repo_name
stringlengths
6
61
path
stringlengths
4
230
copies
stringlengths
1
3
size
stringlengths
4
6
text
stringlengths
1.01k
850k
license
stringclasses
15 values
hash
int64
-9,220,477,234,079,998,000
9,219,060,020B
line_mean
float64
11.6
96.6
line_max
int64
32
939
alpha_frac
float64
0.26
0.9
autogenerated
bool
1 class
ratio
float64
1.62
6.1
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
woest85/PokemonGo-Map-1
pogom/models.py
1
39432
#!/usr/bin/python # -*- coding: utf-8 -*- import logging import itertools import calendar import sys import gc import time import geopy from peewee import SqliteDatabase, InsertQuery, \ IntegerField, CharField, DoubleField, BooleanField, \ DateTimeField, fn, DeleteQuery, CompositeKey, FloatField, SQL, TextField from playhouse.flask_utils import FlaskDB from playhouse.pool import PooledMySQLDatabase from playhouse.shortcuts import RetryOperationalError from playhouse.migrate import migrate, MySQLMigrator, SqliteMigrator from datetime import datetime, timedelta from base64 import b64encode from cachetools import TTLCache from cachetools import cached from . import config from .utils import get_pokemon_name, get_pokemon_rarity, get_pokemon_types, get_args from .transform import transform_from_wgs_to_gcj, get_new_coords from .customLog import printPokemon log = logging.getLogger(__name__) args = get_args() flaskDb = FlaskDB() cache = TTLCache(maxsize=100, ttl=60 * 5) db_schema_version = 7 class MyRetryDB(RetryOperationalError, PooledMySQLDatabase): pass def init_database(app): if args.db_type == 'mysql': log.info('Connecting to MySQL database on %s:%i', args.db_host, args.db_port) connections = args.db_max_connections if hasattr(args, 'accounts'): connections *= len(args.accounts) db = MyRetryDB( args.db_name, user=args.db_user, password=args.db_pass, host=args.db_host, port=args.db_port, max_connections=connections, stale_timeout=300) else: log.info('Connecting to local SQLite database') db = SqliteDatabase(args.db) app.config['DATABASE'] = db flaskDb.init_app(app) return db class BaseModel(flaskDb.Model): @classmethod def get_all(cls): results = [m for m in cls.select().dicts()] if args.china: for result in results: result['latitude'], result['longitude'] = \ transform_from_wgs_to_gcj( result['latitude'], result['longitude']) return results class Pokemon(BaseModel): # We are base64 encoding the ids delivered by the api # because they are too big for sqlite to handle encounter_id = CharField(primary_key=True, max_length=50) spawnpoint_id = CharField(index=True) pokemon_id = IntegerField(index=True) latitude = DoubleField() longitude = DoubleField() disappear_time = DateTimeField(index=True) class Meta: indexes = ((('latitude', 'longitude'), False),) @staticmethod def get_active(swLat, swLng, neLat, neLng): if swLat is None or swLng is None or neLat is None or neLng is None: query = (Pokemon .select() .where(Pokemon.disappear_time > datetime.utcnow()) .dicts()) else: query = (Pokemon .select() .where((Pokemon.disappear_time > datetime.utcnow()) & (((Pokemon.latitude >= swLat) & (Pokemon.longitude >= swLng) & (Pokemon.latitude <= neLat) & (Pokemon.longitude <= neLng)))) .dicts()) # Performance: Disable the garbage collector prior to creating a (potentially) large dict with append() gc.disable() pokemons = [] for p in query: p['pokemon_name'] = get_pokemon_name(p['pokemon_id']) p['pokemon_rarity'] = get_pokemon_rarity(p['pokemon_id']) p['pokemon_types'] = get_pokemon_types(p['pokemon_id']) if args.china: p['latitude'], p['longitude'] = \ transform_from_wgs_to_gcj(p['latitude'], p['longitude']) pokemons.append(p) # Re-enable the GC. gc.enable() return pokemons @staticmethod def get_active_by_id(ids, swLat, swLng, neLat, neLng): if swLat is None or swLng is None or neLat is None or neLng is None: query = (Pokemon .select() .where((Pokemon.pokemon_id << ids) & (Pokemon.disappear_time > datetime.utcnow())) .dicts()) else: query = (Pokemon .select() .where((Pokemon.pokemon_id << ids) & (Pokemon.disappear_time > datetime.utcnow()) & (Pokemon.latitude >= swLat) & (Pokemon.longitude >= swLng) & (Pokemon.latitude <= neLat) & (Pokemon.longitude <= neLng)) .dicts()) # Performance: Disable the garbage collector prior to creating a (potentially) large dict with append() gc.disable() pokemons = [] for p in query: p['pokemon_name'] = get_pokemon_name(p['pokemon_id']) p['pokemon_rarity'] = get_pokemon_rarity(p['pokemon_id']) p['pokemon_types'] = get_pokemon_types(p['pokemon_id']) if args.china: p['latitude'], p['longitude'] = \ transform_from_wgs_to_gcj(p['latitude'], p['longitude']) pokemons.append(p) # Re-enable the GC. gc.enable() return pokemons @classmethod @cached(cache) def get_seen(cls, timediff): if timediff: timediff = datetime.utcnow() - timediff pokemon_count_query = (Pokemon .select(Pokemon.pokemon_id, fn.COUNT(Pokemon.pokemon_id).alias('count'), fn.MAX(Pokemon.disappear_time).alias('lastappeared') ) .where(Pokemon.disappear_time > timediff) .group_by(Pokemon.pokemon_id) .alias('counttable') ) query = (Pokemon .select(Pokemon.pokemon_id, Pokemon.disappear_time, Pokemon.latitude, Pokemon.longitude, pokemon_count_query.c.count) .join(pokemon_count_query, on=(Pokemon.pokemon_id == pokemon_count_query.c.pokemon_id)) .distinct() .where(Pokemon.disappear_time == pokemon_count_query.c.lastappeared) .dicts() ) # Performance: Disable the garbage collector prior to creating a (potentially) large dict with append() gc.disable() pokemons = [] total = 0 for p in query: p['pokemon_name'] = get_pokemon_name(p['pokemon_id']) pokemons.append(p) total += p['count'] # Re-enable the GC. gc.enable() return {'pokemon': pokemons, 'total': total} @classmethod def get_appearances(cls, pokemon_id, timediff): ''' :param pokemon_id: id of pokemon that we need appearances for :param timediff: limiting period of the selection :return: list of pokemon appearances over a selected period ''' if timediff: timediff = datetime.utcnow() - timediff query = (Pokemon .select(Pokemon.latitude, Pokemon.longitude, Pokemon.pokemon_id, fn.Count(Pokemon.spawnpoint_id).alias('count'), Pokemon.spawnpoint_id) .where((Pokemon.pokemon_id == pokemon_id) & (Pokemon.disappear_time > timediff) ) .group_by(Pokemon.latitude, Pokemon.longitude, Pokemon.pokemon_id, Pokemon.spawnpoint_id) .dicts() ) return list(query) @classmethod def get_appearances_times_by_spawnpoint(cls, pokemon_id, spawnpoint_id, timediff): ''' :param pokemon_id: id of pokemon that we need appearances times for :param spawnpoint_id: spawnpoing id we need appearances times for :param timediff: limiting period of the selection :return: list of time appearances over a selected period ''' if timediff: timediff = datetime.utcnow() - timediff query = (Pokemon .select(Pokemon.disappear_time) .where((Pokemon.pokemon_id == pokemon_id) & (Pokemon.spawnpoint_id == spawnpoint_id) & (Pokemon.disappear_time > timediff) ) .order_by(Pokemon.disappear_time.asc()) .tuples() ) return list(itertools.chain(*query)) @classmethod def get_spawn_time(cls, disappear_time): return (disappear_time + 2700) % 3600 @classmethod def get_spawnpoints(cls, southBoundary, westBoundary, northBoundary, eastBoundary): query = Pokemon.select(Pokemon.latitude, Pokemon.longitude, Pokemon.spawnpoint_id, ((Pokemon.disappear_time.minute * 60) + Pokemon.disappear_time.second).alias('time'), fn.Count(Pokemon.spawnpoint_id).alias('count')) if None not in (northBoundary, southBoundary, westBoundary, eastBoundary): query = (query .where((Pokemon.latitude <= northBoundary) & (Pokemon.latitude >= southBoundary) & (Pokemon.longitude >= westBoundary) & (Pokemon.longitude <= eastBoundary) )) query = query.group_by(Pokemon.latitude, Pokemon.longitude, Pokemon.spawnpoint_id, SQL('time')) queryDict = query.dicts() spawnpoints = {} for sp in queryDict: key = sp['spawnpoint_id'] disappear_time = cls.get_spawn_time(sp.pop('time')) count = int(sp['count']) if key not in spawnpoints: spawnpoints[key] = sp else: spawnpoints[key]['special'] = True if 'time' not in spawnpoints[key] or count >= spawnpoints[key]['count']: spawnpoints[key]['time'] = disappear_time spawnpoints[key]['count'] = count for sp in spawnpoints.values(): del sp['count'] return list(spawnpoints.values()) @classmethod def get_spawnpoints_in_hex(cls, center, steps): log.info('Finding spawn points {} steps away'.format(steps)) n, e, s, w = hex_bounds(center, steps) query = (Pokemon .select(Pokemon.latitude.alias('lat'), Pokemon.longitude.alias('lng'), ((Pokemon.disappear_time.minute * 60) + Pokemon.disappear_time.second).alias('time'), Pokemon.spawnpoint_id )) query = (query.where((Pokemon.latitude <= n) & (Pokemon.latitude >= s) & (Pokemon.longitude >= w) & (Pokemon.longitude <= e) )) # Sqlite doesn't support distinct on columns if args.db_type == 'mysql': query = query.distinct(Pokemon.spawnpoint_id) else: query = query.group_by(Pokemon.spawnpoint_id) s = list(query.dicts()) # The distance between scan circles of radius 70 in a hex is 121.2436 # steps - 1 to account for the center circle then add 70 for the edge step_distance = ((steps - 1) * 121.2436) + 70 # Compare spawnpoint list to a circle with radius steps * 120 # Uses the direct geopy distance between the center and the spawnpoint. filtered = [] for idx, sp in enumerate(s): if geopy.distance.distance(center, (sp['lat'], sp['lng'])).meters <= step_distance: filtered.append(s[idx]) # at this point, 'time' is DISAPPEARANCE time, we're going to morph it to APPEARANCE time for location in filtered: # examples: time shifted # 0 ( 0 + 2700) = 2700 % 3600 = 2700 (0th minute to 45th minute, 15 minutes prior to appearance as time wraps around the hour) # 1800 (1800 + 2700) = 4500 % 3600 = 900 (30th minute, moved to arrive at 15th minute) # todo: this DOES NOT ACCOUNT for pokemons that appear sooner and live longer, but you'll _always_ have at least 15 minutes, so it works well enough location['time'] = cls.get_spawn_time(location['time']) return filtered class Pokestop(BaseModel): pokestop_id = CharField(primary_key=True, max_length=50) enabled = BooleanField() latitude = DoubleField() longitude = DoubleField() last_modified = DateTimeField(index=True) lure_expiration = DateTimeField(null=True, index=True) active_fort_modifier = CharField(max_length=50, null=True) class Meta: indexes = ((('latitude', 'longitude'), False),) @staticmethod def get_stops(swLat, swLng, neLat, neLng): if swLat is None or swLng is None or neLat is None or neLng is None: query = (Pokestop .select() .dicts()) else: query = (Pokestop .select() .where((Pokestop.latitude >= swLat) & (Pokestop.longitude >= swLng) & (Pokestop.latitude <= neLat) & (Pokestop.longitude <= neLng)) .dicts()) # Performance: Disable the garbage collector prior to creating a (potentially) large dict with append() gc.disable() pokestops = [] for p in query: if args.china: p['latitude'], p['longitude'] = \ transform_from_wgs_to_gcj(p['latitude'], p['longitude']) pokestops.append(p) # Re-enable the GC. gc.enable() return pokestops class Gym(BaseModel): UNCONTESTED = 0 TEAM_MYSTIC = 1 TEAM_VALOR = 2 TEAM_INSTINCT = 3 gym_id = CharField(primary_key=True, max_length=50) team_id = IntegerField() guard_pokemon_id = IntegerField() gym_points = IntegerField() enabled = BooleanField() latitude = DoubleField() longitude = DoubleField() last_modified = DateTimeField(index=True) last_scanned = DateTimeField(default=datetime.utcnow) class Meta: indexes = ((('latitude', 'longitude'), False),) @staticmethod def get_gyms(swLat, swLng, neLat, neLng): if swLat is None or swLng is None or neLat is None or neLng is None: results = (Gym .select() .dicts()) else: results = (Gym .select() .where((Gym.latitude >= swLat) & (Gym.longitude >= swLng) & (Gym.latitude <= neLat) & (Gym.longitude <= neLng)) .dicts()) # Performance: Disable the garbage collector prior to creating a (potentially) large dict with append() gc.disable() gyms = {} gym_ids = [] for g in results: g['name'] = None g['pokemon'] = [] gyms[g['gym_id']] = g gym_ids.append(g['gym_id']) if len(gym_ids) > 0: pokemon = (GymMember .select( GymMember.gym_id, GymPokemon.cp.alias('pokemon_cp'), GymPokemon.pokemon_id, Trainer.name.alias('trainer_name'), Trainer.level.alias('trainer_level')) .join(Gym, on=(GymMember.gym_id == Gym.gym_id)) .join(GymPokemon, on=(GymMember.pokemon_uid == GymPokemon.pokemon_uid)) .join(Trainer, on=(GymPokemon.trainer_name == Trainer.name)) .where(GymMember.gym_id << gym_ids) .where(GymMember.last_scanned > Gym.last_modified) .order_by(GymMember.gym_id, GymPokemon.cp) .dicts()) for p in pokemon: p['pokemon_name'] = get_pokemon_name(p['pokemon_id']) gyms[p['gym_id']]['pokemon'].append(p) details = (GymDetails .select( GymDetails.gym_id, GymDetails.name) .where(GymDetails.gym_id << gym_ids) .dicts()) for d in details: gyms[d['gym_id']]['name'] = d['name'] # Re-enable the GC. gc.enable() return gyms class ScannedLocation(BaseModel): latitude = DoubleField() longitude = DoubleField() last_modified = DateTimeField(index=True) class Meta: primary_key = CompositeKey('latitude', 'longitude') @staticmethod def get_recent(swLat, swLng, neLat, neLng): query = (ScannedLocation .select() .where((ScannedLocation.last_modified >= (datetime.utcnow() - timedelta(minutes=15))) & (ScannedLocation.latitude >= swLat) & (ScannedLocation.longitude >= swLng) & (ScannedLocation.latitude <= neLat) & (ScannedLocation.longitude <= neLng)) .order_by(ScannedLocation.last_modified.asc()) .dicts()) return list(query) class MainWorker(BaseModel): worker_name = CharField(primary_key=True, max_length=50) message = CharField() method = CharField(max_length=50) last_modified = DateTimeField(index=True) class WorkerStatus(BaseModel): username = CharField(primary_key=True, max_length=50) worker_name = CharField() success = IntegerField() fail = IntegerField() no_items = IntegerField() skip = IntegerField() last_modified = DateTimeField(index=True) message = CharField(max_length=255) @staticmethod def get_recent(): query = (WorkerStatus .select() .where((WorkerStatus.last_modified >= (datetime.utcnow() - timedelta(minutes=5)))) .order_by(WorkerStatus.username) .dicts()) status = [] for s in query: status.append(s) return status class Versions(flaskDb.Model): key = CharField() val = IntegerField() class Meta: primary_key = False class GymMember(BaseModel): gym_id = CharField(index=True) pokemon_uid = CharField() last_scanned = DateTimeField(default=datetime.utcnow) class Meta: primary_key = False class GymPokemon(BaseModel): pokemon_uid = CharField(primary_key=True, max_length=50) pokemon_id = IntegerField() cp = IntegerField() trainer_name = CharField() num_upgrades = IntegerField(null=True) move_1 = IntegerField(null=True) move_2 = IntegerField(null=True) height = FloatField(null=True) weight = FloatField(null=True) stamina = IntegerField(null=True) stamina_max = IntegerField(null=True) cp_multiplier = FloatField(null=True) additional_cp_multiplier = FloatField(null=True) iv_defense = IntegerField(null=True) iv_stamina = IntegerField(null=True) iv_attack = IntegerField(null=True) last_seen = DateTimeField(default=datetime.utcnow) class Trainer(BaseModel): name = CharField(primary_key=True, max_length=50) team = IntegerField() level = IntegerField() last_seen = DateTimeField(default=datetime.utcnow) class GymDetails(BaseModel): gym_id = CharField(primary_key=True, max_length=50) name = CharField() description = TextField(null=True, default="") url = CharField() last_scanned = DateTimeField(default=datetime.utcnow) def hex_bounds(center, steps): # Make a box that is (70m * step_limit * 2) + 70m away from the center point # Rationale is that you need to travel sp_dist = 0.07 * 2 * steps n = get_new_coords(center, sp_dist, 0)[0] e = get_new_coords(center, sp_dist, 90)[1] s = get_new_coords(center, sp_dist, 180)[0] w = get_new_coords(center, sp_dist, 270)[1] return (n, e, s, w) # todo: this probably shouldn't _really_ be in "models" anymore, but w/e def parse_map(args, map_dict, step_location, db_update_queue, wh_update_queue): pokemons = {} pokestops = {} gyms = {} cells = map_dict['responses']['GET_MAP_OBJECTS']['map_cells'] for cell in cells: if config['parse_pokemon']: for p in cell.get('wild_pokemons', []): # time_till_hidden_ms was overflowing causing a negative integer. # It was also returning a value above 3.6M ms. if 0 < p['time_till_hidden_ms'] < 3600000: d_t = datetime.utcfromtimestamp( (p['last_modified_timestamp_ms'] + p['time_till_hidden_ms']) / 1000.0) else: # Set a value of 15 minutes because currently its unknown but larger than 15. d_t = datetime.utcfromtimestamp((p['last_modified_timestamp_ms'] + 900000) / 1000.0) printPokemon(p['pokemon_data']['pokemon_id'], p['latitude'], p['longitude'], d_t) pokemons[p['encounter_id']] = { 'encounter_id': b64encode(str(p['encounter_id'])), 'spawnpoint_id': p['spawn_point_id'], 'pokemon_id': p['pokemon_data']['pokemon_id'], 'latitude': p['latitude'], 'longitude': p['longitude'], 'disappear_time': d_t } if args.webhooks: wh_update_queue.put(('pokemon', { 'encounter_id': b64encode(str(p['encounter_id'])), 'spawnpoint_id': p['spawn_point_id'], 'pokemon_id': p['pokemon_data']['pokemon_id'], 