如:“International Star Registry”)以贩售恒星的名字为主,但是除了购买者以外,这些名字既不会被科学界认可,也没有人会使用这个名字[24],并且有许多组织假称为天文机构进行诈欺,骗取无知的民众购买星星的名字。
天文学
太阳与太阳系
冕流和极羽
冕流和极羽( coronal streamer and polar plume ),日冕中比背景亮的两种延伸结构。冕流的长度与太阳活动有关,在太阳活动极大时延伸到约1R嫯(R嫯为太阳半径),而在太阳活动极小时则可达2R嫯,宽度大于0.1R嫯。 冕流按形状可分为两类:①盔状冕流,形状如钢盔,其下部罩住宁静日珥,在日珥上面是暗区,称为冕穴。在冕穴上常有亮冕弧和暗冕弧,形状为半椭圆或尖铲状,向上延伸到几个R嫯以外,向外膨胀的速度约为每秒1公里。②活动区冕流,在日面活动区向外延伸,延伸部分的截面较平整或略散开,向外膨胀的速度约为每秒2~10公里。冕流是日冕磁场不均匀分布的结果,有人用在太阳大尺度磁场中有物质沿冕流的轴向流动来解释其形状。由于磁场冻结在物质中,物质沿磁力线流动就会使初始场变形,不过初始场强越大,变形就越难。因此,冕流从色球边缘到以直线形式延伸区域的起点的距离,是随场强的增加而增大的。 极羽出现在日面的两极区域,其宽度小于0.05R嫯,呈羽毛状(如图),在太阳活动极小期特别明显。聚集在太阳极区的日冕等离子气体,由起着侧壁作用的磁场维持其流体静力学平衡,就形成极羽。极羽与磁力线的相似性说明太阳有极性磁场,并可据此画出太阳的偶极磁场来。 极羽
天文学
天体物理学
辐射流
辐射流,指单位时间内通过单位面积,在单位频率间隔内向外的辐射能与向内的辐射能之差。辐射流的大小通常与面元在空间的位置和方向都有关系。
天文学
天体测量学
历书时
历书时(Ephemeris Time),描述天体运动的动力学方程中作为时间自变量所体现的时间,或天体历表中应用的时间。它是由天体力学的定律确定的均匀时间。历书时的初始历元取为1900年初附近,太阳几何平黄经为279°41′48″.04的瞬间,秒长定义为1900.0年回归年长度的1/31556925.9747。1958年国际天文学联合会决议决定:自1960年开始用历书时代替世界时作为基本的时间计量系统。规定天文年历中太阳系天体的位置都按历书时推算。历书时与世界时之差可由观测太阳系天体(主要是月球)定出。历书时的测定精度较低,1967年起已被原子时代替作为基本时间计量系统。
天文学
太阳与太阳系
金星
金星(英语:Venus),太阳系八大行星之一,按离太阳由近及远顺序为第二颗。全天最亮的星,视星等可达-4.4 等。晨见者称之启明星,夕见者称之长庚星,中国民间称太白星或太白金星。古希腊神话中称为阿佛洛狄忒。古罗马人称作维纳斯。   金星距离太阳约0.725天文单位,轨道在水星与地球之间。金星的一天相当于地球的230天,磁场强度只有地球的10万分之一左右。此外金星的自转方向与地球以及其他行星的自转方向相反。其直径、质量、平均密度等与地球十分相近。下合时总以同一面朝向地球。大气十分浓密,表面气压达88大气压,主要成分是二氧化碳(96%以上)和氮,在高空有一终年不散的厚云区,其中充满着浓度很高的硫酸、氢氟酸等雾滴。金星大气中36Ar∶40Ar和氘∶氢的值分别比地球大200~300和100倍,这表明金星与地球经过了不同的演化途径。 NASA麦哲伦任务的雷达数据,它绘制了金星北半球的地形。NASA/JPL   金星上平均每分钟有20次闪电,曾记录到一次持续15分钟的特大闪电,大气造成的温室效应使整个表面始终处于480℃的高温状态中。大气的底层清澈宁静,但高层的运动速度高达100米/秒。金星以243.09天的周期作自东向西的逆向自转,多数人认为这是其他天体撞击的结果。1975年在金星表面软着陆的探测器金星9号和金星10号获得了第一批金星表面照片。1990年美国的麦哲伦探测器进入绕金星的轨道,通过探测发现,金星表面65%是起伏不大的丘陵,低洼地占27%,山地仅8%,常见的环形山不很多,没有任何超过10亿年的地貌特征,表面的平均寿命仅4亿年,这表明可能存在活火山。尚未能测出金星的磁场,因而它上空也不存在磁层和辐射带。 目录 1 地表环境 2 星体结构 3 金星的大气 4 公转与自转 5 金星凌日 6 金星文化 地表环境   金星表面上有70%平原,20%高地,10%低地。   在金星表面的大平原上有两个主要的大陆状高地。北边的高地叫伊师塔地(Ishtar Terra),拥有金星最高的麦克斯韦山脉(大约比喜马拉雅山高出两千米),它是根据詹姆斯·克拉克·麦克斯韦命名的。麦克斯韦山脉(Maxwell Montes)包围了拉克西米高原(Lakshmi Planum)。伊师塔地大约有澳大利亚那么大。南半球有更大的阿芙罗狄蒂地(Aphrodite Terra),面积与南美洲相当。这些高地之间有许多广阔的低地,包括有爱塔兰塔平原低地(Atalanta Planitia)、格纳维尔平原低地(Guinevere Planitia)以及拉卫尼亚平原低地(Lavinia Planitia)。除麦克斯韦山脉外,所有的金星地貌均以现实中或神话中女性命名。由于金星浓厚的大气让流星等天体在到达金星表面之前减速,所以金星上的陨石坑都不超过3.2千米。 根据麦哲伦任务数据的萨帕斯蒙斯在金星表面的三维透视图。NASA/JPL   大约90%的金星表面是由不久之前才固化的玄武岩熔岩形成,当然也有极少量的陨石坑,金星的内部可能与地球是相似的:半径约3000千米的地核和由熔岩构成的地幔组成了金星的绝大部分。来自麦哲伦(Magellan)号的最近的数据表明金星的地壳比起原来所认为的更厚也更坚固。可以据此推测金星没有像地球那样的可移动的板块构造,但是却有大量的有规律的火山喷发遍布金星表面。金星上最古老的特征仅有8亿年历史,大多数地区都很年轻(但也有数亿年的时间)。那时广泛存在的山火擦洗了早期的表面,包括几个金星早期形成的大的环形山口金星的火山在隔离的地质热点依旧活跃。   金星本身的磁场与太阳系的其它行星相比是非常弱的。这可能是因为金星的自转不够快,其地核的液态铁因切割磁感线而产生的磁场较弱造成的。这样一来,太阳风就可以毫无缓冲地撞击金星上层大气。最早的时候,人们认为金星和地球的水在量上相当,然而,太阳风攻击已经让金星上层大气水蒸气分解为氢和氧。氢原子因为质量小逃逸到了太空。金星上氘(氢的一种同位素,质量较大,逃逸得较慢)的比例似乎支持这种理论。而氧元素则与地壳中物质化合,因而在大气中没有氧气。金星表面十分干旱,所以金星上岩石要比地球上的更坚硬,从而形成了更陡峭的山脉、悬崖峭壁和其它地貌。一条从南向北穿过赤道的长达1200千米的大峡谷,是八大行星中最大的峡谷。   另外,根据探测器探测,发现金星岩浆里含有水。金星可能与地球一样有过大量的水,但都被蒸发,消散殆尽,使如今变得非常干燥。地球如果再离太阳近一些的话也会有相同的运气。我们会知道为什么基础条件如此相似但却有如此不同现象的原因。   来自麦哲伦飞行器映像雷达的数据表明大部分金星表面由熔岩流覆盖有几座大屏蔽火山,如Sif Mons,类似于夏威夷和火星的Olympus Mons(奥林匹斯山脉)。不过集中在几个热点。大部分地区已形成地形,比过去的数亿年要安静得多了。   金星上没有小的环形山,看起来小行星在进入金星的稠密大气层时没被烧光了。金星上的环形山都是一串串的看来是由于大的小行星在到达金星表面前,通常会在大气中碎裂开来。   玛亚特山,金星上最大的火山之一,比周围地区高出9000米,宽200千米,火山及火山活动金星表面为数很多。至少85%的金星表面覆盖着火山岩除了几百个大型火山外,在金星表面还零星分布着100000多座小型火山从火山中喷出的熔岩流产生了了长长的沟渠,范围大至几百公里,其中最长的一条超过7000公里。 星体结构   关于金星的内部结构,还没有直接的资料,从理论推算得出,金星的内部结构和地球相似,有一个半径约3100公里的铁-镍核,中间一层是主要由硅、氧、铁、镁等的化合物组成的“幔”,而外面一层是主要由硅化合物组成的很薄的“壳”。   科学家推测金星的内部构造可能和地球相似,依地球的构造推测,金星地函主要成分以橄榄石及辉石为主的矽酸盐,以及一层矽酸盐为主的地壳,中心则是由铁镍合金所组成的核心。金星的平均密度为5.24g/cm3,次于地球与水星,为八大行星(冥王星已于2006年划归为矮行星,故称八大行星)中第三位的。   一个直径3000千米的铁质内核,熔化的石头为地幔填充大部分的星球。厚得多。就像地球,在地幔中的对流使得对表面产生了压力,但它由相对较小的许多区域减轻负荷,使得它不会像在地球,地壳在板块分界处被破坏。 金星的大气   金星的天空是橙黄色的。金星上也有雷电,曾经记录到的最大一次闪电持续了15分钟。   金星的大气主要由二氧化碳组成,并含有少量的氮气。金星的大气压强非常大,为地球的92倍,相当于地球海洋中1千米深度时的压强。大量二氧化碳的存在使得温室效应在金星上大规模地进行着。如果没有这样的温室效应温度会下降400℃。在近赤道的低地,金星的表面极限温度可高达500℃。这使得金星的表面温度甚至高于水星虽然它离太阳的距离要比水星大的两倍,并且得到的阳光只有水星的四分之一(高空的光照强度为2613.9W/m2,表面为1071.1W/m2)。尽管金星的自转很慢(金星的“一天”比金星的“一年”还要长,赤道地带的旋转速度只有每小时6.5千米),但是由于热惯性和浓密大气的对流,昼夜温差并不大。大气上层的风只要4天就能绕金星一周来均匀的传递热量。   金星浓厚的云层把大部分阳光都反射回了太空,所以金星表面接受到的太阳光比较少,大部分阳光都不能直接到达金星表面。金星热辐射反射率大约是60%,可见光反射率就更大。虽然金星比地球离太阳的距离要近,它表面所得光照却比地球少。如果没有温室效应作用,金星表面温度就会和地球很接近。人们常常会想当然的认为金星的浓密云层能够吸收更多的热量,事实证明这是非常荒谬的。与此正相反,如果没有这些云层,温度会更高。大气中二氧化碳的大量存在所造成的温室效应才是吸收更多热量的真正原因。   2004年金星凌日在云层顶端金星有着每小时350千米的大风,而在表面却是风平浪静,每小时不会超过数千米然而,考虑到大气的浓密程度,就算是非常缓慢的风也会具有巨大的力量来克服前进的阻力。金星的云层主要是由二氧化硫和硫酸组成,完全覆盖整个金星表面。这让地球上的观测者难以透过这层屏障来观测金星表面。这些云层顶端的温度大约为-45℃。美国航空及太空总署给出的数据表明,金星表面的温度是464℃。云层顶端的温度是金星上最低的,而表面温度却从不低于400℃。   金星表面的温度很高,是因为金星上强烈的温室效应,温室效应是指透射阳光的密闭空间由于与外界缺乏热交换而形成的保温效应。金星上的温室效应强得令人瞠目结舌,原因在于金星的大气密度是地球大气的100倍,且大气97%以上是“保温气体”——二氧化碳;同时,金星大气中还有一层厚达20~30千米的由浓硫酸组成的浓云。二氧化碳和浓云只许太阳光通过,却不让热量透过云层散发到宇宙空间。被封闭起来的太阳辐射使金星表面变得越来越热。温室效应使金星表面温度高达465至485℃,且基本上没有地区、季节、昼夜的差别。它还造成金星上的气压很高,约为地球的90倍。浓厚的金星云层使金星上的白昼朦胧不清,这里没有我们熟悉的蓝天、白云,天空是橙黄色的。云层顶端有强风,大约每小时350千米,但表面风速却很慢,每小时几千米不到。十分有趣的是,金星上空会像地球上空一样,出现闪电和雷暴。   金星的大气压力为90个标准大气压(相当于地球海洋深1千米处的压力),大气大多由二氧化碳组成,也有几层由硫酸组成的厚数千米的云层。这些云层挡住了我们对金星表面的观察,使得它看来非常模糊。这稠密的大气也产生了温室效应,使金星表面温度高达400度,超过了740开(足以使铅条熔化)。金星表面自然比水星表面热虽然金星比水星离太阳要远两倍。   金星大气层主要为二氧化碳,占约96%,以及氮3%。在高度50至70公里的上空,悬浮着浓密的厚云,把大气分割为上下两层。云为浓硫酸液滴组成,其中还掺杂着硫粒子,所以呈现黄色。在气候良好的地球上,应该很难想像在太阳系中竟然有这样疯狂的世界。   金星接近地表大气时速较为缓慢,只有每小时数公里,但上层时速却可达数百公里,金星自转速度如此的缓慢243个地球日才转一圈,但却有如此快速转动的上层大气,至今仍是个令人不解的谜团。   当地球或金星云层形成时,太阳贮存在空气中的能量可以在非常强大的放电中被释放出来。随着云粒子发生碰撞,电荷从大粒子转移到小粒子,大粒子下降,小粒子上升。电荷的分离导致了雷击。这对行星大气层是个很重要的过程,因为它使大气层一小部分的温度和压力提升到一个很高的值,使分子可以形成,而在标准大气的温度和压力下,这本来是不会出现的。因此,有些科学家据之推测,闪电可能有助于地球上生命的出现。   为了分析金星闪电,研究团队过去3.5个(地球)年以来,每天使用“金星快车号”收集低空数据近10分钟,借由比较两个行星电磁波生成的异同而发现,金星上的磁信号比较强,但是将磁信号转换为能量流通量后,闪电强度很类似日间的闪电似乎比夜间普遍,而在太阳光穿透入金星大气层中最强的较低纬度地区,闪电发生频率则更高。 公转与自转   金星绕轴自转的方向与太阳系内大多数的行星是相反的。   金星以224.65天绕太阳公转一周,平均距离为一亿八百万千米。虽然所有的行星轨道都是椭圆的,但金星轨道的离心率小于0.01当金星的位置介于地球和太阳之间时,称为下合(内合),会比任何一颗行星更接近地球这时的平均距离是4100万千米,平均每584天发生一次下合。由于地球轨道和金星轨道的离心率都在减少,因此这两颗行星最接近的距离会逐渐增加。而在离心率较大的期间,金星与地球的距离可以接近至3820万千米。   金星的自转周期是243天,是主要行星中自转最慢的。金星的恒星日比金星的一年还要长(243金星日相对于224.7地球日),但是金星的太阳日比恒星日为短,在金星表面的观测者每隔116.75天就会看见太阳出没一次,这意味着金星的一天比水星的一天(176地球日)短。太阳会从西边升起,然后在东边落下。金星在赤道的转速只有6.5千米/小时,而地球在赤道的转速大约是1600千米/小时。   如果从太阳的北极上空鸟瞰太阳系,所有的行星都是以反时针方向自转,但是金星是顺时针自转,金星的顺时针转是逆行的转动。当行星的自转被测量出来时,如何解释金星自转的缓慢和逆行,是科学家的一个难题。当他从太阳星云中形成时,金星的速度一定比原来更快,并且是与其他行星做同方向的自转,但计算显示在数十亿年的岁月中,作用在它浓厚的大气层上的潮汐效应会减缓它原来的转动速度,演变成今天的状况。   令人好奇的是金星与地球平均584天的会合周期,几乎正好是5个金星的太阳日,这是偶然出现的关系,还是与地球潮汐锁定的结果,还无从得知。   虽然小行星2002 VE68维持着与它相似的轨道,但金星还没有天然的卫星。依据加州理工学院的Alex Alemi和David Stevenson两人对早期太阳系研究所建立的模型显示,在数十亿年前经由巨大的撞击事件,金星曾至少有过一颗卫星。依据Alemi和Stevenson的说法,大约过了一千万年后,另一次的撞击改变了这颗行星的转向使得金星的卫星逐渐受到螺旋向内,直到与金星碰撞并合而为一。如果后续的碰撞创造出卫星,它们也会被相同的方法吸收掉。Alemi和Stevenson的研究,科学界是否会接纳,也依然是情况未明。 金星凌日   由于水星、金星是位于地球绕日公转轨道以内的“地内行星”。因此,当金星运行到太阳和地球之间时,我们可以看到在太阳表面有一个小黑点慢慢穿过,这种天象称之为“金星凌日”。天文学中,往往把相隔时间最短的两次“金星凌日”现象分为一组。这种现象的出现规律通常是8年、121.5年,8年、105.5年,以此循环。据天文学家测算,这一组金星凌日的时间为2004年6月8日和2012年6月6日。这主要是由于金星围绕太阳运转13圈后,正好与围绕太阳运转8圈的地球再次互相靠近,并处于地球与太阳之间,这段时间相当于地球上的8年。   公元17世纪,著名的英国天文学家哈雷曾经提出,金星凌日时,在地球上两个不同地点同时测定金星穿越太阳表面所需的时间,由此算出太阳的视差,可以得出准确的日地距离。可惜,哈雷本人活了86岁,从未遇上过“金星凌日”。在哈雷提出他的观测方法后,曾出现过4次金星凌日,每一次都受到科学家的极大重视。   1761年5月26日金星凌日时,俄罗斯天文学家罗蒙诺索夫发现了金星大气。19世纪,天文学家通过金星凌日搜集到大量数据,成功地测量出日地距离1.496亿千米(称为一个天文单位)。当今的天文学家们,要比哈雷幸运得多,可以用很多先进的科学手段,去进一步研究地球的近邻金星了!   人们用10倍以上倍率的望远镜即可清楚地看到金星的圆形轮廓,40~100倍率左右的望远镜观测效果最佳。虽然观测这次“金星凌日”难度不算很大,但天文专家提醒,在观看时,千万不能直接用肉眼、普通的望远镜或是照相机观测,而要戴上合适的滤光镜,同时观测时间也不能过长,以免被强烈的阳光灼伤眼睛。 金星文化 历法   金星历法是一种以金星的周期活动为标准的历法规则。然而,金星历法并不是什么科幻小说的作品,而是切切实实曾在古代玛雅文明出现过的历法系统。基于一种我们不知道的原因,玛雅人同时采用两套历法系统,而其中一套历法系统就是基于金星的周期运转而制成。 神仙   金星在中国古代称为太白,早上出现在东方时又叫启明、晓星、明星,傍晚出现在西方时也叫长庚、黄昏星。由于它非常明亮,最能引起富于想象力的中国古人的幻想,因此我国有关它的传说也特别多。   在道教中,太白金星可谓是核心成员之一,论地位仅在三清(玉清元始天尊、上清灵宝天尊、太清道德天尊)之下。最初道教的太白金星神是位穿着黄色裙子,戴着鸡冠,演奏琵琶的女神,明朝以后形象变化为一位童颜鹤发的老神仙,经常奉玉皇大帝之命监察人间善恶,被称为西方巡使。在我国古典小说中,多次出现太白金星的传奇故事,可见他的人气之旺。在脍炙人口的《西游记》中,太白金星就是个多次和孙悟空打交道的好老头。   在与金星相关的众多传说中,最具有传奇色彩的应该算是关于唐代大诗人李白的故事了。传说李白的出生不同寻常,乃是他的母亲梦见太白金星落入怀中而生,因此取名李白,字太白。长大后的李白也确有几分“仙气”,他漫游天下,学道学剑,好酒任侠,笑傲王侯。他的诗,想象力“欲上青天揽明月”,气势如“黄河之水天上来”,无人能及。李白在当朝就享有“诗仙”的美名,后来更被人们尊为“诗中之仙”。 维纳斯   Venus是爱神、美神,同时又是执掌生育与航海的女神,这是她在罗马神话中的名字;在希腊神话里,她的名字是阿弗洛狄德。Venus是从海里升起来的。据说世界之初,统管大地的该亚女神与统管天堂的乌拉诺斯结合生下了一批巨人。后来夫妻反目,该亚盛怒之下命小儿子克洛诺斯用镰刀割伤其父。乌拉诺斯身上的肉落入大海,激起泡沫,Venus就这样诞生了。希腊语中“阿佛洛狄忒”的意思就是泡沫。   在希腊与罗马神话中,金星是爱与美的化身——维纳斯女神。维纳斯(Venus)是罗马人对她的美称,意思是“绝美的画”,在希腊神话中她叫阿佛洛狄忒(Aphrodite),意思是为“上升的泡沫”,因为传说她是在海面上起的泡沫之中诞生的。维纳斯拥有罗马神话中最完美的身段和容貌,一直被认为是女性体格美的最高象征。她的美貌,使得众女神羡慕不已,也让无数天神为之着迷,甚至连她的父亲宙斯也曾追求过她。但宙斯的求爱遭到拒绝后,十分气恼,便把她嫁给了瘸腿的匠神伏尔甘(希腊神话称为赫菲斯塔司)。不过维纳斯后来却爱上了战神马尔斯,并为他生下了几个儿女,其中包括小爱神丘比特。   维纳斯的一生都在追求爱情,然而爱情的热力却总是短暂的,她对于爱情并不专一。在她无数的罗曼史中,最为凄美感人的当数她和阿多尼斯(Adonis)之间的故事了。阿多尼斯是一个俊美勇敢的年轻猎人,某日,维纳斯邂逅了正在打猎的阿多尼斯,并很快坠入爱河。她担心狩猎太危险,便劝阿多尼斯不要捕猎凶猛的大型野兽,然而阿多尼斯却对此不以为然,维纳斯一赌气就离他而去,飞向神邸。不久,不幸的事发生了,阿多尼斯打猎时被一只凶性大发的野猪撞死。维纳斯在半空中听到爱人的呻吟,赶紧飞回地面,却只见到他浑身浴血的尸体。维纳斯伤痛欲绝,她把神酒洒到阿多尼斯的身体上,血和酒相互交融,冒出阵阵气泡,然后像雨点一样落在地面上。不久地上长出一种颜色如血的鲜花,凄美迷人,但是它的生命却十分短暂,据说风把它吹开后,立即又把它的花瓣吹落。这就是秋牡丹,也叫“风之花”,成为这段动人爱情故事的美丽花祭。 福星和祸星   金星虽然观测耀目,但并非总是代表着吉祥。它时而在东方高悬,时而在西方闪耀,让人捉摸不透,恐惧也就因此而生。对玛雅人和阿兹特克人来说,它既隐喻死亡,又象征复活。它是阿兹特克人的神魁扎尔科亚特尔,能使灭绝的人借着从死人王国中偷来的骨架复活,并用这位神灵赐予的血再生。古代腓尼基人。犹太人都认为它是恶魔的化身,是一颗恶星,古代墨西哥人也害怕金星,在黎明时总要关闭门窗,挡住它的光芒。他们认为,金星的光芒会带来疾病。   当然这些传说都是因为古人不了解天体运动规律而臆想出来的唯心主义观念,其实金星就是金星,无关人间祸福。总之,福星也好,祸星也罢,金星永远是夜空中最亮的明星。 占星术   金星在星盘中也属于“个人行星”,它是最靠近地球的星球,在黄道上运转较地球快速金星从未远离太阳46度以外金星是颗女性的、阴性的星,代表我们的爱情的行情和价值,是爱情和官能而非性爱。它的本质是阴性的、温暖的、潮湿的。其性质是两性的,既干燥又潮湿的。表示社交驱力和价值观。在人物方面则代表女性的、阴性的。   金星的图腾符号是维纳斯女神化妆台的镜子与荣华,和维纳斯连接在一起。紧紧围着太阳的金星,它护着天秤座和金牛座。在双鱼座是旺势,在天蝎座和白羊座是失势,在处女座则使落陷。属于金星的字诀是“情爱”。   它的影响如:影响个人的成功、名声、健康、金钱、社交;以及宇宙的运行、次序、盛衰、天体的周期性、引力和排斥作用。它同时也是堕落、性能力、裁判意识的象征。和谐的金星,支配着艺术、文化、美学、财产、伙伴、美、魅力、良好品位、感伤、糖果与糖、色彩、和谐、诗歌、绘画、珠宝、歌唱、戏剧与音乐。金星在星盘中的宫位,表是星盘主在该领域中何种方式表的得最好。   金星对身体也有相对感应的部位,如喉咙、下巴、两鬓、味觉、肾脏、内生殖器、静脉血液循环、皮肤的感觉。所代表的疾病如扁桃腺炎及所有喉咙的感染、白喉、甲状腺肿瘤、淋巴腺疾病、性病、肾脏的毛病、肌肉组织的损怀。   金星的正面特征有:威严的、民主主义的、多才多艺的、充满活力的、雄心的、建设性的、教育的爱好者。而负面特征如:招摇的、贪得无厌的、缺乏雄心的、傲慢的、专横的、诉诸情绪的固执、保守的、唯物论的、武断的、顽固的、占有欲的、色情的、贪婪的。
天文学
太阳与太阳系
行星视运动
行星视运动(汉语拼音:Xingxing Shiyundong;英语:Planet, Apparent motion of),行星在天球上的位置的移动。虽然它们都在黄道附近,但有时自西向东(顺行)、有时自东向西(逆行),速度时快时慢,甚至短期内不动(留)。   ①内行星。从图1可知,水星、金星有上合、下合(两者与太阳黄经相同)以及东大距、西大距(两者与太阳黄经分别相差行星环90°和270°)。当它们在太阳以东时即表现为出现在西方天空的昏星,反之为晨星在黎明前的东方。水星的大距在18°~28°之间,所以不易见到;明亮的金星大距则有45°~48°,因而特别引人注目。   ②外行星。在地球轨道外的6颗行星与太阳角距没有限制,合时与太阳黄经相同,冲时差180°,东方照差90°,西方照差270°(图2)。合时与太阳同升落而无法观测;冲时行星离地球最近,且几乎整夜可见,同样,在东方照附近应出现在上半夜;西方照则出现在下半夜。   行星在天球上的运动实际上是行星与地球两者轨道运动的合成,以外行星为例(图3),当地球从E1,E2,E3并依次到E7时,外行星相应从P1到P2到P3依次到P7,反映在天球上相当于外行星从P'¢1运动到P¢'2……到P'¢7。显然Pⅱ1到P'¢3是顺行段,直到P'¢3表现为留;从P'¢3到P'¢5是逆行段,到P'¢5又为留,P'¢5 到P'¢7则又是顺行。因而造成了外行星在天球上时而顺行、时而逆行的运动。
天文学
天体测量学
区时
区时(汉语拼音:qū shí),(zone time),一种按全球统一的时区系统计量的时间。把整个地球表面按地理经圈划分成24个时区,每一时区跨地理经度15°。各时区统一采用其中央地理经圈的地方平时,称为该区的区时。相邻两时区的区时相差1小时。为便于应用,时区界线往往按各国的政区界线或自然界线确定而不严格按照地理经圈。
天文学
恒星与银河系
赫比格-阿罗天体
赫比格-阿罗天体(Herbig-Haro object),1948~1951年,美国天文学家G.H.赫比格和墨西哥天文学家G.阿罗各自独立地发现的一种半星半云状天体。简称HH天体。最初天文学家把它们看成正在形成中的恒星,但后来的观测表明它们是从非常年轻的金牛T型星喷出的气体与周围物质相互作用的产物。支持这种看法的观测事实至少有以下几点:在一些HH天体附近发现了红外源,它们被证认为类似于十分年轻的金牛T型星的天体,但受到暗星云严重消光和红化;大多数HH天体的视向速度为负值,少数为正,因为嵌在暗云的年轻恒星向暗云前面抛射而形成的天体容易观测到,向远离观测者方向抛射的由于位于暗云深处或后面而不易被发现;一些HH天体有大的自行,方向背离红外源;几个HH天体在红外源两旁排成一行,可能是中间年轻恒星双极喷出的气流形成的一系列节。