'latitude': p['latitude'], 'longitude': p['longitude'], 'disappear_time': calendar.timegm(d_t.timetuple()), 'last_modified_time': p['last_modified_timestamp_ms'], 'time_until_hidden_ms': p['time_till_hidden_ms'] })) for f in cell.get('forts', []): if config['parse_pokestops'] and f.get('type') == 1: # Pokestops if 'active_fort_modifier' in f: lure_expiration = datetime.utcfromtimestamp( f['last_modified_timestamp_ms'] / 1000.0) + timedelta(minutes=30) active_fort_modifier = f['active_fort_modifier'] if args.webhooks and args.webhook_updates_only: wh_update_queue.put(('pokestop', { 'pokestop_id': b64encode(str(f['id'])), 'enabled': f['enabled'], 'latitude': f['latitude'], 'longitude': f['longitude'], 'last_modified_time': f['last_modified_timestamp_ms'], 'lure_expiration': calendar.timegm(lure_expiration.timetuple()), 'active_fort_modifier': active_fort_modifier })) else: lure_expiration, active_fort_modifier = None, None pokestops[f['id']] = { 'pokestop_id': f['id'], 'enabled': f['enabled'], 'latitude': f['latitude'], 'longitude': f['longitude'], 'last_modified': datetime.utcfromtimestamp( f['last_modified_timestamp_ms'] / 1000.0), 'lure_expiration': lure_expiration, 'active_fort_modifier': active_fort_modifier } # Send all pokéstops to webhooks if args.webhooks and not args.webhook_updates_only: # Explicitly set 'webhook_data', in case we want to change the information pushed to webhooks, # similar to above and previous commits. l_e = None if lure_expiration is not None: l_e = calendar.timegm(lure_expiration.timetuple()) wh_update_queue.put(('pokestop', { 'pokestop_id': b64encode(str(f['id'])), 'enabled': f['enabled'], 'latitude': f['latitude'], 'longitude': f['longitude'], 'last_modified': calendar.timegm(pokestops[f['id']]['last_modified'].timetuple()), 'lure_expiration': l_e, 'active_fort_modifier': active_fort_modifier })) elif config['parse_gyms'] and f.get('type') is None: # Currently, there are only stops and gyms gyms[f['id']] = { 'gym_id': f['id'], 'team_id': f.get('owned_by_team', 0), 'guard_pokemon_id': f.get('guard_pokemon_id', 0), 'gym_points': f.get('gym_points', 0), 'enabled': f['enabled'], 'latitude': f['latitude'], 'longitude': f['longitude'], 'last_modified': datetime.utcfromtimestamp( f['last_modified_timestamp_ms'] / 1000.0), } # Send gyms to webhooks if args.webhooks and not args.webhook_updates_only: # Explicitly set 'webhook_data', in case we want to change the information pushed to webhooks, # similar to above and previous commits. wh_update_queue.put(('gym', { 'gym_id': b64encode(str(f['id'])), 'team_id': f.get('owned_by_team', 0), 'guard_pokemon_id': f.get('guard_pokemon_id', 0), 'gym_points': f.get('gym_points', 0), 'enabled': f['enabled'], 'latitude': f['latitude'], 'longitude': f['longitude'], 'last_modified': calendar.timegm(gyms[f['id']]['last_modified'].timetuple()) })) if len(pokemons): db_update_queue.put((Pokemon, pokemons)) if len(pokestops): db_update_queue.put((Pokestop, pokestops)) if len(gyms): db_update_queue.put((Gym, gyms)) log.info('Parsing found %d pokemons, %d pokestops, and %d gyms', len(pokemons), len(pokestops), len(gyms)) db_update_queue.put((ScannedLocation, {0: { 'latitude': step_location[0], 'longitude': step_location[1], 'last_modified': datetime.utcnow() }})) return { 'count': len(pokemons) + len(pokestops) + len(gyms), 'gyms': gyms, } def parse_gyms(args, gym_responses, wh_update_queue): gym_details = {} gym_members = {} gym_pokemon = {} trainers = {} i = 0 for g in gym_responses.values(): gym_state = g['gym_state'] gym_id = gym_state['fort_data']['id'] gym_details[gym_id] = { 'gym_id': gym_id, 'name': g['name'], 'description': g.get('description'), 'url': g['urls'][0], } if args.webhooks: webhook_data = { 'id': gym_id, 'latitude': gym_state['fort_data']['latitude'], 'longitude': gym_state['fort_data']['longitude'], 'team': gym_state['fort_data'].get('owned_by_team', 0), 'name': g['name'], 'description': g.get('description'), 'url': g['urls'][0], 'pokemon': [], } for member in gym_state.get('memberships', []): gym_members[i] = { 'gym_id': gym_id, 'pokemon_uid': member['pokemon_data']['id'], } gym_pokemon[i] = { 'pokemon_uid': member['pokemon_data']['id'], 'pokemon_id': member['pokemon_data']['pokemon_id'], 'cp': member['pokemon_data']['cp'], 'trainer_name': member['trainer_public_profile']['name'], 'num_upgrades': member['pokemon_data'].get('num_upgrades', 0), 'move_1': member['pokemon_data'].get('move_1'), 'move_2': member['pokemon_data'].get('move_2'), 'height': member['pokemon_data'].get('height_m'), 'weight': member['pokemon_data'].get('weight_kg'), 'stamina': member['pokemon_data'].get('stamina'), 'stamina_max': member['pokemon_data'].get('stamina_max'), 'cp_multiplier': member['pokemon_data'].get('cp_multiplier'), 'additional_cp_multiplier': member['pokemon_data'].get('additional_cp_multiplier', 0), 'iv_defense': member['pokemon_data'].get('individual_defense', 0), 'iv_stamina': member['pokemon_data'].get('individual_stamina', 0), 'iv_attack': member['pokemon_data'].get('individual_attack', 0), 'last_seen': datetime.utcnow(), } trainers[i] = { 'name': member['trainer_public_profile']['name'], 'team': gym_state['fort_data']['owned_by_team'], 'level': member['trainer_public_profile']['level'], 'last_seen': datetime.utcnow(), } if args.webhooks: webhook_data['pokemon'].append({ 'pokemon_uid': member['pokemon_data']['id'], 'pokemon_id': member['pokemon_data']['pokemon_id'], 'cp': member['pokemon_data']['cp'], 'num_upgrades': member['pokemon_data'].get('num_upgrades', 0), 'move_1': member['pokemon_data'].get('move_1'), 'move_2': member['pokemon_data'].get('move_2'), 'height': member['pokemon_data'].get('height_m'), 'weight': member['pokemon_data'].get('weight_kg'), 'stamina': member['pokemon_data'].get('stamina'), 'stamina_max': member['pokemon_data'].get('stamina_max'), 'cp_multiplier': member['pokemon_data'].get('cp_multiplier'), 'additional_cp_multiplier': member['pokemon_data'].get('additional_cp_multiplier', 0), 'iv_defense': member['pokemon_data'].get('individual_defense', 0), 'iv_stamina': member['pokemon_data'].get('individual_stamina', 0), 'iv_attack': member['pokemon_data'].get('individual_attack', 0), 'trainer_name': member['trainer_public_profile']['name'], 'trainer_level': member['trainer_public_profile']['level'], }) i += 1 if args.webhooks: wh_update_queue.put(('gym_details', webhook_data)) # All this database stuff is synchronous (not using the upsert queue) on purpose. # Since the search workers load the GymDetails model from the database to determine if a gym # needs rescanned, we need to be sure the GymDetails get fully committed to the database before moving on. # # We _could_ synchronously upsert GymDetails, then queue the other tables for # upsert, but that would put that Gym's overall information in a weird non-atomic state. # upsert all the models if len(gym_details): bulk_upsert(GymDetails, gym_details) if len(gym_pokemon): bulk_upsert(GymPokemon, gym_pokemon) if len(trainers): bulk_upsert(Trainer, trainers) # This needs to be completed in a transaction, because we don't wany any other thread or process # to mess with the GymMembers for the gyms we're updating while we're updating the bridge table. with flaskDb.database.transaction(): # get rid of all the gym members, we're going to insert new records if len(gym_details): DeleteQuery(GymMember).where(GymMember.gym_id << gym_details.keys()).execute() # insert new gym members if len(gym_members): bulk_upsert(GymMember, gym_members) log.info('Upserted %d gyms and %d gym members', len(gym_details), len(gym_members)) def db_updater(args, q): # The forever loop while True: try: while True: try: flaskDb.connect_db() break except Exception as e: log.warning('%s... Retrying', e) # Loop the queue while True: model, data = q.get() bulk_upsert(model, data) q.task_done() log.debug('Upserted to %s, %d records (upsert queue remaining: %d)', model.__name__, len(data), q.qsize()) if q.qsize() > 50: log.warning("DB queue is > 50 (@%d); try increasing --db-threads", q.qsize()) except Exception as e: log.exception('Exception in db_updater: %s', e) def clean_db_loop(args): while True: try: # Clean out old scanned locations query = (ScannedLocation .delete() .where((ScannedLocation.last_modified < (datetime.utcnow() - timedelta(minutes=30))))) query.execute() query = (MainWorker .delete() .where((ScannedLocation.last_modified < (datetime.utcnow() - timedelta(minutes=30))))) query.execute() query = (WorkerStatus .delete() .where((ScannedLocation.last_modified < (datetime.utcnow() - timedelta(minutes=30))))) query.execute() # Remove active modifier from expired lured pokestops query = (Pokestop .update(lure_expiration=None) .where(Pokestop.lure_expiration < datetime.utcnow())) query.execute() # If desired, clear old pokemon spawns if args.purge_data > 0: query = (Pokemon .delete() .where((Pokemon.disappear_time < (datetime.utcnow() - timedelta(hours=args.purge_data))))) log.info('Regular database cleaning complete') time.sleep(60) except Exception as e: log.exception('Exception in clean_db_loop: %s', e) def bulk_upsert(cls, data): num_rows = len(data.values()) i = 0 if args.db_type == 'mysql': step = 120 else: # SQLite has a default max number of parameters of 999, # so we need to limit how many rows we insert for it. step = 50 while i < num_rows: log.debug('Inserting items %d to %d', i, min(i + step, num_rows)) try: InsertQuery(cls, rows=data.values()[i:min(i + step, num_rows)]).upsert().execute() except Exception as e: log.warning('%s... Retrying', e) continue i += step def create_tables(db): db.connect() verify_database_schema(db) db.create_tables([Pokemon, Pokestop, Gym, ScannedLocation, GymDetails, GymMember, GymPokemon, Trainer, MainWorker, WorkerStatus], safe=True) db.close() def drop_tables(db): db.connect() db.drop_tables([Pokemon, Pokestop, Gym, ScannedLocation, Versions, GymDetails, GymMember, GymPokemon, Trainer, MainWorker, WorkerStatus, Versions], safe=True) db.close() def verify_database_schema(db): if not Versions.table_exists(): db.create_tables([Versions]) if ScannedLocation.table_exists(): # Versions table didn't exist, but there were tables. This must mean the user # is coming from a database that existed before we started tracking the schema # version. Perform a full upgrade. InsertQuery(Versions, {Versions.key: 'schema_version', Versions.val: 0}).execute() database_migrate(db, 0) else: InsertQuery(Versions, {Versions.key: 'schema_version', Versions.val: db_schema_version}).execute() else: db_ver = Versions.get(Versions.key == 'schema_version').val if db_ver < db_schema_version: database_migrate(db, db_ver) elif db_ver > db_schema_version: log.error("Your database version (%i) appears to be newer than the code supports (%i).", db_ver, db_schema_version) log.error("Please upgrade your code base or drop all tables in your database.") sys.exit(1) def database_migrate(db, old_ver): # Update database schema version Versions.update(val=db_schema_version).where(Versions.key == 'schema_version').execute() log.info("Detected database version %i, updating to %i", old_ver, db_schema_version) # Perform migrations here migrator = None if args.db_type == 'mysql': migrator = MySQLMigrator(db) else: migrator = SqliteMigrator(db) # No longer necessary, we're doing this at schema 4 as well # if old_ver < 1: # db.drop_tables([ScannedLocation]) if old_ver < 2: migrate(migrator.add_column('pokestop', 'encounter_id', CharField(max_length=50, null=True))) if old_ver < 3: migrate( migrator.add_column('pokestop', 'active_fort_modifier', CharField(max_length=50, null=True)), migrator.drop_column('pokestop', 'encounter_id'), migrator.drop_column('pokestop', 'active_pokemon_id') ) if old_ver < 4: db.drop_tables([ScannedLocation]) if old_ver < 5: # Some pokemon were added before the 595 bug was "fixed" # Clean those up for a better UX query = (Pokemon .delete() .where(Pokemon.disappear_time > (datetime.utcnow() - timedelta(hours=24)))) query.execute() if old_ver < 6: migrate( migrator.add_column('gym', 'last_scanned', DateTimeField(null=True)), ) if old_ver < 7: migrate( migrator.drop_column('gymdetails', 'description'), migrator.add_column('gymdetails', 'description', TextField(null=True, default="")) )
agpl-3.0
-5,867,474,748,991,135,000
37.771878
224
0.531764
false
4.088656
false
false
false
flavour/iscram
controllers/default.py
1
32108
# -*- coding: utf-8 -*- """ Default Controllers """ module = "default" # ----------------------------------------------------------------------------- def call(): "Call an XMLRPC, JSONRPC or RSS service" # If webservices don't use sessions, avoid cluttering up the storage #session.forget() return service() # ----------------------------------------------------------------------------- def download(): """ Download a file """ # Load the Model tablename = request.args[0].split(".", 1)[0] s3mgr.load(tablename) return response.download(request, db) # ============================================================================= def register_validation(form): """ Validate the fields in registration form """ # Mobile Phone if "mobile" in form.vars and form.vars.mobile: regex = re.compile(single_phone_number_pattern) if not regex.match(form.vars.mobile): form.errors.mobile = T("Invalid phone number") elif deployment_settings.get_auth_registration_mobile_phone_mandatory(): form.errors.mobile = T("Phone number is required") org = deployment_settings.get_auth_registration_organisation_id_default() if org: # Add to default organisation form.vars.organisation_id = org return # ----------------------------------------------------------------------------- def register_onaccept(form): """ Tasks to be performed after a new user registers """ # Add newly-registered users to Person Registry, add 'Authenticated' role # If Organisation is provided, then: add HRM record & add to 'Org_X_Access' role person_id = auth.s3_register(form) if form.vars.organisation_id and not deployment_settings.get_hrm_show_staff(): # Convert HRM record to a volunteer htable = s3db.hrm_human_resource query = (htable.person_id == person_id) db(query).update(type=2) # Add to required roles: roles = deployment_settings.get_auth_registration_roles() if roles or deployment_settings.has_module("delphi"): utable = auth.settings.table_user ptable = s3db.pr_person ltable = s3db.pr_person_user query = (ptable.id == person_id) & \ (ptable.pe_id == ltable.pe_id) & \ (ltable.user_id == utable.id) user = db(query).select(utable.id, ltable.user_id, limitby=(0, 1)).first() if roles: gtable = auth.settings.table_group mtable = auth.settings.table_membership query = (gtable.uuid.belongs(roles)) rows = db(query).select(gtable.id) for role in rows: mtable.insert(user_id=user[ltable._tablename].user_id, group_id=role.id) if deployment_settings.has_module("delphi"): # Add user as a participant of the default problem group table = s3db.delphi_group query = (table.uuid == "DEFAULT") group = db(query).select(table.id, limitby=(0, 1)).first() if group: table = s3db.delphi_membership table.insert(group_id=group.id, user_id=user[utable._tablename].id, status=3) # ----------------------------------------------------------------------------- auth.settings.register_onvalidation = register_validation auth.settings.register_onaccept = register_onaccept _table_user = auth.settings.table_user _table_user.first_name.label = T("First Name") _table_user.first_name.comment = SPAN("*", _class="req") _table_user.last_name.label = T("Last Name") if deployment_settings.get_L10n_mandatory_lastname(): _table_user.last_name.comment = SPAN("*", _class="req") _table_user.email.label = T("E-mail") _table_user.email.comment = SPAN("*", _class="req") _table_user.password.comment = SPAN("*", _class="req") _table_user.language.label = T("Language") _table_user.language.comment = DIV(_class="tooltip", _title="%s|%s" % (T("Language"), T("The language you wish the site to be displayed in."))) _table_user.language.represent = lambda opt: s3_languages.get(opt, UNKNOWN_OPT) # Organisation widget for use in Registration Screen # NB User Profile is only editable by Admin - using User Management organisation_represent = s3db.org_organisation_represent org_widget = IS_ONE_OF(db, "org_organisation.id", organisation_represent, orderby="org_organisation.name", sort=True) if deployment_settings.get_auth_registration_organisation_mandatory(): _table_user.organisation_id.requires = org_widget else: _table_user.organisation_id.requires = IS_NULL_OR(org_widget) # For the User Profile: _table_user.utc_offset.comment = DIV(_class="tooltip", _title="%s|%s" % (auth.messages.label_utc_offset, auth.messages.help_utc_offset)) _table_user.organisation_id.represent = organisation_represent _table_user.organisation_id.comment = DIV(_class="tooltip", _title="%s|%s|%s" % (T("Organization"), T("The default Organization for whom you are acting."), T("This setting can only be controlled by the Administrator."))) org_site_represent = s3db.org_site_represent _table_user.site_id.represent = org_site_represent _table_user.site_id.comment = DIV(_class="tooltip", _title="%s|%s|%s" % (T("Facility"), T("The default Facility for which you are acting."), T("This setting can only be controlled by the Administrator."))) # ============================================================================= def index(): """ Main Home Page """ title = deployment_settings.get_system_name() response.title = title item = "" if deployment_settings.has_module("cms"): table = s3db.cms_post item = db(table.module == module).select(table.body, limitby=(0, 1)).first() if item: item = DIV(XML(item.body)) else: item = "" if deployment_settings.has_module("cr"): s3mgr.load("cr_shelter") SHELTERS = s3.crud_strings["cr_shelter"].subtitle_list else: SHELTERS = "" # Menu Boxes menu_btns = [#div, label, app, function ["facility", SHELTERS, "cr", "shelter"], ["facility", T("Warehouses"), "inv", "warehouse"], ["facility", T("Hospitals"), "hms", "hospital"], ["facility", T("Offices"), "org", "office"], ["sit", T("Incidents"), "irs", "ireport"], ["sit", T("Assessments"), "survey", "series"], ["sit", T("Assets"), "asset", "asset"], ["sit", T("Inventory Items"), "inv", "inv_item"], #["dec", T("Gap Map"), "project", "gap_map"], #["dec", T("Gap Report"), "project", "gap_report"], ["dec", T("Requests"), "req", "req"], ["res", T("Projects"), "project", "project"], ["res", T("Activities"), "project", "activity"], ["res", T("Commitments"), "req", "commit"], ["res", T("Sent Shipments"), "inv", "send"], ["res", T("Received Shipments"), "inv", "recv"] ] # Change to (Mitigation)/Preparedness/Response/Recovery? menu_divs = {"facility": DIV( H3(T("Facilities")), _id = "facility_box", _class = "menu_box"), "sit": DIV( H3(T("Situation")), _id = "menu_div_sit", _class = "menu_div"), "dec": DIV( H3(T("Decision")), _id = "menu_div_dec", _class = "menu_div"), "res": DIV( H3(T("Response")), _id = "menu_div_res", _class = "menu_div"), } for div, label, app, function in menu_btns: if deployment_settings.has_module(app): # @ToDo: Also check permissions (e.g. for anonymous users) menu_divs[div].append(A( DIV(label, _class = "menu-btn-r"), _class = "menu-btn-l", _href = URL(app,function) ) ) div_arrow = DIV(IMG(_src = "/%s/static/img/arrow_blue_right.png" % \ request.application), _class = "div_arrow") sit_dec_res_box = DIV(menu_divs["sit"], div_arrow, menu_divs["dec"], div_arrow, menu_divs["res"], _id = "sit_dec_res_box", _class = "menu_box fleft swidth" #div_additional, ) facility_box = menu_divs["facility"] facility_box.append( A( IMG(_src = "/%s/static/img/map_icon_128.png" % \ request.application), _href = URL(c="gis", f="index"), _title = T("Map") ) ) datatable_ajax_source = "" # Check logged in AND permissions if AUTHENTICATED in session.s3.roles and \ auth.s3_has_permission("read", db.org_organisation): org_items = organisation() datatable_ajax_source = "/%s/default/organisation.aaData" % \ request.application response.s3.actions = None response.view = "default/index.html" auth.permission.controller = "org" auth.permission.function = "site" permitted_facilities = auth.permission.permitted_facilities(redirect_on_error=False) manage_facility_box = "" if permitted_facilities: facility_list = s3_represent_facilities(db, permitted_facilities, link=False) facility_opts = [OPTION(opt[1], _value = opt[0]) for opt in facility_list] if facility_list: manage_facility_box = DIV(H3(T("Manage Your Facilities")), SELECT(_id = "manage_facility_select", _style = "max-width:400px;", *facility_opts ), A(T("Go"), _href = URL(c="default", f="site", args=[facility_list[0][0]]), #_disabled = "disabled", _id = "manage_facility_btn", _class = "action-btn" ), _id = "manage_facility_box", _class = "menu_box fleft") response.s3.jquery_ready.append( """ $('#manage_facility_select').change(function() { $('#manage_facility_btn').attr('href', S3.Ap.concat('/default/site/', $('#manage_facility_select').val())); })""" ) else: manage_facility_box = DIV() org_box = DIV( H3(T("Organizations")), A(T("Add Organization"), _href = URL(c="org", f="organisation", args=["create"]), _id = "add-btn", _class = "action-btn", _style = "margin-right: 10px;"), org_items["items"], _id = "org_box", _class = "menu_box fleft" ) else: manage_facility_box = "" org_box = "" # @ToDo: Replace this with an easily-customisable section on the homepage #settings = db(db.s3_setting.id == 1).select(limitby=(0, 1)).first() #if settings: # admin_name = settings.admin_name # admin_email = settings.admin_email # admin_tel = settings.admin_tel #else: # # db empty and prepopulate is false # admin_name = T("Sahana Administrator").xml(), # admin_email = "support@Not Set", # admin_tel = T("Not Set").xml(), # Login/Registration forms self_registration = deployment_settings.get_security_self_registration() registered = False login_form = None login_div = None register_form = None register_div = None if AUTHENTICATED not in session.s3.roles: # This user isn't yet logged-in if request.cookies.has_key("registered"): # This browser has logged-in before registered = True if self_registration: # Provide a Registration box on front page request.args = ["register"] if deployment_settings.get_terms_of_service(): auth.messages.submit_button = T("I accept. Create my account.") else: auth.messages.submit_button = T("Register") register_form = auth() register_div = DIV(H3(T("Register")), P(XML(T("If you would like to help, then please %(sign_up_now)s") % \ dict(sign_up_now=B(T("sign-up now")))))) # Add client-side validation s3_register_validation() if session.s3.debug: response.s3.scripts.append( "%s/jquery.validate.js" % s3_script_dir ) else: response.s3.scripts.append( "%s/jquery.validate.min.js" % s3_script_dir ) if request.env.request_method == "POST": post_script = """// Unhide register form $('#register_form').removeClass('hide'); // Hide login form $('#login_form').addClass('hide');""" else: post_script = "" register_script = """ // Change register/login links to avoid page reload, make back button work. $('#register-btn').attr('href', '#register'); $('#login-btn').attr('href', '#login'); %s // Redirect Register Button to unhide $('#register-btn').click(function() { // Unhide register form $('#register_form').removeClass('hide'); // Hide login form $('#login_form').addClass('hide'); }); // Redirect Login Button to unhide $('#login-btn').click(function() { // Hide register form $('#register_form').addClass('hide'); // Unhide login form $('#login_form').removeClass('hide'); });""" % post_script response.s3.jquery_ready.append(register_script) # Provide a login box on front page request.args = ["login"] auth.messages.submit_button = T("Login") login_form = auth() login_div = DIV(H3(T("Login")), P(XML(T("Registered users can %(login)s to access the system" % \ dict(login=B(T("login"))))))) if deployment_settings.frontpage.rss: response.s3.external_stylesheets.append( "http://www.google.com/uds/solutions/dynamicfeed/gfdynamicfeedcontrol.css" ) response.s3.scripts.append( "http://www.google.com/jsapi?key=notsupplied-wizard" ) response.s3.scripts.append( "http://www.google.com/uds/solutions/dynamicfeed/gfdynamicfeedcontrol.js" ) counter = 0 feeds = "" for feed in deployment_settings.frontpage.rss: counter += 1 feeds = "".join((feeds, "{title: '%s',\n" % feed["title"], "url: '%s'}" % feed["url"])) # Don't add a trailing comma for old IEs if counter != len(deployment_settings.frontpage.rss): feeds += ",\n" feed_control = "".join((""" function LoadDynamicFeedControl() { var feeds = [ """, feeds, """ ]; var options = { // milliseconds before feed is reloaded (5 minutes) feedCycleTime : 300000, numResults : 5, stacked : true, horizontal : false, title : '""", str(T("News")), """' }; new GFdynamicFeedControl(feeds, 'feed-control', options); } // Load the feeds API and set the onload callback. google.load('feeds', '1'); google.setOnLoadCallback(LoadDynamicFeedControl);""")) response.s3.js_global.append( feed_control ) return dict(title = title, item = item, sit_dec_res_box = sit_dec_res_box, facility_box = facility_box, manage_facility_box = manage_facility_box, org_box = org_box, r = None, # Required for dataTable to work datatable_ajax_source = datatable_ajax_source, #admin_name=admin_name, #admin_email=admin_email, #admin_tel=admin_tel, self_registration=self_registration, registered=registered, login_form=login_form, login_div=login_div, register_form=register_form, register_div=register_div ) # ----------------------------------------------------------------------------- def organisation(): """ Function to handle pagination for the org list on the homepage """ table = db.org_organisation table.id.label = T("Organization") table.id.represent = organisation_represent response.s3.dataTable_sPaginationType = "two_button" response.s3.dataTable_sDom = "rtip" #"frtip" - filter broken response.s3.dataTable_iDisplayLength = 25 s3mgr.configure("org_organisation", listadd = False, addbtn = True, super_entity = db.pr_pentity, linkto = "/%s/org/organisation/%s" % (request.application, "%s"), list_fields = ["id",]) return s3_rest_controller("org", "organisation") # ----------------------------------------------------------------------------- def site(): """ @todo: Avoid redirect """ s3mgr.load("org_site") if len(request.args): site_id = request.args[0] site_r = db.org_site[site_id] tablename = site_r.instance_type table = s3db.table(tablename) if table: query = (table.site_id == site_id) id = db(query).select(db[tablename].id, limitby = (0, 1)).first().id cf = tablename.split("_", 1) redirect(URL(c = cf[0], f = cf[1], args = [id])) raise HTTP(404) # ----------------------------------------------------------------------------- def message(): #if "verify_email_sent" in request.args: title = T("Account Registered - Please Check Your Email") message = T( "%(system_name)s has sent an email to %(email)s to verify your email address.\nPlease check your email to verify this address. If you do not receive this email please check you junk email or spam filters." )\ % {"system_name": deployment_settings.get_system_name(), "email": request.vars.email} image = "email_icon.png" return dict(title = title, message = message, image_src = "/%s/static/img/%s" % (request.application, image) ) # ----------------------------------------------------------------------------- def rapid(): """ Set/remove rapid data entry flag """ val = request.vars.get("val", True) if val == "0": val = False else: val = True session.s3.rapid_data_entry = val response.view = "xml.html" return dict(item=str(session.s3.rapid_data_entry)) # ----------------------------------------------------------------------------- def user_profile_onaccept(form): """ Update the UI locale from user profile """ if form.vars.language: session.s3.language = form.vars.language return # ----------------------------------------------------------------------------- def user(): """ Auth functions based on arg. See gluon/tools.py """ auth.settings.on_failed_authorization = URL(f="error") _table_user = auth.settings.table_user if request.args and request.args(0) == "profile": #_table_user.organisation.writable = False _table_user.utc_offset.readable = True _table_user.utc_offset.writable = True # If we have an opt_in and some post_vars then update the opt_in value if deployment_settings.get_auth_opt_in_to_email() and request.post_vars: opt_list = deployment_settings.get_auth_opt_in_team_list() removed = [] selected = [] for opt_in in opt_list: if opt_in in request.post_vars: selected.append(opt_in) else: removed.append(opt_in) ptable = s3db.pr_person putable = s3db.pr_person_user query = (putable.user_id == request.post_vars.id) & \ (putable.pe_id == ptable.pe_id) person_id = db(query).select(ptable.id, limitby=(0, 1)).first().id db(ptable.id == person_id).update(opt_in = selected) g_table = s3db["pr_group"] gm_table = s3db["pr_group_membership"] # Remove them from any team they are a member of in the removed list for team in removed: query = (g_table.name == team) & \ (gm_table.group_id == g_table.id) & \ (gm_table.person_id == person_id) gm_rec = db(query).select(g_table.id, limitby=(0, 1)).first() if gm_rec: db(gm_table.id == gm_rec.id).delete() # Add them to the team (if they are not already a team member) for team in selected: query = (g_table.name == team) & \ (gm_table.group_id == g_table.id) & \ (gm_table.person_id == person_id) gm_rec = db(query).select(g_table.id, limitby=(0, 1)).first() if not gm_rec: query = (g_table.name == team) team_rec = db(query).select(g_table.id, limitby=(0, 1)).first() # if the team doesn't exist then add it if team_rec == None: team_id = g_table.insert(name = team, group_type = 5) else: team_id = team_rec.id gm_table.insert(group_id = team_id, person_id = person_id) auth.settings.profile_onaccept = user_profile_onaccept self_registration = deployment_settings.get_security_self_registration() login_form = register_form = None if request.args and request.args(0) == "login": auth.messages.submit_button = T("Login") form = auth() login_form = form if s3.crud.submit_style: form[0][-1][1][0]["_class"] = s3.crud.submit_style elif request.args and request.args(0) == "register": if not self_registration: session.error = T("Registration not permitted") redirect(URL(f="index")) if deployment_settings.get_terms_of_service(): auth.messages.submit_button = T("I accept. Create my account.") else: auth.messages.submit_button = T("Register") # Default the profile language to the one currently active _table_user.language.default = T.accepted_language form = auth() register_form = form # Add client-side validation s3_register_validation() elif request.args and request.args(0) == "change_password": form = auth() elif request.args and request.args(0) == "profile": if deployment_settings.get_auth_openid(): form = DIV(form, openid_login_form.list_user_openids()) else: form = auth() # add an opt in clause to receive emails depending on the deployment settings if deployment_settings.get_auth_opt_in_to_email(): ptable = s3db.pr_person ltable = s3db.pr_person_user opt_list = deployment_settings.get_auth_opt_in_team_list() query = (ltable.user_id == form.record.id) & \ (ltable.pe_id == ptable.pe_id) db_opt_in_list = db(query).select(ptable.opt_in, limitby=(0, 1)).first().opt_in for opt_in in opt_list: field_id = "%s_opt_in_%s" % (_table_user, opt_list) if opt_in in db_opt_in_list: checked = "selected" else: checked = None form[0].insert(-1, TR(TD(LABEL("Receive %s updates:" % opt_in, _for="opt_in", _id=field_id + SQLFORM.ID_LABEL_SUFFIX), _class="w2p_fl"), INPUT(_name=opt_in, _id=field_id, _type="checkbox", _checked=checked), _id=field_id + SQLFORM.ID_ROW_SUFFIX)) else: # Retrieve Password form = auth() # Use Custom Ext views # Best to not use an Ext form for login: can't save username/password in browser & can't hit 'Enter' to submit! #if request.args(0) == "login": # response.title = T("Login") # response.view = "auth/login.html" return dict(form=form, login_form=login_form, register_form=register_form, self_registration=self_registration) # ----------------------------------------------------------------------------- def facebook(): """ Login using Facebook """ if not auth.settings.facebook: redirect(URL(f="user", args=request.args, vars=request.vars)) auth.settings.login_form = s3base.FaceBookAccount() form = auth() return dict(form=form) # ----------------------------------------------------------------------------- def google(): """ Login using Google """ if not auth.settings.google: redirect(URL(f="user", args=request.args, vars=request.vars)) auth.settings.login_form = s3base.GooglePlusAccount() form = auth() return dict(form=form) # ----------------------------------------------------------------------------- def source(): """ RESTful CRUD controller """ return s3_rest_controller("s3", "source") # ----------------------------------------------------------------------------- # About Sahana def apath(path=""): """ Application path """ import os from gluon.fileutils import up opath = up(request.folder) #TODO: This path manipulation is very OS specific. while path[:3] == "../": opath, path=up(opath), path[3:] return os.path.join(opath,path).replace("\\", "/") def about(): """ The About page provides details on the software dependencies and versions available to this instance of Sahana Eden. @ToDo: Avoid relying on Command Line tools which may not be in path - pull back info from Python modules instead? """ import sys import subprocess import string python_version = sys.version web2py_version = open(apath("../VERSION"), "r").read()[8:] sahana_version = open(os.path.join(request.folder, "VERSION"), "r").read() # Database sqlite_version = None mysql_version = None mysqldb_version = None pgsql_version = None psycopg_version = None if db_string[0].find("sqlite") != -1: try: import sqlite3 #sqlite_version = (subprocess.Popen(["sqlite3", "-version"], stdout=subprocess.PIPE).communicate()[0]).rstrip() sqlite_version = sqlite3.version except: sqlite_version = T("Unknown") elif db_string[0].find("mysql") != -1: try: mysql_version = (subprocess.Popen(["mysql", "--version"], stdout=subprocess.PIPE).communicate()[0]).rstrip()[10:] except: mysql_version = T("Unknown") try: import MySQLdb mysqldb_version = MySQLdb.__revision__ except: mysqldb_version = T("Not installed or incorrectly configured.") else: # Postgres try: pgsql_reply = (subprocess.Popen(["psql", "--version"], stdout=subprocess.PIPE).communicate()[0]) pgsql_version = string.split(pgsql_reply)[2] except: pgsql_version = T("Unknown") try: import psycopg2 psycopg_version = psycopg2.__version__ except: psycopg_version = T("Not installed or incorrectly configured.") # Libraries try: import reportlab reportlab_version = reportlab.Version except: reportlab_version = T("Not installed or incorrectly configured.") try: import xlwt xlwt_version = xlwt.__VERSION__ except: xlwt_version = T("Not installed or incorrectly configured.") return dict( python_version=python_version, sahana_version=sahana_version, web2py_version=web2py_version, sqlite_version=sqlite_version, mysql_version=mysql_version, mysqldb_version=mysqldb_version, pgsql_version=pgsql_version, psycopg_version=psycopg_version, reportlab_version=reportlab_version, xlwt_version=xlwt_version ) # ----------------------------------------------------------------------------- def help(): """ Custom View """ response.title = T("Help") return dict() # ----------------------------------------------------------------------------- def contact(): """ Give the user options to contact the site admins. Either: An internal Support Requests database or: Custom View """ if auth.is_logged_in() and deployment_settings.has_module("support"): # Provide an internal Support Requests ticketing system. prefix = "support" resourcename = "req" tablename = "%s_%s" % (prefix, resourcename) table = s3db[tablename] # Pre-processor def prep(r): if r.interactive: # Only Admins should be able to update ticket status status = table.status actions = table.actions if not auth.s3_has_role(ADMIN): status.writable = False actions.writable = False if r.method != "update": status.readable = False status.writable = False actions.readable = False actions.writable = False return True response.s3.prep = prep output = s3_rest_controller(prefix, resourcename) return output else: # Default: Simple Custom View response.title = T("Contact us") return dict() # END =========================================================================
mit