天文学
天体测量学
古代计时
古代计时( ancient chronometry ),在古代,为了适应生活和生产的需要,根据昼夜的交替,逐步形成各种计时的方法。 目录 1 古代计时制度 1.1 中国的计时制度 1.2 古埃及、巴比伦的计时制度 2 古代守时工具 2.1 流量计时 2.2 机械钟 2.3 摆钟 3 古代测时工具 3.1 杆影测时 3.2 日晷 4 古代授时 古代计时制度 中国的计时制度 ①不等时法:上古时代,人们“日出而作,日入而息”,共同遵守大自然的规律,以日出、日入为作息的标准时间,就相当于把一天分为两部分,这是天然的不等时法。在殷墟出土的甲骨文中可以看到,对白昼各个不同时刻定有专门名称,例如旦、大采、大食、中日、昃、小食、小采、莫(暮)、夕等。后来,在夜间有五更五点计时法,即把一夜分为五更,每更分为五点,并形成敲梆报时的习惯。②等时法:西周时代,为了计量时间,根据太阳的周日视运动,把一天分为十二个等长的时段,用子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二支来表示。另一种等时制是把一天均分为一百等分,即百刻制,这是中国古代特有的计时法,其产生年代尚无定论,但关于百刻计时的资料,既有文字记载,也有出土文物印证。东汉许慎在《说文解字》中就指出“昼夜百刻”,东汉马融注解《尧典》时说:“古制刻漏昼长六十刻,夜短四十刻;昼短四十刻,夜长六十刻;昼中五十刻,夜亦五十刻”。这里所讲古制,当指春秋战国时代或更早。汉以后历代都将十二辰和百刻配合使用。但一百和十二不可通约,因此,各个朝代的配合方案常有改变。 古埃及、巴比伦的计时制度 ①不等时法:早在公元前3000年,古埃及人把昼夜各分为12时。他们以日出为昼始,正午为昼6时;日没为夜始,子夜为夜6时。因为一年四季昼夜长短不等,不同季节每小时的实际长度也是不相等的。这种计时法传至欧洲,一直使用到公元十四世纪(见埃及古代天文学)。②等时法:公元前八世纪,为了满足天文学的需要,古代巴比伦人制定了等时法。他们把一天分为24个等长的时段,即24时制。等时制后来由喜帕恰斯和托勒密继承下来,并规定以正午作为一天的开始。这种计时法常应用于天文学,也称“天文时”。由于它对日常生活不太方便,从1925年起改为以子夜为一天的开始。 古代守时工具 其发展大致经过三个阶段: 流量计时 最古老的守时工具无疑是泄水型漏壶。后来有以沙代水的沙漏,有以油灯耗油量多少来计时的灯钟,也有燃香的香篆钟(香火在金属盒内沿篆字式的沟槽蜿蜒前进)等等。中国现存最古的漏壶是西汉时代的。世界上现存最古的滴漏是公元前十四世纪的埃及水钟。 埃及水钟 机械钟 中国汉代天文学家张衡作水运浑象(见漏水转浑天仪),能显示恒星出没、中天等天象,与室外天象完全相符。这是世界上最早的水力推动的机械钟。唐代天文仪器制造家梁令瓒所制的水运浑象,除能符合天象外,另立两个木人每刻自动击鼓,每辰自动击钟。这是张衡水运浑象的改良型机械钟。宋元祐年间,苏颂和韩公廉等共同创造水运仪象台。元代有郭守敬制的大明殿灯漏。明代詹希元造五轮沙漏。这些机械钟具有完整的齿轮系、凸轮和擒纵机构。欧洲的机械钟开始于十四世纪,此后盛行了约四百年。 西汉铜漏壶 摆钟 1582年,伽利略发现了摆的等时性。1656~1657年,荷兰惠更斯把摆引入机械钟,从而创立了摆钟。1673年,惠更斯采用摆轮-油丝系统,造出一种便于携带的钟表。1735年,英国哈里森首次制造出航海钟,解决了当时资本主义发展中急待解决的航海定位问题。1896年,法国吉尧姆研制低膨胀系数的合金钢,造出精度极高的天文摆钟。如果把钟装入真空的玻璃罩内,存放在地下室,保持恒温,即为天文摆钟,每天的误差不超过千分之几秒(见天文时计)。 古代测时工具 杆影测时 古人很早就知道,直立的标杆影长不断地随太阳在天上的位置的不同而变化。看杆影比直接观测太阳要方便,但测时结果是不等时的。《史记·司马穰苴列传》中就有春秋时代“立表下漏”测时的记载。用杆影测时法测定中午的时刻精度很高,是中国古代用来校正漏壶计时的主要方法之一。 日晷 在西汉时,中国就已使用日晷测时,中国通用的是赤道式日晷。它是根据针影的方向来测量真太阳所转过的角度。晷盘的刻度分成子、丑、寅、卯……,或分为100刻。北京故宫交泰殿前陈列有赤道式日晷。 北京故宫赤道式日晷 古代授时 中国古代许多城市建有钟楼和鼓楼,靠击钟敲鼓向居民报告时间。在夜晚广泛流行的是打梆报时,用间断的梆声告诉人们更点。西方的教堂也有敲钟报时的制度。后来,也有用放午炮报时的。
天文学
天体测量学
天文单位距离的光行时
天文单位距离的光行时( light-time for astronomical unit distance ),天文常数之一,即电磁波通过一个天文单位的长度所经历的时间,以τA表示。它与天文单位A、光速c的关系为:cτA=A。二十世纪六十年代以前,无法直接测定τA,需要通过天文学方法确定A和通过物理学方法确定c以后,再推导出τA。1961年,美国成功地对金星进行了雷达定位观测。此后,美国、苏联、英国又相继对金星、火星和水星进行了雷达测距。根据天体力学理论,可以精确地推算出行星对地球的距离与日地平均距离之比,所以用行星雷达测距可以直接得到一个天文单位距离的光行时τA。 1964年国际天文学联合会天文常数系统采用τA=499.012秒,把它作为导出常数。它是根据1961~1963年用金星雷达测距的结果得到的。此数值从1968年开始采用,将用到1983年为止。1976年国际天文学联合会天文常数系统把τA作为一个基础常数,数值为499.004782秒。它是根据美国麻省理工学院和美国喷气推进实验室在1970~1974年间进行的四次行星雷达测距的结果,经过综合分析得到的。此数值将从1984年起统一采用。
天文学
恒星与银河系
鲸鱼座UV型变星
鲸鱼座UV型变星,一类特殊的变星。1948年发现鲸鱼座UV星的光度在3分钟内增强11倍,以后又发现一些光谱型从dKe到dMe的鲸鱼座UV型变星。
天文学
光学天文学
三球仪
三球仪(拼音:sān qiú yí),天文教学和天文普及中常用的仪器之一。又称月地运行仪。它由一个代表太阳的发光的灯泡和两个分别代表地球和月球的小球组合而成的。这3个球之间用机械联动装置相连结。地球沿着黄道绕太阳转动,月球位在白道面上绕地球转动。在公转的同时两个球还在自转,由于黄道面和白道面之间有一交角,所有代表月球和地球的两个小球都可以被太阳照亮。利用三球仪可以演示日、地、月三者之间的关系,也可以演示日食、月食的成因和过程,月球的盈亏,昼夜和四季的交替等天文现象。
天文学
恒星与银河系
旋臂
旋臂( spiral arm ),旋涡星系内年轻亮星、亮星云和其他天体形成的螺线形带状结构。这种螺线形带称为旋臂,是旋涡星系外形的主要特征。旋臂按其形态的规整程度分为12类。有两条长而对称旋臂的星系被归为第12类,然后规整程度逐次下降,直到零碎而不对称的第1类。旋臂主要由星族Ⅰ的明亮的早型恒星构成。旋臂中除恒星外,还含有星际气体和尘埃,旋臂的前部(按旋转中的前进方向)往往还存在一暗黑的尘埃窄条。旋臂中还可观测到许多电离氢区。银河系有两条或者更多的旋臂,用光学方法可观测到两条旋臂的一部分,用射电方法则可观测到更多的部分(英仙臂、猎户臂、人马臂和三千秒差距臂等)。旋臂结构的实质可用密度波理论来解释。这种理论认为,星系中央棒形结构的存在或近邻星系的潮汐力易于使星系盘物质产生螺线形密度波动。这种密度波的图案与物质旋转速度不一致。当星际物质进入高密区的引力势阱时,突然的压缩会触发恒星形成,这些明亮的新生恒星就作为示踪物勾勒出螺线形的旋臂。另一种观点认为,前一代恒星演化晚期超新星爆发产生的激波,会触发周围星际物质中的恒星形成,这些新一代恒星演化晚期超新星爆发产生的激波,又会触发周围星际物质中下一代的恒星形成。这种以自传播方式形成的新生恒星也能在自转的星系中产生旋臂。 旋涡星系NGC4622的照片显示出两条规整的旋臂
天文学
恒星与银河系
暗星云
暗星云( dark nebula ),银河系中不发光的弥漫物质所形成的云雾状天体。如果气体尘埃星云附近没有恒星,则星云将是暗的,即为暗星云。它们的形状和大小是多种多样的。小的只有太阳质量的百分之几到千分之几,是出现在一些亮星云背景上的球状体;大的有几十到几百个太阳的质量,有的甚至更大。它们内部的物质密度也相差悬殊。赫歇耳父子于1784年首次注意到明亮的银河中有一些黑斑和暗条。后来的照相研究表明,这种现象是由于一些位于恒星前面的不发光的弥漫物质造成的。这种暗区在银河系中很多,最明显的是天鹅座的暗区,银河被分割成为向南延伸的两个分支。有些暗星云和亮星云在一起,如位于猎户ζ南面的有名的马头星云(图1),它是一个很大的暗星云的一部分,“马头”四周的光芒是从亮星云发出的。蛇夫座S状暗星云和烟斗星云(图2)也是不透明的暗星云。但在云层较薄时,仍可看到一些光度被大大减弱了的恒星,所以在这个天区所看到的星体,就比没有暗星云的天区稀疏得多。 图1 马头星云 图2 烟斗星云 在不少亮弥漫星云背景上发现了一些圆形的暗斑。这些暗斑是物质密度较高的天体,它们是很小的暗星云,由于呈球形,称为球状体。1947年荷兰天文学家B.J.博克最先讨论了这些“小暗星云”。他在太阳系外大约1 600光年范围内发现了200个左右这样的暗天体,最好的样本在金牛座和蛇夫座。这样的暗天体在光学上显得极厚,消光能力可达30星等。这些小暗星云标志着新生恒星的诞生地。后来天文学界接受了这些天体代表恒星演化过程中一个特殊阶段的观点。球状体的直径小于1秒差距(1秒差距等于3.261 6光年),质量估计为10-1~102m⊙。许多球状体的中央包含红外源,很可能是正在收缩并将形成恒星的天体。 暗星云本身不发光,利用光学方法进行研究就受到很大限制。射电天文方法为暗星云的研究提供了有力的工具,这主要是由于暗星云有各种射电辐射。尤其是它们发射的中性氢21厘米谱线,使人们能够更深入地研究大量处于低温状态的暗星云的大小、结构和组成,从而为研究银河系结构和运动提供重要的资料。紫外线和X射线由于不能穿入,暗星云中央得不到加热,典型暗星云中的温度很低,为5~10K。此外,暗星云所在天区发现许多有机分子,因此有些暗星云又称星际分子云。通过毫米波观测,发现在一氧化碳暗星云中存在一些温度较高(15~50K)的“热点”,这些热点还有较强的红外辐射。通过红外观测还发现一些包围在暗星云中的能量集中在2~20微米波段的红外源,其中一些较亮的红外源还和暗星云中的微波源有关。观测还发现,一些年轻的天体如赫比格发射星(年龄105~106年)、赫比格–阿罗天体等直接与暗星云有密切的关系。这些暗星云的直径约为10秒差距,平均原子数密度约为每立方厘米5×103个,平均温度约为10K。演化过程中由于某种辐射(如毫米波)损失使内能减少,导致内压力小于本身重力而发生坍缩。坍缩过程中某些团块在重力作用下形成一系列密集点,这些可能就是形成恒星或星群的原始胚胎。根据恒星诞生率和银河系中暗星云的总质量对比来看,只有很少一部分物质(1‰到1%)形成恒星。
天文学
天体测量学
人造卫星多普勒接收机
人造卫星多普勒接收机( satellite Doppler receiver ),观测携有频率高度稳定发射机的人造卫星用的地面无线电设备。当卫星经过观测站上空时,随着人造卫星与观测站间相对距离的不断变化,观测站接收到的人造卫星信号的频率也不断变化。接收频率同人造卫星发射频率之差称为多普勒频移。多普勒接收机就是用来测量这种频移的仪器,以获得有关人造卫星轨道和观测站位置的资料。 多普勒接收机是一种高灵敏度的锁相接收机,采用振子式、螺旋式或其他类型的超高频天线。外差式接收机把来自天线的微弱信号进行低噪音放大,并由频率标准和倍频器给出的高稳定度(一般优于10-10)参考频率,将接收信号的频率差拍到较低的频率。锁相跟踪滤波器是一个把中心频率不断调整在差拍信号频率上的窄带滤波器(带宽数赫到数十赫)。由于带宽较窄和频率跟踪特性准确,信号通过滤波器以后,接收机噪音的绝大部分被滤除,而有用的多普勒信号则被完整地保留下来,从而使多普勒接收机的输出信噪比和灵敏度大为提高。滤波器输出的“纯净”多普勒信号,由计数器按一定重复频率进行周期计数,即测量信号电压在一定时间间隔内过零的次数。周期计数的时间间隔小于1秒的微分多普勒接收机(又称多普勒测速仪),其输出数据是对应于各计数间隔中央时刻的瞬时多普勒频移和人造卫星对观测站的视向速度的。周期计数时间间隔较长(数秒至两分)的积分多普勒接收机,其输出数据则对应于每次计数开始和结束时的人造卫星同测站的距离之差。计数器测得的周期数按编码输出,和观测站数字钟所提供的世界时一起由打印机、穿孔机或磁带机记录。为获得准确的时间,可用甚低频接收机接收甚低频时号来校准观测站的数字钟,并使其与其他观测站的时间同步,但积分多普勒接收机一般用人造卫星本身提供的时间信号来校准。 多普勒接收机的测频精度可达10-10,但人造卫星信号穿过地球大气的电离层和对流层时所产生的附加频移,要比仪器误差大得多。一般可以通过同时接收人造卫星发出的两个相干信号来消除电离层影响的一阶项。为了消除对流层折射的影响,需将误差较大的低仰角数据剔除,并根据一定的对流层模型,利用观测站记录的气象数据进行修正。
天文学
天体测量学
实测天体物理学
实测天体物理学( observational astrophysics ),利用实验物理学的技术和方法来观测和研究天体的物理本质的学科。 目录 1 诞生 2 理论和技术的配合 3 全波天文学概述 4 新技术的应用 诞生 十九世纪中叶,分光学、光度学和照相术广泛应用于天体的观测研究,产生了实测天体物理学。①分光学:1666年,牛顿用三棱镜得到太阳光谱,发现太阳光是复合光。1802年,沃拉斯顿在棱镜前加上一个狭缝后,发现太阳光谱中的吸收线。1814年,夫琅和费制成了分光镜。1859年,基尔霍夫说明了吸收线产生的原因。他们的工作为天体分光学打下了基础。②光度学:喜帕恰斯和托勒密先后在编制星表时,把肉眼能看到的星按亮度分为6等。但星等的准确定义,一直到十九世纪中叶才定下来。1856年,普森建议把相邻两个星等的亮度比值定为勄,即2.512,他的建议被普遍采纳。以后光劈光度计制造成功,使天体光度测量的结果更加准确。照相术应用于天体的观测以后,照相测光几乎代替了目视测光。光电技术应用于天体光度测量则是二十世纪的事。③照相术:1727年,舒尔策发现银盐见光变黑现象;到1839年,达盖尔才利用这个性质发明了照相术。1845年,费佐等人拍摄到第一张太阳照片,发现上面有几个黑子。1851年,布施在日全食时,拍摄到日冕的照片。1859年,W.C.邦德首先利用照相方法进行恒星的光度测量。以后,照相术广泛应用于天体的观测,并包括恒星光谱分类工作。直到今天,照相术仍然是天文学研究中的一种重要手段。 理论和技术的配合 从二十世纪开始,物理学的迅速发展,尤其是原子物理学、原子核物理学、量子力学和相对论的建立和发展,为天体物理学提供了分析观测资料的重要理论基础。理论物理学应用于天体研究,形成了一个新的分支学科──理论天体物理学。它与实测天体物理学相互配合,推动了天体物理学的发展。从此新天象和新理论不断出现:对太阳进行光谱观测,证认太阳大气里含有几十种元素;观测太阳表面的特征结构,并发现黑子磁场;五大行星表面温度的实测结果与理论推算相符合;通过实测初步证认了几个行星大气的组成并发现彗星的彗头光谱和彗尾光谱的差异和它们的化学组成。通过恒星的测光和分光研究,确定了大量恒星的各种物理量──光度、质量、大小、表面温度、表面压力、自转速度等,确定了河外星云都是庞大的恒星系统。此外,还从理论上研究了恒星的内部结构、能量来源以及天体上的不稳定过程的本质。 天体物理学的发展,要求不断扩大天文望远镜的口径,配备更精密的附属设备,改进观测技术。本世纪初,已经有了几座口径1.5米以上的反射望远镜,1918年,美国威尔逊山天文台建成口径2.54米的反射望远镜。1948年,帕洛马山天文台建成口径5.08米的反射望远镜。各种新技术(自动化技术、光电像转换技术、电子计算机技术)的应用,不断给实测天体物理学增加新的武器。 全波天文学概述 天体的电磁辐射包括射电波(1毫米~30米)、红外线(7000埃~1毫米)、可见光(4000~7000埃)、紫外线(100~4000埃)、X射线(0.01~100埃)和γ射线(<0.01埃)。①射电天文:紫外线、红外线容易被地球大气分子吸收,而波长1毫米~30米的无线电波,则不易被吸收。1931~1932年,央斯基在研究长途电讯干扰时,发现了来自银心方向的宇宙无线电波即宇宙射电。二十世纪四十年代,英国一部军用雷达接收到一种异常干扰,又发现了太阳发出的强烈的无线电辐射,即太阳射电。以后,人们愈来愈广泛地使用无线电方法研究天体和宇宙的射电辐射,射电天文学便诞生了。六十年代的四大天文发现──类星体、脉冲星、星际分子、微波背景辐射,都是通过射电天文手段取得的。②空间天文:1946年,美国开始利用V-2型火箭在离地面30~100公里不同高度处拍摄紫外光谱,获得不少太阳光谱新知识。1949年,伯奈特利用V-2型火箭在90公里高度处用涂铍底片发现了太阳的X射线。1953年,利用光子计数器代替底片作为太阳辐射的探测器。观测表明,由色球发出的紫外线和由日冕发出的 X射线强度变化很大。只有持续观测,才能取得太阳爆发过程的系统资料,仅靠火箭观测显然是不够的。1957年,苏联发射人造地球卫星以后,美国、西欧、日本也相继发射了天文卫星和空间飞行器(如轨道天文台、轨道太阳观测台、高能天文台等等),在其中安装了各种类型的探测器(利用高能物理、核物理、原子物理的探测技术),探测天体的各种辐射,促使紫外天文学、X射线天文学、γ射线天文学迅速发展。十九世纪四十年代出现的红外天文学,在二十世纪六十年代获得了新的生命力。从此进入了全波天文学时代。 新技术的应用 随着工业技术的飞速发展,几乎所有的各种新技术都被应用于天文观测。①天文望远镜:电磁辐射的收集和定位是由望远镜来实现的。例如,1962年美国国立天文台在基特峰安装了定日镜口径为2.08米的太阳望远镜,配备有多通道太阳磁像仪和真空摄谱仪。1963年,美国阿雷西博天文台在波多黎各装备了最大的单天线的固定球面射电望远镜,球面口径305米。1970年前后,有十来个射电天文台采用干涉技术,如美国探空跟踪站的两个分站:戈德斯通站和拉贡站(澳大利亚)。1967年用距离10,589公里的甚长基线干涉仪观测射电源,工作波长13厘米,分辨率达0.″0008。②行星际探测:美国发射的“阿波罗号”宇宙飞船于1969年7月起,多次登月,宇航员收集和转递了大量月球资料,并在月面上安置各种测量仪器。美国、苏联等国发射一系列空间飞行器,探测月球、行星和行星际空间。天文学在传统上是靠“观测”获得资料,由于空间科学的发展,已开始用“实验”方法来研究天体。除了火箭技术外,还应用遥感技术、通讯技术、遥控技术和自动化技术。③地面观测:地面观测仍有非常重要的作用。大型光学望远镜和射电望远镜继续在工作。望远镜的终端设备日益精良(如光电像增强器、二极管阵等等),分析测量仪器不断改善(如快速自动显微光度计PDS),大大提高了工作效率。1975年,苏联在高加索安装了口径6米的地平式反射望远镜,用电子计算机控制来跟踪天体。地面的光学观测和射电观测仍然是天体物理数据资料的重要来源。
天文学
恒星与银河系
光谱变星
光谱变星( spectrum variable ),许多A型特殊星(AP)和金属线星(Am)在可见光波段的光度变化不大,但谱线强度有明显的周期性的变化,称为光谱变星。最早发现的光谱变星是猎犬座α2星,因此,光谱变星亦称作猎犬座α2型变星。它们的光谱中有异常强的金属线和稀土族元素谱线,谱线强度随着光度的变化而变化,光变周期范围1~25天,变幅通常不超过0.1个星等(如猎犬座α2的光电目视星等最亮时为2.85,最暗时为2.92)。另有周期更短(0.5~2小时)和变幅更小的二级变化迭加在主周期上。此外,光度与光谱也存在长期性的缓慢变化。这些光度和颜色方面的较小变化看来同磁场强度有关。观测表明,它们具有数量级达103~104高斯的强表面磁场,磁场强度的变化周期往往与光度变化的周期相同而位相相反。跟同一谱型的正常星相比,它们的自转速度较低。一般采用斜转子模型、磁振子模型或双星模型来解释光谱变星的各种现象。B型星中也存在光谱变星,氦星HD125823即是一例。应该指出,各类变星普遍存在光谱变化;而光度变化微小,光谱变化明显的也不限于上述的恒星,如英仙座S3是B型谱线轮廓变星,武仙座l和o型星蝎虎座10也都是光度变化微小或难以测出而谱线轮廓有周期变化的恒星,又如大角也是光谱变星,等等。
天文学
恒星与银河系
目视双星
目视双星,指通过望远镜,人眼可以直接分辨开子星的双星。
天文学
星系与宇宙学
零压宇宙解
零压宇宙解,建立宇宙模型时,要计算宇宙物质产生的引力场,首先就要解引力场方程。按大尺度空间观点,可以把宇宙物质看作是由松散介质或尘埃组成的体系。但质点间的压力和辐射压都比其静能密度小得多,可忽略不计(即令介质的压力为零)。由此得出的引力场方程的宇宙解,叫作零压宇宙解,并把相应的模型称为尘埃宇宙模型。
天文学
太阳与太阳系
太阳电子事件
太阳电子事件( solar electron event ),太阳出现耀斑时发射高能电子的现象。太阳电子事件是1964年由行星际探测器“水手”4号第一次探测到的。自那时以来,在地球附近记录到的太阳电子事件已达数百次之多,能量一般都在40千电子伏以上。90%以上的电子事件都同耀斑明显对应。太阳质子事件都伴生非相对论性电子,很少例外。另一方面,在空间探测中,却常有观测到电子流而观测不到质子成分的情况,这称为纯电子事件。观测表明,纯电子事件与通常的电子事件一样,电子的能谱与幂律谱型相吻合,这种吻合一直保持到电子能量在5千电子伏以下,有时甚至到2千电子伏左右。但是纯电子事件与通常的电子事件,在性质上有明显区别。在纯电子事件中,电子流量在每平方厘米、每球面度、每秒10~100个电子之间,决不超过103个电子;而在通常电子事件中,电子流量在102~103个电子之间,有时甚至高达104个电子。电子能谱的幂指数在两种不同电子事件中也不一样。在纯电子事件中,幂指数在2.5~4.6之间,在100千电子伏以上能谱更为陡峭。相反,在通常的电子事件中,典型的电子谱较为平坦地似幂律谱的形式伸展到高能区,直到10兆电子伏,幂指数几乎常常小于3.5。此外,在纯电子事件中,能量高于20千电子伏的电子总数估计在1033左右;而在通常的粒子事件中,电子数目则可高达1036。所有这些差异反映出两类电子事件的加速过程的强烈程度有所不同。这对了解太阳耀斑粒子的加速过程是很有用的。
天文学
天体测量学
本初子午线
本初子午线(汉语拼音:Benchuziwuxian;英语:prime meridian),地球上计量经度的起始经线。又称零子午线。从本初子午线起,分别向东和向西计量地理经度,从0°到180°。   1884年在华盛顿举行的国际子午线会议决定,采用通过英国伦敦格林尼治皇家天文台(旧址)埃里中星仪的子午线作为时间和经度计量的标准参考子午线,称为本初子午线。1957年后格林尼治天文台迁移台址,国际时间局利用若干天文台在赤道上定义了平均天文台经度原点,它由这些天文台的经度采用值和测时资料归算而得。1968年起把通过国际习用原点和平均天文台经度原点的子午线作为本初子午线。
天文学
天文学
地心体系
托勒密地心体系图 地心体系( geocentric system ),认为地球静止地居于宇宙中心,太阳、月球、行星和恒星都绕地球转动的学说,又称“地球中心说”、“地心说”或“地静说”。这一学说最初为欧多克斯和亚里士多德等所倡导。后来,古希腊学者阿波隆尼提出本轮均轮偏心模型。约在公元140年,亚历山大城的天文学家托勒密在《天文学大成》中总结并发展了前人的学说,建立了宇宙地心体系。这一体系的要点是:①地球位于宇宙中心静止不动。②每个行星都在一个称为“本轮”的小圆形轨道上匀速转动,本轮中心在称为“均轮”的大圆轨道上绕地球匀速转动,但地球不是在均轮圆心,而是同圆心有一段距离。他用这两种运动的复合来解释行星视运动中的“顺行”、“逆行”、“合”、“留”等现象。③水星和金星的本轮中心位于地球与太阳的连线上,本轮中心在均轮上一年转一周;火星、木星、土星到它们各自的本轮中心的直线总是与地球-太阳连线平行,这三颗行星每年绕其本轮中心转一周。④恒星都位于被称为“恒星天”的固体壳层上。日、月、行星除上述运动外,还与“恒星天”一起,每天绕地球转一周,于是各种天体每天都要东升西落一次。 托勒密适当地选择了各个均轮与本轮的半径的比率、行星在本轮和均轮上的运动速度以及本轮平面与均轮平面的交角,使得按照这一体系推算的行星位置与观测相合。在当时观测精度不高的情况下,地心体系大致能解释行星的视运动,并据此编出了行星的星历表。可是,随着观测精度的提高,按照这一体系推算出的行星位置与观测的偏差越来越大。他的后继者不得不进行修补,在本轮上再添加小本轮,以求与观测结果相合;尽管如此,还是经不起实践检验,因为这一体系没有反映行星运动的本质。在欧洲,教会利用托勒密的地心体系作为上帝创造世界的理论支柱,在教会的严密统治下,人们在一千多年中未能挣脱地心体系的桎梏。十六世纪中叶,哥白尼提出了日心体系,并为后来越来越多的观测事实所证实,地心体系才逐渐被摒弃。
天文学
星系与宇宙学
总星系
总星系( Metagalaxy ),通常把我们观测所及的宇宙部分称为总星系。也有人认为,总星系是一个比星系更高一级的天体层次,它的尺度可能小于、等于或大于观测所及的宇宙部分。总星系的典型尺度约100亿光年,年龄为100亿年量级。通过星系计数和微波背景辐射测量证明总星系的物质和运动的分布在统计上是均匀和各向同性的,不存在任何特殊的位置和方向。总星系物质含量最多的是氢,其次是氦。从1914年以来,发现星系谱线有系统的红移。如果把它解释为天体退行的结果,那就表示总星系在均匀地膨胀着。总星系的结构和演化,是宇宙学研究的重要对象。有一种观点认为,总星系是2×1010年以前在一次大爆炸中形成的。这种大爆炸宇宙学解释了不少观测事实(元素的丰度、微波背景辐射、红移等)。另一种观点则认为,现今的总星系是由更大的系统坍缩后形成的,但这种观点并不能解释微波背景辐射。
天文学
恒星与银河系
质量交流
质量交流( mass exchange ),密近双星中一子星的表面物质向另一子星转移的现象。质量交流通常是在子星表面出现星风或表层爆发活动的时候,或子星体积膨胀达到内临界等位面的时候发生的。由于质量交流,双星的轨道周期会发生变化,视向速度曲线和食双星的光变曲线也会发生畸变,轨道运动的特定位相上会出现某些气体发射线。这些现象都已被观测证实。质量交流的相对规模有大有小,如渐台二(天琴座β),其质量转移的速率估计每年可达到10-4~10-5太阳质量。密近双星质量交流时,由甲子星抛向乙子星的物质流,可能直接落在乙子星的表面,也可能形成绕乙子星转动的气环或气盘等星周物质。质量交流在密近双星中是普遍的现象。因为存在质量交流,双星中的子星的演化过程就与单星不同。这些子星,除受核反应过程的控制以外,还要受质量交流的双星动力学演化过程的影响。例如一个质量小于3个太阳质量的子星,由于质量交流,就可以不经过红巨星阶段,直接演化成一个低光度的白矮星。 质量交流也被用于解释双星世界中的一些特殊现象。如密近双星中的致密星(白矮星或中子星等)成为一个X射线源,就是因为在质量交流中吸积伴星的物质流的缘故;另如新星、A型特殊星、A型金属线星、B型发射星和沃尔夫-拉叶星等特殊天体的物理状态和演化也可能与双星的质量交流有联系。
天文学
天体力学
变换理论
变换理论( theory of transformation ),研究天体运动方程的一种处理方法。在天体力学中,经常需要将变量进行变换,从而改变天体运动方程的形式以便于研究。根据不同的问题,需要研究采用什么样的变换,这就形成了天体力学中的变换理论。它包括两方面的内容: 正则变换 分析力学中的哈密顿方程又称正则方程,它具有对称性等一些优点,是解决力学问题的一种常用的方程形式。如果变量变换后新方程仍保持正则形式,这种变换称为正则变换。若在变换中不显含时间,这样的正则变换称为保守正则变换;若保守正则变换使哈密顿函数不变,则此保守正则变换称为完全正则变换。1916年,蔡佩尔用正则变换寻找循环坐标的方法处理天体力学中的具体问题,这种方法称为蔡佩尔方法。1959年,布劳威尔用蔡佩尔方法处理人造天体的运动问题,称为布劳威尔-蔡佩尔方法。这种方法采用的正则变换是由隐函数定义的,要经过复杂的计算才能给出新旧变量的显函数关系。堀源一郎把李级数的概念和结果应用到正则变换,通常称为堀源-李变换。堀源一郎还把这种理论从正则系统推广到非正则系统,并应用到受摄开普勒运动和非线性振动问题上。谢费勒把正则变换的概念推广到不同维数空间之间的变换,并给出了进行这种变换的一些条件。 正规化变换 消除质点组运动方程中碰撞奇点(见碰撞问题)的变换称为正规化变换。它通常包含自变量变换和坐标变换两部分。正规化变换消除运动方程的奇点后,使新的坐标成为新的自变量的解析函数,这样就便于从理论上进行讨论,并有可能给出运动方程解的具体表达方式。三体问题中著名的松德曼级数就是在对二体碰撞奇点进行正规化变换以后得到的。对于一些可积的问题,正规化变换往往指出了积分的途径。在平面圆型限制性三体问题中,蒂勒变换可以用来积分双不动中心问题。用数值方法积分包含碰撞奇点的运动方程时,离碰撞奇点越近,方程右端函数的变化就越快。在这种情况下,积分步长必须急剧减小,这样既耗费计算时间,又不能保证精度。正规化变换以后可大大提高计算效率和计算精度。 平面二体问题中最著名的正规化变换是列维-齐维他变换。变换后的运动方程在能量常数小于零时是简谐振动方程。将列维-齐维他变换直接推广,用于空间二体问题,便形成KS变换。在空间二体问题中,还有莫泽变换。这是用球极平面射影及其正则扩充,把2n维相空间变换成n+1维空间的单位球面及其切空间。当n=3时,可以把具有负能量的开普勒轨道变换成球面上的测地线,把碰撞奇点变换成球面上的一个极点,经过这个极点的大圆对应于碰撞轨道。 将以上这些正规化变换用到多体问题中都只能使一个二体碰撞奇点正规化,因而这些变换称为局部正规化变换。局部正规化已能解决许多实际工作的数值积分问题和部分理论课题。使所有的二体碰撞奇点同时进行正规化的变换称为全局正规化变换,这比局部正规化要困难得多。研究平面圆型限制性三体问题的全局正规化的历史最长,结果也比较完善。一般采用以两个大质量质点连线中点为原点的旋转坐标系。将旧坐标z和新坐标w都作为复变量,它们之间的关系用保角映射z=f(w)表示。自变量t变换成s的关系是dt/ds=|dz/dw|2。这些变换中最著名的是蒂勒变换z=(cosw)/2。蒂勒变换曾被用来对平面圆型限制性三体问题的周期轨道进行了大量的数值积分工作。另外,还有z=(wn+w-n)/4的变换。当n=1时,为伯克霍夫变换;而n=2时,则为勒梅特变换。所有这些变换都同时使两个碰撞奇点正规化,剩下唯一的碰撞奇点是z平面上的无穷远点。
天文学
星系与宇宙学
旋涡星系
旋涡星系( spiral galaxy ),具有旋涡结构的盘状星系。星系的哈勃分类中用S代表(见星系分类)。旋涡星系的旋涡形状,最早是W.P.罗斯于1845年观测猎犬座星系M51时发现的。旋涡星系的中心通常有大质量黑洞,稍外是由星族Ⅱ老星组成的椭球状核球,周围围绕着由星族Ⅰ恒星、疏散星团、气体和尘埃组成的扁平圆盘,同核球恒星相比,盘星旋转速度较大而弥散速度较小。盘的面亮度从内向外呈指数律降低,I(R)=I(0)exp(−R/hR),式中hR为面亮度降到1/e时的半径,称为标长,取值在1至10千秒差距之间。从隆起的核球两端延伸出两条或更多点缀着明亮年轻恒星的螺线状旋臂,叠加在星系盘上。球形的星系晕延伸到盘以外,其中主要是星族Ⅱ天体,典型代表是球状星团。一个中等质量的旋涡星系往往有100~300个球状星团。再往外还有由暗物质组成、主导着星系质量的暗晕。它的存在是大量星系的旋转曲线在远离中心仍像观测到的那样保持平坦的必要前提。旋涡星系的质量M为100亿至1万亿倍太阳质量,光度对应的绝对星等是−15~−21等。质光比(以太阳质量和太阳光度为单位)M/L≈2~20。直径范围是5~50千秒差距。1977年发现,旋涡星系的光度约与峰值旋转速度(由中性氢21厘米谱线宽度测定)的4次方成正比,按其发现者的名字称为塔利–费希尔关系,是估计星系相对距离的重要方法之一。 大熊座旋涡星系M101(国家天文台BATC组提供)
天文学
星系与宇宙学
尘埃宇宙模型
尘埃宇宙模型( dust universe model ),建立宇宙模型时,要计算宇宙物质产生的引力场,首先就要解引力场方程。按大尺度空间观点,可以把宇宙物质看作是由松散介质或尘埃组成的体系。但质点间的压力和辐射压都比其静能密度小得多,可忽略不计(即令介质的压力为零)。由此得出的引力场方程的宇宙解,叫作零压宇宙解,并把相应的模型称为尘埃宇宙模型。
天文学
天体力学
达尔文体
达尔文体( figure of Darwin ),均匀流体球自转时的一种平衡形状。1901年,G.H.达尔文提出一种与庞加莱体的梨状略有不同的平衡形状,近小头处更细一些,称为达尔文体。 根据这种平衡形状,G.H.达尔文提出了地月系统演化的一种假说(见月球的起源和演化)。他认为,地球和月球原来是一个流体团,由于自转成为梨状的平衡形状,后在外力作用下,较细区域越变越细,最后使小头分裂出去,成为月球。在潮汐摩擦作用下,地球自转速率逐渐减小,而角动量也随之减小。根据地月系统角动量守恒规律,月球同地球的距离就逐渐增大,相应地公转角动量也增大。由于这种平衡形状的稳定性问题尚未解决,这还只是一种假说。
天文学
天体测量学
坐标量度仪
坐标量度仪( coordinate measuring instrument ),测量在透射或反射光照射下的平面目标(主要是照相底片上星像)的直角坐标的专用光学仪器。坐标量度仪包括瞄准星像的光学系统、载片架和移动机构、测量目标坐标的玻璃刻尺及其读数测微器。测量时,移动装上底片的载片架,瞄准星像,就可以从测微器上读出目标的位置数据。利用转像棱镜将被瞄准的星像旋转180°,然后测量星像,可以消除瞄准误差。仪器X和Y方向的两根刻尺应严格垂直,刻尺的每根刻线的改正量和刻尺的温度系数都可事先精密测定。仪器本身精度优于1微米。新型的坐标量度仪有自动记录设备,但测量者仍需瞄准目标和刻尺。有的天文台配备了天文底片自动测量系统,能快速自动测量底片上各种目标的坐标,甚至能自动测量目标的大小和各种光度数据。
天文学
光学天文学
电子照相机
电子照相机( electronographic camera ),附在天文望远镜上的光电成像系统。主要由安装在高真空管壳内的光电阴极、电子透镜和底片三部分组成。光电阴极将映在它上面的光学图像变成电子像,经电子透镜系统聚焦和加速,记录在对高速撞击的电子敏感的底片上。电子像在底片上的照相密度在很大范围内同入射光强度存在着线性响应关系。电子照片的信息贮存量和动态响应范围很大,灰雾和暗背景很小,分辨率高达每毫米200线对以上。此外,从光电阴极发射出来的单个电子被加速到25千伏以上,便可在底片上产生能够识别的电子余迹,因而达到辐射探测器的理论极限。电子照相机能高效率地同时记录整个视场上所有天体的精确图像,非常适合于暗弱天体的测光和分光光度测量。例如,精确测定不均匀背景上的天体的星等,观测致密星系、弥漫星云以及类星射电源等暗弱天体,拍摄高色散度光谱,提高望远镜的探测极限星等。此外,电子照相机还成功地应用于空间天文学。 克朗式电子照相机的结构 在高真空中,底片乳胶会放出水汽和其他气体,使化学性质非常活泼的光电阴极在瞬息之间损坏。要避免这种现象,还需要解决许多复杂的技术问题,同时,电子照相机在使用上也存在一些困难。 图为克朗式电子照相机的结构。金属管壳内装有电子透镜的电极2、3、4,电极间用玻璃管壳隔开。光电阴极1制备在蓝宝石片基上,同两块前置光学透镜组成一套像场改正系统。底片盒6和光电阴极间设高真空阀门5,将底片盒卸下更换时,关闭它能防护光电阴极。7是阀门操作机构,8是磁屏蔽套。底片安装在圆载片盘上,后者在外部磁铁作用下转动,依次使各底片对电子像曝光。底片盒用液氮冷却。
天文学
天文学
双星
双星( binary stars ),在空间中视位置比较靠近的两颗星。由于彼此引力作用而沿着轨道互相环绕运动的,称为物理双星。远看彼此很靠近,实际上在空间相距很远,并不互相环绕运动的两颗星,称为光学双星。本条所讲仅指物理双星。组成双星的两颗星均称为双星的子星。天狼、南门二、五车二、南河三、角宿一、心宿二、北河二、北斗一和参宿三等著名亮星都是双星。 双星的种类 ①目视双星:指通过望远镜,人眼可以直接分辨开子星的双星。②干涉双星:指用干涉测量法(例如用经典干涉仪、强度干涉仪、光斑干涉仪等)测知的双星。③掩食双星:指由掩星(例如月掩星)观测分析而略知的双星。④天体测量双星:一般指通过天体测量方法发现其自行行迹为曲线并可用存在某伴星来解释其行迹而发现的双星。⑤分光双星:指由谱线位移的规律性而判知的双星。测得两颗子星谱线的称为双谱分光双星(或双线分光双星),只测到一颗子星谱线的称为单谱分光双星(或单线分光双星)。⑥光谱双星:指由连续光谱能量分布而判知的双星,这种双星往往是轨道面与视向接近垂直,而且两子星的光谱型相差悬殊。⑦食双星:指子星彼此掩食造成亮度规则变化的双星,又称食变星。⑧椭球双星(或椭球变星):指由两颗椭球状子星组成,其合成亮度随位相(轨道上的相对地位)按一定规律变化而被发现的双星,但并不是食双星,椭球双星与食双星可合称测光双星。很多人又把分光双星和测光双星合起来称为密近双星。另外还有按照观测波段或所包含的特殊对象而得名的双星,如射电双星、X射线双星(或简称 X线双星)、爆发双星(包含爆发变星)、脉冲星双星等等。 双星示例 双星是恒星世界的普遍现象,是规模最小的恒星集团。此外还有两颗以上恒星组成的聚星,如三颗星组成的三合星,四颗星组成的四合星,等等。太阳周围5.2秒差距(约17光年)内共有恒星60颗(包括太阳),其中32颗单星,11对双星(22颗),2组三合星(6颗),所以双星和聚星的子星颗数占总数46%强。实际上,有些双星是很难发现的,例如:周期甚长的目视双星,轨道倾角很小(轨道平面和视线交角接近直角)的分光双星,两子星质量悬殊的分光双星,轨道扁长因而不易观测到相对运动的目视双星,变光因素复杂而难以识别的食双星或椭球双星,变幅过小的食双星等等。因此,太阳附近空间的恒星是双星或聚星的子星的,并不限于上述百分数,估计约有半数或超过半数。在许多星协、星团、星云和一些河外星系中也发现有双星。 研究双星的意义 要研究恒星的过去和未来,最重要的是先要弄清它们的现状,即了解它们当前的基本参量,其中特别重要的是质量。除太阳外,许多单星的质量是不容易求出的,即使求得,也很难准确,而双星却是测定恒星质量和其他基本参量的重要对象。不少单星的质量估值,要用双星质量去对比检验。双星和聚星还可以说是引力“实验室”。例如,天鹰座射电脉冲星PSR1913+16(轨道周期既短,偏心率又大,而且包含有致密星的双星)就为研究相对论和引力波提供了宝贵的资料。 双星还给人们提供认识恒星之间各种相互作用的条件,如引力相互作用、辐射相互作用、物质相互作用等。双星对于研究某些恒星内部的密度分布、大气结构、爆发等问题也提供了非常有利的条件,还可以为研究许多恒星的演化和寻找黑洞提供宝贵的样品。此外,认真研究双星、聚星和行星系的区别与联系,必然会大大促进它们的起源和演化等问题的解决。因此,双星的研究受到天文界的重视。自从 X射线双星、射电双星、脉冲星双星发现以来,双星天文学内容更加丰富,研究更加活跃。
天文学
天文学
日地关系
日地关系(汉语拼音:Ri Di Guanxi;英语:Solar-Terrestrial Relationship),主要研究太阳辐射特别是太阳活动时辐射和高能粒子增强对日地空间环境和地球的影响的学科。又称日地物理学。于20世纪50年代产生,是太阳物理学和地球物理学的边缘学科。具体包括:①太阳辐射和高能粒子对地球磁场的影响,特别是太阳活动引起的磁暴。②太阳活动对电离层的影响,包括短波衰减或中断、甚长波相位突然反常、长波增强和宇宙噪声突然吸收等。③太阳活动对气候变化的影响。④极光的产生和形成。⑤日地空间高能粒子流增强对宇宙航行的影响及研究太阳活动对植物生长、生命活动、交通安全、水文等方面的影响。日地关系的研究对国民经济尤其对无线电传播、通信、天气预报和宇宙航行等方面具有重要的实际意义,研究进展很快。
天文学
太阳与太阳系
日冕凝聚区
日冕凝聚区( coronal condensation ),日冕内层电子密度比周围大的区域。它是太阳表面局部活动区在日冕中的延伸,1939年为瓦尔德迈尔所发现。用发射线及白光可以观测到它。用日冕绿线5303埃及红线6374埃可以观测到在发展中的黑子群和光斑的上面有这种凝聚区,而用黄线5694埃可以观测到在结构复杂的黑子群的上面也有这种凝聚区。这种用光学方法观测到的凝聚区称为光学凝聚区。光学凝聚区的大小在经度方向(见日面坐标)的伸展约为15~35度,高度为25,000~170,000公里,寿命约几个月,电子密度比周围日冕区大2~10倍,温度约4×106K。光学凝聚区有精细结构,成环状或亮节,高度约5~10万公里,厚度约5,000公里。凝聚区的射电辐射也很强,用厘米和米波都可以观测得到,这种用射电方法观测到的凝聚区叫作射电凝聚区。射电凝聚区的大小随所用的观测波段的不同而不同。例如,在毫米波段小于1ḷ7;在3~10厘米波段为1′.3~3′.0;在21厘米波段为3′~5′;而在88厘米和178厘米波段平均为6′~8′。射电凝聚区的寿命随波长而增加,在毫米波段和3厘米波段,一般不超过黑子群寿命,在9厘米波段可长于黑子群寿命,在21厘米波段平均为3个月。射电凝聚区的温度不超过6×105~3.8×106K,其精细结构与光学凝聚区的类似。 把光学凝聚区和射电凝聚区的空间位置进行比较得知,二者是一个整体,其中某些局部差别是由于存在精细结构造成的。日冕凝聚区也发射X射线,用软X射线所观测到的日冕X射线凝聚区,经过证认,就是上述光学凝聚区和射电凝聚区,当然它们的大小范围是有差别的。日冕凝聚区的 X射线强度比其周围的X射线强度约大70倍。这是日冕凝聚区的电子密度比周围高的又一证明。
天文学
恒星与银河系
恒星自转
恒星自转( stellar rotation ),恒星绕自身的轴转动称为恒星的自转。二十世纪初有人在研究食双星天秤座δ和金牛座λ视向速度曲线的畸变现象时,首次发现了恒星自转。 恒星自转会使光谱吸收线加宽,因此可以根据谱线的宽度测定自转速度。实际上,测量的结果只是恒星自转线速度矢量在视线方向的投影。测定恒星自转的经典方法是,在简化的条件下,计算出一套对应于不同自转速度值的理论谱线轮廓,再和观测轮廓相比较。自转还会影响恒星表面亮度分布、脉动和磁场,也会影响恒星光谱分类和致密星的理论质量上限等等。 不同类型的天体具有不同的自转速度。图中清楚表明,Be星属于快速自转星,晚于A和F型巨星的自转比对应光谱型的主序星快得多。星族Ⅱ的星自转最小。目前已测定数以千计恒星的自转速度投影值。下表列出不同光谱型恒星的平均赤道自转速度v,以及每一类中所获得的最大赤道自转速度v极大,以及当星体外层符合洛希界面(见临界等位面)时所限定的临界值v临界。从表中可见主序星和巨星之间存在着显著差异。高速自转只发生在早型星特别是早型发射线星中,不会出现在晚型星、超巨星、造父变星和长周期变星中。 光谱型恒星
天文学
星系与宇宙学
激扰星系
激扰星系( active galaxy ),具有明显的激烈活动,而存在期大大短于正常星系演化尺度(1010年)的星系,又称活动星系,其总数约占正常星系的百分之一。星系激扰活动有两个判据。一是非热辐射。如果星系的射电、红外、紫外或X射线光度相当于、甚至大于光学光度,那么这个星系的辐射肯定不是黑体辐射,而是非热辐射(见热辐射和非热辐射)。二是引力不平衡。如果星系的成员天体具有每秒几千公里的非圆周运动速度,其演化时间短于引力稳定状态下的星系的自转时标(108年),那就表示星系处于引力不平衡状态。激扰星系有以下的标志和特征:①极亮的核:核心通常极小而光度极高,有的还是强射电源。②喷流结构:从星系延伸或抛射出来的发光结构,存在期短于动力学演化时标,往往是非热辐射源。③快速光变:光学波段的亮度变化以月计甚至以日计。④光谱中有宽发射线:发射线宽度相当于每秒几千公里的速度;禁线通常窄于容许谱线。⑤非热连续光谱:具有同步加速辐射特征,有的有一定的偏振。 激扰星系包括塞佛特星系、致密星系和马卡良星系,以及阿罗星系(阿罗用物端棱镜方法观测到的、外形弥漫、有强紫外连续发射或兼有发射线的星系)和N型星系(在微弱背景上有小而亮的核)。这些星系的物理和演化关系还不十分清楚。
天文学
太阳与太阳系
日心体系
日心体系( heliocentric system ),认为太阳是宇宙中心,地球和其他行星都绕太阳转动的学说。又称“日心地动说”或“日心说”。 公元前3世纪,古希腊学者阿利斯塔克就有过这种看法,但未得到进一步发展。在后来的1 000多年中,托勒玫的地心体系在欧洲占了统治地位。直到16世纪,波兰天文学家N.哥白尼经过近40年的辛勤研究,在分析过去的大量资料和自己长期观测的基础上,于1543年出版的《天体运行论》中,系统地提出了日心体系。在托勒玫地心体系中,每个行星运动都含一年周期成分,但无法对此作出合理的解释。哥白尼认为,地球不是宇宙中心,而是一颗普通行星,太阳才是宇宙中心,行星运动的一年周期是地球每年绕太阳公转一周的反映。 哥白尼体系另一些内容是:①水星、金星、火星、木星、土星五颗行星和地球一样,都在圆形轨道上匀速地绕太阳公转。②月球是地球的卫星,它在以地球为中心的圆轨道上,每月绕地球转一周,同时跟地球一起绕太阳公转。③地球每天自转一周,天穹实际上不转动,因地球自转才出现日月星辰每天东升西落的现象。④恒星和太阳间的距离十分遥远,比日地间的距离要大得多。哥白尼曾列举了许多主张地球自转和行星绕太阳公转的古代学者名字,他发扬了这些学者的思想,竭尽毕生精力,经过艰辛的观测和数学计算,以严格的科学论据建立了日心体系。后来的观测事实不断地证实并发展了这一学说。 限于当时的科学发展水平,哥白尼学说也有缺点和错误,这就是:①把太阳视为宇宙的中心,实际上,太阳只是太阳系的中心天体,不是宇宙中心;②沿用了行星在圆轨道上匀速运动的旧观念,实际上行星轨道是椭圆的,运动也不是匀速的。在哥白尼之后,意大利思想家G.布鲁诺认为太阳并不是宇宙的中心,也并不存在“恒星天”这一层,他大胆地提出了宇宙无限而且不存在中心的正确见解。德国天文学家J.开普勒彻底地摒弃了托勒玫地心体系的本轮、均轮概念,明确指出行星运动的轨道是椭圆的,而太阳位于椭圆的一个焦点上,从而解决了行星运动速度不均匀的问题。布鲁诺和开普勒的这些见解是日心体系的重要发展。
天文学
天体测量学
非极纬度变化
非极纬度变化( non-polar variation of latitude ),纬度变化的原因,除极移外还有其他因素,这些由极移之外的因素引起的纬度变化总称为非极纬度变化。这些变化中的一部分是由板块运动、地球变形、垂线变化等引起的;另一部分则是由测站的外界条件、仪器误差、人差、周年光行差和章动常数不准确、赤纬和自行误差等引起的。非极纬度变化是提高地极坐标观测精度的一大障碍;但它又为改进天文常数系统、研究天文地球动力学提供重要的资料。 1902年,日本木村荣在分析国际纬度服务的观测资料时,首先在计算极移的公式中引进了与测站经度无关的z项,称为木村项,即 Δφi=xcosλi+ysinλi+z。 各个国际纬度站的所在位置的经度基本上是均匀分布的,所以z项等价于各站非极纬度变化的算术平均值,它又称为公共z项。木村项只是时间的函数,与测站坐标无关,它具有明显的以一年为周期的特性。有关它的物理机制是一个牵涉面很广泛而复杂的问题。各观测台站非极纬度变化中扣除公共z项后的部分,称为地方非极项或地方z项,各台站的地方z项数值各不相同,并且同一台站的地方z项也随时间变动。 对于各个地极坐标系统,都可用一定的数据处理方法求得本系统各台站的地方z项的统计估值。这种估值对了解地方非极纬度变化的某些特点,进行有关的研究工作有所帮助。 地方非极项包含一些极其复杂的因素,仅就已知的因素而言,也还不能准确地定量预告其数值。因此,这是目前极移和纬度变化研究工作的一大难题。对此,单纯从处理方法去考虑已经不够,还应使用诸如大地测量、地球物理等方面的手段,才能弄清它的机制。
天文学
天体物理学
相干散射和非相干散射
相干散射和非相干散射( coherent scatteringand non-coherent scattering ),再辐射的光量子频率和被吸收的光量子频率准确相等的散射过程称为相干散射。在相干散射的情况下,源函数准确地等于平均辐射强度。再辐射的光量子频率和被吸收的光量子频率不相等的散射过程称为非相干散射。在天体物理中,存在一系列因素使散射过程成为非相干散射。主要的因素是:原子的能级有一定的宽度、原子的热运动和湍动以及压力效应等。对于非相干散射,源函数是相当复杂的。
天文学
太阳与太阳系
国际太阳联合观测