-8,412,861,163,105,064,000
40.216945
225
0.501557
false
4.23924
false
false
false
reiven/pungabot
util/ptime.py
3
1715
#!/usr/bin/python # -*- coding: iso8859-1 -*- ## (c)2004 Timo Reunanen <parker _et_ wolfenstein _dit_ org> import time import re _exact=r''' ^ (?P<hour> \d{1,2}) ## hour [:.] (?P<min> \d{2}) ## minutes (?: [:.] (?P<sec>\d{2} ) ## secods (optional) )? $ ''' _add=r''' ^ [+] (?: ## hour (?P<hour> \d+)+h ## syntax: 1234h )? ## optional \s* (?: ## minutes (?P<min> \d+)+m ## syntax: 1234m )? ## optional \s* (?: ## seconds (?P<sec> \d+)+s? ## syntax: 1234s or 1234 )? ## optional $ ''' exactRe=re.compile(_exact, re.VERBOSE | re.MULTILINE | re.I) addRe=re.compile(_add, re.VERBOSE | re.MULTILINE | re.I) class TimeException(Exception): pass def convert(s): s=s.strip() m=exactRe.match(s) if m: tm=time.time() year, mon, mday, hour, min, sec, wday, yday, isdst = time.localtime(tm) hour=int(m.group('hour')) min=int(m.group('min')) sec=int(m.group('sec') or '00') ret=time.mktime( (year, mon, mday, hour, min, sec, wday, yday, isdst) ) while ret < tm: ret += 86400 return ret m=addRe.match(s) if m: hour=int(m.group('hour') or '0') min=int(m.group('min') or '0') sec=int(m.group('sec') or '0') addSecs=hour*3600 + min*60 + sec return time.time()+addSecs raise TimeException('Invalid syntax') if __name__=='__main__': year, mon, mday, hour, min, sec, wday, yday, isdst = time.localtime() print (hour, min, sec) print time.time()-time.mktime(time.localtime()) print convert('11.23')-time.time()
gpl-3.0
5,110,685,968,079,071,000
20.708861
79
0.498542
false
2.877517
false
false
false
michellab/Sire
wrapper/Tools/AmberLoader.py
2
31281
#!/bin/env python # -*- coding: utf-8 -*- import os import sys import re from Sire.IO import * from Sire.Mol import * from Sire.CAS import * from Sire.System import * from Sire.Move import * from Sire.MM import * from Sire.FF import * from Sire.Units import * from Sire.Vol import * from Sire.Maths import * from Sire.Base import * from Sire.Qt import * from Sire.ID import * from Sire.Config import * import Sire.Stream from Sire.Tools import Parameter, resolveParameters from Sire.Tools.WaterChanger import convertTip3PtoTip4P ################################### # Parameters used by this module # ################################### dobonds = Parameter("move bonds", True, """Whether or not to move the ligands bonds""") doangles = Parameter("move angles", True, """Whether or not to move the ligands angles""") dodihedrals = Parameter("move dihedrals", True, """Whether or not to move the ligands dihedrals""") water_model = Parameter("water model", None, """The water model to use. Note, by default the water model is read from the protein and water crd/top files. If you want to force a change in water model, then set it here, e.g. if you are loading a TIP3P box but want to use TIP4P, then set this parameter to "tip4p".""") BASE_DIHEDRALH_FLEX = Parameter("h dihedral flex", 30*degrees, "Base dihedral rotation for H") BASE_DIHEDRAL_FLEX = Parameter("dihedral flex", 20*degrees, "Base dihedral rotation") BASE_ANGLE_FLEX = Parameter("angle flex", 0.25*degrees, "Base angle rotation") BASE_BOND_FLEX = Parameter("bond flex", 0.025*angstroms, "Base bond stretch amount") BASE_TRANSLATION = Parameter("translation", 0.75*angstroms, "Base translation delta amount") BASE_ROTATION = Parameter("rotation", 30*degrees, "Base rigid body rotation") BASE_MAXVAR = Parameter("maxvar", 10, "Maximum number of degrees of freedom to move at once") BASE_MAXVAR_B = Parameter("maxvar bonds", 2, "Maximum number of bonds to move at once") BASE_MAXVAR_A = Parameter("maxvar angles", 4, "Maximum number of angles to move at once") BASE_MAXVAR_D = Parameter("maxvar dihedrals", 4, "Maximum number of dihedrals to move at once") ################################### def getResidueNames(molecule): nres = molecule.nResidues() resnams = [] for i in range(0, nres): resnams.append( str( molecule.residue(ResIdx(i)).name().value()).upper() ) return resnams class NamingScheme: def __init__(self): self._protein_names = ["GLH", "ILE", "GLN", "GLY", "GLU", "CYS", "HIS", "HID", "SER", "LYS", "LYN", "PRO", "CYX", "HIE", "ASH", "ASN", "HIP", "VAL", "THR", "ASP", "TRP", "PHE", "ALA", "MET", "LEU", "ARG", "TYR", "NME", "ACE"] self._water_names = [ "WAT", "T3P", "T4P", "HOH" ] self._ion_names = [ "NA+", "Na+", "CA+", "Ca+", "CAL", "CL-", "Cl-" ] self._solute_names = [ "LIG" ] def proteinsGroupName(self): return MGName("protein") def solutesGroupName(self): return MGName("solute") def solventsGroupName(self): return MGName("solvent") def watersGroupName(self): return MGName("water") def ionsGroupName(self): return MGName("ions") def allMoleculesGroupName(self): return MGName("all") def fixedMoleculesGroupName(self): return MGName("fixed_molecules") def boundaryMoleculesGroupName(self): return MGName("boundary_molecules") def mobileProteinSidechainsGroupName(self): return MGName("protein_sidechains") def mobileProteinBackbonesGroupName(self): return MGName("protein_backbones") def mobileSolutesGroupName(self): return MGName("mobile_solutes") def mobileSolventsGroupName(self): return MGName("mobile_solvents") def addProteinResidueName(self, name): self._protein_names.append( name.upper() ) def addWaterResidueName(self, name): self._water_names.append( name.upper() ) def addSoluteResidueName(self, name): self._solute_names.append( name.upper() ) def addIonResidueName(self, name): self._ion_names.append( name.upper() ) def proteinResidueNames(self): return self._protein_names def waterResidueNames(self): return self._water_names def soluteResidueNames(self): return self._solute_names def ionResidueNames(self): return self._ion_names def setProteinResidueNames(self, names): self._protein_names = [] for name in names: self.addProteinResidueName(name) def setWaterResidueNames(self, names): self._water_names = [] for name in names: self.addWaterResidueName(name) def setSoluteResidueNames(self, name): self._solute_names = [] for name in names: self.addSoluteResidueName(name) def setIonResidueNames(self, name): self._ion_names = [] for name in names: self.addIonResidueName(name) def _isType(self, molecule, names, max_residues = None): try: resnams = getResidueNames(molecule) except: resnams = molecule if max_residues: if len(resnams) > max_residues: return False for resnam in resnams: if resnam in names: return True try: if str(molecule.name().value()).upper() in names: return True else: return False except: return False def isProtein(self, molecule): return self._isType(molecule, self._protein_names) def isWater(self, molecule): return self._isType(molecule, self._water_names, 1) def isIon(self, molecule): return self._isType(molecule, self._ion_names, 1) def isSolute(self, molecule): return self._isType(molecule, self._solute_names) def findMolecule(system, molname): molecules = system.molecules() molname = molname.upper() for molnum in molecules.molNums(): molecule = molecules[molnum][0].molecule() if str(molecule.name().value()).upper() == molname: return molecule resnams = getResidueNames(molecule) for resnam in resnams: if resnam == molname: return molecule return None def addMoleculeToSystem(molecule, system, naming_scheme = NamingScheme()): """This function adds the passed molecule to the passed system using the passed naming scheme to assign the molecule to the correct molecule group""" resnams = getResidueNames(molecule) system.add(molecule, MGName(naming_scheme.allMoleculesGroupName().value())) if naming_scheme.isSolute(resnams): system.add(molecule, MGName(naming_scheme.solutesGroupName().value())) elif naming_scheme.isProtein(resnams): system.add(molecule, MGName(naming_scheme.proteinsGroupName().value())) elif naming_scheme.isWater(resnams): system.add(molecule, MGName(naming_scheme.watersGroupName().value())) system.add(molecule, MGName(naming_scheme.solventsGroupName().value())) elif naming_scheme.isIon(resnams): system.add(molecule, MGName(naming_scheme.ionsGroupName().value())) system.add(molecule, MGName(naming_scheme.solventsGroupName().value())) elif molecule.nResidues() == 1: system.add(molecule, MGName(naming_scheme.solventsGroupName().value())) else: system.add(molecule, MGName(naming_scheme.solutesGroupName().value())) def createSystemFrom(molecules, space, system_name, naming_scheme = NamingScheme()): """Create a new System from the passed molecules and space, sorting the molecules into different molecule groups based on the passed naming scheme""" system = System(system_name) # If requested, change the water model for all water molecules if water_model.val == "tip4p": molnums = molecules.molNums() new_molecules = Molecules() print("Forcing all water molecules to use the %s water model..." % water_model.val) print("Converting %d molecules..." % len(molnums)) i = 0 for molnum in molnums: molecule = molecules[molnum].molecule() if i % 100 == 0: print("%d" % i) sys.stdout.flush() elif i % 10 == 0: print(".", end=' ') sys.stdout.flush() i += 1 if molecule.nAtoms() == 3: # this could be a TIP3P water resname =str(molecule.residue().name().value()).lower() if resname == "wat" or resname == "t3p": new_molecule = convertTip3PtoTip4P(molecule) if new_molecule: molecule = new_molecule new_molecules.add(molecule) print("%d" % i) molecules = new_molecules nmols = molecules.nMolecules() print("Number of molecules == %s" % nmols) print("System space == %s" % space) if nmols == 0: return system print("Assigning molecules to molecule groups...") solute_group = MoleculeGroup(naming_scheme.solutesGroupName().value()) protein_group = MoleculeGroup(naming_scheme.proteinsGroupName().value()) solvent_group = MoleculeGroup(naming_scheme.solventsGroupName().value()) water_group = MoleculeGroup(naming_scheme.watersGroupName().value()) ion_group = MoleculeGroup(naming_scheme.ionsGroupName().value()) all_group = MoleculeGroup(naming_scheme.allMoleculesGroupName().value()) # The all molecules group has all of the molecules all_group.add(molecules) system.add(all_group) # Run through each molecule and decide what type it is... molnums = molecules.molNums() molnums.sort() central_molecule = None solutes = [] proteins = [] solvents = [] waters = [] ions = [] for molnum in molnums: molecule = molecules[molnum].molecule() resnams = getResidueNames(molecule) if naming_scheme.isSolute(resnams): solutes.append(molecule) elif naming_scheme.isProtein(resnams): proteins.append(molecule) elif naming_scheme.isWater(resnams): waters.append(molecule) elif naming_scheme.isIon(resnams): ions.append(molecule) elif molecule.nResidues() == 1: solvents.append(molecule) else: solutes.append(molecule) # Ok - we have now divided everything up into groups for solute in solutes: solute_group.add(solute) for protein in proteins: protein_group.add(protein) for water in waters: solvent_group.add(water) water_group.add(water) for solvent in solvents: solvent_group.add(solvent) for ion in ions: solvent_group.add(ion) ion_group.add(ion) if solute_group.nMolecules() > 0: system.add(solute_group) if protein_group.nMolecules() > 0: system.add(protein_group) if solvent_group.nMolecules() > 0: system.add(solvent_group) if water_group.nMolecules() > 0: system.add(water_group) if ion_group.nMolecules() > 0: system.add(ion_group) print("Number of solute molecules == %s" % solute_group.nMolecules()) print("Number of protein molecules == %s" % protein_group.nMolecules()) print("Number of ions == %s" % ion_group.nMolecules()) print("Number of water molecules == %s" % water_group.nMolecules()) print("Number of solvent molecules == %s" % solvent_group.nMolecules()) print("(solvent group is waters + ions + unidentified single-residue molecules)") system.setProperty("space", space) system.add( SpaceWrapper( Vector(0), all_group ) ) system.applyConstraints() print("Returning the constructed system") return system def createSystem(top_file, crd_file, naming_scheme = NamingScheme()): """Create a new System from the molecules read in from the passed amber topology and coordinate files. This sorts the molecules into different molecule groups based on the passed naming scheme""" system = MoleculeParser.read(top_file,crd_file) # Load all of the molecules and their parameters from # the topology and coordinate files print("Loading the molecules from the files \"%s\" and \"%s\"..." % \ (crd_file, top_file)) return createSystemFrom(system[MGIdx(0)], system.property("space"), top_file, naming_scheme) def centerSystem(system, molecule): print("Setting the origin of the system to the center of molecule %s (%s)..." % (molecule, molecule.number())) center = molecule.evaluate().centerOfMass() print("This requires translating everything by %s..." % (-center)) moved_mols = Molecules() for molnum in system.molNums(): molecule = system[molnum][0].molecule() molecule = molecule.move().translate(-center).commit() moved_mols.add(molecule) system.update(moved_mols) return system def guessTranslation( solute ): natoms = solute.nAtoms() return (BASE_TRANSLATION.val) / ( natoms / 5 + 1) def guessRotation( solute ): natoms = solute.nAtoms() sphere_radius = solute.evaluate().boundingSphere().radius() return (BASE_ROTATION.val) / ( sphere_radius ** 2) def generateFlexibility(solute): connectivity = solute.property('connectivity') all_bonds = connectivity.getBonds() all_angles = connectivity.getAngles() all_dihedrals = connectivity.getDihedrals() flexibility = Flexibility(solute) flexibility.setRotation( guessRotation(solute) ) flexibility.setTranslation( guessTranslation(solute) ) try: flexibility.setMaximumVar( BASE_MAXVAR.val ) except: flexibility.setMaximumBondVar( BASE_MAXVAR_B.val ) flexibility.setMaximumAngleVar( BASE_MAXVAR_A.val ) flexibility.setMaximumDihedralVar( BASE_MAXVAR_D.val ) # Redundant torsions are discarded according to the following algorithm # 1) Do not sample a torsion at0-at1-at2-at3 if a variable torsion has # already been defined around at1-at2 or at2-at1. # 2) Do not sample a torsion if it would break a ring # if dodihedrals.val: var_dihedrals = [] for dihedral in all_dihedrals: #print dihedral tomove = True # print dihedral at0 = dihedral.atom0() at1 = dihedral.atom1() at2 = dihedral.atom2() at3 = dihedral.atom3() # See if a one of the variable dihedral # already rotates around the same torsion for vardih in var_dihedrals: if ( ( at1 == vardih.atom1() and at2 == vardih.atom2() ) or ( at2 == vardih.atom1() and at1 == vardih.atom2() ) ): # Yes so will not move this torsion tomove = False break # If still wondering...See if a rotation around this dihedral would break a ring if tomove: try: dihbond = BondID(at1, at2) #print dihbond solute.move().change(dihbond,1*degrees) except UserWarning as error: # extract the type of the errror error_type = re.search(r"(Sire\w*::\w*)", str(error)).group(0) if error_type == "SireMol::ring_error": # print "This dof would move a ring and is therefore