国际太阳联合观测( International Coordinated Solar Observations ),太阳观测受到观测地点的地理位置、天气条件和仪器设备等限制,一个观测台站不可能得到完整的太阳数据,需要国际合作进行观测。 目录 1 简史  2 现状 3 世界日地资料中心 4 刊布太阳数据的主要刊物 4.1 综合报告性质的刊物 4.2 快报性质的刊物 5 中国的太阳联合观测 简史  世界上最早的国际联合观测得到的太阳数据是苏黎世系统的黑子相对数,已有很久的历史,至今仍然是研究太阳活动与日地关系的宝贵资料。1922年举行的国际天文学联合会第一届大会,极大地推动了国际太阳联测工作。会上经过协商确定由斯通赫斯特、格林威治、苏黎世、威尔逊山、阿切特里、科代卡纳尔、剑桥、默东八个天文台为中心台负责整理、综合和出版各种太阳数据。其他天文台向中心台提供观测资料或照片以补齐每日的观测记录。在国际天文学联合会成立以后,苏黎世天文台汇总十二个天文台站钙谱斑、氢谱斑(见谱斑)和黑子资料,编辑成1917~1922年《太阳现象特征数》和1923~1928年《太阳现象特征数》。后者还增加了威尔逊山天文台的太阳紫外辐射强度的资料。通过1957~1958年的“国际地球物理年”、1959年的“国际地球物理合作”、1964~1965年的“国际宁静太阳年”和1966年的“欧洲质子耀斑计划”等活动,国际太阳联测的规模进一步扩大。国际地球物理年期间全球有50多个台站参加太阳Hα巡视。在此期间得到的太阳资料汇集成《国际地球物理年太阳图 D-1集》和《国际地球物理年太阳图D-2集》。 现状 国际太阳联测有四个主要中心──美国空间环境服务中心、美国空军航空空间环境支持中心、法国巴黎默东天文台、苏联克里米亚天体物理台。 美国空间环境服务中心的博尔德中心通过人造卫星和地面观测站网对太阳进行每天24小时的连续监测。博尔德有一个庞大通讯网同观测站保持密切联系,因此能够及时探测到引起地球物理效应的太阳活动。 美国空军航空空间环境支持中心有一套独立观测网对太阳进行联测,得到的太阳资料类别与博尔德观测网差不多。它通过天文地球物理长途通信网与博尔德中心进行资料交换。 苏联克里米亚天体物理台、高山天文台、普尔科沃天文台、塔什干天文台等17个台站组成苏联太阳联合观测网,通常凭借弯月形太阳照相仪、АДУ-2光球色球望远镜。日冕仪、太阳分光镜等仪器对太阳进行常规观测。 法国巴黎默东天文台和它的日中峰观测站、南锡观测站,分别配备有80厘米塔式望远镜(见太阳塔)、太阳磁像仪、60厘米水平式望远镜、日冕仪、射电望远镜等仪器对太阳进行监测。 世界日地资料中心 为了适应“国际地球物理年”的需要,国际科学联合会理事会设立了三个日地物理世界资料中心。中心A设在美国,中心B设在苏联,而中心C按学科分散在西欧和日本。 中心 A位于美国科罗拉多州博尔德市,它从世界上200多个台站取得观测资料,编辑、出版定期刊物《太阳地球物理资料》、《电离层资料》和不定期的特种报告(UAG)。这个资料中心还根据用户的需要提供各种原始资料、数据、微缩胶卷、磁带记录等。 刊布太阳数据的主要刊物 登载太阳数据的刊物可分为两大类:刊登综合观测资料的,称为综合报告;发布最初观测资料的叫作快报。前者是把若干天文台的观测资料经过仔细整理和综合,供研究日地物理使用。后者是互通情报,为同太阳活动有关的各种业务(如电离层骚扰预报、频率预测等)服务的,这类刊物出版周期短,发行量大。 综合报告性质的刊物 这类刊物有: 《太阳地球物理资料》 美国“国家地球物理和日地物理资料中心”出版的月刊。它刊登国际太阳联测的主要数据,包括八个方面:即太阳和行星际现象,电离层现象,耀斑有关事件,地磁变化,极光,宇宙线,大气辉光及其他。分两部分出版:一是《快报》,刊登一、两个月前的资料。二是综合报告,载有六、七个月前的资料,内容丰富,有关太阳的数据可分为12类。①警报:报道国际科学资料,快速传递“世界日服务”网和世界警报处向资料用户提供的关于已经发生的地球物理事件、当时太阳活动水平的报告和关于将要发生的太阳地球物理事件的预报。②每日太阳指数:包括每日太阳黑子相对数、太阳八个单频辐射流量表、黑子相对数月平均平滑值和预报值。③耀斑和耀斑指数:刊布30多个台站观测结果,其中有耀斑的发生时刻、持续时间、日面位置、面积、级别、观测质量、天气条件等。④太阳射电辐射观测资料:包括太阳射电干涉仪和射电频谱观测的结果以及单频观测的事件。⑤太阳X射线辐射:刊布轨道太阳观测台、太阳辐射监测卫星上探测器测量到的太阳X射线辐射资料。⑥冕洞:以综合图的形式刊载在地面上用氦D3线观测得到的冕洞的位置和形状。⑦太阳风测量:刊登空间探测器探测到的太阳风时刻、速度、密度、温度等。⑧太阳质子监测和太阳质子事件:载有空间探测器探测到的宇宙线粒子的计数率和美国空间环境服务中心所记录到的质子事件。⑨太阳平均磁场:刊登美国斯坦福天文台的观测数据;该台把太阳视为一颗星,每天多次用磁像仪观测,将所得的数据取加权平均,所得数值称为太阳平均磁场,误差约0.02高斯。⑩太阳综合图:刊布Hα综合图和太阳磁场综合图。⑪高能太阳粒子和等离子体:载有大于0.16兆电子伏的不同能量范围的高能粒子(电子、质子和α粒子)流量的小时平均值,还刊载太阳风等离子体物理参数的小时平均值。⑫每日太阳活动中心:刊登太阳活动区表和七种太阳图,即太阳X射线图、日冕绿线(见日冕禁线)强度图、太阳磁图、Hα单色像(见太阳单色像)、黑子与Hα日珥图、太阳射电单色图。 《太阳活动季刊》 国际天文学联合会委托苏黎世天文台出版的刊物。它的前身是《太阳现象特征数》,1928年改名为《太阳活动季刊》,出版至今。该刊的特点是报道每日和每月平均的沃尔夫黑子相对数,历史最长,内容最为可靠;汇总了全球30多个天文台观测到的太阳耀斑资料,按1957年统计,其时间覆盖为0.8~0.9昼夜;几乎汇总了全球的日冕线强度资料;收集了30多个射电观测台在各个不同波长处测得的太阳总辐射流量数据。《太阳活动季刊》还载有一些特殊现象的单频与频谱观测资料,刊布威尔逊山天文台太阳磁场综合图。资料可靠。 《格林威治太阳观测结果》 英国格林威治天文台出版,从1874年开始主要刊布太阳黑子和耀斑资料。刊物的特点是它所刊登的关于黑子和光斑的位置的资料在同类资料中最为精确,黑子群中心的日面坐标精确到0°1。资料取得的方法是:由三个相距较远的天文台对太阳光球进行摄影,将得到的所有照片集中在一地处理,并归为统一的系统。 《光球图》 苏黎世天文台出版。刊登每个太阳自转周光球图和每日的黑子群表(按苏黎世分类法)。它虽然是一个天文台目视观测的结果,但人差较小。在刊物中可看到一些小而寿命短的黑子群。 《太阳色球综合图与暗条活动中心表》 法国巴黎默东天文台出版。它根据该台的色球观测绘出每一个太阳自转周的色球图,将钙单色像上的谱斑、氢单色像上暗条、色球黑子等均绘在上面,并标出谱斑亮度。该刊还载有以钙谱斑为标志的活动中心以及它的平均日面坐标、寿命、产生耀斑数目和活动级别。 《太阳活动表》 苏联普尔科沃天文台出版。刊载的资料是由苏联、罗马尼亚、捷克斯洛伐克等国太阳观测台提供的。内容最完整的是太阳黑子群资料,它综合几个天文台观测结果,并归算到高山天文台系统。还载有每日和每月平均光斑总面积,且在太阳图上绘出光斑轮廓。 快报性质的刊物 这类刊物有: 《太阳资料公报》 苏联天文委员会太阳研究委员会与苏联普尔科沃天文台出版,月刊。载有黑子群面积、钙谱斑面积、氢暗条、日珥、耀斑、日冕线的强度、太阳射电、黑子磁场等资料,数据是苏联、德意志民主共和国、捷克斯洛伐克、罗马尼亚等国的20多个天文台提供的。该刊刊布的每日太阳图比较完整。 《苏联太阳黑子磁场》 苏联科学院出版。刊布每日黑子磁场图,图上标明各个黑子的磁场强度和极性。 中国的太阳联合观测 1954年开始建立全国性黑子联合发布系统。紫金山天文台、云南天文台、北京天文台、北京天文馆等天文台站都观测太阳黑子,最后由南京紫金山天文台汇总,统一发布太阳黑子观测结果。有关耀斑、光谱等观测资料在《天文学报》上刊布。在国际地球物理年期间,发表了几年的太阳图资料。为了开展太阳活动预报的工作,1967年初步建立了中国太阳活动观测和预报系统。各台站的观测和预报结果每半个月报北京天文台汇总。1971年,北京天文台正式出版《太阳地球物理资料》(月刊),刊布北京天文台、紫金山天文台、云南天文台、北京宇宙线台、北京地磁台、北京天文馆等单位获得的、经过综合整理的太阳地球物理资料。《太阳地球物理资料》月刊的主要内容为:太阳黑子联合发布结果(黑子相对数、黑子面积、黑子群的观测时刻及日面位置、苏黎世黑子型等),黑子磁场图,太阳Hα耀斑观测结果(耀斑发生时间、日面位置、面积和级别、对应黑子型号,并附有相应的巡视时间表),太阳射电观测(每日9375和3000兆赫等几个频率太阳射电流量、太阳射电爆发时间、频率、型别、流量增值和对应耀斑的数据,并附有相应的射电观测时间表),地磁和地磁暴简报(地磁活动每天的C指数,每天每3小时的K指数,每天每2小时的△H,磁暴的时间、类型和强度数据等)以及宇宙线中子堆每天第2小时的累积计数等项目。
天文学
星系与宇宙学
星系际物质
星系际物质( intergalactic matter ),存在于星系与星系之间的气体和尘埃。它们有的聚集于两个互相邻近的星系之间,构成星系之间的物质桥;有的位于星系团内,组成星系团的隐匿物质;有的位于星系团之间,形成星系团际物质。星系际物质的气体成分可能是中性气体,也可能是电离气体。星系际物质也和星际物质一样具有消光效应。在一些星系际物质较密集的地方也会形成星系际暗云。目前已发现几个可能是星系际暗云的区域。星系际物质的研究对宇宙学和星系的演化都有极密切的关系。在宇宙学中,宇宙临界密度与宇宙总密度的比值决定空间的几何特征,而星系际物质在宇宙的总密度中占有一定的份量。在星系演化中,一些激扰星系可以抛出物质,进入星系际空间,形成星系际物质。星系际物质也可以为正常星系吸积,或形成新的星系。星系际物质的密度约在5×10-30克/厘米3(在星系团中心附近)到2×10-34克/厘米3(在一般空间)之间。
天文学
天体力学
拉普拉斯不变平面
拉普拉斯不变平面( Laplace’s invariableplane ),太阳系总动量矩(包括公转和自转)的垂直平面,是拉普拉斯在十八世纪首先提出的,因而得名。根据质点组动力学的动量矩定理可知,如只考虑质点之间的万有引力,则各质点动量矩的向量和为常向量,它的大小和方向都是不变的,称为质点组的总动量矩。如把太阳系看作质点组(各天体看作很多质点的组合),在只考虑万有引力条件下,总动量矩的大小和方向也是不变的,因而与此总动量矩垂直的平面也是不变的平面。根据近年来的具体计算,拉普拉斯不变平面差不多与木星轨道面平行,与1950年的黄道面交角约1°65。
天文学
天体测量学
球面天文学
球面天文学(spherical astronomy),天体测量学的分支学科。研究各种天球坐标系及时间系统的建立和转换。在天文学、大地测量学和宇宙航行等领域,必须计量天体(包括人造天体在内)的位置和运动,这种计量要以建立在天球球面上的某种坐标系为参考。运用一定的数学方法研究投影在天球上的天体位置及其因各种天文、气象或物理因素引起的变化是球面天文学所要解决的问题。具体研究内容大致包括:①各种时间计量系统的建立。②各种天球坐标系的建立和相互关系。③大气和地球运动对天体观测位置的影响,即大气折射、视差和光行差。④天体位置的广义相对论改正。⑤各种归算方法及其精度的探讨等。是研究天体测量学、天体力学、恒星天文学、星系动力学和实测天体物理学等分支学科所必需的基础理论之一。
天文学
天体物理学
拉曼散射
拉曼散射(汉语拼音:lā màn sǎn shè),(Raman scattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光中在每条原始入射谱线(频率为v0)两侧对称地伴有频率为v0±vi(i=1,2,3,…)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线;频率差vi与入射光频率v0无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致。拉曼散射的强度比瑞利散射(见光的散射)要弱得多。   以经典理论解释拉曼散射时,认为分子以固有频率vi振动,极化率(见电极化率)也以vi为频率作周期性变化,在频率为v0的入射光作用下,v0与vi两种频率的耦合产生了v0、v0+vi和v0-vi3种频率。频率为v0的光即瑞利散射光,后两种频率对应拉曼散射谱线。拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等一类问题。   拉曼散射为研究晶体或分子的结构提供了重要手段,在光谱学中形成了拉曼光谱学的一分支。用拉曼散射的方法可迅速定出分子振动的固有频率,并可决定分子的对称性、分子内部的作用力等。自激光问世以后,关于激光的拉曼散射的研究得到了迅速发展,强激光引起的非线性效应导致了新的拉曼散射现象。
天文学
光学天文学
望远镜用控制机
望远镜用控制机( computer for telescope control ),专供望远镜应用的一种能自动完成输入、输出数值控制的电子数字计算机。它包括硬件与软件两大部分。硬件中除具备运算器、控制器、存贮器和输入、输出设备外,通常还需配有模-数和数-模转换器、开关量输入输出器以及数据终端等外围设备供“实时控制”之用。软件是指使用控制机的各种程序,主要有系统软件、应用软件、程序设计语言及其编译系统等。控制机的计算精度很高,具有高速运算和逻辑判断能力,能够存贮和更换它所执行的程序,因而它常被用来控制望远镜的运行,并能配合望远镜作观测资料的实时数据处理。 把控制机同望远镜的轴角编码器和伺服系统联结起来,就能修正由结构弯沉、传动系统的缺陷和大气折射等因素所引起的误差,提高定位和跟踪的精度,从而实现望远镜的自动定位和圆顶、风帘的随动。对于极为暗弱的天体,可利用控制机存贮所要观测的暗星坐标,找出最接近的导引亮星,实现对暗星的较差导引。控制机还能自动补偿因温度变化而引起的焦点位置的偏移,自动调整副镜准直;对于应用气垫支承系统的主镜室,可按照镜筒倾斜角自动调节各个气垫内的气压,使主镜保持正确的位置。利用控制机还可以完成各种重复性的观测动作,实现望远镜的无人操作,以消除观测者体温对成像质量的影响。 控制机能同望远镜的各种附属仪器和接收器,诸如恒星摄谱仪、光电光度计、像管扫描仪等,完成联机观测的数据处理。控制机不仅能提高望远镜的使用效能,还会给望远镜的结构带来很大的变化。口径超过5米的大望远镜,如采用赤道式装置,会遇到很多不易克服的困难。“实时输出”控制机则可为大望远镜采用地平式装置,创造了极重要的条件。对于多镜面望远镜和下一代望远镜来说,这种控制机更是不可缺少的附属设备。
天文学
星系与宇宙学
河外星系
河外星系( anagalactic nebula ),是指在银河系以外,由大量恒星组成星系。因为距离遥远,在外表上都表现为模糊的光点,因而又被称为“河外星云”。河外星系与银河系一样也是由大量的恒星、星团、星云和星际物质组成。 人们又观测到大约10亿个同银河系类似的星系。按照它们的形状和结构,可以分为:旋涡星系、棒旋星系、椭圆星系和不规则星系。人们估计河外星系的总数在千亿个以上。最通用的河外星系分类法是1926年哈勃提出的。 河外星系的发现将人类的认识首次拓展到遥远的银河系以外,是人类探索宇宙过程中的重要里程碑。
天文学
天体测量学
双速月球照相仪
双速月球照相仪( dual-rate lunar position camera ),附加在天文望远镜上,用来将月球和恒星同时拍摄在同一照相底片上,进行月球精密定位的一种仪器。它是美国马尔科维兹设计的,又称马尔科维兹照相仪。从二十世纪五十到六十年代,都用它测定历书时或测站的地心坐标。为了同时跟踪拍摄月球像和恒星像,要求仪器能补偿月球相对恒星的运动和减弱月球的强光。为此,在底片前安置了一块稍大于月球像直径的中性滤光片。观测前,根据事先算好的月球运动速度和方向,使滤光片绕置于某特定方向上的轴,以特定的速度旋转,在约20秒钟曝光时间内,月球像相对恒星不动。当滤光片与底片平行时,记录下观测时刻。滤光片外围是一块厚度和折射率与滤光片相同的平板透明玻璃,用来保证月球和恒星成像在同一焦平面上。为适应以0.″1的精度跟踪恒星的要求,采用两部电动机。一部用来驱动底片盒跟踪恒星;另一部用来转动滤光片,以补偿月球相对于恒星的运动。双速月球照相仪的名称即因此而来。由于望远镜跟踪精度的提高,后来又省掉了驱动底片盒的电动机。
天文学
恒星与银河系
气环
气环( gaseous ring ),绕恒星旋转的稀薄气体环。气环同气盘并无严格的区别,只是前者在可见光波段上比较透明而已。二十世纪六十年代以来,在双星研究方面比较注意对气环的观测和研究。双星中存在气环的主要观测事实是:光谱中出现某些元素的发射线,在接近食前和食后不久的时间内,相继发生红移和紫移的现象(见谱线位移)。早在1942年,乔伊即根据金牛座RW光谱中发射线在食的过程中的变化,首次发现了双星有气环存在。迄今发现有气环的双星,多为大陵五型半相接双星(见密近双星)。双星气环的成因,一般认为是:当一子星充满临界等位面并向另一子星抛射物质流时,若气流角动量密度高于吸积物质的子星的角动量密度,就可能形成围绕子星旋转的气环。因此,中心星应是质量较大的子星,且中心星与自身的临界等位面之间要有可以容纳气环存在的足够宽阔的空间。但在一系列包含致密星的X射线双星中,吸积盘却是围绕小质量致密子星旋转的。它的形成,可能是气流内粒子碰撞的结果。至于B型发射星中的气环或气盘,则可能是由中心星赤道物质抛射而形成的。气环在双星动力学演化中,起着角动量贮存库的作用,它的不稳定性,往往引起双星轨道运动和子星自转运动的波动现象。这在双星观测和理论研究中占有重要的地位。
天文学
天文学
空间天文技术
空间天文技术( observational techniques in space astronomy ),在地面上观测天体,必须通过大气窗口,因而只能在几个电磁波段内进行,就是在这些波段观测,也要受到大气和尘埃的干扰。空间天文观测的特点,在于越过地球大气这个障碍,对天体作全电磁波段的探测。人造卫星、火箭和气球技术为空间天文学的发展提供了必要的手段。为了控制卫星、火箭的运行轨道和姿态,而采取遥感、遥测、遥控等技术,已建立起新的专门工程系统。天文工作者只需提出或选择适当的方案,就可把全力放在最新探测技术的运用上。 空间天文首先感兴趣的当然是对关在地球大气窗口之外的各电磁波段的探测,即对γ射线、X射线、远紫外线、远红外线以及从短波到甚长波的射电波的探测。即使是在地面天文传统观测的波段,大气外观测也有其特殊的优越性,不仅仅是扩大探测波段,而且还能提高观测的极限星等和分辨率,所以传统的地面观测也有必要到空间去进行。例如,用同样口径的光学望远镜放在空间观测,其极限星等可暗1~5等;对于3米口径的望远镜来说,由于避开了大气扰动,分辨率可达0.″04,不少双星不必采用特殊技术即可直接分辨。空间望远镜在结构上、传动和跟踪等系统上都与地面上的望远镜有很大差别,重量轻得多。各种望远镜终端设备,基本上和地面的一样,不过它们将是最完善的自动化遥控、遥测装置。 目录 1 宇宙γ射线探测 2 X射线探测 3 紫外辐射的探测 4 红外和远红外辐射的探测 5 短波到甚长波的探测 宇宙γ射线探测 一般利用闪烁计数器探测低能γ射线。闪烁计数器中的闪烁体材料种类很多,空间天文中广泛使用的是铊激活的碘化钠NaI(T1),铊激活的碘化铯CsI(T1),钠激活的碘化铯CsI(Na)等碱金属卤化物组成的无机闪烁体。NaI(T1)的效率和能量分辨率最高,但容易潮解。CsI则不容易潮解,机械强度较大,但能量分辨率稍差。鉴于源的宇宙γ射线背景辐射较强,空间探测的闪烁计数器都需采取主动和被动式的屏蔽和准直措施,并借此取得γ射线源的方向信息。研究宇宙γ射线源的一个重要问题,也是探测γ射线的一个严重困难,就是精确测定辐射源的方位。目前,普遍使用的是闪烁体的反符合屏蔽。如高能天文台1号卫星的γ射线能谱仪即是由一群NaI(T1)-CsI(Na)所组成。CsI(Na)作反符合,其中中心的NaI(T1)探测器直径5英寸,厚3英寸,探测能量范围为0.3~10兆电子伏,其视场的半极大全宽约为40°。这种屏蔽方法使得整个仪器的重量大大增加,因此有人采用其他方法。例如,快门-遮盖器式的准直器已用于气球探测,遮盖器可移动,产生20°左右的半极大全宽。还有反准直能谱仪,它利用一组平行的柱体NaI(T1)能谱仪绕一个同它们平行的轴转动,当有一γ射线点源时,必有一能谱仪为前面的所遮掩,产生调制信号,从而确定辐射源的方向。另一种广泛使用的探测器是半导体探测器。它的最主要优点是能量分辨率高,可用于γ谱线测量。空间天文探测上较常使用的是锂漂移型硅、锗探测器。能量高于10兆电子伏的γ射线探测使用火花室。火花室配有塑料闪烁计数器和切连科夫计数器组成的触发选择系统,并在周围包以塑料闪烁计数器作荷电粒子反符合屏蔽。为了适应遥测需要,空间天文探测采用自动读数技术,即所谓数字化火花室γ射线望远镜进行磁芯读数、声波读数和磁致伸缩延迟读数等。超高能γ射线由于流量极低,很难直接测量。对于能量大于1011电子伏的宇宙γ射线,可利用观测γ射线在上层大气中的级联簇射所产生的切连科夫辐射来进行分析。这种辐射的光锥角小,约为2°,到达地面展开为5×104平方米的面积,闪光延续时间约为10-8秒,可用大望远镜对它进行光电观测。观测需要在无光、无云和无月的条件下进行。美国亚利桑那州海拔2,300米的霍普金斯山史密森天文台安装了一架有效直径为10米的综合口径光学望远镜,作了这种观测的尝试。当γ射线能量大于1014电子伏时,则可在地面直接探测γ射线在大气层中产生的广延空气簇射。γ射线产生的广延空气簇射与其他宇宙线所产生的相比,仅含少量μ介子,因而能给出超高能宇宙γ射线的信息。 X射线探测 对于大于10千电子伏的硬X射线,如同探测低能γ射线一样,可用闪烁探测器,不过闪烁体可薄些。对于2~20千电子伏能段,普遍使用各种充有不同惰性气体的铍窗正比计数器(下称正比管),探测能段有时延伸到60千电子伏。正比计数器有一定的能量分辨特性,可给出粗略的能谱信息。由于宇宙X射线源的流量弱,并有快速的时间变化特征,因此需采用大面积窗口的正比管,它是由许多正比管组合而成的。如“自由号”小型天文卫星所载正比计数器,有效面积达840平方厘米;高能天文台1号卫星内的正比管面积有达8,800平方厘米的。硬X射线探测和γ射线探测一样,还无法成像。而对天文研究说来,源的方位又是极为重要的信息。目前是用板条式准直器和调制准直器定方位。前者是用铝片做成的栅格筒状物,置于正比管窗口前,以限制探测器视场。这种限制对X射线来说比γ射线容易得多,可达1/2度,所定方位的准确度可达几十分之一平方度。调制准直器的分辨率可达5″左右。它在正比管前精密地、有规则地排列数层丝栅,通过对X射线源扫描所得到的流量变化的信息,而定出源的位置和大小。 X射线源的探测是在相当复杂的背景上进行的。其中软X射线弥漫背景可通过限制视场来减少其影响,但宇宙线、高能带电粒子、大气γ射线等可从四面八方进入正比管,由此提出排除背景的技术问题。在X射线探测中,排除背景的方法之一是采用主动式的反符合屏蔽,如同γ射线探测中所采用的那样;另一种有效的方法是脉冲形状鉴别技术。它是使用正比计数器时广泛采用的一种方法。因为脉冲上升时间将随着 X射线和高能粒子在正比管中产生的离子对的路程长度不同而变动,高能粒子脉冲的上升时间慢得多,借此也可以鉴别。 目前,软 X射线的探测在0.1~2千电子伏之间进行。太阳的软X射线流量很强随时间变化不快,所以有时也可用电离室来探测。对于宇宙软X射线源的探测,普遍使用正比计数器。电离室或正比管的窗口材料均用有机薄膜,以提高低能部分的透过率。软X射线产生的电信号,不经放大,想进行脉冲计数是困难的,所以对于要求高时间分辨率的探测,非用正比计数器不可。正比管在软 X射线情况下能量分辨率虽然很低,但多少还可提供一定的能谱信息。有机薄膜窗的气体密封性较差,气体能渐渐渗透,因此一般采用流气式,并配以补气装置。软 X射线和硬X射线不同,它可利用掠射X射线望远镜进行集光和成像。这样,虽则有机膜窗正比管很难把窗口面积做得大,但可用望远镜的集光作用弥补正比管的窗口面积受限制的缺陷。不过制作X射线望远镜,尤其是要制作口径大、质量高的望远镜,在技术上还存在许多困难。掠射望远镜有效集光面积小、焦距长,在体积和重量上比光学望远镜大得多。近年来已经成功地用 X射线望远镜取得太阳X射线像。对于X射线视亮度很强的太阳,还用过X射线针孔成像方法和菲涅耳环板。不过这些方法和手段对于宇宙X射线源的探测,则不合适。正比计数器的能量分辨率对于软X射线能段说来是很低的,因此,要得到精确的能谱信息,特别是研究谱线时,应使用光谱仪。目前采用的两种仪器是布拉格分光仪和无缝分光仪。前者以晶体的布拉格散射为基础,晶格形成一个三维的衍射阵列。根据布拉格条件,它把一定波长的X射线集中反射在以掠射角为中心的很窄的角度范围内。可根据研究的能段选择不同的晶体。布拉格分光仪适用于谱线轮廓、谱线位移等高分辨率的研究,λ/Δλ约为103。无缝分光仪是在X射线望远镜前放一透射光栅,在望远镜焦平面形成衍射像。它的分辨率较差,λ/Δλ约为50~100,其优点是可以观测弱源,并同时研究较大范围内的能谱。 紫外辐射的探测 紫外探测器系统由望远镜及其终端设备组成。这种望远镜与传统的光学望远镜十分类似。不过某些材料是有差别的,如成像系统用的透射材料;此外,反射镜面常在新鲜的铝面上镀一层极薄的氟化镁作保护。终端设备同样也有照相乳胶、光电倍增管、像增强器等。不过光阴极材料是和可见区不同的;照相底片的差别,是在普通乳胶中加进荧光物质或使用舒曼乳胶。辐射接收器和可见光波段所用接受器的不同之处,只在于前者因探测波段靠近 X射线而有时也可采用电离室等核辐射探测器(见紫外天文学)。 红外和远红外辐射的探测 红外辐射的部分波段也为大气所阻。红外天文学的探测方式也同光学观测类似,望远镜结构形式与光学波段相同,但精度要求较低。红外探测器在1~4微米波段主要用液氮冷却的硫化铅等光导型元件,4微米以上主要使用液氦冷却的锗掺镓等测热计。在红外光谱研究方面,除传统的光谱扫描方式外,傅里叶变换分光仪得到迅速发展。远红外或亚毫米波介于红外和微波区之间(50微米~2毫米),其探测技术兼有二者的特点。在此波段的短波端采用红外技术,探测器用液氦冷却的锗测热计等,长波端用有晶体混频器的超外差式甚宽频带接收机。最有前途的可能是铟- 锑光导型探测器和锗测热计。与红外辐射探测一样,远红外辐射也广泛使用调制技术和傅里叶分光技术。远红外辐射完全为大气所阻,必须在大气外进行探测。红外与远红外探测是正在发展中的技术。鉴于天体在这些波段的辐射一般较弱,需要较大的望远镜,探测器也需要液氦冷却。因此,大气外红外探测虽然有其广阔的远景,但是目前进展仍很有限。 短波到甚长波的探测 大气窗口在射电波段的长波端,打开到约30米波长左右,对于更长的短波到甚长波电磁波段的探测,就要由空间天文来承担。这个波段的实验技术在地面上早已成熟。随着空间技术的发展,已通过不少远地轨道卫星和行星际探测器,利用这一波段对太阳、行星和行星际空间等作了探测,并取得一定成果。但是由于星际电离氢的自由-自由吸收(见恒星大气的吸收和散射),要接收到比太阳系附近更远处的频率低于1兆赫的射电波信息仍有困难。要越过太阳系探索更远的宇宙,则需要使用高分辨率的甚长基线干涉仪和综合孔径射电望远镜。
天文学
恒星与银河系
分光双星
分光双星(汉语拼音:Fen guang shuang xin;英语:spectroscopic binary star),用分光方法,由视向速度周期性变化而确定的双星。光谱中能看到两个子星的谱线的叫双谱分光双星,只看到一个子星的谱线的叫单谱分光双星。视向速度随轨道运动位相的变化而变化,由此得到视向速度曲线。由视向速度曲线的分析,可以得到一些轨道要素,尤其是双谱分光双星,能得到恒星的质量、半径等基本参量。已发现的分光双星约有5000个,轨道周期范围很宽,短的不到82分钟,长的约88年。
天文学
天文学
球面天文学
球面天文学(spherical astronomy),天体测量学的分支学科。研究各种天球坐标系及时间系统的建立和转换。在天文学、大地测量学和宇宙航行等领域,必须计量天体(包括人造天体在内)的位置和运动,这种计量要以建立在天球球面上的某种坐标系为参考。运用一定的数学方法研究投影在天球上的天体位置及其因各种天文、气象或物理因素引起的变化是球面天文学所要解决的问题。具体研究内容大致包括:①各种时间计量系统的建立。②各种天球坐标系的建立和相互关系。③大气和地球运动对天体观测位置的影响,即大气折射、视差和光行差。④天体位置的广义相对论改正。⑤各种归算方法及其精度的探讨等。是研究天体测量学、天体力学、恒星天文学、星系动力学和实测天体物理学等分支学科所必需的基础理论之一。
天文学
太阳与太阳系
大红斑
大红斑,虽然木星表面的大多数特征变化不定,但有些特征仍具有持久性和半持久性,甚至持续几十年到几百年,只是能见度时高时低。其中最显著最持久的特征要算大红斑了。它是位于赤道南侧长达2万多公里、宽约1.1万公里的一个红色蛋形区域。从十七世纪以来就对它进行时断时续的观测。1878年,大红斑以鲜明的颜色引人注意,从此就有了连续的观测记录。人们发现,有些年代红斑色彩浓艳,有些年代显得暗淡,有时甚至只能隐约看见它的轮廓。大红斑在经度方向有漂移运动,因而它肯定不是一种固态的表面特征。现在认为它很可能是一个巨大的风暴。从木星的外面看去,它是一个强大的旋涡,或是一团激烈上升的气流。旋涡或气流中含有红磷化合物,红斑的颜色可能就是由此产生的。从“旅行者”1号发回的照片看来,红斑呈深橙色,象一团巨大的旋风,逆时针方向转动。木星大气既密且厚,所以大红斑寿命很长。
天文学
恒星与银河系
谷德带
谷德带( Goult belt ),在太阳系南面不远的一条亮星集中的带状区域,因美国天文学家谷德首先发现,并作过仔细研究而得名。带内有许多南天最明亮的恒星。谷德带从猎户臂的下端伸出,指向银心。带中约有20万颗星。带长700秒差距,宽70秒差距。带面与银道面的交角平均约16°。谷德带的视绝对星等为-13。若假设谷德带是从一个点源扩展开来的,则根据带内恒星的运动状况可推断其年龄约为4×107年,这与带中B型星的演化年龄相吻合。太阳的位置约在离带中心100秒差距、带的北侧12秒差距处。谷德带内除有许多O-B型星外,还有弥漫星云、广袤暗云和中性氢云(见星云)。太阳周围很可能存在过一个 O星协。这个星协的扩展运动就形成谷德带现象。
天文学
太阳与太阳系
黄道光
黄道光(zodiacallight),因行星际尘埃对太阳光的散射而在黄道面上形成的银白色光锥,一般呈三角形,大致与黄道面对称并朝太阳方向增强。总的讲来黄道光很微弱,除在春季黄昏后或秋季黎明前在观测条件较理想情况下才勉强可见外,一般不易见到。黄道光是存在行星际物质的证明,由此推算出形成黄道光的尘埃总质量约在1015千克量级。观测表明,其亮度有较复杂的变化。中国汉代就有记录,西方的观测研究始于1683年法国的G.D.卡西尼。
天文学
光学天文学
色差
色差(英语:chromatic aberration,缩写CA),由透镜材料的色散引起的成像偏差。同一透镜材料对不同波长的单色光有不同的折射率,因而对不同色光有不同的焦距和横向放大率。前者使不同色光的像成在不同位置上,称轴向色差;后者使不同色光的像的高度不同,称垂轴色差。对目视仪器中的透镜,通常用氢原子光谱中的红色C线和蓝色F线这两种单色光所成像的差别来表征色差大小(见图)。色差的存在使像点变成带色的弥散斑,可严重影响像质。 轴向色差和垂轴色差示意图 单透镜的色差不能用配曲法(见球差)来校正,通常是将一对用不同材料做成的正、负透镜胶合起来,选择适当的折射率和透镜的曲率半径,可对选定的两种波长(目视仪器通常为C、F谱线)消除色差。大型天文望远镜中常用反射式物镜,成像规律的依据是反射定律,与折射率无关,故不存在色差。
天文学
太阳与太阳系
光斑
光斑( faculae ),太阳光球中比周围背景明亮的区域。光斑通常出现在黑子附近,呈云彩状斑块。它们在日面中部区域很难看到。但在日面边缘附近,它们与周围宁静光球背景的亮度反差增大,变得明显。光斑一般比附近的黑子早出现,寿命也比这些黑子长得多。光斑上空的色球中也存在比周围宁静色球背景明亮的发射区,称为谱斑,它们是光斑在色球层的延伸。在低分辨率的观测中光班呈片状,高分辨率的观测中可看到它们实际上是由大量亮元组成的。单个亮元的直径小于1″,并且位于米粒之间的暗径中。每个亮元对应于一个与太阳表面大致垂直的磁流管,亮元即磁流管的顶端。在活动区附近亮元非常密集,形成了光斑亮区。在同一几何高度处,光斑磁流管内的温度实际上比周围光斑温度低。但由于辐射从横向进入光斑磁流管,在磁流管壁上形成很薄的热墙。当光斑在日面中心附近时,对地球上的观测者而言,热墙的投影面积太小,光斑难以看见。而当光斑在日面边缘附近时,观测到的热墙面积增大,光斑就显得比周围光球明亮。 日面边缘的光斑和黑子
天文学
光学天文学
谱线轮廓
谱线轮廓( line profile ),谱线轮廓通常用来描述光谱线的能量随波长的相对分布。设Iv和Fv表示谱线内频率v处的辐射强度和辐射流(见辐射转移理论),I捒、F捒表示同一频率处连续光谱的对应量。rv=Fv/F捒或rv=Iv/I捒称为剩余强度。以Rv表示谱线内频率v处的深度,它与剩余强度rv之间的关系为Rv=1-rv。以rv为纵坐标,v为横坐标作图,所得的剩余强度rv随频率变化的曲线就是谱线轮廓(如图)。吸收线的谱线轮廓与连续光谱背景所包围的面积,即图中阴影部分是谱线内吸收的全部能量的一种量度,故称总吸收。它表示恒星光谱里吸收线的强弱,面积越大,吸收线就越强。也可以用一个面积相等的、高度为1的矩形表示总吸收。这时矩形的宽度在数值上等于总吸收,故总吸收又有等值宽度(用Wv表示)之称。若图中的横坐标改用波长λ,则对应的剩余强度和等值宽度用rλ和Wλ表示。用有缝摄谱仪所得的谱线轮廓常为狭缝宽度和衍射现象所歪曲。假定谱线是无限窄的,观测到的却总是有一定宽度的谱线轮廓,这种轮廓称为仪器轮廓。实际观测到的谱线轮廓是仪器轮廓和真谱线轮廓的迭加。为了得到真谱线轮廓,必须在观测到的谱线轮廓中扣去仪器轮廓的影响。影响谱线轮廓的因素有辐射阻尼、多普勒效应、压力效应、恒星自转、恒星大气的膨胀和湍动等。
天文学
太阳与太阳系
日冕光学偏振
日冕光学偏振( coronal optical polarization ),早在1871年就已发现K日冕具有较高的偏振特性。1905年K.史瓦西认为这种偏振是由日冕中自由电子的汤姆孙散射引起的。根据F日冕与K日冕的强度比值随距离的增加而增大的趋势,利用汤姆孙散射机制可解释目前观测到的如下事实:日冕偏振度从日面边缘的25%增加到离边缘半个太阳半径处的50%左右,达到极大值,然后又随着距离的增加而减小;对磁矢量而言,有严格的径向偏振。 日冕发射线的偏振是由日冕离子的各向异性激发所引起,其中主要包括来自太阳的偏振入射辐射流所引起的共振偏振(或称共振散射),也包括离子速度的各向异性所引起的碰撞偏振(或称碰撞激发)。此外,日冕磁场对上述偏振有很大的影响,即磁场的消偏振效应。温度也对偏振产生一定的影响。日冕发射线偏振度较低,对仪器偏振度的补偿要求很高,因为任何观测误差以及日冕大气中的非均匀性,都影响到观测结果的可靠性。目前,对日冕绿线(5303埃)和红线(6374埃)的观测最多,但所得结果差异较大。例如,绿线的偏振度可从百分之几到百分之四十三。不少人在共振偏振理论的基础上,利用磁场和碰撞的消偏振效应来解释这种差异。
天文学
天体测量学
岁差常数
岁差常数( precession constant ),天文常数之一,是在一回归世纪内沿黄道的岁差值,包括黄经日月岁差和沿黄道的行星岁差两部分,又称黄经总岁差,用p表示(见岁差和章动)。黄经日月岁差,即沿黄道的日月岁差,用p1表示,它可根据大量恒星的观测资料来确定。行星岁差用λ表示,它可由天体力学理论计算出来。p、p1和λ之间的关系是: p=p1-λcosε 式中ε是黄赤交角。 德国天文学家贝塞耳第一次精确地定出岁差常数。他根据3,000多颗恒星的观测资料来确定p1值,研究结果发表于1818年。对历元1755.0,他得出p1=5,034.″05,p=5,017.″61。十九世纪末美国天文学家纽康确定了黄经总岁差p,并在1896年巴黎的国际基本恒星会议上被确认为通用的天文常数之一。对历元1900.0,纽康得到p=5,025.″64,此值沿用了80年。1976年在国际天文学联合会第十六届大会上,通过了对于标准历元2000年的新值:p=5,029.″0966。如果按纽康的旧值,归算到历元2000年,应得5,027.″86,这比新值要小1.″24。这是因为在岁差常数中已加上了银河系自转的改正值,而且在计算行星岁差时采用了新的行星质量数据。 三十年代提出了编制暗星星表的计划。暗星星表中的星位将与遥远的河外星系发生联系,从而可以定出恒星相对于河外星系的绝对自行。这样就有可能更准确地定出岁差常数。1976年国际天文学联合会的岁差常数将从1984年开始正式使用。现有星表中列出的恒星自行包含岁差常数误差的影响,所以在采用新的岁差常数以后,必须更改星表中所有恒星的自行值。
天文学
星系与宇宙学
阶梯式宇宙模型
等级式宇宙模型( hierarchic model ),法国天文学家沃库勒等倡导的一种宇宙学说。这种学说认为宇宙在结构上是分层次的,如恒星、星系、星系团、超星系团以至更大的集团。随着尺度的变化,集团的性质也在变化。所谓宇宙的均匀性与各向同性,对不同层次有不同涵义。十八世纪中期,德国物理学家朗伯特曾提出过天体逐级成团分布的概念。他把太阳系叫作第一级,第二级是比太阳系大得多的所谓星团,第三级是银河系。1908年瑞典天文学家沙利叶提出了等级式宇宙模型,并且指出,根据这种模型可以克服奥伯斯佯谬的困难,即:当第n+1级与n级的半径比大于n+1级所包含的n级天体的个数的平方根时,天体到达地面的总光通量就是有限的,或者说远处天体对光通量的贡献可以是任意小的数值,因而不会发生“黑夜和白天一样亮”的所谓奥伯斯佯谬现象。 沃库勒坚持并发展了他们的观点。由现代观测知道天体的分布是成团的。星系计数现可达100兆秒差距范围。沃库勒认为即使在这样大的尺度,天体分布的起伏也不是随机性的,而是存在更高级的团聚现象。他不同意宇宙学原理认为宇宙在大尺度上是均匀的和各向同性的。他认为,既然在直到目前星系计数所及的尺度上,星系的分布都有明显的非随机成团现象,不能设想一旦大于这一计数的总尺度,成团性就会消失而表现为均匀分布。根据等级式宇宙模型推出,平均密度随观测距离加大而减小,这已为20多个量级的半径范围和45个量级的密度范围的观测资料所证实,不能设想一旦超过这个范围,这种关系就不复存在而代之以某一均匀密度。沃库勒认为宇宙学原理是“由于美学上的偏见和数学上的简化”而提出来的。如果天体分布是成团的,则宇宙膨胀要受这种成团影响而出现起伏,哈勃常数要因不同密度的起伏而改变,因而宇宙模型不能作统一处理。 等级式宇宙模型目前还没有精确的数学表述和确切的理论预言,兹威基和奥尔特等许多人也不同意沃库勒的结论。他们认为成团性终止于星系团一级,至多终止于超星系团一级。
天文学
太阳与太阳系
太阳系
太阳系的主要成员:由左至右依序为(未依照比例)海王星、天王星、土星、木星、小行星带、太阳、水星、金星、地球和月球、火星,在左边可以看见一颗彗星 太阳系在银河中的位置   太阳系(汉语拼音:tài yáng xì;英语:solar system),以太阳为中心的天体系统。在太阳的引力作用下,环绕太阳运行的天体构成的集合体及其所占有的空间区域。包括太阳、八大行星及其卫星(至少165颗)、5颗已经辨认出来的矮行星(冥王星、谷神星、阋神星、妊神星和鸟神星)和数以亿计的太阳系小天体构成。这些小天体包括小行星、柯伊伯带(Kuiper belt)的天体、彗星和星际尘埃。八大行星依照至太阳的距离,依序是水星、金星、地球、火星、木星、土星、天王星和海王星。   广义上,太阳系的领域包括太阳,4颗像地球的内行星,由许多小岩石组成的小行星带,4颗充满气体的巨大外行星,充满冰冻小岩石,被称为柯伊伯带的第二个小天体区。在柯伊伯带之外还有黄道离散盘面和太阳圈,和依然属于假设的奥尔特云。   在英文天文术语中,因为地球的卫星被称为月球,这些卫星在英语中习惯上亦被称为“月球”(moon),在中文里面用卫星更为常见。在外侧的行星都有由尘埃和许多小颗粒构成的行星环环绕着,而除了地球之外,肉眼可见的行星以五行为名,在西方则全都以希腊和罗马神话故事中的神仙为名。 目录 1 概述 1.1 概念建立 1.2 结构 1.3 运动 1.4 在宇宙中的地位 1.5 太阳与八大行星数据表 2 分类 3 内太阳系 3.1 内行星 3.1.1 水星 3.1.2 金星 3.1.3 地球 3.1.4 火星 3.2 小行星带 3.2.1 谷神星 3.2.2 小行星族 4 中太阳系 4.1 外行星 4.1.1 木星 4.1.2 土星 4.1.3 天王星 4.1.4 海王星 4.2 彗星 4.3 半人马群 5 外太阳系 5.1 柯伊伯带 5.1.1 冥王星和卡戎 5.2 离散盘 5.2.1 阋神星 6 最远的区域 6.1 日球层顶 6.2 奥尔特云 6.2.1 塞德娜和内奥尔特云 6.3 疆界 7 星系的关联 7.1 邻近的区域 8 太阳系的起源及演化 8.1 星云演化阶段 8.2 星子演化阶段 8.3 太阳—地球形成阶段 8.4 火星—小行星形成阶段 8.5 木星—土星形成阶段(太阳核聚变爆发阶段) 8.6 天王星—海王星形成阶段 8.7 太阳系各星体的地质演化和后期演化要点 9 其他 9.1 太阳系行星“裁员” 冥王星遭“降级” 9.2 怎样飞越太阳系 9.3 “旅行者”飞船正冲出太阳系 9.4 太阳系的边界在哪里 9.5 美专家称人类可能永远无法飞出太阳系 9.6 天文学家观测到5个遥远星系 9.7 欧洲科学家发现太阳系外“超级地球” 概述   太阳系的最大范围约可延伸到1光年以外。在太阳系中,太阳的质量占太阳系总质量的99.8%,其它天体的总和不到太阳的0.2%。太阳是中心天体,它的引力控制着整个太阳系,使其它天体绕太阳公转。太阳系中的八大行星(依照至太阳的距离,依序是水星、金星、地球、火星、木星、土星、天王星和海王星)都在接近同一平面的近圆轨道上,朝同一方向绕太阳公转。   太阳系虽然庞大,但在银河系中,它犹如一粒沙。大约7千5百多万个太阳系排成一列才相当于银河系的直径。地球上看到夜空的银河并不均匀,那最亮处就是银河的中心。这说明太阳系不在银河系的中心位置,而是处于边缘处。太阳带着太阳系中的所有成员在银河系中绕着银心运动。   太阳系内主要天体的轨道,都在地球绕太阳公转的轨道平面(黄道)的附近。行星都非常靠近黄道,而彗星和柯伊伯带天体,通常都有比较明显的倾斜角度。   太阳系内天体的轨道(由左上方顺时针拉远观看)。由北方向下鸟瞰太阳系,所有的行星和绝大部分的其他天体,都以逆时针(右旋)方向绕着太阳公转。有些例外的,如哈雷彗星。   环绕着太阳运动的天体都遵守开普勒行星运动定律,轨道都以太阳为椭圆的一个焦点,并且越靠近太阳时的速度越快。行星的轨道接近圆型,但许多彗星、小行星和柯伊伯带天体的轨道则是高度椭圆的。   在这么辽阔的空间中,有许多方法可以表示出太阳系中每个轨道的距离。在实际上,距离太阳越远的行星或环带,与前一个的距离就会更远,而只有少数的例外。例如,金星在水星之外约0.33天文单位的距离上,而土星与木星的距离是4.3天文单位,海王星又在天王星之外10.5天文单位。曾有些关系式企图解释这些轨道距离变化间的交互作用,但这样的理论从未获得证实。 概念建立   从古代到中世纪,东西方认为地球不动地居于宇宙中心的观念始终占据认识宇宙的统治地位。公元2~3世纪,中国先哲先后提出盖天说、浑天说和宣夜说,全都认为地球是宇宙中心。140年前后,天文学家托勒玫在他的《天文学大成》一书中总结和发展了前人的认识,建立地心宇宙体系,主张地球居宇宙中心静止不动,日、月、行星和恒星均绕地球运行。1543年,波兰天文学家N.哥白尼根据前人对太阳、月球和行星的观测资料以及他本人30多年的观天实践,于1543年在他的《天体运行论》中提出“日心地动说”,首次科学地建立日心宇宙体系。16世纪下半叶,丹麦天文学家B.第谷建立一种介于地心说和日心说(见天文学史)之间的宇宙体系,认为地球静居中心,行星绕日运动,而太阳则率行星绕地球运行。17世纪初,意大利天文学家用望远镜发现并观察到木星的卫星及其绕木星运转,还观测到金星的盈亏现象,从而证实哥白尼日心说的正确性。德国天文学家J.开普勒于1609年发表的《新天文学》和1619年出版的《宇宙和谐论》,先后提出行星运动三定律(见开普勒定律)。17世纪80年代,英国科学家I.牛顿发现万有引力定律,从理论上阐明行星绕日运动规律,从而建立了科学的太阳系概念。1705年,英国天文学家运用牛顿力学成功地预言1682年的大彗星将在1759年再现。1781年,德裔英国天文学家F.W.赫歇耳发现天王星,扩大了太阳系领域。1801年,通过望远镜巡天搜索,发现位于火星轨道之外的一个小行星。随后判明,在火星和木星轨道之间有一个小行星带。1846年,法国天文学家U.-J.-J.勒威耶和英国天文学家J.C.亚当斯运用天体力学方法推算出天王星之外的海王星的存在,并由德国天文学家J.G.伽勒用望远镜观测证实,进一步扩展太阳系疆界。1930年,美国天文学家C.W.汤博发现冥王星,将太阳系行星总数增加到九个。直到2006年,根据国际天文学联合会通过的新《行星定义》,又将冥王星重新分类为矮行星。20世纪90年代,在海王星轨道之外发现了众多小天体,到21世纪初,已观测到的这些小天体总数超过1,000个,从而证实50年代预期的这些星之外的柯伊伯带的存在。几千年来,从“天圆地方”、“地球中心说”到今日的“太阳系天文观”正是人类认识宇宙的进步的写照,天文学历史进展的缩影。 结构   太阳在太阳系中占据中心和主导地位。太阳的质量占太阳系总质量的99.86%,其余天体共占0.14%。木星占了0.08%,其他行星的质量总和约占0.06%,而天然卫星、小行星、彗星、柯伊伯带天体等小天体和行星际物质的质量仅占太阳系总质量的微量份额。太阳的引力控制着整个太阳系,引力作用范围的半径可达1.5光年,再往外即为星际空间。太阳系的主要成员,除太阳外就是行星,因此太阳系是一个“行星系”。太阳系中,除太阳是以核聚变产能的恒星外,其他成员都是没有核能产生热辐射的“死”天体。   行星按质量和表面物态,分类地行星和类木行星两类。前者质量小,岩石表面,卫星少(水星和金星没有卫星,地球有一个,火星有二个),典型代表是地球;后者质量大,气态表面,卫星多(到2005年初已发现的卫星数为木星63个、土星35个、天王星27个、海王星11个),有环系,典型代表是木星。类地行星和类木行星的轨道之间为引力不稳定带,只能存在质量很小,但为数众多,可能成员以百万计的小行星带。类木行星轨道之外,有一可能是短周期彗星起源地的柯伊伯带。   太阳系通常以小行星带为界,分为内和外两部分。小行星带以内称为内太阳系,小行星带以外叫作外太阳系。内太阳系有水星、金星、地球和火星共四个类地行星及其卫星;外太阳系计有木星、土星、天王星和海王星共四个类木行星及其卫星系,还有一个固态表面的小质量冥王星。   行星沿与太阳自转轴垂直的平面,即黄道面附近,绕太阳运转,特征是共面性。除行星、小行星带和柯伊伯带外,无数的流星体也集中分布在黄道带附近。行星公转轨道的偏心率很小,近圆性也是结构特征之一。行星与太阳的距离大小也具有特征,其规律可用提丢斯–波得定则表示。 运动   太阳系的行星都有自转。大多数行星的自转方向和太阳的自转一致,即自西向东沿逆时针方向。行星都在接近同一平面的近圆轨道上,自西向东沿逆时针方向绕日公转。行星的大多数卫星也都自西向东,沿逆时针方向绕行星运转。小行星主带和柯伊伯带中的小天体也多自西向东,沿逆时针方向绕太阳运行。距离太阳越远的行星、小行星和柯伊伯带天体绕太阳运转的轨道速度越慢,距离行星越远的卫星绕行星运转的轨道速度也越慢,这一现象分别称为太阳系的较差自转和行星系的较差自转。   质量占太阳系总质量的99.86%的太阳的角动量只占1%左右,而质量仅占0.14%的太阳系其他天体的角动量总和却占99%左右,这一特殊的角动量分布现象是太阳系的一个运动特征。   太阳相对于邻近恒星的运动速度为19.6千米/秒,朝向武仙座一点,该点称为太阳向点,简称向点。此外,太阳和太阳系还以250千米/秒的速度在银河系中绕银心运行,约2亿年绕转一周。 在宇宙中的地位   太阳是银河系内的约2,000亿个成员恒星中的普通一员。按质量计,它是中等质量的矮星;按光度计,它是中等光度的矮星;按表面温度计,它是约5,000K的黄矮星;按年龄计,它是已诞生约50亿年,处在演化进程的中间阶段,为其一生中的中年恒星。根据太阳的金属丰度确认,它属星族Ⅰ,亦即不是银河系的第一代天体,而是第二代或第三代恒星。到2005年初,已发现并确认的拥有行星或行星系的恒星超过150个,所以太阳系也是恒星世界中普遍存在的行星系中的一个。   太阳系位于距银河系中心约25,000光年的银盘(银河系的圆盘结构)中,和其他上千亿个恒星一道环绕银心运转,太阳的轨道速度为250千米/秒,约2亿年绕行一周。太阳和太阳系不处在特殊位置上,不是银河系的中心。银河系是一个巨型旋涡星系,是已观测到的约上千亿个多种类型的星系中的普通一员。银河系也不是大宇宙的中心。 太阳与八大行星数据表 太阳与八大行星数据表(顺序以距离太阳由近而远排列)卫星数截至2012年6月,距离与轨道半径以1天文单位(AU)为单位。 天体 赤道半径(km) 偏率 赤道重力地球=1 体积地球=1 质量地球=1 比重 轨道半径(AU) 轨道倾角(度) 赤道倾角(度) 公转周期(地球年) 自转周期(地球日) 已发现卫星数 太阳 696000 0. 28.01 1304000 333400 1.44 -- -- 7.25 约两亿两千六百万(绕银河系) 25.38天(赤道)/37.01天(南北两极) -- 水星 2440 0. 0.38 0.056 0.055 5.43 0.3871 7.005 ~0 87.97天 59天 0 金星 6052 0. 0.91 0.857 0.815 5.24 0.7233 3.395 177.4 225天 243天 0 地球 6378 0.0034 1.00 1.00 1.000 5.52 1.0000 0.000 23.44 365.24天 23小时56分钟 1 火星 3397 0.0052 0.38 0.151 0.107 3.93 1.5237 1.850 25.19 687天 24小时37分钟 2 木星 71492 0.0648 2.48 1321 317.832 1.33 5.2026 1.303 3.08 11.86年 9小时50分钟 66 土星 60268 0.1076 0.94 755 95.16 0.69 9.5549 2.489 26.7 29.46年 10小时39分钟 61 天王星 25559 0.023 0.89 63 14.54 1.27 19.2184 0.773 97.9 84.01年 17小时14分钟 27 海王星 24764 0.017 1.11 58 17.15 1.64 30.1104 1.770 27.8 164.82年 16小时06分钟 13 太阳系的行星和矮行星。图中唯大小依照比例,距离未依比例 分类   按传统说法,太阳系被分为行星(绕太阳公转的大物体)和它们的卫星(如月球,绕行星公转的各种大小的星体),小行星(小型的密集的绕太阳公转的星体)和彗星(小个体的冰质的绕高度偏心轨道公转的星体)。 八大行星通常按以下几个方法分类: 根据组成: 固态行星主要由岩石与金属构成,高密度,自转速度慢,固态表面,没有光环,卫星较少,它们是:水星、金星、地球和火星。 