skipped" tomove = False else: # re-throw the exception raise error if tomove: # Find out how many atoms would move #print dihedral gr0, gr1 = connectivity.split(at1, at2) ngr0 = gr0.nSelected() ngr1 = gr1.nSelected() if (ngr0 <= ngr1): smallgroup = gr0 else: smallgroup = gr1 smallgroup = smallgroup.subtract(at1) smallgroup = smallgroup.subtract(at2) factor = smallgroup.nSelected() flexibility.add(dihedral, BASE_DIHEDRAL_FLEX.val/factor) var_dihedrals.append(dihedral) # And the angles .... if doangles.val: moved_atoms = [] for angle in all_angles: # print angle at0 = angle.atom0() at2 = angle.atom2() # Do not sample that dof if an existing dof would already move this atom if ( ( at0 in moved_atoms) and (at2 in moved_atoms) ): continue # Test if the angle breaks a ring, if so do not sample it try: solute.move().change(angle,1*degrees) except UserWarning as error: # extract the type of the errror error_type = re.search(r"(Sire\w*::\w*)", str(error)).group(0) if error_type == "SireMol::ring_error": # print "This dof would move a ring and is therefore skipped" continue else: # re-throw the exception raise error gr0, gr1 = connectivity.split(at0, angle.atom1(), at2) ngr0 = gr0.nSelected() ngr1 = gr1.nSelected() if (ngr0 <= ngr1): smallgroup = gr0 else: smallgroup = gr1 factor = smallgroup.nSelected() flexibility.add(angle, BASE_ANGLE_FLEX.val/factor) if at0 not in moved_atoms: moved_atoms.append(at0) if at2 not in moved_atoms: moved_atoms.append(at2) # And the bonds... if dobonds.val: for bond in all_bonds: try: solute.move().change(bond,1*angstrom) except UserWarning as error: # extract the type of the errror error_type = re.search(r"(Sire\w*::\w*)", str(error)).group(0) if error_type == "SireMol::ring_error": # print "This dof would move a ring and is therefore skipped" continue else: # re-throw the exception raise error gr0, gr1 = connectivity.split(bond.atom0(), bond.atom1() ) ngr0 = gr0.nSelected() ngr1 = gr1.nSelected() if (ngr0 <= ngr1): smallgroup = gr0 else: smallgroup = gr1 factor = smallgroup.nSelected() flexibility.add(bond, BASE_BOND_FLEX.val/factor) return flexibility def getCoordGroup(atoms, coords_property="coordinates"): coords = [] for i in range(0, atoms.count()): atom = atoms[i] coords.append(atom.property(coords_property)) return CoordGroup(coords) def getAtomNearCOG( molecule ): mol_centre = molecule.evaluate().center() mindist = 99999.0 for x in range(0, molecule.nAtoms()): atom = molecule.atoms()[x] at_coords = atom.property('coordinates') dist = Vector().distance2(at_coords, mol_centre) if dist < mindist: mindist = dist nearest_atom = atom return nearest_atom def addFlexibility(system, reflection_center=None, reflection_radius=None, \ naming_scheme=NamingScheme()): print("Adding flexibility to the system...") # create a group for all of the fixed molecules and residues fixed_group = MoleculeGroup( naming_scheme.fixedMoleculesGroupName().value() ) # create a group for the fixed residues that are bonded to the mobile residues boundary_group = MoleculeGroup( naming_scheme.boundaryMoleculesGroupName().value() ) if reflection_center is None or reflection_radius is None: print ("No reflection radius or reflection molecule specified, so moving all " "molecules and residues in the system.") reflection_radius = None reflection_center = None else: print(("Only moving molecules/residues that are within a distance %s A " "of the point %s.") % (reflection_radius.value(), reflection_center)) system.setProperty("reflection center", AtomCoords(CoordGroup(1,reflection_center))) system.setProperty("reflection sphere radius", VariantProperty(reflection_radius.to(angstroms))) # fit the protein z-matrix templates to all of the protein molecules and add the mobile # residues to the mobile_sc_group and mobile_bb_group for mobile sidechains and backbones if naming_scheme.proteinsGroupName() in system.mgNames(): protein_group = system[naming_scheme.proteinsGroupName()] # create a zmatrix maker that will be used to build the z-matrices for each protein molecule zmat_maker = ZmatrixMaker() zmat_maker.loadTemplates( os.path.join(parameter_directory, "amber.zmatrices") ) # now create the molecule groups that hold the flexible side chains and flexible backbone groups mobile_sc_group = MoleculeGroup(naming_scheme.mobileProteinSidechainsGroupName().value()) mobile_bb_group = MoleculeGroup(naming_scheme.mobileProteinBackbonesGroupName().value()) # the extra atoms moved as part of a backbone move hn_atoms = AtomName("N", CaseInsensitive) * AtomName("H", CaseInsensitive) * \ AtomName("HN", CaseInsensitive) * AtomName("HN1", CaseInsensitive) * \ AtomName("HN2", CaseInsensitive) * AtomName("HN3", CaseInsensitive) # loop over each protein molecule for molnum in protein_group.molNums(): protein_mol = protein_group[molnum].molecule() print("Applying residue templates for protein %s" % molnum) protein_mol = zmat_maker.applyTemplates(protein_mol) system.update(protein_mol) if reflection_radius: space = Cartesian() mobile_resnums = [] # only move side chains within "sc_radius" and backbones within "bb_radius" of the ligand molecule print("Looking for which residues are within the reflection sphere...") for i in range(0, protein_mol.nResidues()): res = protein_mol.residue( ResIdx(i) ) distance = space.minimumDistance(CoordGroup(1,reflection_center), getCoordGroup(res.atoms())) if distance < reflection_radius.value(): # add the residue to the mobile sidechains group mobile_sc_group.add(res) mobile_resnums.append( res.number() ) # now add the atoms needed from the residue to the mobile backbones group atoms = protein_mol.select(ResIdx(i)).selection() # for the backbone move to work, the residue must contain #  AtomName("CA", CaseInsensitive) and AtomName("N", CaseInsensitive) ) has_backbone = False try: if atoms.selected( AtomName("CA", CaseInsensitive) ) and \ atoms.selected( AtomName("N", CaseInsensitive) ): has_backbone = True except: pass if has_backbone: if i < (protein_mol.nResidues()-1): try: atoms.deselect( hn_atoms + ResIdx(i) ) except: pass if i > 0: try: atoms.select( hn_atoms + ResIdx(i+1) ) except: pass mobile_bb_group.add( PartialMolecule(protein_mol, atoms) ) else: print("Not moving backbone of %s as it doesn't contain atoms N or CA" % protein_mol.residue(ResIdx(i))) # now loop over all of the residues and work out which ones are fixed, and which ones # are bonded to fixed residues connectivity = protein_mol.property("connectivity") for i in range(0, protein_mol.nResidues()): res = protein_mol.residue( ResIdx(i) ) if not res.number() in mobile_resnums: # is this residue bonded to any of the mobile residues? If so, then it is a boundary residue is_boundary = False for bonded_res in connectivity.connectionsTo( res.number() ): bonded_resnum = protein_mol.residue(bonded_res).number() if bonded_resnum in mobile_resnums: is_boundary = True break if is_boundary: boundary_group.add(res) else: fixed_group.add(res) else: # assume that the backbone and side chains of all residues are flexible for i in range(0, protein_mol.nResidues()): res = protein_mol.residue( ResIdx(i) ) mobile_sc_group.add(res) atoms = protein_mol.select(ResIdx(i)).selection() if i < (protein_mol.nResidues()-1): try: atoms.deselect( hn_atoms + ResIdx(i) ) except: pass if i > 0: try: atoms.select( hn_atoms + ResIdx(i+1) ) except: pass mobile_bb_group.add( PartialMolecule(protein_mol, atoms) ) if mobile_sc_group.nMolecules() > 0: system.add(mobile_sc_group) if mobile_bb_group.nMolecules() > 0: system.add(mobile_bb_group) print("The number of residues with flexible sidechains equals %s" % mobile_sc_group.nViews()) print("The number of residues with flexible backbones equals %s" % mobile_bb_group.nViews()) print("The number of boundary residues equals %s" % boundary_group.nViews()) print("The number of fixed residues equals %s" % fixed_group.nViews()) # add all of the mobile solute molecules to the mobile_solute_group and auto-generate # the z-matricies of all of the mobile solutes if naming_scheme.solutesGroupName() in system.mgNames(): solute_group = system[naming_scheme.solutesGroupName()] mobile_solute_group = MoleculeGroup( naming_scheme.mobileSolutesGroupName().value() ) # store the average solute translation and rotation deltas avg_trans_delta = 0 avg_rot_delta = 0 for molnum in solute_group.molNums(): solute_mol = solute_group[molnum].molecule() move_solute = True # Only move the solute if it is within the sphere cutoff of the ligand (if a ligand and solvent # radius have been specified...) if reflection_radius: move_solute = (Vector.distance(reflection_center, \ solute_mol.evaluate().centerOfMass()) < reflection_radius.value()) if move_solute: print("\nAuto-detecting the flexible degrees of freedom for solute %s" % molnum) # auto-generate the flexibility - bonds, angles and dihedrals flexibility = generateFlexibility(solute_mol) solute_mol = solute_mol.edit().setProperty("flexibility", flexibility).commit() print("\nFlexibility of solute %s equals:" % molnum) flex = solute_mol.property("flexibility") print(flex) avg_trans_delta += flex.translation().to(angstrom) avg_rot_delta += flex.rotation().to(degrees) system.update(solute_mol) mobile_solute_group.add(solute_mol) else: print("Not moving solute %s as it is outside the spherical solvent cutoff of the ligand." % solute_mol) fixed_group.add(solute_mol) if mobile_solute_group.nMolecules() > 0: system.add(mobile_solute_group) system.setProperty("average solute translation delta", \ VariantProperty(avg_trans_delta / mobile_solute_group.nMolecules())) system.setProperty("average solute rotation delta", \ VariantProperty(avg_rot_delta / mobile_solute_group.nMolecules())) print("\nNumber of mobile solute molecules equals %s" % mobile_solute_group.nMolecules()) # add all of the mobile solvent molecules to the mobile_solvent_group if naming_scheme.solventsGroupName() in system.mgNames(): solvent_group = system[ naming_scheme.solventsGroupName() ] mobile_solvent_group = MoleculeGroup( naming_scheme.mobileSolventsGroupName().value() ) print("Adding flexibility to the solvent...") if reflection_radius: for molnum in solvent_group.molNums(): solvent_mol = solvent_group[molnum] if Vector.distance(reflection_center, solvent_mol.evaluate().centerOfMass()) < reflection_radius.value(): mobile_solvent_group.add(solvent_mol) else: fixed_group.add(solvent_mol) else: mobile_solvent_group.add( solvent_group.molecules() ) if mobile_solvent_group.nMolecules() > 0: system.add(mobile_solvent_group) print("\nNumber of mobile solvent molecules equals %s" % mobile_solvent_group.nMolecules()) # All finished - just need to add in the fixed and boundary groups if fixed_group.nMolecules() > 0: system.add(fixed_group) if boundary_group.nMolecules() > 0: system.add(boundary_group) print("\nNumber of fixed (or partially fixed) molecules equals %s" % fixed_group.nMolecules()) return system def printGroupInfo(system, group_name): try: group = system[MGName(group_name)] print("%s : nMolecules() == %d" % (str(group), group.nMolecules())) except: print("There is no group called \"%s\"" % group_name)
gpl-2.0
2,624,787,477,966,018,000
35.581287
131
0.583304
false
3.97825
false
false
false
tshi04/machine-learning-codes
headGAN-ff/headgan.py
1
3126
import re import numpy as np import tensorflow as tf from model import * class headGAN(object): def __init__(self, d_net, g_net, wordvec, article, title, wd_list): print 'GAN headline' self.wordvec = wordvec self.article = article self.title = title self.d_net = d_net self.g_net = g_net self.wd_list = wd_list self.sess = tf.InteractiveSession() self.build_model() self.train_model() def build_model(self): art_len = self.article.shape[1] ttl_len = self.title.shape[1] wd_dim = self.wordvec.shape[1] self.in_art = tf.placeholder(tf.int32,[None, art_len]) self.in_ttl = tf.placeholder(tf.int32,[None, ttl_len]) r_art = tf.nn.embedding_lookup(self.wordvec, self.in_art) r_art = tf.expand_dims(r_art, -1) r_art = tf.transpose(r_art, [0,2,1,3], name='r_art') self.r_art = r_art self.r_ttl = tf.nn.embedding_lookup(self.wordvec, self.in_ttl) self.r_ttl = tf.expand_dims(self.r_ttl, -1) self.r_ttl = tf.transpose(self.r_ttl, [0,2,1,3], name='r_ttl') self.f_ttl = self.g_net(input_data=r_art) r_logits = self.d_net(input_data=self.r_ttl, reuse=False) f_logits = self.d_net(input_data=self.f_ttl, reuse=True) r_ent = tf.nn.sigmoid(r_logits) f_ent = tf.nn.sigmoid(f_logits) self.d_loss = tf.reduce_mean(r_ent) - tf.reduce_mean(f_ent) self.g_loss = tf.reduce_mean(f_ent, name='g_loss') self.g_var = self.g_net.vars self.d_var = self.d_net.vars self.opt_method = 'rmsprop' if self.opt_method == 'rmsprop': self.d_opt = tf.train.RMSPropOptimizer(0.01,decay=0.9).minimize(self.d_loss,var_list=self.d_var) self.g_opt = tf.train.RMSPropOptimizer(0.01,decay=0.9).minimize(self.g_loss,var_list=self.g_var) else: self.d_opt = tf.train.AdamOptimizer().minimize(self.d_loss,var_list=self.d_var) self.g_opt = tf.train.AdamOptimizer().minimize(self.g_loss,var_list=self.g_var) def train_model(self): self.sess.run(tf.global_variables_initializer()) k = 0 while k < 20000: feed_ = {self.in_art: [self.article[k]], self.in_ttl: [self.title[k]]} self.sess.run(self.g_opt, feed_dict=feed_) self.sess.run(self.d_opt, feed_dict=feed_) if k%1000 == 0: print k, self.sess.run([self.d_loss, self.g_loss], feed_dict=feed_) tt = self.sess.run(self.f_ttl, feed_dict=feed_) xx = self.sess.run(self.r_art[0,:,:,0], feed_dict=feed_) dd = self.sess.run(tf.matmul(tt[0,0], xx))) idx = np.argmax(dd, axis=1).tolist() for kk in idx: print self.wd_list[self.article[k,kk]], print for kk in self.title[k]: print self.wd_list[kk], print for kk in self.article[k]: print self.wd_list[kk], print print k += 1 if k == 19999: k = 0
gpl-3.0
-7,351,620,951,786,911,000
34.931034
108
0.555982
false
2.943503
false
false
false
joelphillips/pypyramid
src/pypyr/assembly.py
1
9235
''' Created on Aug 17, 2010 @author: joel ''' import numpy from pypyr.mesh import Basis, ElementFinder, ElementQuadrature, BoundaryQuadrature import itertools as it from pypyr.timing import * def processIndices(basis, boundarytags): """ Given a basis (a collection of elements) and a set of boundaries, extract the internal and external degrees of freedom returns: I: a sparse matrix that maps each the local degrees of freedom for each element to their global indices boundaries: a map of tag->DegreeSet, which can be used to evaluate all the degrees on each boundary internalidx: ids of the internal degrees of freedom """ import scipy.sparse as ss indices = basis.getIndices() n = basis.elementfactory.index # = max(indices)+1 I = ss.csr_matrix((numpy.ones_like(indices), indices, range(0,len(indices)+1))) idxflag = numpy.ones(n, dtype=bool) boundaries = {} for tag in boundarytags: bdy = basis.getBoundary(tag) boundaries[tag] = bdy if bdy: idxflag[bdy.indices] = False internalidx = numpy.nonzero(idxflag)[0] return I, boundaries, internalidx def blockInnerProducts(quadweights, leftvalsiter, rightvalsiter, leftI, rightI): """ Evaluate the inner product matrix returns a sparse matrix equal to leftI.transpose * L.transpose * quadweights * R * rightI where L and R are block diagonal matrices whose blocks are given by the iterables, leftvalsiter and rightvalsiter If the left or right vals have more than 2 dimensions, the extra dimensions are multiplied and summed (tensor-contracted), with broadcasting as necessary, i,e, this is an inner-product - it can't be used for a more general multiplication' """ import scipy.sparse as ss data = [] idx = [] ip = [0] for e, (leftvals, rightvals, weights) in enumerate(it.izip(leftvalsiter, rightvalsiter, quadweights)): if len(weights): lvs = len(leftvals.shape) rvs = len(rightvals.shape) vs = max(lvs,rvs) leftvals = leftvals.reshape(leftvals.shape + (1,)*(vs - lvs)) rightvals = rightvals.reshape(rightvals.shape + (1,)*(vs - rvs)) lvw = leftvals * weights.reshape((-1,) + (1,)*(vs-1)) # print lvw.shape, rightvals.shape data.append(numpy.tensordot(lvw, rightvals, ([0]+range(2,vs), [0]+range(2,vs)))) idx.append(e) ip.append(len(idx)) # print e, idx, ip V = ss.bsr_matrix((data, idx, ip),dtype=float, shape=(leftI.shape[0],rightI.shape[0])) return leftI.transpose() * V * rightI class System(object): """ A System contains everything that's need to construct stiffness matrices and load vectors. This is an abstract-ish class see SymmetricSystem and AsymmetricSystem for concrete implementations. Parameters: quadrule: a tuple of quadrature points and weights on the reference pyramid meshevents: A function that produces mesh events leftbasis, rightbasis: see pypyr.mesh.Basis leftindexinfo, rightindexinfo: see processIndices """ def __init__(self, quadrule, meshevents, leftbasis, rightbasis, leftindexinfo, rightindexinfo): self.elementfinder = meshevents(ElementFinder()) self.elementinfo = meshevents(ElementQuadrature()) self.boundaryquad = meshevents(BoundaryQuadrature()) self.refquadpoints, refweights = quadrule self.quadweights = list(self.elementinfo.getWeights(self.refquadpoints, refweights)) self.leftbasis = leftbasis self.rightbasis = rightbasis self.leftI, self.leftbdys, self.leftintidx = leftindexinfo