气态行星主要由氢和氦构成,密度低,自转速度快,大气层厚,有光环和很多卫星,它们是:木星,土星,天王星和海王星。 根据大小: 小行星(直径小于13000千米):水星、金星、地球和火星。 巨行星(直径大于48000千米):木星、土星、天王星和海王星。巨行星有时被称为气态行星。 水星有时被称作次行星(lesser planets)(不要与次级行星(minor planets)——小行星的官方命名——相混乱)。 根据相对太阳的位置: 内层行星:水星、金星、地球和火星。 外层行星:木星、土星、天王星和海王星。 在火星和木星之间的小行星带组成了区别内层行星和外层行星的标志。 根据相对地球的位置: 地内行星:水星和金星。它们离太阳与地球较近。 地内行星看起来的如同地球上看有时不完整的月亮。 地球。 地外行星:火星到海王星。它们离太阳与地球较远。地外行星看起来通常是完整的,或近乎完整的。 根据历史: 古典行星(史前即以得知、可用肉眼观测):水星、金星、火星、木星和土星。 现代行星(近现代所发现、用望远镜观测):天王星、海王星。 地球。 内太阳系   内太阳系在传统上是类地行星和小行星带区域的名称,主要是由硅酸盐和金属组成的。这个区域挤在靠近太阳的范围内,半径比木星与土星之间的距离还短。    内行星   四颗内行星或是类地行星的特点是高密度、由岩石构成、只有少量或没有卫星,也没有环系统。它们由高熔点的矿物,像是硅酸盐类的矿物组成表面固体的地壳和半流质的地函,以及由铁、镍构成的金属组成核心。四颗中的三颗(金星、地球、和火星)有实质的大气层,全部都有撞击坑和地质构造的表面特征(地堑和火山等)。内行星容易和比地球更接近太阳的内侧行星(水星和金星)混淆。 水星   水星(0.4 天文单位)是最靠近太阳,也是最小的行星(0.055地球质量)。它没有天然的卫星,仅知的地质特征除了撞击坑外,只有大概是在早期历史与收缩期间产生的皱折山脊。水星,包括被太阳风轰击出的气体原子,只有微不足道的大气。目前尚无法解释相对来说相当巨大的铁质核心和薄薄的地函。假说包括巨大的冲击剥离了它的外壳,还有年轻时期的太阳能抑制了外壳的增长。   由于水星就在太阳的眼皮底下,在水星上观察到的太阳大小会超过地球上的两倍。水星白天的表面温度可达摄氏427度,而到了晚上又会骤降至摄氏零下173度。水星有着其特殊的轨道运动,它绕太阳公转一周仅需约88个地球日,而其自转周期却需约59个地球日。二者如此的比例关系使得水星的一昼夜长达176个地球日,水星表面的夜晚将长达几个星期。   由于水星表面温度太高,水星不可能像它的两个近邻金星和地球那样保留一层厚厚的浓密大气,因此无论是白天还是夜晚,水星的天空通常都是一片漆黑。如果仰望天空,你会看到两颗明亮的星星:淡黄色的金星和蓝色的地球。水星大气主要是由从太阳风中俘获的气体组成,密度只有地球大气的12%,主要成份为氦 (42%)、汽化钠(42%)和氧(15%)。水星表面的岩石只反射它们所接收阳光的8%,这使得它成为太阳系中最黑暗的行星之一。   水星只在黎明或白天出现在天空,因此在地球上观测水星较为困难。直到20世纪70年代中期“水手”号任务的实施这种情况才有所改变。无人探测器“水手10号”发回的照片揭示了水星过去的历史。水星表面有许多很深的陨石坑,其中一个和美国得克萨斯州一样大。这表明水星也曾接连不断地遭到陨石的轰击。但照片也显示水星表面有广阔的平原。科学家们推测水星曾经是液态的,后来逐渐冷却凝固成了岩石。较小的陨石只在水星表面留下一个个陨石坑,而较大的则击破了水星外壳,使涌出的熔岩流在平原上到处流淌。水星表面纵横交错地分布着长长的、高低起伏的悬崖。这些构造最高可达3048米。这些峭壁可能是由于水星冷却时直径缩小形成的。水星核的主要成份是铁和镍,水星的幔和壳主要由硅酸盐组成。在太阳系所有行星中,水星所含铁的比例是最高的。   水星表面不存在液态水。但1991年科学家们在其北极发现了一个亮斑,这个亮斑可能是由于水星表面或贮存在地下的冰反射阳光造成的。虽然水星表面温度非常高,但在水星北极的一些陨石坑内,可能由于终年不见阳光而使温度长年底于-161摄氏度以下,这足以使来自水星内部或宇宙空间的水以冰的形态保存下来。 金星   金星 (0.7 天文单位)的体积尺寸与地球相似(0.86地球质量),也和地球一样有厚厚的硅酸盐地函包围着核心,还有浓厚的大气层和内部地质活动的证据。但是,它的大气密度比地球高90倍而且非常干燥,也没有天然的卫星。它是颗炙热的行星,表面的温度超过400°C,很可能是大气层中有大量的温室气体造成的。没有明确的证据显示金星的地质活动仍在进行中,但是没有磁场保护的大气应该会被耗尽,因此认为金星的大气是经由火山的爆发获得补充。   由于金星分别在早晨和黄昏出现在天空,古代的占星家们一直认为存在着两颗这样的行星,于是分别将它们称为“晨星”和“昏星”。英语中,金星——“维纳斯”(Venus)是古罗马的爱情与美丽之神。它一直被卷曲的云层笼罩在神秘的面纱中。   金星是距太阳的第二颗行星。由于金星和地球在大小、质量、密度和重量上非常相似,而且金星和地球几乎都由同一星云同时形成,占星家们将它们当作姐妹行星。然而不久前科学家们发现,事实上金星与地球非常不同。金星上没有海洋,它被厚厚的主要成份为二氧化碳的大气所包围,一点水也没有。它的云层是由硫酸微滴组成的。在地表,它的大气压相当于在地球海平面上的92倍。   由于金星厚厚的二氧化碳大气层造成的“温室效应”,金星地表的温度高达482摄氏度左右。阳光透过大气将金星表面烤热。地表的热量在向外辐射的过程中受到大气的阻隔,无法散发到外层空间。这使得金星比水星还要热。   金星上的一天相当于地球上的243天,比它225天的一年还要长。金星是自东向西自转的,这意味着在金星上,太阳是西升东落的。   金星的浓厚的云层至今仍是妨碍科学家揭开金星表面奥秘的主要原因。射电望远镜和射电摄影系统的出现使我们能够看到厚厚的云层下面的金星表面。   金星的表面比较年轻,当是300至500万年前才形成的。科学家们正在研究是何原因导致这一现象的。金星的地形主要是覆盖着熔岩的广阔平原和受地质活动破坏的山脉或高原。位于Ishtar区域的Maxwell山是金星上最高的山峰。Aphrodite区域的高原几乎占据了赤道地区的一半。Magellan计划中获得的金星2.5公里以上高原区图像显示存在明亮的潮湿土壤。然而,在金星表面,液态水是不可能存在的,无法解释明亮高原的原因。有一种假设认为这些明亮的区域可能是由于金属化合物。研究显示,这些金属可能是硫化铁。它无法在平原地区存在,但在高原地区是可能的。这些金属也可能是外来的,它导致的效果是一样的,但浓度要低一些。   金星的表面随机布满了许多小型陨石坑。由于金星的浓厚大气,直径小于2公里的陨石坑几乎无法保留下来。而当大型陨石在小型陨坑形成前撞击金星表面,其产生的碎片在地表产生了例外的陨石坑群。火山及火山活动金星表面为数很多。至少85%的金星表面覆盖着火山岩。大量的熔岩流经几百公里,填满低地,形成了广阔的平原。除了几百个大型火山,100000多座小型火山口点缀在金星表面。从火山中喷出的熔岩流产生了了长长的沟渠,范围大至几百公里,其中一条的范围超过7000公里。 地球   地球(1 天文单位)是内行星中最大且密度最高的,也是唯一地质活动仍在持续进行中并被人类承认拥有生命的行星。它也拥有类地行星中独一无二的水圈和被观察到的板块结构。地球的大气也与其他的行星完全不同,被存活在这儿的生物改造成含有21%的自由氧气。它只有一颗卫星,即月球;月球也是类地行星中唯一的大卫星。   首先提出地球是球形这一概念的是公元前五六世纪的希腊哲学家毕达哥拉斯。随后,亚里士多德根据月食时月面出现的地影给出了地球是球体的第一个科学证据,公元前三世纪,古希腊天文学家埃拉托斯特尼第一次算出了地球的周长。 火星   火星(1.5 天文单位)比地球和金星小(0.17地球质量),只有以二氧化碳为主的稀薄大气,它的表面,有密集与巨大的火山,例如奥林帕斯山,水手号峡谷有深邃的地堑,显示不久前仍有剧烈的地质活动。火星有两颗天然的小卫星,戴摩斯和福伯斯,可能是被捕获的小行星。   火星是距太阳的第四个行星,它的体积在太阳系中居第七位。由于火星上的岩石、砂土和天空是红色或粉红色的,因此这颗行星又常被称作“红色的星球”。   火星的南半球是类似月球的布满陨石坑的古老高原,而北半球大多由年轻的平原组成。火星上高24公里的奥林匹斯山可称为是太阳系中最高的山脉。在距火星大约几万公里的地方,有两颗非常小的星体,它们是火星的卫星。   在汉语中,火星的名字让人联想到“火”和炎热,但事实上,这颗红色的星球却异常寒冷和干燥。尽管如此,火星仍然是太阳系中与地球最相似的一颗行星。它的体积比地球小,大气也比地球稀薄。   火星的大气非常稀薄,大气压只有地球的千分之七。火星大气的主要成份是二氧化碳,其他成份还有氮、氩、氧等。水在火星大气中的比重只有百分之零点零三。因而火星表面异常干燥。   火星的平均气温为零下五十五摄氏度,而温差较大:在夏季的昼间,气温最高为二十摄氏度,而在冬季,气温则可低达零下一百多摄氏度。火星上经常有强风,因而常导致大范围的尘暴。   虽然火星大气中的水少得可怜,但科学家们发现,火星上的许多地区有被侵蚀的迹象,而且那纵横交错的河床似乎在告诉我们,火星上曾经有过液态的水,而且水还很多,它们聚集成大大小小的湖泊,甚至海洋。科学家们作出的解释是,在火星的形成初期,这个星球被厚厚的二氧化碳云层所包裹,导致了强大的“温室效应”,受太阳辐射后,火星表面的热量被云层阻隔,无法散发到外层空间,使得气温升高,使水能以液态存在。那时的火星温暖湿润,可能孕育过生命,因此人类一直对火星情有独钟,总有一天人类也会像登月一样登上火星表面。   在火星的两极有大量的固态二氧化碳(干冰),科学家们猜测,在这些巨大的冰盖下面可能存在着固态的水。 小行星带   小行星是太阳系小天体中最主要的成员,主要由岩石与不易挥发的物质组成。   主要的小行星带位于火星和木星轨道之间,距离太阳2.3至3.3天文单位,它们被认为是在太阳系形成的过程中,受到木星引力扰动而未能聚合的残余物质。   小行星的尺度从大至数百公里、小至微米的都有。除了最大的谷神星之外,所有的小行星都被归类为太阳系小天体,但是有几颗小行星,像是灶神星、健神星,如果能被证实已经达到流体静力平衡的状态,可能会被重分类为矮行星。   小行星带拥有数万颗,可能多达数百万颗,直径在一公里以上的小天体。尽管如此,小行星带的总质量仍然不可能达到地球质量的千分之一。小行星主带的成员依然是稀稀落落的,所以至今还没有太空船在穿越时发生意外。   直径在10至10-4 米的小天体称为流星体。 谷神星   谷神星 (2.77天文单位)是主带中最大的天体,也是主带中唯一的矮行星。它的直径接近1000公里,因此自身的重力已足以使它成为球体。它在19世纪初被发现时,被认为是一颗行星,在1850年代因为有更多的小天体被发现才重新分类为小行星;在2006年,又再度重分类为矮行星。 小行星族   在主带中的小行星可以依据轨道元素划分成几个小行星群和小行星族。小行星卫星是围绕着较大的小行星运转的小天体,它们的认定不如绕着行星的卫星那样明确,因为有些卫星几乎和被绕的母体一样大。   在主带中也有彗星,它们可能是地球上水的主要来源。   特洛依小行星的位置在木星的 L4或L5点(在行星轨道前方和后方的不稳定引力平衡点),不过“特洛依”这个名称也被用在其他行星或卫星轨道上位于拉格朗日点上的小天体。 希耳达族是轨道周期与木星有着2:3共振的小行星族,当木星绕太阳公转二圈时,这群小行星会绕太阳公转三圈。   内太阳系也包含许多“淘气”的小行星与尘粒,其中有许多都会穿越内行星的轨道。 中太阳系   太阳系的中部地区是气体巨星和它们有如行星大小尺度卫星的家,许多短周期彗星,包括半人马群也在这个区域内。此区没有传统的名称,偶尔也会被归入“外太阳系”,虽然外太阳系通常是指海王星以外的区域。在这一区域的固体,主要的成分是“冰”(水、氨和甲烷),不同于以岩石为主的内太阳系。 外行星   在外侧的四颗行星,也称为类木行星,囊括了环绕太阳99%的已知质量。木星和土星的大气层都拥有大量的氢和氦,天王星和海王星的大气层则有较多的“冰”,像是水、氨和甲烷。有些天文学家认为它们该另成一类,称为“天王星族”或是“冰巨星”。这四颗气体巨星都有行星环,但是只有土星的环可以轻松的从地球上观察。“外行星”这个名称容易与“外侧行星”混淆,后者实际是指在地球轨道外面的行星,除了外行星外还有火星。 木星   木星(5.2 天文单位),主要由氢和氦组成,质量是地球的318倍,也是其他行星质量总和的2.5倍。木星的丰沛内热在它的大气层造成一些近似永久性的特征,例如云带和大红斑。木星已经被发现的卫星有63颗,最大的四颗,甘尼米德、卡利斯多、埃欧和欧罗巴,显示出类似类地行星的特征,像是火山作用和内部的热量。甘尼米德比水星还要大,是太阳系内最大的卫星。   木星是距太阳的第五颗行星,并且是太阳系九大行星中最大的一颗。按离太阳由近及远的次序为第五颗。木星是夜空中最亮的几颗星之一,仅次于金星,通常比火星亮(除火星冲日时以外),也比最亮的天狼星亮。木星的成份也比其他行星更为复杂。它的重量为1.9 E27公斤,赤道直径为142,800公里,木星的赤道半径为71,400公里,为地球的11.2倍;体积是地球的1,316倍;质量是1.9E30千克,相当于地球质量的三百多倍,是所有其他行星总质量的两倍半。平均密度相当低,只有1.33克/立方厘米。重力加速度在赤道和两极不同,赤道上为2,707厘米/平方秒,两极为2,322厘米/平方秒。木星是太阳系中卫星数目较多的一颗行星,木星拥有16个卫星,其中的四个(木卫四、木卫二、木卫三和木卫一)早在1610年就被伽利略发现了。1979年,“旅行者”一号发现木星也有环,但它非常昏暗,在地球上几乎看不到。木星的大气非常厚,可能它本身就像太阳那样是个气体球。木星大气的主要成份是氢和氦,以及少量的甲烷、氨、碳、氧及少量的铁、硫、水汽和其他化合物。在木星的内部,由于巨大的压力,氢原子中的电子被释放出来,仅存赤裸的质子。使氢呈现金属特性。   纬线上色彩分明的条纹、翻腾的云层和风暴象征着木星多变的天气系统。云层图案每小时每天都在变化。“大红斑”是一个复杂的按顺时针方向运动的风暴,它于1665年被法国天文学家卡西尼发现,至今已存在了300多年了。大红斑呈蛋形,宽1400千米,长30000千米,其外缘每四至六天旋转一圈,而在中心附近,运动很小,且方向不定。在条状云层上可以发现一系列小风暴和漩涡。木星大气层的平均温度为-121摄氏度。   在木星的两极,发现了与地球上的十分相似的极光。这似乎与沿木卫一螺旋形的磁力线进入木星大气的物质有关。在木星的云层上端,也发现有与地球上类似的高空闪电。   木星在中国古代用来定岁纪年,由此把它叫做“岁星”,而西方天文学家称木星为“朱庇特”,即罗马神话中的众神之王,相当于希腊神话众星之中俨然以王者居,不可战胜的天神宙斯。 土星   土星(9.5 天文单位),因为有明显的环系统而著名,它与木星非常相似,例如大气层的结构。土星不是很大,质量只有地球的95倍,它有60颗已知的卫星,泰坦和恩塞拉都斯拥有巨大的冰火山,显示出地质活动的标志。泰坦比水星大,而且是太阳系中唯一实际拥有大气层的卫星。   土星,按离太阳由近及远的次序为第六颗。中国古代称填星或镇星。1871年发现天王星之前,土星一直被认为是离太阳最远的行星。   人类在有史以前就已经对土星进行了观测。1610 年,伽利略第一次通过望远镜对它进行了观测,并记录下了它奇特的运行轨迹。早期观测土星非常困难,这是因为每过几年地球就要穿越土星光环所在的平面。直至 1659 年惠更斯推断出光环的几何形状后情况才有所改变。土星一直被认为是太阳系中唯一拥有光环的行星。但 1977 年人们发现天王星也有暗淡的光环,此后不久在木星和海王星周围也发现了光环。土星探测飞船卡西尼号已于 1997 年 10 月 15 日升空,将于 2004 年 7 月 1 日抵达土星。   土星是距太阳的第 6 颗行星,赤道直径 119,300 千米,在太阳系中位居第二。1980-81 年旅行者号飞船的探测给人们带来了许多有关这颗行星的知识。土星的飞速自转使它的两极明显地扁平。土星自转一周 10 小时 39 分,公转一周为 29.5 个地球年。   土星大气的主要成份是氢,另外还有少量的氢和甲烷。土星是太阳系中唯一密度比水小的行星,要是把它扔进一个足够大的海洋,它肯定会浮在水面。黄色的土星表面有明显的宽阔条纹,这和木星非常相似,但不如木星来得鲜明。土星大气内部风速极高。在赤道附近风速可以达每秒 500 米。在土星的南北极也有与地球相似的极光。   巨大的光环使土星成为太阳系里一颗非常美丽的行星。土星的光环其实可分成几个不同的部分,最明亮、宽阔的是 A 环和B 环,较暗的是 C 环。光环的各部分之间有明显的裂缝,最大裂缝的是 A 环和 B 环间的的 Cassini 裂缝,它是由 Giovanni Cassini 在 1657 年发现的。A 环内的 Encke 缝则是由 Johann Encke 1837 年发现的。通过飞船的探测,人们还发现较宽的光环其实是由许多狭窄的小环组成的。   光环的形成原因还不十分清楚,据推测可能是由彗星、小行星与较大的土卫相撞后产生的碎片组成的。光环可能含有大量的水份,构成它们的是直径从几厘米到几米的冰块和雪球。某些光环,如 F 环的结构在邻近的卫星引力拉扯下结构发生了细微的变化。   科学家在“旅行者”号飞船发回的一张图片中发现,土星宽阔的 B 环上带有放射状的阴影,但在“旅行者”号此后拍摄的其他图片中却没有。据推测,这一现象可能因为光环在某些时候带有静电,漂浮在宇宙中的尘埃被吸附而造成的。   土星有18个经确认的卫星,是太阳系中拥有卫星数量最多的行星。人们还从“旅行者”飞船拍摄的图片中找到了四个可能存在的新卫星。1995 年,科学家通过哈博太空望远镜发现的四个天体也可能是新卫星。   在土星的卫星中,只有土卫六 (Titan) 拥有明显的大气层。大多数卫星同步自转,但土卫七 (Hyperion) 与土卫九 (Phoebe) 是个例外,它们的轨道是无规则的。土星的卫星系统非常稳定,多数卫星的轨道都是近圆形的,并都处于土星的赤道平面上,而只有土卫八 (Iapetus) 和土卫九 (Phoebe)是例外。 天王星   天王星(19.6 天文单位),是最轻的外行星,质量是地球的14倍。它的自转轴对黄道倾斜达到90度,因此是横躺着绕着太阳公转,在行星中非常独特。在气体巨星中,它的核心温度最低,只辐射非常少的热量进入太空中。天王星已知的卫星有27颗,最大的几颗是泰坦尼亚、欧贝隆、乌姆柏里厄尔、艾瑞尔和米兰达。   在古老的希腊神话中,天王星被看作是第一位统治整个宇宙的天神-乌刺诺斯。他与地母该亚结合,生下了后来的天神,是他费尽心机将混沌的宇宙规划得和谐有序。   天王星是距太阳的第七颗行星,在太阳系中,它的体积位居第三。它是1781年由在英国定居的德国天文学家F.W.赫歇尔发现的。天王星赤道直径51800公里,公转周期为84.01个地球年。它与太阳的平均距离为2.87亿公里。天王星上的一天是17小时14分钟。它是太阳系中唯一个“躺”着围绕太阳运转的行星。天王星至少有15个卫星。最大的两个是1787年发现的。   天王星的大气层中83%是氢,15%为氦,2%为甲烷以及少量的乙炔和碳氢化合物。上层大气层的甲烷吸收红光,使天王星呈现蓝绿色。大气在固定纬度集结成云层,类似于木星和土星在纬线上鲜艳的条状色带。天王星具有温度较高的同温层和一个较冷的对流层。由于天王星离太阳很远,它接受太阳能只有地球的千分之二,表面温度只有-211℃;仅靠太阳光是不能达到如此高温的,因而可能在天王星上存在其他能源。由于天王星的自转,星体中纬度有风。风速大约是每秒40-160米。经无线电科学测试,发现在赤道附近有大约每秒一百米的逆风。 海王星   海王星(30 天文单位)虽然看起来比天王星小,但密度较高使质量仍有地球的17倍。他虽然辐射出较多的热量,但远不及木星和土星多。海王星已知有13颗卫星,最大的崔顿仍有活跃的地质活动,有着喷发液态氮的间歇泉,它也是太阳系内唯一逆行的大卫星。在海王星的轨道上有一些1:1轨道共振的小行星,组成海王星特洛伊群。   海王星是太阳系中最外缘的一颗巨行星,赤道直径49,500公里。如果海王星上有洞,它能容纳近60个地球。海王星每165年绕太阳一周。海王星上的一天为16小时6.7分钟。   海王星的内部是熔岩、水、液氨和甲烷的混合物组成的。外面的一层是氢、氦、水和甲烷组成的气体的混合物。甲烷赋予了海王星云层蓝色的外观。   由于海王星离太阳遥远,海王星云层的平均温度为零下193摄氏度至零下153摄氏度,但在红外波段,海王星的辐射能量超过它所吸收的太阳能量,这表明海王星也可能存在内部局部能源。海王星上有明显的狭长而明亮的云层,它与地球上的藤蔓状云十分相似。在北半球的低纬度,"旅行者"号曾拍到过条状云投在下层云体上的阴影。   海王星是个多变的行星,从1989年8月“旅行者2号”考察海王星时发回的照片上发现,海王星上有一个大鹅卵形黑斑,二个暗斑和三个亮斑,让人想起木星风暴“大红斑”。最大的一个“大黑斑”有地球那么大,看上去像一只大眼睛,大黑斑附近风速可以达到每小时2000公里,大约每10天逆时针旋转一周。这个大黑斑实际上是一个气旋,它是海王星大气的高压区,在它上面约50公里处有一些像卷云般的云朵。分析表明,在海王星大气中含有高浓度的甲烷和氢硫化物。海王星上也有像其它行星一样的强风。相对于行星的自转方向,大多数风向都是向西吹的。   海王星有8个卫星,其中的6个是由旅行者号发现的。   海王星是否也有环带?这是天文学家们长期以来关注的问题。   1977年上天的“旅行者2号”飞船,经过12年长途跋涉,于1989年8月25日飞临海王星进行考察时,探测到海王星共有5个光环,他们的结构与天王星稍有不同。在5个环中,4个是环,另一个是尘埃壳。这些环可能是由小型陨石撞击海王星卫星而形成的尘埃组成的。 彗星   彗星归属于太阳系小天体,通常直径只有几公里,主要由具挥发性的冰组成。 它们的轨道具有高离心率,近日点一般都在内行星轨道的内侧,而远日点在冥王星之外。当一颗彗星进入内太阳系后,与太阳的接近会导致她冰冷表面的物质升华和电离,产生彗发和拖曳出由气体和尘粒组成,肉眼就可以看见的彗尾。   短周期彗星是轨道周期短于200年的彗星,长周期彗星的轨周期可以长达数千年。短周期彗星,如哈雷彗星,被认为是来自柯伊伯带;长周期彗星,如海尔·波普彗星,则被认为起源于奥尔特云。有许多群的彗星,如克鲁兹族彗星,可能源自一个崩溃的母体。有些彗星有着双曲线轨道,则可能来自太阳系外,但要精确的测量这些轨道是很困难的。挥发性物质被太阳的热驱散后的彗星经常会被归类为小行星。 半人马群   半人马群是散布在9至30 天文单位的范围内,也就是轨道在木星和海王星之间,类似彗星以冰为主的天体。半人马群已知的最大天体是 10199 Chariklo,直径在200至250 公里。第一个被发现的是小行星2060,因为在接近太阳时如同彗星般的产生彗发,目前已经被归类为彗星。有些天文学家将半人马族归类为柯伊伯带内部的离散天体,而视为是外部离散盘的延续。 外太阳系   在海王星之外的区域,通常称为外太阳系或是外海王星区,仍然是未被探测的广大空间。这片区域似乎是太阳系小天体的世界(最大的直径不到地球的五分之一,质量则远小于月球),主要由岩石和冰组成。 柯伊伯带   柯伊伯带,最初的形式被认为是由与小行星大小相似,但主要是由冰组成的碎片与残骸构成的环带,扩散在距离太阳30至50 天文单位之处。这个区域被认为是短周期彗星的来源。它主要由太阳系小天体组成,但是许多柯伊伯带中最大的天体,例如创神星、伐楼拿、2003 EL61、2005 FY9和厄耳枯斯等,可能都会被归类为矮行星。估计柯伊伯带内直径大于50公里的天体会超过100,000颗,但总质量可能只有地球质量的十分之一甚至只有百分之一。许多柯伊伯带的天体都有两颗以上的卫星,而且多数的轨道都不在黄道平面上。   柯伊伯带大致上可以分成共振带和传统带两部分,共振带是由与海王星轨道有共振关系的天体组成的(当海王星公转太阳三圈就绕太阳二圈,或海王星公转两圈时只绕一圈),其实海王星本身也算是共振带中的一员。传统带的成员则是不与海王星共振,散布在39.4至47.7天文单位范围内的天体。传统的柯伊伯带天体以最初被发现的三颗之一的1992 QB1为名,被分类为类QB1天体。 冥王星和卡戎   冥王星(平均距离39天文单位)是一颗矮行星,也是柯伊伯带内已知的最大天体之一。当它在1930年被发现后被认为是第九颗行星,直到2006年才重分类为矮行星。冥王星的轨道对黄道面倾斜17度,与太阳的距离在近日点时是29.7天文单位(在海王星轨道的内侧),远日点时则达到49.5天文单位。   目前还不能确定卡戎(冥王星的卫星)是否应被归类为目前认为的卫星还是属于矮行星,因为冥王星和卡戎互绕轨道的质心不在任何一者的表面之下,形成了冥王星—卡戎双行星系统。另外两颗很小的卫星,尼克斯(Nix)与许德拉(Hydra)则绕着冥王星和卡戎公转。 冥王星在共振带上,与海王星有着3:2的共振(冥王星绕太阳公转二圈时,海王星公转三圈)。