self.rightI, self.rightbdys, self.rightintidx = rightindexinfo def _transposeinplace(self): """ Transpose this object """ self.leftbasis, self.rightbasis = self.rightbasis, self.leftbasis self.leftI, self.rightI = self.rightI, self.leftI self.leftbdys, self.rightbdys = self.rightbdys, self.leftbdys self.leftintidx, self.rightintidx = self.rightintidx, self.leftintidx return self def processSystem(self, leftvalsiter, rightvalsiter): """ Construct the (non-boundary aware) stiffness matrix """ return blockInnerProducts(self.quadweights, leftvalsiter, rightvalsiter, self.leftI, self.rightI) def processBoundary(self, sysmat, tagtog): """ Split the stiffness matrix into the internal and external parts. Evaluate boundary data sysmat: system matrix (which will come from processSystem()). tagtog: dictionary of functions to evaluate on the boundar(y|ies) returns: internalSystem: S[I,I] where I is the internal degrees tagtoBoundarySystem: tag->S[I,E[tag]] where E[tag] gives the indices of the external degrees tagtogvals: g[tag] evaluated at the degrees of freedom associated with boundary "tag". Somewhat inefficient if there's a significant proportion of dofs on the boundary """ SI = sysmat[self.leftintidx, :] internalSystem = SI[:,self.rightintidx] tagtogvals = {} tagtoBoundarySystem = {} for tag, bdy in self.rightbdys.iteritems(): tagtogvals[tag] = bdy.evaluatedofs(tagtog[tag]) tagtoBoundarySystem[tag] = SI[:,bdy.indices] return internalSystem, tagtoBoundarySystem, tagtogvals def loadVector(self, f, deriv=False): """ Calculate the load vector for the internal shape functions """ testvalsiter = self.leftbasis.getElementValues(self.refquadpoints, deriv) fvalsiter = it.imap(f, self.elementinfo.getQuadPoints(self.refquadpoints)) return blockInnerProducts(self.quadweights, testvalsiter, fvalsiter, self.leftI, numpy.ones((self.elementinfo.numElements(), 1)))[self.leftintidx,:] def boundaryLoad(self, tagtog, squarequad, trianglequad, deriv=False): """ Calculate the load vector based on a boundary integral, e.g. for Dirichlet data in the dual formulation of the mixed laplacian""" tagtogsys = {} for tag, g in tagtog.iteritems(): x,w,n = zip(*self.boundaryquad.getQuadratures(tag, squarequad, trianglequad)) # print map(g,x,n) # print map(lambda e,p: 0 if len(p) is 0 else e.values(p), self.leftbasis.elements, x) fvalsiter = it.imap(g, x, n) testvalsiter = it.imap(lambda e,p: 0 if len(p) is 0 else e.values(p), self.leftbasis.elements, x) tagtogsys[tag] = blockInnerProducts(w, testvalsiter, fvalsiter, self.leftI, numpy.ones((self.elementinfo.numElements(), 1)))[self.leftintidx,:] return tagtogsys def evaluate(self, points, U, tagtoG = {}, deriv=False): """ Evaluate a solution given by the coefficients of the internal degrees, U, at specified points. tagtoG should be the coefficients for the external degrees""" UG = numpy.zeros(self.rightbasis.elementfactory.index) UG[self.rightintidx] = U for tag, G in tagtoG.iteritems(): UG[self.rightbdys[tag].indices] = G etop = self.elementfinder.elementPointMap(points) UGvals = numpy.zeros((len(points), self.rightbasis.elements[0].ncpts)) for e, pids in zip(self.rightbasis.elements, etop): if len(pids): evals = e.derivs(points[pids]) if deriv else e.values(points[pids]) UGvals[pids] += numpy.tensordot(evals, UG[e.indices], ([1],[0])) return UGvals class SymmetricSystem(System): """ A symmetric system""" def __init__(self, elements, quadrule, meshevents, boundarytags): self.basis = Basis(elements) meshevents(self.basis) indexinfo = processIndices(self.basis, boundarytags) System.__init__(self, quadrule, meshevents, self.basis, self.basis, indexinfo, indexinfo) self.elements = elements def systemMatrix(self, deriv): return super(SymmetricSystem, self).processSystem(*it.tee(self.basis.getElementValues(self.refquadpoints,deriv), 2)) class AsymmetricSystem(System): """ An Asymmetric system""" def __init__(self, leftelements, rightelements, quadrule, meshevents, leftboundarytags, rightboundarytags): leftbasis = Basis(leftelements) rightbasis = Basis(rightelements) meshevents(leftbasis) meshevents(rightbasis) super(AsymmetricSystem, self).__init__(quadrule, meshevents, leftbasis, rightbasis, processIndices(leftbasis, leftboundarytags), processIndices(rightbasis, rightboundarytags)) def systemMatrix(self, leftderiv, rightderiv): leftvals = self.leftbasis.getElementValues(self.refquadpoints, leftderiv) rightvals = self.rightbasis.getElementValues(self.refquadpoints, rightderiv) return super(AsymmetricSystem, self).processSystem(leftvals, rightvals) def transpose(self): import copy return copy.copy(self)._transposeinplace()
bsd-3-clause
246,970,839,694,353,700
49.741758
183
0.663996
false
3.797286
false
false
false
JaneliaSciComp/Neuroptikon
Source/Scripts/C. elegans/Centrality.py
1
2516
# Copyright (c) 2010 Howard Hughes Medical Institute. # All rights reserved. # Use is subject to Janelia Farm Research Campus Software Copyright 1.1 license terms. # http://license.janelia.org/license/jfrc_copyright_1_1.html """ A custom centrality script for the C. elegans network. """ import networkx # Load the neurons and their interconnections if needed. if not any(network.objects): execfile('Connectivity.py') def progressCallback(fraction_complete = None): return updateProgress('Calculating centrality...', fraction_complete) # Compute the centrality of each node in the graph. (uncomment one of the following) #centralities = networkx.degree_centrality(network.simplifiedGraph()) #centralities = networkx.closeness_centrality(network.simplifiedGraph(), weighted_edges = True, progress_callback = progressCallback) centralities = networkx.betweenness_centrality(network.simplifiedGraph(), weighted_edges = True, progress_callback = progressCallback) #centralities = networkx.load_centrality(network.simplifiedGraph(), weighted_edges = True, progress_callback = progressCallback) if any(centralities): # Compute the maximum centrality so we can normalize. maxCentrality = max(centralities.itervalues()) # Alter the visualization of each node based on its centrality. objectCentralities = {} for node, centrality in centralities.iteritems(): object = network.objectWithId(node) objectCentralities[object] = centrality / maxCentrality diameter = 0.001 + objectCentralities[object] * 0.029 display.setVisibleSize(object, [diameter] * 3) for synapse in network.synapses(): centrality = objectCentralities[synapse.preSynapticNeurite.neuron()] for partner in synapse.postSynapticPartners: centrality += objectCentralities[partner if isinstance(partner, Neuron) else partner.neuron()] centrality /= 1 + len(synapse.postSynapticPartners) display.setVisibleOpacity(synapse, centrality) for gapJunction in network.gapJunctions(): centrality = 0.0 for neurite in gapJunction.neurites(): centrality += objectCentralities[neurite.neuron()] centrality /= 2.0 display.setVisibleOpacity(gapJunction, centrality) for innervation in network.innervations(): centrality = (objectCentralities[innervation.neurite.neuron()] + objectCentralities[innervation.muscle]) / 2.0 display.setVisibleOpacity(innervation, centrality)
bsd-3-clause
7,372,495,485,617,536,000
46.471698
134
0.738871
false
3.949765
false
false
false
cloudera/hue
desktop/core/ext-py/josepy-1.1.0/setup.py
2
2983
import io import sys from setuptools import find_packages, setup from setuptools.command.test import test as TestCommand version = '1.1.0' # Please update tox.ini when modifying dependency version requirements install_requires = [ # load_pem_private/public_key (>=0.6) # rsa_recover_prime_factors (>=0.8) 'cryptography>=0.8', # Connection.set_tlsext_host_name (>=0.13) 'PyOpenSSL>=0.13', # For pkg_resources. >=1.0 so pip resolves it to a version cryptography # will tolerate; see #2599: 'setuptools>=1.0', 'six>=1.9.0', # needed for python_2_unicode_compatible ] testing_requires = [ 'coverage>=4.0', 'pytest-cache>=1.0', 'pytest-cov', 'flake8', 'pytest-flake8>=0.5', 'pytest>=2.8.0', 'mock', ] # env markers cause problems with older pip and setuptools if sys.version_info < (2, 7): install_requires.extend([ 'argparse', 'ordereddict', ]) dev_extras = [ 'pytest', 'tox', ] docs_extras = [ 'Sphinx>=1.0', # autodoc_member_order = 'bysource', autodoc_default_flags 'sphinx_rtd_theme', ] with io.open('README.rst', encoding='UTF-8') as f: long_description = f.read() class PyTest(TestCommand): user_options = [] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = '' def run_tests(self): import shlex # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(shlex.split(self.pytest_args)) sys.exit(errno) setup( name='josepy', version=version, description='JOSE protocol implementation in Python', long_description=long_description, url='https://github.com/certbot/josepy', author="Certbot Project", author_email='client-dev@letsencrypt.org', license='Apache License 2.0', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Security', ], packages=find_packages(where='src'), package_dir={'': 'src'}, include_package_data=True, install_requires=install_requires, extras_require={ 'dev': dev_extras, 'docs': docs_extras, 'tests': testing_requires, }, entry_points={ 'console_scripts': [ 'jws = josepy.jws:CLI.run', ], }, tests_require=testing_requires, cmdclass={ 'test': PyTest, }, )
apache-2.0
-2,400,312,496,107,875,000
25.39823
78
0.60476
false
3.61138
true
false
false
LouisChen1905/OneAnalyser
src/one_analyse/request_code.py
1
1851
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Created on 2016年4月10日 @author: chensi ''' from sqlalchemy.orm.scoping import scoped_session from sqlalchemy.orm.session import sessionmaker from one_analyse import one_engine from threadpool import ThreadPool, makeRequests from one_analyse.lib.db.ormtables import OneORM import urllib.request import json import codecs from one_analyse.lib.db.ormtables import PeriodRecord DBScopedSession = scoped_session( sessionmaker( autoflush=False, autocommit=False, bind=one_engine ) ) code_url_format = "http://1.163.com/code/get.do?gid=424&period=%s&cid=%s" def request_code(period_id, user_id, rid, num): url = code_url_format % (period_id, user_id) response = urllib.request.urlopen(url) result = json.load(codecs.getreader("utf-8")(response)) codes = result['result']['list'][0]['code'] session = DBScopedSession() session.query(PeriodRecord).\ filter(PeriodRecord.rid==rid).\ filter(PeriodRecord.period_id==period_id).\ filter(PeriodRecord.user_id==user_id).\ update({'codes':','.join(codes)}) session.commit() DBScopedSession.close() if __name__ == '__main__': db2 = OneORM() db2.InitDB() # Initialize thread pool tp = ThreadPool(50) # Get all period records from database session = DBScopedSession() period_records = db2.get_period_records(session) DBScopedSession.remove() data = [] for r in period_records: param_list = [r.period_id, r.user_id, r.rid, r.num] data.append((param_list, [])) requests = makeRequests(request_code, data) [tp.putRequest(req) for req in requests] tp.wait()
mit
-4,420,334,246,598,185,500
28.774194
73
0.61897
false
3.667992
false
false
false
gwct/grampa
helper_scripts/grampa_plot.py
1
3054
import sys, os ############################################ def barPlot(xdata,ydata,xtitle,ytitle,maintitle,outname,barcol='rgb(0,102,51)',plotcol='#e1e1ea',bgcol='#fffae6',w=1000,h=1000,bmar=150): data = [go.Bar(x=xdata,y=ydata,marker=dict(color=barcol),opacity=0.6)]; layout = go.Layout( autosize=False, width=w, height=h, paper_bgcolor=bgcol, plot_bgcolor=plotcol, title=maintitle, titlefont=dict( family="Arial, sans-serif", size=30, ), xaxis=dict( title=xtitle, titlefont=dict( family="Arial, sans-serif", size=20, color="#737373" ), ), yaxis=dict( title=ytitle, titlefont=dict( family="Arial, sans-serif", size=20, color="#737373" ) ) ); fig = go.Figure(data=data, layout=layout); plot(fig, filename=outname); ############################################ def scatterPlot(xdata,ydata,xtitle,ytitle,maintitle,outname,barcol='rgb(0,102,51)',plotcol='#e1e1ea',bgcol='#fffae6',w=1000,h=500,bmar=150): data = [go.Scatter(x=xdata,y=ydata,mode='markers',opacity=0.6)]; layout = go.Layout( autosize=False, width=w, height=h, margin=go.Margin( l=70, r=20, b=150, t=70, pad=0 ), paper_bgcolor=bgcol, plot_bgcolor=plotcol, title=maintitle, titlefont=dict( family="Arial, sans-serif", size=30, ), xaxis=dict( title=xtitle, titlefont=dict( family="Arial, sans-serif", size=20, color="#737373", ), tickangle=90 ), yaxis=dict( title=ytitle, titlefont=dict( family="Arial, sans-serif", size=20, color="#737373" ) ) ); fig = go.Figure(data=data, layout=layout); plot(fig, filename=outname); ############################################ if len(sys.argv) != 3 or "-h" in sys.argv: print("\n# This is a beta version of this script and may be buggy.") print("# Usage: grampa_plot.py [input file] [output file]"); print("# ---> [input file] must be a grampa output (_out.txt) file.") print("# ---> [output file] will be an html file with your plot.\n") sys.exit(); infilename = sys.argv[1]; outfilename = sys.argv[2]; if outfilename[len(outfilename)-5:] != ".html": outfilename += ".html"; try: from plotly.offline import plot import plotly.graph_objs as go import plotly.plotly as py except: sys.exit("Missing some of the required modules (plotly)") # Option parsing and import of plot libraries if no errors. score_dict = {}; for line in open(infilename): if line[0] == "#" or "The" in line or "Score" in line: continue; line = line.strip().split("\t"); if line[0] == "ST": score_dict[line[0]] = int(line[3]); else: score_dict[line[1] + "-" + line[2]] = int(line[4]); sorted_keys = sorted(score_dict, key=score_dict.get) sorted_vals = []; max_len = -999; for key in sorted_keys: sorted_vals.append(score_dict[key]); if len(key) > max_len: max_len = len(key); bot_margin = max_len * 15; scatterPlot(sorted_keys,sorted_vals,"H1-H2 Node", "Score", "GRAMPA Results: " + infilename, outfilename, bmar=bot_margin);
gpl-3.0
2,242,864,692,299,380,500
23.238095
140
0.609037
false
2.660279
false
false
false
tectronics/open-ihm
src/openihm/model/household.py
3
3987
#!/usr/bin/env python """ This file is part of open-ihm. open-ihm is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. open-ihm is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with open-ihm. If not, see <http://www.gnu.org/licenses/>. """ from database import Database from householdmember_manager import HouseholdMemberManager from householdasset_manager import HouseholdAssetManager from householdincome_crop_manager import HouseholdCropIncomeManager from householdincome_livestock_manager import HouseholdLivestockIncomeManager from householdincome_wildfoods_manager import HouseholdWildfoodsIncomeManager from householdincome_transfers_manager import HouseholdTransfersIncomeManager from householdincome_employment_manager import HouseholdEmploymentIncomeManager from householdcharacteristicmanager import HouseholdCharacteristicManager class Household(HouseholdMemberManager, HouseholdCharacteristicManager, HouseholdAssetManager, HouseholdCropIncomeManager, HouseholdLivestockIncomeManager, HouseholdWildfoodsIncomeManager, HouseholdTransfersIncomeManager, HouseholdEmploymentIncomeManager): def __init__(self, pid, hhid=0, householdname="", dateofcollection=""): self.pid = pid self.hhid = hhid if ( householdname == "" and dateofcollection== "" ): if ( not self.getHouseholdDetails() ): self.householdname = "" else: self.setData(householdname, dateofcollection) def getHouseholdDetails(self): database = Database() database.open() query = "SELECT householdname, dateofcollection FROM households WHERE pid=%s AND hhid=%s " % ( self.pid, self.hhid ) rows = database.execSelectQuery( query ) num = len(rows) if (num != 0): exists = True for row in rows: self.householdname = row[0] self.dateofcollection = row[1] else: exists = False database.close() return exists def setData(self, householdname, dateofcollection): database = Database() database.open() query = '''INSERT INTO households(hhid,pid,dateofcollection,householdname) VALUES(%s,%s, '%s', '%s')''' % (self.hhid, self.pid, dateofcollection, householdname) # execute query database.execUpdateQuery( query ) database.close() # update household attributes self.householdname = householdname self.dateofcollection = dateofcollection def editData(self, hhid, householdname, dateofcollection): database = Database() database.open() query = '''UPDATE households SET hhid=%s, dateofcollection='%s', householdname='%s' WHERE hhid=%s AND pid=%s''' % (hhid, dateofcollection, householdname, self.hhid, self.pid) # execute query database.execUpdateQuery( query ) database.close() # update household attributes self.hhid = hhid self.householdname = householdname self.dateofcollection = dateofcollection def getProjectID(self): return self.pid def getHouseholdID(self): return self.hhid def getHouseholdName(self): return self.householdname def getDateOfCollection(self): return self.dateofcollection
lgpl-3.0
3,986,717,152,432,254,000
39.53125
257
0.663155
false
4.123061
false
false
false
Adarnof/adarnauth-whsales
whsales/urls.py
1
2103
"""whsales URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from whsales import views urlpatterns = [ url(r'^$', views.listings_panel, name='listings_panel'), url(r'^admin/', admin.site.urls), url(r'^list$', views.listings_list, name='listings_list'), url(r'^list/me$', views.my_listings, name='user_listings'), url(r'^listing/(\d*)$', views.listing_view, name='listing_view'), url(r'^listing/(\d*)/sell$', views.mark_sold, name='mark_sold'), url(r'^listing/(\d*)/delete$', views.delete_listing, name='delete_listing'), url(r'^sold$', views.listings_sold, name='listings_sold'), url(r'^tokens$', views.select_token, name='select_token'), url(r'^tokens/add$', views.add_token, name='add_token'), url(r'^tokens/(\d*)/post$', views.post_listing, name='add_listing'), url(r'^search$', views.search, name='search'), url(r'^about$', views.about, name='about'), url(r'^wanted$', views.wanted_panel, name='wanted_panel'), url(r'^wanted/add$', views.add_wanted, name='add_wanted'), url(r'^wanted/list$', views.wanted_list, name='wanted_list'), url(r'^wanted/list/me$', views.my_wanted, name='user_wanted'), url(r'^wanted/(\d*)$', views.wanted_view, name='wanted_view'), url(r'^wanted/(\d*)/fulfill$', views.fulfill_wanted, name='mark_fulfilled'), url(r'^wanted/(\d*)/delete$', views.delete_wanted, name='delete_wanted'), url(r'^core/', include('singlecharcore.urls')), ]
gpl-3.0
6,050,143,814,335,140,000
47.906977
80
0.66001
false
3.181543
false
false
false
DMS-Aus/Roam
ext_libs/cx_Freeze/samples/matplotlib/matplotlib_eg.py
1
1652
#!/usr/bin/env python # -*- coding: utf-8 -*- from numpy import arange, sin, pi import matplotlib matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wx import NavigationToolbar2Wx from matplotlib.figure import Figure import sys import wx class CanvasFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self, None, -1, 'CanvasFrame', size=(550, 350)) color = wx.Colour("WHITE") self.SetBackgroundColour(color) self.figure = Figure() self.axes = self.figure.add_subplot(111) t = arange(0.0, 3.0, 0.01) s = sin(2 * pi * t) self.axes.plot(t, s) self.canvas = FigureCanvas(self, -1, self.figure) self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.canvas, 1, wx.LEFT | wx.TOP | wx.GROW) self.SetSizerAndFit(self.sizer) self.add_toolbar() def add_toolbar(self): self.toolbar = NavigationToolbar2Wx(self.canvas) self.toolbar.Realize() if wx.Platform == '__WXMAC__': self.SetToolBar(self.toolbar) else: tw, th = self.toolbar.GetSize() fw, fh = self.canvas.GetSize() self.toolbar.SetSize(wx.Size(fw, th)) self.sizer.Add(self.toolbar, 0, wx.LEFT | wx.EXPAND) self.toolbar.update() def OnPaint(self, event): self.canvas.draw() class App(wx.App): def OnInit(self): '''Create the main window and insert the custom frame''' frame = CanvasFrame() frame.Show(True) return True app = App(0) app.MainLoop()
gpl-2.0
-2,295,577,713,273,751,000
29.592593
79
0.616828
false
3.463312
false
false
false
benrudolph/commcare-hq
corehq/ex-submodules/phonelog/migrations/0003_auto__del_userlog__del_log__add_userentry__add_unique_userentry_xform_.py
3
6323
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting model 'UserLog' db.delete_table(u'phonelog_userlog') # Deleting model 'Log' db.delete_table(u'phonelog_log') # Adding model 'UserEntry' db.create_table(u'phonelog_userentry', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('xform_id', self.gf('django.db.models.fields.CharField')(max_length=50, db_index=True)), ('i', self.gf('django.db.models.fields.IntegerField')()), ('user_id', self.gf('django.db.models.fields.CharField')(max_length=50)), ('sync_token', self.gf('django.db.models.fields.CharField')(max_length=50)), ('username', self.gf('django.db.models.fields.CharField')(max_length=100, db_index=True)), )) db.send_create_signal(u'phonelog', ['UserEntry']) # Adding unique constraint on 'UserEntry', fields ['xform_id', 'i'] db.create_unique(u'phonelog_userentry', ['xform_id', 'i']) # Adding model 'DeviceReportEntry' db.create_table(u'phonelog_devicereportentry', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('xform_id', self.gf('django.db.models.fields.CharField')(max_length=50)), ('i', self.gf('django.db.models.fields.IntegerField')()), ('msg', self.gf('django.db.models.fields.TextField')()), ('type', self.gf('django.db.models.fields.CharField')(max_length=32, db_index=True)), ('date', self.gf('django.db.models.fields.DateTimeField')(db_index=True)), ('domain', self.gf('django.db.models.fields.CharField')(max_length=100, db_index=True)), ('device_id', self.gf('django.db.models.fields.CharField')(max_length=50, db_index=True)), ('app_version', self.gf('django.db.models.fields.TextField')()), ('username', self.gf('django.db.models.fields.CharField')(max_length=100, db_index=True)), )) db.send_create_signal(u'phonelog', ['DeviceReportEntry']) # Adding unique constraint on 'DeviceReportEntry', fields ['xform_id', 'i'] db.create_unique(u'phonelog_devicereportentry', ['xform_id', 'i']) def backwards(self, orm): # Removing unique constraint on 'DeviceReportEntry', fields ['xform_id', 'i'] db.delete_unique(u'phonelog_devicereportentry', ['xform_id', 'i']) # Removing unique constraint on 'UserEntry', fields ['xform_id', 'i'] db.delete_unique(u'phonelog_userentry', ['xform_id', 'i']) # Adding model 'UserLog' db.create_table(u'phonelog_userlog', ( ('username', self.gf('django.db.models.fields.CharField')(max_length=100, db_index=True)), ('xform_id', self.gf('django.db.models.fields.CharField')(max_length=50, db_index=True)), ('user_id', self.gf('django.db.models.fields.CharField')(max_length=50)), ('sync_token', self.gf('django.db.models.fields.CharField')(max_length=50)), (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), )) db.send_create_signal(u'phonelog', ['UserLog']) # Adding model 'Log' db.create_table(u'phonelog_log', ( ('username', self.gf('django.db.models.fields.CharField')(max_length=100, db_index=True)), ('msg', self.gf('django.db.models.fields.TextField')()), ('domain', self.gf('django.db.models.fields.CharField')(max_length=100, db_index=True)), ('date', self.gf('django.db.models.fields.DateTimeField')(db_index=True)), ('xform_id', self.gf('django.db.models.fields.CharField')(max_length=50, db_index=True)), ('app_version', self.gf('django.db.models.fields.TextField')()), ('type', self.gf('django.db.models.fields.CharField')(max_length=32, db_index=True)), ('id', self.gf('django.db.models.fields.CharField')(max_length=50, primary_key=True)), ('device_id', self.gf('django.db.models.fields.CharField')(max_length=50, db_index=True)), )) db.send_create_signal(u'phonelog', ['Log']) # Deleting model 'UserEntry' db.delete_table(u'phonelog_userentry') # Deleting model 'DeviceReportEntry' db.delete_table(u'phonelog_devicereportentry') models = { u'phonelog.devicereportentry': { 'Meta': {'unique_together': "[('xform_id', 'i')]", 'object_name': 'DeviceReportEntry'}, 'app_version': ('django.db.models.fields.TextField', [], {}), 'date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'device_id': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100', 'db_index': 'True'}), 'i': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'msg': ('django.db.models.fields.TextField', [], {}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '100', 'db_index': 'True'}), 'xform_id': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'phonelog.userentry': { 'Meta': {'unique_together': "[('xform_id', 'i')]", 'object_name': 'UserEntry'}, 'i': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'sync_token': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'user_id': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '100', 'db_index': 'True'}), 'xform_id': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}) } } complete_apps = ['phonelog']
bsd-3-clause
-2,299,862,887,122,350,000
54.464912
109
0.588486
false
3.45708
false
false
false
karimbahgat/PythonGis
(sandbox,tobemerged)/pythongis/raster/loader.py
1
11514
import sys, os, itertools, operator import PIL.Image import itertools def grouper(iterable, n): args = [iter(iterable)] * n return itertools.izip(*args) def from_file(filepath): def check_world_file(filepath): dir, filename = os.path.split(filepath) filename, filetype = os.path.splitext(filename) # find world file extension based on filetype if filetype in ("tif","tiff","geotiff"): ext = ".tfw" elif filetype in ("jpg","jpeg"): ext = ".jgw" elif filetype == "png": ext = ".pgw" elif filetype == "bmp": ext = ".bpw" elif filetype == "gif": ext = ".gfw" else: return None worldfilepath = os.path.join(dir, filename, ext) if os.path.lexists(worldfilepath): worldfile = open(filepath, "r") # note that the params are arranged slightly differently # ...in the world file from the usual affine a,b,c,d,e,f # ...so we have to rearrange their sequence later # check out http://en.wikipedia.org/wiki/World_file # ...very useful here and for affine transforms in general xscale,yskew,xskew,yscale,xoff,yoff = worldfile.read() return [xscale,yskew,xskew,yscale,xoff,yoff] if filepath.lower().endswith((".asc",".ascii")): tempfile = open(filepath,"r") ### Step 1: check header for file info info = dict() def _nextheader(headername=None, force2length=True): "returns a two-list of headername and headervalue" nextline = False while not nextline: nextline = tempfile.readline().strip() nextline = nextline.split() if force2length: if len(nextline) != 2: raise Exception("Each header line must contain exactly two elements") if headername: if nextline[0].lower() != headername: raise Exception("The required headername was not found: %s instead of %s"%(nextline[0].lower(),headername)) return nextline # dimensions cols = int(_nextheader(headername="ncols")[1]) rows = int(_nextheader(headername="nrows")[1]) # x/y_orig _next = _nextheader() if _next[0].lower() in ("xllcenter","xllcorner"): xorig = float(_next[1]) xorigtype = _next[0].lower() _next = _nextheader() if _next[0].lower() in ("yllcenter","yllcorner"): yorig = float(_next[1]) yorigtype = _next[0].lower() info["xy_cell"] = (0, rows) info["xy_geo"] = (xorig, yorig) if "corner" in xorigtype and "corner" in yorigtype: info["cell_anchor"] = "sw" elif "corner" in xorigtype: info["cell_anchor"] = "w" elif "corner" in yorigtype: info["cell_anchor"] = "s" else: info["cell_anchor"] = "center" # cellsize cellsize = float(_nextheader(headername="cellsize")[1]) info["cellwidth"] = cellsize info["cellheight"] = cellsize # nodata prevline = tempfile.tell() _next = _nextheader(force2length=False) if _next[0].lower() == "nodata_value": nodata = float(_next[1]) else: # nd header missing, so set to default and go back to previous header line nodata = -9999.0 tempfile.seek(prevline) info["nodata_value"] = nodata ### Step 2: read data into lists # make sure filereading is set to first data row (in case there are spaces or gaps in bw header and data) nextline = False while not nextline: prevline = tempfile.tell() nextline = tempfile.readline().strip() tempfile.seek(prevline) # collect flat list of cells instead of rows (bc data isn't necessarily organized into lines) data = [] for line in tempfile.readlines(): data.extend(float(cell) for cell in line.split()) # reshape to correspond with columns-rows and flatten again reshaped = itertools.izip(*grouper(data, cols)) data = [cell for row in reshaped for cell in row] # load the data as an image tempfile.close() img = PIL.Image.new("F", (rows, cols)) img.putdata(data=data) # create the cell access object cells = img.load() # make a single-grid tuple grids = [(img,cells)] ### Step 3: Read coordinate ref system # ascii doesnt have any crs so assume default crs = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" return info, grids, crs elif filepath.lower().endswith((".tif",".tiff",".geotiff")): # for more info: # http://gis.stackexchange.com/questions/16839/why-does-a-tif-file-lose-projection-information-when-a-pixel-value-is-changed # https://mail.python.org/pipermail/image-sig/2001-March/001380.html main_img = PIL.Image.open(filepath) raw_info = dict(main_img.tag.items()) def process_info(raw_info): # check tag definitions here # http://www.digitalpreservation.gov/formats/content/tiff_tags.shtml # http://duff.ess.washington.edu/data/raster/drg/docs/geotiff.txt info = dict() if raw_info.has_key(1025): # GTRasterTypeGeoKey, aka midpoint pixels vs topleft area pixels if raw_info.get(1025) == (1,): # is area info["cell_anchor"] = "center" elif raw_info.get(1025) == (2,): # is point info["cell_anchor"] = "nw" else: # TODO: what would be default value? pass if raw_info.has_key(34264): # ModelTransformationTag, aka 4x4 transform coeffs... a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p = raw_info.get(34264) # But we don't want to meddle with 3-D transforms, # ...so for now only get the 2-D affine parameters xscale,xskew,xoff = a,b,d yskew,yscale,yoff = e,f,h info["transform_coeffs"] = xscale,xskew,xoff,yskew,yscale,yoff else: if raw_info.has_key(33922): # ModelTiepointTag x, y, z, geo_x, geo_y, geo_z = raw_info.get(33922) info["xy_cell"] = x,y info["xy_geo"] = geo_x,geo_y if raw_info.has_key(33550): # ModelPixelScaleTag scalex,scaley,scalez = raw_info.get(33550) info["cellwidth"] = scalex info["cellheight"] = -scaley # note: cellheight must be inversed because geotiff has a reversed y-axis (ie 0,0 is in upperleft corner) if raw_info.get(42113): info["nodata_value"] = eval(raw_info.get(42113)) # eval from string to nr return info def read_crs(raw_info): crs = dict() if raw_info.get(34735): # GeoKeyDirectoryTag crs["proj_params"] = raw_info.get(34735) if raw_info.get(34737): # GeoAsciiParamsTag crs["proj_name"] = raw_info.get(34737) return crs # read geotiff tags info = process_info(raw_info) # if no geotiff tag info look for world file transform coefficients if len(info) <= 1 and not info.get("transform_coeffs"): transform_coeffs = check_world_file(filepath) if transform_coeffs: # rearrange the param sequence to match affine transform [xscale,yskew,xskew,yscale,xoff,yoff] = transform_coeffs info["transform_coeffs"] = [xscale,xskew,xoff,yskew,yscale,yoff] else: raise Exception("Couldn't find any geotiff tags or world file needed to position the image in space") # group image bands and pixel access into grid tuples grids = [] for img in main_img.split(): cells = img.load() grids.append((img,cells)) # read coordinate ref system crs = read_crs(raw_info) return info, grids, crs elif filepath.lower().endswith((".jpg",".jpeg",".png",".bmp",".gif")): # pure image, so only read if has a world file transform_coeffs = check_world_file(filepath) if transform_coeffs: # rearrange the param sequence to match affine transform [xscale,yskew,xskew,yscale,xoff,yoff] = transform_coeffs info["transform_coeffs"] = [xscale,xskew,xoff,yskew,yscale,yoff] # group image bands and pixel access into grid tuples grids = [] for img in main_img.split(): cells = img.load() grids.append((img,cells)) # read crs # normal images have no crs, so just assume default crs crs = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" return info, grids, crs else: raise Exception("Couldn't find the world file needed to position the image in space") else: raise Exception("Could not create a raster from the given filepath: the filetype extension is either missing or not supported") def from_lists(data, nodata_value=-9999.0, cell_anchor="center", **geoargs): pass def from_image(image, nodata_value=-9999.0, cell_anchor="center", **geoargs): size = image.size print geoargs info = dict([(key,val) for key,val in geoargs.iteritems() if key in ("xy_cell","xy_geo","cellwidth", "cellheight","transform_coeffs") ]) if len(info) <= 3 and not info.get("transform_coeffs"): raise Exception("To make a new raster from scratch, you must specify either all of xy_cell, xy_geo, cellwidth, cellheight, or the transform coefficients") info["nodata_value"] = nodata_value info["cell_anchor"] = cell_anchor crs = geoargs.get("crs", "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") grids = [] cells = image.load() grids.append((image, cells)) return info, grids, crs def new(width, height, nodata_value=-9999.0, bands=1, cell_anchor="center", **geoargs): size = (width, height) info = dict([(key,val) for key,val in geoargs.iteritems() if key in ("xy_cell","xy_geo","cellwidth", "cellheight","transform_coeffs") ]) if len(info) <= 3 and not info.get("transform_coeffs"): raise Exception("To make a new raster from scratch, you must specify either all of xy_cell, xy_geo, cellwidth, cellheight, or the transform coefficients") info["nodata_value"] = nodata_value info["cell_anchor"] = cell_anchor crs = geoargs.get("crs", "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") grids = [] for _ in range(bands): img = PIL.Image.new("F", size, float(nodata_value)) cells = img.load() grids.append((img, cells)) return info, grids, crs
mit
-6,514,481,410,946,916,000
38.84083
162
0.556106
false
3.904374
false
false
false
a-parhom/edx-platform
scripts/xsslint/xsslint/utils.py
15
11534