柯伊伯带中有着这种轨道的天体统称为类冥天体。 离散盘   离散盘与柯伊伯带是重叠的,但是向外延伸至更远的空间。离散盘内的天体应该是在太阳系形成的早期过程中,因为海王星向外迁徙造成的引力扰动才被从柯伊伯带抛入反复不定的轨道中。多数黄道离散天体(scattered disk object)的近日点都在柯伊伯带内,但远日点可以远至150 天文单位;轨道对黄道面也有很大的倾斜角度,甚至有垂直于黄道面的。有些天文学家认为黄道离散天体应该是柯伊伯带的另一部分,并且应该称为“柯伊伯带离散天体”。 阋神星   阋神星(平均距离68天文单位)是已知最大的黄道离散天体,并且引发了什么是行星的辩论。他的直径至少比冥王星大15%,估计有2,400公里(1,500英里),是已知的矮行星中最大的。阋神星有一颗卫星,阋卫一(迪丝诺美亚),轨道也像冥王星一样有着很大的离心率,近日点的距离是38.2天文单位(大约是冥王星与太阳的平均距离),远日点达到97.6天文单位,对黄道面的倾斜角度也很大。 最远的区域   太阳系于何处结束,以及星际介质开始的位置没有明确定义的界线,因为这需要由太阳风和太阳引力两者来决定。太阳风能影响到星际介质的距离大约是冥王星距离的四倍,但是太阳的洛希球,也就是太阳引力所能及的范围,应该是这个距离的千倍以上。 日球层顶   太阳圈可以分为两个区域,太阳风传递的最大速度大约在95 天文单位,也就是冥王星轨道的三倍之处。此处是终端震波的边缘,也就是太阳风和星际介质相互碰撞与冲激之处。太阳风在此处减速、凝聚并且变得更加纷乱,形成一个巨大的卵形结构,也就是所谓的日鞘,外观和表现得像是彗尾,在朝向恒星风的方向向外继续延伸约40 天文单位,但是反方向的尾端则延伸数倍于此距离。太阳圈的外缘是日球层顶,此处是太阳风最后的终止之处,外面即是恒星际空间。   太阳圈外缘的形状和形式很可能受到与星际物质相互作用的流体动力学的影响, 同时也受到在南端占优势的太阳磁场的影响;例如,它的形状在北半球比南半球多扩展了9个天文单位(大约15亿公里)。在日球层顶之外,在大约230天文单位处,存在着弓激波,它是当太阳在银河系中穿行时产生的。   还没有太空船飞越到日球层顶之外,所以还不能确知星际空间的环境条件。而太阳圈如何保护在宇宙射线下的太阳系,目前所知甚少。为此,人们已经开始提出能够飞越太阳圈的任务。 奥尔特云   理论上的奥尔特云有数以兆计的冰冷天体和巨大的质量,在大约5,000 天文单位,最远可达10,000天文单位的距离上包围着太阳系,被认为是长周期彗星的来源。它们被认为是经由外行星的引力作用从内太阳系被抛至该处的彗星。奥尔特云的物体运动得非常缓慢,并且可以受到一些不常见的情况的影响,像是碰撞、或是经过天体的引力作用、或是星系潮汐。 塞德娜和内奥尔特云   塞德娜是颗巨大、红化的类冥天体,近日点在76 天文单位,远日点在928 天文单位,12,050年才能完成一周的巨大、高椭率的轨道。米高·布朗在2003年发现这个天体,因为它的近日点太遥远,以致不可能受到海王星迁徙的影响,所以认为它不是离散盘或柯伊伯带的成员。他和其他的天文学家认为它属于一个新的分类,同属于这新族群的还有近日点在45 天文单位,远日点在415 天文单位,轨道周期3,420年的2000 CR105,和近日点在21 天文单位,远日点在1,000 天文单位,轨道周期12,705年的(87269) 2000 OO67。布朗命名这个族群为“内奥尔特云”,虽然它远离太阳但仍较近,可能是经由相似的过程形成的。塞德娜的形状已经被确认,非常像一颗矮行星。 疆界   我们的太阳系仍然有许多未知数。考量邻近的恒星,估计太阳的引力可以控制2光年(125,000天文单位)的范围。奥尔特云向外延伸的程度,大概不会超过50,000天文单位。尽管发现的塞德娜,范围在柯伊伯带和奥尔特云之间,仍然有数万天文单位半径的区域是未曾被探测的。水星和太阳之间的区域也仍在持续的研究中。在太阳系的未知地区仍可能有所发现。 星系的关联   太阳系位于一个被称为银河系的星系内,直径100,000光年,拥有约二千亿颗恒星的棒旋星系。我们的太阳位居银河外围的一条旋涡臂上,称为猎户臂或本地臂。太阳距离银心25,000至28,000光年,在银河系内的速度大约是220公里/秒,因此环绕银河公转一圈需要2亿2千5百万至2亿5千万年,这个公转周期称为银河年。   太阳系在银河中的位置是地球上能发展出生命的一个很重要的因素,它的轨道非常接近圆形,并且和旋臂保持大致相同的速度,这意味着它相对旋臂是几乎不动的。因为旋臂远离了有潜在危险的超新星密集区域,使得地球长期处在稳定的环境之中得以发展出生命。太阳系也远离了银河系恒星拥挤群聚的中心,接近中心之处,邻近恒星强大的引力对奥尔特云产生的扰动会将大量的彗星送入内太阳系,导致与地球的碰撞而危害到在发展中的生命。银河中心强烈的辐射线也会干扰到复杂的生命发展。即使在太阳系目前所在的位置,有些科学家也认为在35,000年前曾经穿越过超新星爆炸所抛射出来的碎屑,朝向太阳而来的有强烈的辐射线,以及小如尘埃大至类似彗星的各种天体,曾经危及到地球上的生命。   太阳向点(apex)是太阳在星际空间中运动所对着的方向,靠近武仙座接近明亮的织女星的方向上。    邻近的区域   太阳系所在的位置是银河系中恒星疏疏落落,被称为本星际云的区域。这是一个形状像沙漏,气体密集而恒星稀少,直径大约300光年的星际介质,称为本星系泡的区域。这个气泡充满的高温等离子,被认为是由最近的一些超新星爆炸产生的。在距离太阳10光年(15亿公里)内只有少数几颗的恒星,最靠近的是距离4.3光年的三合星,半人马座α。半人马座α的A与B是靠得很近且与太阳相似的恒星,而C(也称为半人马座比邻星)是一颗小的红矮星,以0.2光年的距离环绕着这一对双星。接下来是距离6光年远的巴纳德星、7.8光年的沃夫359、8.3光年的拉兰德21185。在10光年的距离内最大的恒星是距离8.6光年的一颗蓝矮星,质量约为太阳2倍,有一颗白矮星(天狼B星)绕着公转的天狼星。在10光年范围内,还有距离8.7光年,由两颗红矮星组成的鲸鱼座UV,和距离9.7光年,孤零零的红矮星罗斯154。与太阳相似而我们最接近我们的单独恒星是距离11.9光年的鲸鱼座τ,质量约为太阳的80%,但光度只有60%。 太阳系的起源及演化   太阳系的起源是一个关于这个世界的本原问题,它从一开始就不是一个纯天文学问题。人们为了揭开这个迷,曾经历尽艰辛;许多人为此贡献出自己的毕生精力,有人甚至献出了生命。人类永远不会忘记那些曾经为理解我们这个世界而做出过重大贡献的人们。他们有:哥白尼(N.Copernicus)、布鲁诺(G.Bruno)、牛顿(I.Newton)、康德(I.Kant)、托勒密(C.Ptolemaeus)等。   1543年哥白尼在《天体运行论》中提出日心学说后,他无畏的科学精神一直鼓励着人们对太阳系的认知和对自然界本原的探索。   1644年笛卡尔(R.Descartes)在《哲学原理》中认为,太阳系是由物质微粒逐渐获得旋涡流式运动,而形成太阳、行星及卫星的。   1745年布封(G.L.L.de.Buffon)在《一般和特殊的自然史》中首次提出灾变说,质量巨大的物体,如彗星,曾与地球碰撞,太阳物质飞散太空,后来形成地球与其它行星、卫星。   1755年康德《自然通史与天体理论》提出系统学说,星云假说。太阳系是一团弥漫星际物质,在万有引力作用下聚集而成。中心形成太阳,由于斥力的增加,周边微粒在斥力的作用下,形成团块,小团块再形成行星、卫星。   1796年拉普拉斯(P.S.deLaplace)《宇宙体系论》也提出星云说,太阳系所有天体是由同一块星云形成。原始星云是气态,温度很高,并且在缓慢自转着。而后,星云逐渐冷却、收缩;随之自转加快,使星云越来越扁,当离心力超过向心力,便分离出旋转气体环。再次重复,生成多个气体环。最后,星云中心形成太阳,各环形成行星。热的行星同理形成卫星。   早期的星云说,科学界统称康德—拉普拉斯说,该学说在十九世纪占据太阳系起源的统治地位。由于该学说不能解释行星排列的质量分布问题和太阳系角动量特殊分布问题而遇到了困难。   因此人们又转向灾变说。1900年张伯伦(T.C.Chamberlain)提出新的星子说,摩尔顿(F.R.Moulton)发展了这个学说。有一颗恒星曾经运动到距离太阳几百千米处,使太阳正、背面产生巨大潮汐,而抛射出大量物质,凝集成小团块质点,称为星子。星子是行星的胚胎,而后聚合成行星和卫星。后来还有金斯(J.H.Jeans1916)提出的“潮汐假说”与以上学说略同。   关于太阳系起源的假说,可以说是种类繁多。二十世纪以来,人们的天文学知识越来越丰富。并且认识到,在广阔的宇宙中,发生恒星相遇情况的可能性极小。五十年代以后,又提出了许多新的学说,这些学说大部分都是以星云假说为基础的学说。归纳起来有以下六个学说的影响最大。 卡米隆(A.G.W.Cameron)学说。六十年代以来,卡米隆从力学、化学等方面对地球起源进行了认真探讨,并用湍流粘滞理论计算了星云盘的演化。 戴文赛学说。五十年代提出的一种角动量斥力圆盘理论。 萨夫隆诺夫(В.С.СаФронов)和林忠四郎(C.Hayashi)的学说。湍流形成圆盘、环的理论。 普伦蒂斯(A.J.R.Prentice)—新拉普拉斯说。冷星云湍流说。 乌尔夫逊(M.M.Wolfson)的浮获说。小质量恒星天体相遇灾变说。 阿尔文(H.Alfvén)的电磁说。以太阳早期存在强磁场作用的行星形成理论。   虽然以上理论各具特色,但是都没能得到公认。令人信服的太阳系起源说必需阐明下列主要问题: 原始星云的由来和特性。 原始星云或星子的形成过程。 行星的形成过程。 行星轨道的特性:共面性、同向性和近圆性。 提丢斯—波得(Titius-Bode)定则。 太阳系的角动量分布。 三类行星:类地、巨行、远日行星的大小、质量、密度方面的差别。 行星的自转特性。 卫星及环系的形成。 小行星的起源。 彗星的起源。 地-月系统的起源。 星云演化阶段   在46-50亿年之前,星际弥漫物质分布不均匀,物质的密集区成为星际云。在外界因素的触发下,星际云发生自吸引收缩。当密度足够大时,星云际云出现不稳定,瓦解成为多个小星云。其中猎户臂上的一块小星云,质量约为1.03M⊙,该星云就是以后演化成太阳系的星云。该星云中心温度100K,其余大部分的温度均在10K以下。初始角动量2×1052~5×1052克·厘米2·秒-1。   对星云演化阶段的演化过程,大多数学者对其没有太大的分歧。最具争议的是外界触发因素,一般认为有以下几种星云收缩触发机制。 星云间碰撞产生激波压缩。 银河螺旋密度波通过星际云时产生的激波。 邻近超新星爆发产生的激波。 其它强星云收缩激发附近稠密的星云。   许多人都认为是超新星爆发而激发太阳星云收缩的。但是,在有千亿颗恒星的银河系里,每年都会有不少颗恒星诞生。超新星激发而产生恒星的情况并不多见。而在银河系旋臂附近的星际物质,有相对银河系中心每秒几百千米的速度动量,少许有一点波动或激波,就足以产生使太阳星云收缩的自转角动量。   太阳星云演化阶段的主要星云物质所在范围约为3~10万个天文单位(天文单位:现在地球至太阳间的距离)。星云演化阶段的时间约为108年。 星子演化阶段   当太阳星云极度收缩,大多星云物质范围在1~3万个天文单位,有98%以上的物质都已收缩到一个天文单位内时,太阳系星云进入星子演化阶段。   在这个演化阶段,大多数太阳系起源理论,对星云中心由星云物质收缩成星子,再由星子聚集质点形成太阳的观点没有异议。而对太阳以外星子和星云物质所在星盘的形成,提出各种观点。   许多理论都认为在盘上形成了环。1、卡米隆学说,湍流粘滞环。2、魏茨泽克(C.F.Weizsaker)的流体力学旋涡环。3、戴文赛的离心力环。4、普伦蒂斯的力学环。等等。   还有理论认为全部星云物质都形成了太阳。如,张伯伦的恒星相遇说,金斯的潮汐说,乌尔夫逊的俘获说,阿尔文的电磁说等。   依据我们对各类星云的观测经验,星云形成环的可能性极小,而且太阳星云初始运动也没有促使其形成环的因素。不过,星云盘收缩时形成旋臂是极常见的现象,旋臂使星云的密度产生了疏密差异。密度大的地方星云物质开始聚积成星子。   有人会问,谁说星云不能生成环,土星不是有环吗?在太阳没有燃烧以前太阳完全可以有环。但是,土星的赤道环和太阳星云盘形成的环差异太大。依据洛希极限(Roche’sLimit)原理,土星类相对星体距离也较近,而且像土星这样的环不可能形成为一个星体。   对于太阳系星云完全收缩为一个太阳的情况,无论从物理学的角度或是从天文学的角度看,都让人难理解。因为星云收缩为星云盘,星盘再完全收缩成一个星球体,在盘上不留一点剩余物质的情形也非常少见。   太阳星云盘上也应该形成有旋臂。在星子演化阶段的后期,在大约0.5天文单位处旋臂中心的星子,其直径有大于1000千米的(这种星子也可以称为星胚)。太阳星云中心温度已经超过300K,但是距太阳1个天文单位处的温度不应该大于10K。这个演化阶段所用的时间在106~107年内。 太阳—地球形成阶段   在这个阶段的开始,99%以上的太阳星云物质聚集起来,形成了太阳的雏星。其密度约在1.35克/厘米3,它聚集了太阳系50%的角动量,由于物质的聚积,分子碰撞加剧,中心温度已达到6000K以上。   在太阳的周围这时候先后生成了四个行星,它们是: 水内星(Inmercury):因为现在这颗星已经不存在。其名暂定为水内星(不是Vulcan)。它的质量大约是160个地球单位(现在的地球质量=1个地球单位)。密度为1.34克/厘米3左右。它运行在距离太阳2900万千米的轨道上。 水星:这颗水星并不像现在的水星。它的质量约110个地球单位,密度亦为1.34克/厘米3。这颗水星运行在离太阳7000万千米的轨道上。 金星:它当时的质量是70个地球单位,密度1.34/厘米3,轨道距离太阳1.1亿千米。 地球:当时的质量为50个地球单位,密度为1.33克/厘米3,轨道为1.5亿千米。   它们的运行轨道基本是圆型。由于形成行星的旋臂外缘物质的角动量略大于内缘物质的角动量,内、外两个角动量的差变成行星自转角动量。所以以上形成的行星都具有绕太阳公转方向相同的自转。   由于太阳星云在收缩时旋转略带一点扭矩,所以形成太阳后,太阳的自转赤道与黄道(星盘)面有7度多的夹角,所形成行星的自转轴,也不垂直于黄道面。   当时,火星轨道处以外的物质量还不足以形成大行星,而只是在火星轨道处运行着几个较大的星子。其中最大的星子直径已超过3000千米。在火星与地球轨道之间有一个星云的小旋臂,该旋臂角动量比地球的单位角动量略大一些,其形成的星体,被地球俘获为月球,它的质量为0.7个地球单位。运行轨道与地球距离比现在要近得多。由于与地球角动量差转变为对地球的转动。而太阳星云内部不存在魏茨泽克学说所形容的内部旋涡。所以太阳系星云形成的规则卫星都是同步自转(同步自转:自转周期与行星公转周期时间相等)。   关于水内星存在的理由,分析一下水星到火星的轨道特性就可以得到启示。关于形成的各行星的体量,有许多证据可以证明,当时可以有很大的质量。例如:水星现在的物质丰度和质量,如果将它们分散在水星轨道的范围以内,这些物质无论用什么办法也不能将其聚集成现在的水星。在地球上,各大洋底锰结核的存在和海水中丰富的铀含量都说明,如果地球的体量从形成时到现在就没有改变,那么对这些现象根本就无法解释。   每个原始行星的其它参数,可以由以上数据推得。   这个演化阶段的后期,各星体表面温度已超过200K,这个演化阶段的时间在104年之内。 火星—小行星形成阶段   在这个演化阶段开始,太阳表面温度已达到3000K左右。太阳内部已开始有小规模的核聚变。形成的各大行星由于收缩,自转开始加快,氢、氦元素已全部气化。太阳的热辐射驱动着散落在各大行星轨道间的剩余物质和逃逸出行星控制的氢、氦等物质,并将它们推向火星轨道和小行星轨道。   由于星际物质到这个演化阶段后期,在水星、小行星轨道上逐渐增多。而后火星逐渐由星子聚集形成。其质量约30个地球单位,密度约为1.2克/厘米3,轨道参数基本与现在相同。在小行星轨道上也逐步形成了70-120个大星子,星子直径约在2000千米至3000千米。另外还有许多直径小于2000千米以下的星子。当时的大星子经现代技术分析可以逆向命名,如:脱罗夫(Trojan)星、沃耳夫(M.Wclf)星等。   这个阶段约经历103年不到的时间。 木星—土星形成阶段(太阳核聚变爆发阶段)   这个阶段是太阳系形成过程中非常重要的一个阶段。现代的太阳系起源理论都认为,强大的太阳辐射和太阳风将星云轻物质推到外行星处。至于怎样推的和演化到什么时间将轻物质推出去的,所有太阳系起源说都未对其定位。这个推出去的过程是一个非常实际的过程,也是研究太阳系起源的值得重视的过程。这个过程必然与太阳核聚变爆发同时开始。   在这个阶段里太阳由于收缩,内部的高温终于引发了整个太阳的氢核聚变活动。强大的核聚变辐射带着太阳风扫过了前面几个阶段所形成的所有的星体和星子。这个阶段大约用了105—106年的时间。   我们如果能看到当时的景象,真是非常壮观:逐渐增强核聚变的太阳发着强烈的紫光,照耀着整个太阳系。小行星带的每个星子拖着像彗星一样的尾巴,围着太阳形成一个圈。地球带着月球和火星差不多,快速旋转着向四周散发着淡淡的氢气、氦气,后来又夹带着水汽。水内星、水星、金星开始剧烈地转动着向太阳系散发它们所带的气体、水汽,内太阳系空间扁平盘上,到处烟雾腾腾,给人一种祥和、温暖的感觉。   在这个演化阶段的稍后期,有个重要过程需要说明。在前几个阶段已经形成的各大行星都在散发着水汽,这些太空中和星球边的水汽并没有多大压力,它们弥漫在内太阳系的空间里,其温度不会低于0摄氏度,但也不会高于70摄氏度。这是个原始生命物质最容易生成的环境。开始时原始氨基酸包裹体只是吸收热,逆换氧化物质的简单生命体。经过演化,在本阶段结束时,生态环境开始变得恶劣。该生命体就逐渐演化出能光合的基本生命体和其寄生的共生生命体这样两种类别的系列生命体。像这种长期温暖的环境现在很难人工模拟。   由于太阳风的压力和太阳辐射的压力,将弥漫在内太阳系的氢、氦和水汽驱赶到现在的木星及土星轨道附近,木星、土星轨道上的星子逐渐增大,因为大部分物质在木星轨道处就被星子俘获了,而土星星子俘获的是重新凝结(温度低)的氢、氦气和水汽团,所以聚集在土星轨道上星子的密度变得越来越小。   在行星形成的过程中,由于高密度物质向行星中心集结,低密度的物质浮向行星表面,由于角动量守恒,行星的转速急剧加快,太阳辐射使行星失去的表面物质将带走大量的行星自转角动量,致使行星逐渐失去自转角动量而使自转变得缓慢。特别是水内星,由于上述过程急剧演化,当该行星在失去三分之二质量后,其自转角动量已所剩无几。在这种情况下,该星对太阳来讲就像一个向心旋转的火箭,它拖着长长地急速喷射着水汽的尾巴,沿着距离太阳越来越近的轨道,渐渐地又突然快速地跌进了太阳。   水星几乎也有着同样的命运,不过当它向太阳移近运行轨道1200万千米时,它的易挥发轻物质已经消耗殆尽,这时它就停留在现在的轨道上,绕着太阳转动着。水星1200万千米的轨道迁移,影响了水星的轨道参数,所以水星绕太阳转动的轨道有较大的偏心率。   金星离太阳远得多,以上论述的物理过程中,几乎将金星自转角动量全部带走。但是,由于金星的轻物质挥发较慢,金星轨道的迁移量不多。   这个物理过程,对地球和火星影响更要好得多。地球作为行星开始演化时,最快的自转速度,可能达到了几个小时,可是当地球被太阳挥发到2个地球质量时,其自转速度已减慢到要十五、六个小时左右转一圈了。   到了这个演化阶段的后期,木星、土星已初步聚合而成。   在这个演化阶段后期和下一个演化阶段的初期太阳将进入一个灾变时期。 天王星—海王星形成阶段   在这演化阶段的开始前,太阳进入了一个灾变性阶段,该灾变可以称为太阳角动量灾变期。   当弥漫星云塌陷为一个恒星胚时,星云物质带有大量的转动角动量聚集到星体,聚集的初期角动量分布分散。恒星胚转动较慢,当恒星核聚变产生之后,大部分物质都被气化或电离时,较重物质急速向恒星中心聚集,轻物质浮向恒星表面,因角动量守恒,恒星转速越来越快。   对于较大的星云团,形成恒星前的旋转速度较快,其聚集后星体含角动量极大,核聚变产生后,星核还没完全形成。为了克服巨大的角动量转速,恒星会分裂为双星,或者是聚星。银河系中就有许多这样的恒星结构。   对于有较少量角动量的恒星,在恒星形成的年青阶段都有一个天文学称之为金牛T型阶段。在这个阶段,由于恒星聚集很大角动量,经过演化恒星开始快速地旋转,再加上恒星剧烈地核聚变,使恒星沿赤道表面会抛射出大量的物质。这些抛射出的物质带走大量的恒星自转角动量。金牛T型阶段结束后恒星进入了赫罗图(H—Rdiagram)的主序星阶段。又有,恒星的较差自转现象和太阳风(有质量的太阳抛射物)也要损耗大量的角动量,使其后的恒星自转速度越变越慢,恒星的自转角动量亦越来越少。   这些金牛T型阶段的太阳抛射物,最先访问的是水星,而且也很频繁,聚集后不长时间,就完全气化,然后又脱离了水星。由于这些物质击中水星的方向较正,使水星的自转几乎等于同步自转。块状物对金星的撞击角度不同水星,这些大块抛射物的撞击,使金星的自转变为慢速地逆方向转动,这个撞击角和对水星的影响可以用作图法得出,也容易理解。这些抛射物能块状地访问地球、火星的可能性很小,所以就不会对这些星体造成什么重大影响。在黄道面内的这些抛射物,最后都被太阳的辐射和太阳风推到木星、土星轨道,也有的被该轨道上的星子所俘获。   太阳赤道与黄道有7度多的夹角。太阳的金牛T型段的赤道抛射物有很大一部分被抛射出原太阳星云盘黄道面。这些抛射物,经由黄道盘的上、下飞越水星、金星……木星、土星。这些抛射物质在旋转盘上群星引力的作用下,落在天王星的轨道上,被那里的星子俘获,然后积聚为天王星。这些抛射物的运动轨迹可用万有引力定律推出。   也许太阳向云盘上、下抛射的物质量并不相等,也许抛射的物质在云盘上、下运行的距离有差异。所以它们形成的星子都会有水平于黄道平面的自转。当变得更大的星子聚集起来形成天王星时,该星是一颗基本躺着转动的星,星内有大量的放射性物质,也说明该星大部分物质直接来自已经核聚变的太阳。   有一些抛射物质因为没有被天王星子俘获,在星云盘处穿越天王星轨道,由于惯性,又运行一段距离,在星盘的引力的作用下,从另一面落入海王星轨道,被海王星轨道的星子俘获。因为它们的运动轨迹非常难以形容。所以这些星子最后形成的海王星,自转轴相对黄道面倾斜很大角度。海王星的物质大部分也来自太阳,它也含有大量的放射性物质。   天王星、海王星演化阶段历时106年。   海王星外的冥王星是二十世纪三十年发现的一颗行星,从质量上讲冥王星不能算是一颗大行星。对于冥王星外的太阳系空间,我们知道得不多,可以放在后面讨论。 太阳系各星体的地质演化和后期演化要点   太阳成为主序星后,有个现象非常重要:太阳的聚集高温点燃了核聚变,开始时燃烧的规模较小,然后逐渐加剧,最后达到燃烧的最大点,这时间在103年左右。剧烈地燃烧,必然产生燃烧阻隔,使燃烧逐渐减弱,这就形成了一个周期。现在我们把它称为太阳活动周期,这个周期现在大约是11.2年。太阳刚进入主序星时,活动周期的波动非常明显,当时波动周期的时间大约在70年左右。   水星在聚积成行星后,经过一定时间,水星的地质演化非常充分,铁的核、岩的壳外面包裹着水和氢气、氦气。当太阳的热量吹走表面的气体、水和极易挥发物质后,火星迁移到现在运行的轨道。而后几亿年强烈的太阳风,又吹去了大部分岩壳(当时的水星岩是熔融态),以至它表面易挥发的金属也被吹走了。   金星要好得多,它只失去了水分和部分易挥发物质,而且轨道也移动不多。   地球是颗神奇的行星,它的初期演化就有生物参与。地球大气中的氧,如果没有生物作用是不可能存在的。在太阳早期活动周期的低谷,地球建立了地球磁场,再加上氧的作用,地球保住了剩余下来的水,为今后的生物进化提供了条件。   月球是地球的卫星,在当初形成时它是太阳系中最大的卫星。因为是卫星仅有同步自转,所以它的地质演化并不充分,几乎没有铁核。它的质心偏向地球。当它失去月表的水分后,太阳风又吹去了月表所有的易挥发物质和易挥发金属。由于逐渐失去部分地球的引力和质量,月球轨道在远离地球。   火星最大时,有30个地球质量那么大,但是其99%以上都是轻物质。它的地质演化应该非常充分。当火星演化到10亿年以前,火星表面还存在有大量的水,只因大气中没有存住氧,这些水分都慢慢地失去了。它的两颗卫星是火星演化时期俘获的。火卫一来自小行星轨道的可能性极大,因为在那里被划伤的概率要比作为卫星要高得多。   小行星轨道上,直径大于2000千米的小行星都有相当充分的地质演化:铁的核、岩的壳、外包着水和气。太阳初期的剧烈燃烧,吹走了它表面的氢、氦气和水,使所有的小行星失去了成为大行星的机会。大小不等的类地小行星运行在轨道上,其速度、质量又各不相同,在以后形成的大质量和近距离的木星胁迫下,小行星经常发生碰撞,裂解成为各类小行星族。有些脱离原来的轨道进入地球、火星轨道。地球上见到的铁陨石和石陨石大都来自小行星轨道的物质。另外大部分脱离轨道的小行星或被木星俘获或进入木星轨道。因为有木星的巨大质量胁迫,所以在小行星轨道上运行的各族小行星的分布应该和木星轨道共振。没有进行地质演化条件的小行星(形成时的质量小),失去大部分水分后,以原始状态继续运行着。有些较远离太阳的小行星也许还保持有一定的水分。     一亿年后,在塌缩的星云中心,压力和密度将大到足以使原始太阳的氢开始热融合,这会一直增加直到流体静力平衡,使热能足以抵抗重力的收缩能。这时太阳才成为一颗真正的恒星。   相信经由吸积的作用,各种各样的行星将从云气(太阳星云)中剩余的气体和尘埃中诞生: 当尘粒的颗粒还在环绕中心的原恒星时,行星就已经开始成长; 然后经由直接的接触,聚集成1至10公里直径的丛集; 接着经由碰撞形成更大的个体,成为直径大约5公里的星子; 在未来的数百万年中,经由进一步的碰撞以每年15厘米的的速度继续成长。      在太阳系的内侧,因为过度的温暖使水和甲烷这种易挥发的分子不能凝聚,因此形成的星子相对的就比较小(仅占有圆盘质量的0.6%),并且主要的成分是熔点较高的硅酸盐和金属等化合物。这些石质的天体最后就成为类地行星。再远一点的星子,受到木星引力的影响,不能凝聚在一起成为原行星,而成为现在所见到的小行星带。   在更远的距离上,在冻结线之外,易挥发的物质也能冻结成固体,就形成了木星和土星这些巨大的气体巨星。天王星和海王星获得的材料较少,并且因为核心被认为主要是冰(氢化物),因此被称为冰巨星。   一旦年轻的太阳开始产生能量,太阳风会将原行星盘中的物质吹入行星际空间,从而结束行星的成长。年轻的金牛座T星的恒星风就比处于稳定阶段的较老的恒星强得多。   根据天文学家的推测,目前的太阳系会维持直到太阳离开主序。由于太阳是利用其内部的氢作为燃料,为了能够利用剩余的燃料,太阳会变得越来越热,于是燃烧的速度也越来越快。这就导致太阳不断变亮,变亮速度大约为每11亿年增亮10%。   从现在起再过大约76亿年,太阳的内核将会热得足以使外层氢发生融合,这会导致太阳膨胀到现在半径的260倍,变为一颗红巨星。此时,由于体积与表面积的扩大,太阳的总光度增加,但表面温度下降,单位面积的光度变暗。   随后,太阳的外层被逐渐抛离,最后裸露出核心成为一颗白矮星,一个极为致密的天体,只有地球的大小却有着原来太阳一半的质量。 其他 太阳系行星“裁员” 冥王星遭“降级”   国际天文学联合会大会2006年8月24日通过决议,将地位备受争议的冥王星“开除”出太阳系行星行列,太阳系行星数目也因此降为8颗。从此,冥王星这个游走在太阳系边缘的天体将只能与其他一些差不多大的“兄弟姐妹”一道被称为“矮行星”。   大会始终充满紧张气氛。直到表决前,一些天文学家还抓住最后机会表达质疑。他们站在观众席走道里竖立着的麦克风前,要求主席台上正襟危坐的国际天文学联合会主席罗恩·埃克斯再度修改决议草案。一位天文学家甚至要求修改其中的一个标点。投票时,两派的对立显而易见。天文学家们挥舞着手中的选票,极具煽动性地鼓励更多人加入他们当中,其中包括埃克斯,一位冥王星的强烈支持者。   根据当天通过的新定义,“行星”指的是围绕太阳运转、自身引力足以克服其刚体力而使天体呈圆球状、能够清除其轨道附近其他物体的天体。而冥王星因为其轨道与海王星相交,因此不符合这一定义。大会通过的决议说:“(太阳系)行星包括水星、金星、地球、火星、木星、土星、天王星和海王星。”   决议称,冥王星是一颗“矮行星”。所谓“矮行星”是指同样具有足够质量、呈圆球状,但不能清除其轨道附近其他物体的天体。决议还确认了一类外海王星天体,并将冥王星作为该类天体的“典型”代表。   “冥王星不该属于行星,每个天文学家都该知道,”英国伦敦大学学院天文学家伊恩·豪沃斯在决议通过后对新华社记者说。和大多数在场的天文学家一样,他对冥王星投了反对票。   但对于国际天文学联合会主席埃克斯来说,投票结果是“一个遗憾”。他认为,应当将“矮行星”也归入行星之列。   国际天文学联合会副主席、中国科学院院士方成在接受新华社记者采访时说:“冥王星的确是这次行星定义过程的焦点,许多科学家认为它不该成为行星。”   尽管科学家们关于这一问题仍未达成共识,但无论如何,行星新定义的产生是一个“历史性”时刻。埃克斯表示,对于行星的研究和讨论,将来还会继续,但这一定义的产生是天文学研究的里程碑。 怎样飞越太阳系   2000年3月29日,人类在寻找太阳系外行星方面取得重大进展。美国加利福尼亚大学的科学家宣布,他们发现了两颗迄今为止围绕着其他恒星运行的最小行星。这两颗太阳系外的行星质量与土星相近。这标志着科学家在寻找地球大小的太阳系外的行星的过程中迈出了重要的一步,因为迄今为止观测行星的技术只能发现比木星大的太阳系外行星,而要寻找外星生命,只能到地球大小的行星上去找。想要飞向太阳系外的恒星,解决动力问题则是关键。   恒星周围存在行星是一个普遍现象。在太阳系附近的恒星周围肯定存在着行星系统,了解那里的行星无疑是一件激动人心的事。可现有的天文手段在这方面显得过于苍白无力。它既不能告诉我们这些行星的大气组成,也无法揭示其地质构造,甚至天文学家连它们的几何尺寸也无从知晓。   这一切都是地球与目标行星之间的距离所致——动辄几十万天文单位的旅程会令最狂热的宇航迷变得垂头丧气,用化学火箭推进的探测器要用成千上万年才能飞到那里。   如何在一个科学家的有生之年完成太阳系外的探险呢?这时飞船应该达到每秒几百公里的速度,而目前最快的飞船只能达到这速度的十分之一。现行的飞船之所以行动迟缓,根本原因在于它们仅靠化学火箭在其飞行的头几分钟里加速,冲出大气层后的航程完全倚赖惯性滑行,充其量在路过大行星时靠其引力加速。因此要想飞向太阳系外的恒星,解决动力问题是关键。   目前“旅行者”号和“先驱者”号探测器已经飞越了冥王星轨道,成为离地球最远的探测器。为了达到这一目标,科学家花费了十几年的时间,其间还不断利用大行星的引力加速(称为“引力跳板”技术)。而且从一开始,它们就是用最强大的化学火箭(“土星”号)发射的。   下面的方法是科学家想到的飞越太阳系到达其他恒星的方法。其中有一些现在就可以实现,而另一些也许永远只能停留在设想阶段。   核动力火箭 20世纪50年代,随着和平利用原子能的呼声日益高涨,原子火箭发动机应运而生。法国人设计了以水为工作物质的原子能火箭,它靠核反应堆产生的热量将水汽化,高速喷射出的水蒸汽能使星际飞船逐渐加速。火箭要喷出5000吨的水才能在50年内把飞船送往最近的恒星——比邻星(距地球4.22光年)。   一般化学火箭的结构质量占总质量的6%—10%,有效载荷仅占1%;而原子能火箭的结构质量占总质量的12%—15%,但有效载荷可占总质量的5%—8%。以氘为燃料的核聚变火箭,排气速度可达15000公里/秒,足以在几十年内把宇宙飞船送到别的恒星。   聚变比裂变放出更大的能量。在一个核聚变推进系统中理论上每千克燃料能够产生100万亿焦耳能量———比普通化学火箭的能量密度高一千万倍。核聚变反应将产生大量高能粒子。用电磁场约束这些粒子,使之向指定方向喷射,飞船就可以高速前进了。为安全起见,核飞船至少应在近地轨道组装。为利用月球上丰富的氦资源,月球也是理想的组装发射地。此外也可以在拉格朗日点(此点处的物体在绕地球运转的同时保持与月球相对距离不变)处完成组装,原材料从月球上用电磁推进系统发送。   光帆 中国古代的纸鸢无法和现在的超音速飞机同日而语,今人设想的喷射式推进系统也不能和未来实际的星际飞船相提并论。相对于核动力火箭来说,以下几种进入太空的方法更有可能在未来的星际飞行中使用。   15世纪地理大发现时期,西欧的水手们扬帆远航,驶向传说中的大陆。未来的星际航行恐怕还要借助“帆”这种古老的工具,只不过驱动“太空帆”的不是气流而是光。早在20世纪20年代,物理学家就已证明电磁波对实物具有压力效应。1984年,科学家提出,实现长期太空飞行的最佳方法是向一个大型薄帆发射大功率激光。这种帆被称为“光帆”。它采用圆盘状布局,直径达3.6千米,帆面材料为纯铝,无任何支撑结构,其最大飞行速度可达到光速的十分之一。在搭载1吨的有效载荷时,飞抵半人马座的α星仅需40年或更少的时间。以这个速度,太空船可以在两天内从太阳飞到冥王星,但要是飞越另一个太阳系并对其进行考察,这速度显然太低了。   为了进行详细的考察,可以采用“加速——减速”的飞行方案。这时光帆直径取100千米,使用功率为7.2×1012瓦的激光器向它发射激光。在减速阶段,将有一个类似减速伞的小型光帆被释放出来。它把大部分激光向飞船的前进方向反射,以达到制动的目的。   虽然要求较高,但较其他形式的星际飞船而言,光帆是在技术上和经济上最容易实现的方案。根据估算,在使用金属铍作为帆面材料时,飞到半人马座α星的总费用为66.3亿美元。这只相当于阿波罗计划投资的1/4。   人工时空隧道 不少科幻影片(如《星球大战》)中都有这样的镜头:随着船长一声令下,结构复杂的引擎开始工作,接着宇宙飞船便消失于群星中,几乎就在同时,它完好地出现在遥远的目的地……现代物理学证明,这看似荒诞的场景是可以发生的。   现代物理学(时空场共振理论)认为,时间是能量在时空中高频振荡的结果,宇宙间各时空点的性质取决于该点电磁场的结构特性。   该理论认为宇宙中各时空点有其确定的能量流动特性,它可以用一组谐波来描述。若用人工方法产生一定的谐波结构,使它与远距离某时空点的谐波结构特性相同,则二者就会产生共振,形成一个时空隧道,飞行器可以循着这个时空隧道在瞬间到达宇宙的另一位置。   实施这一方案的关键是飞船必须能产生适当的能量形态,以满足选定时空点的谐波结构特性。   通过“虫洞”的星际航行 还有一种名为“虫洞”的奇异天体,它是连接空间两点的时空短程线。科学家认为,通过虫洞可以实现物质的瞬间转移。用这种方法进行的星际航行可以完全不考虑相对论效应。遗憾的是这种理论上应该存在的“空间桥梁”至今还没有发现。   无疑,无论哪种方法离现实都有一定的距离,但它们在技术上并不是不可行的。无论困难多大,人类探索未知领域的天性不会改变。可以设想,人类最终迈出太阳系摇篮,飞向星际的日子不会太远了。(来源“南方报业集团) “旅行者”飞船正冲出太阳系   美国宇航局下属的喷气推进实验室说,1977年发射的“旅行者”1号飞船经过漫长的旅行,已飞出了太阳系的激波边界,即将成为第一个进入太阳系外空间的人造航天器。   进入“长跑最后一圈” 在近28年的飞行后,“旅行者”1号目前距太阳近140亿千米。它所在的区域里,太阳的影响已急剧减弱,带电荷的太阳风急剧减速后已变成了稀薄的恒星间气体,这里被称为太阳风鞘。“旅行者”1号将从它最薄的地方飞出去,当它穿越太阳风鞘的外缘边界———太阳风层顶之后,才算真正飞到了太阳系之外的银河系空间。科学家说,这可能还要几年时间。它的孪生飞船“旅行者”2号正沿另一条轨道飞出太阳系,目前距太阳也有100亿千米。美宇航局预计,这两艘飞船将至少运行到2020年。   “旅行者”项目科学家爱德华·斯通形象地比喻说,这艘飞船如今已进入“长跑最后一圈”,它正在探测太阳系最外层的边界。在远离太阳的黑暗、寒冷空间,“旅行者”依靠它装备的放射性同位素热电机组驱动。   有望再为地球服务20年 太阳系最终在哪里结束,并让位于相对平静的星际空间,科学家们还一直没有确定。理论上讲,这个界线在离太阳127.5亿到180亿千米之间的某个地方。天文学家将这个距离计算为85到120个天文单位——一个天文单位相当于地球到太阳的距离。   太阳系的边缘虽然位于宇宙空间的深处,是太阳引力几乎为零的地方,但也不是静如死水之处。太阳风形成的冲击波,依然要和恒星间的气体发生碰撞。这个冲击波自然也会作用在“旅行者”1号身上。专家说,虽然“旅行者”1号现在于宇宙深处漫游,已经到了人们难以测量的地方,但从技术上说,它还能与地面控制中心保持联系达20年之久。 太阳系的边界在哪里   在2003年11月,喷气推进实验室的科学家曾发现“旅行者”1号观测到了一些前所未有的迹象,并判断它已进入激波边界。但因为没有人知道激波边界的确切标志,这一观点引起相当争议,部分科学家认为它只是接近了这一区域而已。   激波边界是太阳风在恒星间气体压力下减速的地带。在这个地带,太阳风从每小时100万至240万千米的高速急剧下降,其粒子密度更大,温度也升高了。科学家认为,由于恒星间气体压力变化,这个区域经常收缩或膨胀,很难清晰确定边界。   这次,科学家根据两个特征一致判断“旅行者”1号已飞出了激波边界。第一,去年12月飞船探测到周围磁场强度急剧增加,到现在磁场都维持在高强度上,这说明太阳风粒子的减速过程已经完成。第二,飞船探测到周围有等离子体波浪,这是激波边界内外太阳风速不同、使带电粒子来回振荡而导致的。(据新华社) 美专家称人类可能永远无法飞出太阳系   据美国《连线》杂志报道,美国宇航局和军方的科学家日前表示,他们最近通过分析得出结论,即便是采用当今理论上最为先进的火箭推进技术,人类在其生命周期内也不可能登陆太阳系外的任何星体。这也就是说,人类飞出太阳系的梦想几乎永远也无法变成现实。   近日,在美国哈特福德市举行的联合推进技术大会上,来自美国宇航局和美国空军的导弹专家们对人类的星际旅行之梦泼了一盆冷水。大会收到了多个专门针对星际旅行的火箭推动技术的先进设计方案。科学家们对这些设计方案进行了专业、细致的分析与计算,得出了一个令人沮丧的结论。要想在人类的生命周期内登陆太阳系外最近的星球,即便采用当今理论上最为先进的火箭推进技术,这一梦想也几乎不可能实现。从本质上来说,人类何时飞出太阳系不是个时间问题,而是人类科学技术发展的速度和水平问题。也就是说,人类现在的科学技术还不能满足飞出太阳系的要求。   美国麻省理工学院助理教授保罗·罗扎诺也是与会的航空航天专家之一。保罗认为,星际旅行是一个复杂的工程难题,人们根本无法想象出工程的难度。其中最大的难题就是火箭推进问题,包括动力持续时间问题以及燃料问题等。比如,采用当前人类最先进的火箭引擎,理论上仍然需要5万年时间才能到达半人马座阿尔法星。半人马座阿尔法星是距离太阳系最近的星球。据美国宇航局喷气推进实验室科学家罗伯特-弗里斯比介绍,如果采用理论上最有效的推进方式,即理想中的反物质动力引擎,也仍然需要数十年时间才能抵达半人马座阿尔法星。   人类目前掌握的航天技术还远远不能适应飞出太阳系的需要。例如,鉴于宇宙尺度的宽广,即使飞船的速度可以达到光速,但到离太阳最近的恒星--比邻星飞一个来回,仍需要近10年的时间,在银河系转一圈需要几十万年,要飞出银河系,到达最近的仙女座星系,需要230多万年,而要在宇宙中周游,则需要几百亿年的时间。目前,人们寄希望于爱因斯坦相对论的速度效应,即宇宙飞船高速飞行时,时间会膨胀,距离会缩短,越接近光速,速度效应越显著,到无限接近光速时,时间几乎停滞,尺寸几近于零。另外,以当前人类的科学技术,同样无法解决火箭燃料的问题。   美国伦斯勒理工学院助理教授布里斯·卡塞蒂分析,要想利用火箭向半人马座阿尔法星发送一颗探测器,至少要耗费地球上已产出的全部能量。这是一个非常惊人的巨大数字。更有甚者,这种想法如果真要付诸实施,那么实际的能量消耗可能会比预估的还要高出100倍。人类不可能真的会去榨取地球所有的资源去实现遥远的星际旅行。在今后几十年的时间内,人类主要还是开展一些相对可行的航空活动,如建立永久性载人空间站,发展廉价的天地往返运输系统和宇宙飞船的高能动力系统,建立永久性月球基地,开发月球资源等。   目前在太空中飞得最远的人类文明“使者”——美国“旅行者1号”探测器,正在向太阳系边界逼近。甚至有科学家认为,它一度可能已突破了太阳系与外部星际空间的第一道交界线。但是严格说来,这些并不能说成是人类飞行的距离,因为它们都没有载人飞行。真正人类最远的飞行距离,也就是载人航天器飞行的最远距离,只有从地球到月球那么远,约为38.4万千米,这一纪录还是在上个世纪六七十年代创造的,至今未能突破。这一纪录的创造者是“阿波罗”号载人登月飞船及其乘员。 天文学家观测到5个遥远星系   天文学家在《天体物理杂志》网络版上发表研究报告称,他们在宇宙非常遥远的地方观测到5个普通星系。这些星系中有恒星正在快速形成,和它们的年龄相比,这些星系质量巨大,这将对现有的星系形成理论提出新挑战。   一个国际研究小组利用哈勃空间望远镜、斯必泽太空望远镜及次毫米波阵列确定了这5个星系的位置,同时证明它们均为独立的而不是由小星系组成的星系团。观测表明,这些年轻的星系正以比银河系快1000倍的速度形成新的恒星,然而它们的光芒却被浓密的尘雾所遮蔽。   现有的星系形成理论认为,星系的质量同距离成反比,小质量星系形成于宇宙早期,再通过合并形成大质量星系,大质量星系只能在宇宙1/3年龄以后形成。然而,新发现的星系却同银河系大小差不多,因此用现有理论无法解释。   参与该项研究的哈佛—史密森天体物理中心的天文学家法齐奥表示:“为什么这些遥远的星系形成新恒星的速度如此之快而且质量巨大,我们对此一无所知。”研究小组已将相关数据交给理论学家,后者正尝试建立新的计算机模型解释这些新发现。法齐奥说:“宇宙"年轻"时候的故事,仍有待我们进一步探索。”   普林斯顿大学的天体物理学家埃德·温特纳认为,穿透尘雾将帮助天文学家更准确地了解星系的形成过程。俄亥俄州凯斯西储大学的天文学家克里斯·米赫斯对此表示赞同,他指出,仅基于5个星系这么少的样本还不能得出任何实质性的结论,但这些新发现的星系无疑为认识宇宙早期状况贡献巨大。他说:“我们真正感兴趣的是,不同质量的普通星系怎样以不同的年龄存在宇宙中。这是一项非常困难的工作,但它对于了解星系形成的过程至关重要。”(资料来源:《科技日报》) 欧洲科学家发现太阳系外“超级地球”   据美国宇航局太空网26日报道,欧洲的天文学家在太阳系外发现了已知最小的行星之一,这颗行星的质量是地球的14倍,绕一颗与太阳非常相似的恒星旋转。这一发现让许多专家都大感吃惊。   研究人员表示,这可能是一颗多岩石的行星,拥有很稀薄的大气,就如同一颗“超级地球”。但它又没有地球的任何典型特征,它绕“太阳”旋转一周的时间不超过10天,而地球绕太阳转动的周期则需要365天。另外,这颗行星白天表面温度非常高。   领导此次研究的葡萄牙科学家努诺·桑托斯表示,尽管这颗行星表面状况尚不清楚,“但我们估计它相当热,温度与恒星差不多。”桑托斯告诉太空网,这颗行星的温度高达1160华氏度(900摄氏度)。这一发现仍旧是科学技术的一大进步,因为此前科学家从未在正常恒星附近发现过如此小的行星,同时也表明这是迄今为止天文学家发现的最类似我们的太阳系的“太阳系”。   这颗恒星与太阳相似,距离地球只有50光年。光年是指光在一年里传播的距离,大约等于6万亿英里(合11万亿公里)。大多数已知太阳系外行星一般距离地球数百或者数千光年。夜幕降临时,我们可以从南半球看到这颗称作“mu Arae”的恒星。它一直隐藏于另外两颗行星中间。其中一颗行星的大小与木星相同,每年绕这颗恒星旋转一周的时间为650天。另一颗行星距离更远,通过最新的观测设备,科学家已确认了它的存在。这种三颗行星的组成形式非常少见。   华盛顿肯内基研究所行星构成专家阿伦·鲍斯说:“它要比我们目前为止发现的行星距离太阳系更近。这真是个令人激动的发现。它们具有如此宝贵的数据,即使现在我仍旧非常激动。”阿伦·鲍斯没有参与此次研究工作。   这颗恒星是由设在智利拉斯拉的欧洲南半球观测站的望远镜发现的。迄今为止,科学家在太阳系周围发现了120多颗行星,其中大多数行星都是气态的,体积与木星一般大,甚至比木星还大,而且多数旋转周期都比较短,这使得生命无法在上面生存。另外,科学家还发现了许多比土星小的行星,但它们仍旧没有现在宣布的这颗行星小。2002年,科学家发现了三颗绕中子星等恒星残骸轨道旋转的行星,它们的体积与地球差不多。然而,它们在绕不支持生命存在的暗星快速旋转时的运行轨迹非常不规则。一些天文学家并不认为这三颗行星有绕正常恒星旋转的行星那么重要。   新发现的这颗行星质量是地球的14倍,重量与天王星差不多,绕一颗大小亮度与太阳相似的恒星旋转。专家称14倍于地球的质量大概是一颗多岩石行星的上限。但由于这颗行星距离它的主恒星过近,因此,它可能与天王星的形成历史截然不同。距离太阳系最近的四颗行星全部是多岩石的星体。   行星形成的主要理论是,气态的星体由一个多岩石的核心构成,在形成过程中,核心随时间慢慢发展,然后在重力快速收集到大量的气体时就会到达一个倾斜点。桑托斯表示,这种理论表明新发现的行星永远都不会达到临界质量。桑托斯通过电子邮件解释说:“否则行星就不会变得越来越大。”发现这颗行星的欧洲研究小组在一份声明中说:“这个物体有可能是一颗具有多岩石核心的行星,只不过核心被少量的气体层包围,因此可以称得上是‘超级地球'。”
天文学
天体物理学
辐射平衡
辐射平衡(汉语拼音:Fu she ping heng;英语:radiation balance),地球表面、大气或某一地区辐射能量的收入与支出之间的差值。又称辐射差额或净辐射。   地球或某一区域的地面辐射平衡是其辐射收入(即太阳短波辐射减去地面反射部分)与支出(地面散发的长波辐射减去大气向地面的长波辐射)之间的差值。地球-大气系统的辐射平衡是地面为下底,以大气顶为上顶的整个铅直柱内接收到的太阳短波辐射和大气顶界向太空放出的长波辐射之差值。将地球-大气系统的辐射平衡减去地面的辐射平衡,即得大气的辐射平衡。   辐射平衡随季节、纬度、地面状况、云量和大气成分而变化。平均而言,高纬度地区为负值,低纬度地区为正值。由于地面与大气的热状况多年来无长期变化趋势,所以对整个地球表面与大气而言辐射平衡应为零值。
天文学
天文学
宇宙模型
宇宙模型(汉语拼音:Yuzhou Moxing;英语:Cosmological Model),对宇宙的大尺度时空结构、运动形态和物质演化的理论描述。又称模型宇宙。按照宇宙大尺度结构,有两种不同的模型。①均匀模型,即认为大尺度上物质的分布基本上是均匀各向同性的,满足宇宙学原理,另一种是等级模型,认为天体的分布是逐级成团的,物质分布在任何尺度上都具有非均匀性。按照运动形态,也有两种模型。②把红移解释为系统性运动,各种膨胀宇宙模型都属于此类。另一种则把红移解释为另外的机制。按照演化来区分,则有演化模型和稳恒态模型。前者认为宇宙大尺度上的物质分布和物理性质随着时间有明显的变化,后者则认为宇宙的基本特征不随时间变化。在已有的各种宇宙模型中,大爆炸宇宙模型最有影响。它解释的观测事实最多。因而,已被普遍接受。   宇宙学家造不出物质的宇宙模型,但他们能够建立数学方程组来说明各种可能宇宙的行为。这些宇宙(英文词首字母是小写“u”)就是宇宙模型。它们有的能说明现实宇宙(英文词首字母是大写“U”)的某些事,有的却什么也说明不了。 有些方程式比较容易解,研究这些模型的行为只需要一支铅笔、几张纸,再加点儿智力就行了。阿尔伯特·爱因斯坦就是这样发现了广义相对论方程式预言的宇宙膨胀;亚历山大·弗里德曼和其他人也是这样发展了对相对论允许的各种宇宙的认识。 其他宇宙模型考虑了更多的细节和更复杂的相互作用,它们的方程式只能借助高速电子计算机求解。但我们宇宙有一个既奇妙又可能很重要的特点,就是它看来可以很好地用爱因斯坦方程式的最简单解来描述——爱因斯坦自己就说过,“关于宇宙的最不可理解的事就是宇宙是能够理解的”。 以不带宇宙学常数的爱因斯坦方程式为基础的三组最简单宇宙模型,是以它们描述的宇宙最终命运来划分的。开宇宙是始于大爆炸并永远膨胀下去的宇宙;闭宇宙是始于大爆炸、膨胀到一个确定大小然后坍缩为大崩塌的宇宙;平坦宇宙正好在前两者的分界线上,它永远膨胀但越来越慢,在终结状态下永久“徘徊”而不坍缩。闭宇宙模型的一个变种是,大崩塌由“反冲”取代,因而宇宙重复地膨胀和坍缩。虽然我们的宇宙可能是开的,也可能是闭的,但它却难以同平坦宇宙区分开。 增加一个宇宙学常数,就可以创造更复杂的模型。有一个模型起始于无穷大,收缩到有限大小,然后再次膨胀;另一个模型从大爆炸开始向外膨胀,然后膨胀减慢以至停止,在大小不变的情况下停留任意长的时间,然后再次膨胀。还提出过其他一些模型。但这些奇异的模型被认为同现实宇宙没有多少关系。另见减速因子、稳恒态假说。
天文学
太阳与太阳系
夫琅和费线
夫琅和费线,是一系列以德国物理学家约瑟夫·夫朗和斐(1787年─1826年)为名的光谱线,这些是最初被当成太阳光谱中的暗特征谱线。太阳光谱中的夫琅和费线非常多,在2935埃到13495埃范围内共有26,000多条。它们是各种元素的原子的吸收或散射引起的。吸收线含有太阳大气(主要是光球)的温度、密度、压力、化学成分、磁场、速度场等等信息。吸收线都是原子在吸收光球辐射后由下能态i向上能态j跃迁产生的。谱线频率为 Ej和 E i分别为上、下能态的激发电位。原子向上跃迁后,立即就跳下来,并释放出能量。再发射的机制有两种,即真吸收和散射。真吸收意味着原子在吸收光量子后,按普朗克函数再发射。吸收的辐射属于一定频率,而再发射的则包括广阔的波段,因此原频率的辐射减弱了。至于散射,虽然频率基本不变,但辐射从一个方向分散到四面八方,因此原方向的辐射减弱了。在这两种情况下都形成吸收线。 谱线本应是无限窄的,但某些物理因素会使它们具有一定的宽度和轮廓。常见的致宽机制为自然阻尼(能态不是无限窄,而有一定宽度)、碰撞阻尼(碰撞使原子在能态上停留的时间缩短了)、多普勒效应(微观运动引起谱线位移)、湍流(宏观运动引起谱线位移)和斯塔克效应(电场对能态的作用)。各种致宽机制给出不同的谱线轮廓(见谱线的形成和致宽)。 在光球模型、辐射的再发射机制和谱线致宽机制都已知的情况下,可计算出理论的谱线轮廓。反过来,利用观测到的谱线轮廓,可以推导光球模型或有关谱线的某些数据。实际上,我们现有的关于光球的知识,很大一部分是从吸收线的研究得出的。