""" Utility classes/functions for the XSS Linter. """ import re def is_skip_dir(skip_dirs, directory): """ Determines whether a directory should be skipped or linted. Arguments: skip_dirs: The configured directories to be skipped. directory: The current directory to be tested. Returns: True if the directory should be skipped, and False otherwise. """ for skip_dir in skip_dirs: skip_dir_regex = re.compile( "(.*/)*{}(/.*)*".format(re.escape(skip_dir))) if skip_dir_regex.match(directory) is not None: return True return False class StringLines(object): """ StringLines provides utility methods to work with a string in terms of lines. As an example, it can convert an index into a line number or column number (i.e. index into the line). """ def __init__(self, string): """ Init method. Arguments: string: The string to work with. """ self._string = string self._line_start_indexes = self._process_line_breaks(string) # this is an exclusive index used in the case that the template doesn't # end with a new line self.eof_index = len(string) def _process_line_breaks(self, string): """ Creates a list, where each entry represents the index into the string where the next line break was found. Arguments: string: The string in which to find line breaks. Returns: A list of indices into the string at which each line begins. """ line_start_indexes = [0] index = 0 while True: index = string.find('\n', index) if index < 0: break index += 1 line_start_indexes.append(index) return line_start_indexes def get_string(self): """ Get the original string. """ return self._string def index_to_line_number(self, index): """ Given an index, determines the line of the index. Arguments: index: The index into the original string for which we want to know the line number Returns: The line number of the provided index. """ current_line_number = 0 for line_break_index in self._line_start_indexes: if line_break_index <= index: current_line_number += 1 else: break return current_line_number def index_to_column_number(self, index): """ Gets the column (i.e. index into the line) for the given index into the original string. Arguments: index: The index into the original string. Returns: The column (i.e. index into the line) for the given index into the original string. """ start_index = self.index_to_line_start_index(index) column = index - start_index + 1 return column def index_to_line_start_index(self, index): """ Gets the index of the start of the line of the given index. Arguments: index: The index into the original string. Returns: The index of the start of the line of the given index. """ line_number = self.index_to_line_number(index) return self.line_number_to_start_index(line_number) def index_to_line_end_index(self, index): """ Gets the index of the end of the line of the given index. Arguments: index: The index into the original string. Returns: The index of the end of the line of the given index. """ line_number = self.index_to_line_number(index) return self.line_number_to_end_index(line_number) def line_number_to_start_index(self, line_number): """ Gets the starting index for the provided line number. Arguments: line_number: The line number of the line for which we want to find the start index. Returns: The starting index for the provided line number. """ return self._line_start_indexes[line_number - 1] def line_number_to_end_index(self, line_number): """ Gets the ending index for the provided line number. Arguments: line_number: The line number of the line for which we want to find the end index. Returns: The ending index for the provided line number. """ if line_number < len(self._line_start_indexes): return self._line_start_indexes[line_number] else: # an exclusive index in the case that the file didn't end with a # newline. return self.eof_index def line_number_to_line(self, line_number): """ Gets the line of text designated by the provided line number. Arguments: line_number: The line number of the line we want to find. Returns: The line of text designated by the provided line number. """ start_index = self._line_start_indexes[line_number - 1] if len(self._line_start_indexes) == line_number: line = self._string[start_index:] else: end_index = self._line_start_indexes[line_number] line = self._string[start_index:end_index - 1] return line def line_count(self): """ Gets the number of lines in the string. """ return len(self._line_start_indexes) class ParseString(object): """ ParseString is the result of parsing a string out of a template. A ParseString has the following attributes: start_index: The index of the first quote, or None if none found end_index: The index following the closing quote, or None if unparseable quote_length: The length of the quote. Could be 3 for a Python triple quote. Or None if none found. string: the text of the parsed string, or None if none found. string_inner: the text inside the quotes of the parsed string, or None if none found. """ def __init__(self, template, start_index, end_index): """ Init method. Arguments: template: The template to be searched. start_index: The start index to search. end_index: The end index to search before. """ self.end_index = None self.quote_length = None self.string = None self.string_inner = None self.start_index = self._find_string_start(template, start_index, end_index) if self.start_index is not None: result = self._parse_string(template, self.start_index) if result is not None: self.end_index = result['end_index'] self.quote_length = result['quote_length'] self.string = result['string'] self.string_inner = result['string_inner'] def _find_string_start(self, template, start_index, end_index): """ Finds the index of the end of start of a string. In other words, the first single or double quote. Arguments: template: The template to be searched. start_index: The start index to search. end_index: The end index to search before. Returns: The start index of the first single or double quote, or None if no quote was found. """ quote_regex = re.compile(r"""['"]""") start_match = quote_regex.search(template, start_index, end_index) if start_match is None: return None else: return start_match.start() def _parse_string(self, template, start_index): """ Finds the indices of a string inside a template. Arguments: template: The template to be searched. start_index: The start index of the open quote. Returns: A dict containing the following, or None if not parseable: end_index: The index following the closing quote quote_length: The length of the quote. Could be 3 for a Python triple quote. string: the text of the parsed string string_inner: the text inside the quotes of the parsed string """ quote = template[start_index] if quote not in ["'", '"']: raise ValueError("start_index must refer to a single or double quote.") triple_quote = quote * 3 if template.startswith(triple_quote, start_index): quote = triple_quote next_start_index = start_index + len(quote) while True: quote_end_index = template.find(quote, next_start_index) backslash_index = template.find("\\", next_start_index) if quote_end_index < 0: return None if 0 <= backslash_index < quote_end_index: next_start_index = backslash_index + 2 else: end_index = quote_end_index + len(quote) quote_length = len(quote) string = template[start_index:end_index] return { 'end_index': end_index, 'quote_length': quote_length, 'string': string, 'string_inner': string[quote_length:-quote_length], } class Expression(object): """ Represents an arbitrary expression. An expression can be any type of code snippet. It will sometimes have a starting and ending delimiter, but not always. Here are some example expressions:: ${x | n, decode.utf8} <%= x %> function(x) "<p>" + message + "</p>" Other details of note: - Only a start_index is required for a valid expression. - If end_index is None, it means we couldn't parse the rest of the expression. - All other details of the expression are optional, and are only added if and when supplied and needed for additional checks. They are not necessary for the final results output. """ def __init__(self, start_index, end_index=None, template=None, start_delim="", end_delim="", strings=None): """ Init method. Arguments: start_index: the starting index of the expression end_index: the index immediately following the expression, or None if the expression was unparseable template: optional template code in which the expression was found start_delim: optional starting delimiter of the expression end_delim: optional ending delimeter of the expression strings: optional list of ParseStrings """ self.start_index = start_index self.end_index = end_index self.start_delim = start_delim self.end_delim = end_delim self.strings = strings if template is not None and self.end_index is not None: self.expression = template[start_index:end_index] self.expression_inner = self.expression[len(start_delim):-len(end_delim)].strip() else: self.expression = None self.expression_inner = None
agpl-3.0
-2,525,840,043,737,450,000
31.767045
111
0.581325
false
4.491433
false
false
false
tectronics/coot
python/jligand_gui.py
4
4622
# This happens when user clicks on the "Launch JLigand" button. # It starts a jligand and puts it in the background. # def launch_jligand_function(): global jligand_jar global jligand_home_env global java_command start_jligand_listener() # maybe this should rather check PATH or similar!? FIXME if not os.path.isfile(jligand_jar): # Boo. Give us a warning dialog # s = "jligand java jar file: " + jligand_jar + " not found" # make an extra message telling us that JLIGAND_HOME is # not set if it is not set. env_message = "Environment variable JLIGAND_HOME not set\n\n" \ if not jligand_home_env else "" info_dialog(env_message + s) else: # OK, it does exist - run it! # java_exe = find_exe(java_command) if not java_exe: print "BL INFO:: no java found" else: # first check if we can run it with coot, i.e. is '-version' # a valid command line arg jligand_version = ["-jar", jligand_jar, "-version"] cmd = java_exe + " " + \ string_append_with_spaces(jligand_version) res = shell_command_to_string(cmd) if (not res): message = "Sorry, your JLigand:\n\n " + jligand_jar + "\n\n" + \ "is not new enough to work with Coot!\n" + \ "Please download a new one!" info_dialog(message) else: run_concurrently(java_exe, jligand_args) # beam in a new menu to the menu bar: if (have_coot_python): if coot_python.main_menubar(): jligand_menu = coot_menubar_menu("JLigand") add_simple_coot_menu_menuitem( jligand_menu, "Send Link to JLigand (click 2 monomers)", lambda func: click_select_residues_for_jligand() ) # This happens when user clicks on the "Select Residues for JLigand" # (or some such) button. It expects the user to click on atoms of # the two residues involved in the link. # def click_select_residues_for_jligand(): global imol_jligand_link def link_em(*args): print "we received these clicks", args if (len(args) == 2): click_1 = args[0] click_2 = args[1] print "click_1:", click_1 print "click_2:", click_2 if ((len(click_1) == 7) and (len(click_2) ==7)): resname_1 = residue_name(click_1[1], click_1[2], click_1[3], click_1[4]) resname_2 = residue_name(click_2[1], click_2[2], click_2[3], click_2[4]) imol_click_1 = click_1[1] imol_click_2 = click_2[1] chain_click_1 = click_1[2] chain_click_2 = click_2[2] resno_click_1 = click_1[3] resno_click_2 = click_2[3] if not (isinstance(resname_1, str) and isinstance(resname_2, str)): print "Bad resnames: %s and %s" %(resname_1, resname_2) else: if not (imol_click_1 == imol_click_2): msg = "Two different molecules %s and %s selected.\n" \ %(imol_click_1, imol_click_2) + \ "Make sure to select residues in the same molecule." info_dialog(msg) imol_jligand_link = False elif (chain_click_1 == chain_click_2 and resno_click_1 == resno_click_2): msg = "Same residue %s %s selected.\n" \ %(chain_click_1, resno_click_1) + \ "Make sure to select different residues." info_dialog(msg) imol_jligand_link = False else: # happy path imol_jligand_link = imol_click_1 write_file_for_jligand(click2res_spec(click_1), resname_1, click2res_spec(click_2), resname_2) user_defined_click(2, link_em)
gpl-3.0
-8,485,911,911,103,284,000
41.796296
84
0.463436
false
3.940324
false
false
false
zbqf109/goodo
openerp/addons/sale_stock/tests/test_sale_stock.py
1
10525
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from openerp.addons.sale.tests.test_sale_common import TestSale class TestSaleStock(TestSale): def test_00_sale_stock_invoice(self): """ Test SO's changes when playing around with stock moves, quants, pack operations, pickings and whatever other model there is in stock with "invoice on delivery" products """ inv_obj = self.env['account.invoice'] self.so = self.env['sale.order'].create({ 'partner_id': self.partner.id, 'partner_invoice_id': self.partner.id, 'partner_shipping_id': self.partner.id, 'order_line': [(0, 0, {'name': p.name, 'product_id': p.id, 'product_uom_qty': 2, 'product_uom': p.uom_id.id, 'price_unit': p.list_price}) for (_, p) in self.products.iteritems()], 'pricelist_id': self.env.ref('product.list0').id, 'picking_policy': 'direct', }) # confirm our standard so, check the picking self.so.action_confirm() self.assertTrue(self.so.picking_ids, 'Sale Stock: no picking created for "invoice on delivery" stockable products') # invoice on order self.so.action_invoice_create() # deliver partially, check the so's invoice_status and delivered quantities self.assertEqual(self.so.invoice_status, 'no', 'Sale Stock: so invoice_status should be "nothing to invoice" after invoicing') pick = self.so.picking_ids pick.force_assign() pick.pack_operation_product_ids.write({'qty_done': 1}) wiz_act = pick.do_new_transfer() wiz = self.env[wiz_act['res_model']].browse(wiz_act['res_id']) wiz.process() self.assertEqual(self.so.invoice_status, 'to invoice', 'Sale Stock: so invoice_status should be "to invoice" after partial delivery') del_qties = [sol.qty_delivered for sol in self.so.order_line] del_qties_truth = [1.0 if sol.product_id.type in ['product', 'consu'] else 0.0 for sol in self.so.order_line] self.assertEqual(del_qties, del_qties_truth, 'Sale Stock: delivered quantities are wrong after partial delivery') # invoice on delivery: only stockable products inv_id = self.so.action_invoice_create() inv_1 = inv_obj.browse(inv_id) self.assertTrue(all([il.product_id.invoice_policy == 'delivery' for il in inv_1.invoice_line_ids]), 'Sale Stock: invoice should only contain "invoice on delivery" products') # complete the delivery and check invoice_status again self.assertEqual(self.so.invoice_status, 'no', 'Sale Stock: so invoice_status should be "nothing to invoice" after partial delivery and invoicing') self.assertEqual(len(self.so.picking_ids), 2, 'Sale Stock: number of pickings should be 2') pick_2 = self.so.picking_ids[0] pick_2.force_assign() pick_2.pack_operation_product_ids.write({'qty_done': 1}) self.assertIsNone(pick_2.do_new_transfer(), 'Sale Stock: second picking should be final without need for a backorder') self.assertEqual(self.so.invoice_status, 'to invoice', 'Sale Stock: so invoice_status should be "to invoice" after complete delivery') del_qties = [sol.qty_delivered for sol in self.so.order_line] del_qties_truth = [2.0 if sol.product_id.type in ['product', 'consu'] else 0.0 for sol in self.so.order_line] self.assertEqual(del_qties, del_qties_truth, 'Sale Stock: delivered quantities are wrong after complete delivery') # invoice on delivery inv_id = self.so.action_invoice_create() self.assertEqual(self.so.invoice_status, 'invoiced', 'Sale Stock: so invoice_status should be "fully invoiced" after complete delivery and invoicing') def test_01_sale_stock_order(self): """ Test SO's changes when playing around with stock moves, quants, pack operations, pickings and whatever other model there is in stock with "invoice on order" products """ # let's cheat and put all our products to "invoice on order" self.so = self.env['sale.order'].create({ 'partner_id': self.partner.id, 'partner_invoice_id': self.partner.id, 'partner_shipping_id': self.partner.id, 'order_line': [(0, 0, {'name': p.name, 'product_id': p.id, 'product_uom_qty': 2, 'product_uom': p.uom_id.id, 'price_unit': p.list_price}) for (_, p) in self.products.iteritems()], 'pricelist_id': self.env.ref('product.list0').id, 'picking_policy': 'direct', }) for sol in self.so.order_line: sol.product_id.invoice_policy = 'order' # confirm our standard so, check the picking self.so.action_confirm() self.assertTrue(self.so.picking_ids, 'Sale Stock: no picking created for "invoice on order" stockable products') # let's do an invoice for a deposit of 5% adv_wiz = self.env['sale.advance.payment.inv'].with_context(active_ids=[self.so.id]).create({ 'advance_payment_method': 'percentage', 'amount': 5.0, 'product_id': self.env.ref('sale.advance_product_0').id, }) act = adv_wiz.with_context(open_invoices=True).create_invoices() inv = self.env['account.invoice'].browse(act['res_id']) self.assertEqual(inv.amount_untaxed, self.so.amount_untaxed * 5.0 / 100.0, 'Sale Stock: deposit invoice is wrong') self.assertEqual(self.so.invoice_status, 'to invoice', 'Sale Stock: so should be to invoice after invoicing deposit') # invoice on order: everything should be invoiced self.so.action_invoice_create(final=True) self.assertEqual(self.so.invoice_status, 'invoiced', 'Sale Stock: so should be fully invoiced after second invoice') # deliver, check the delivered quantities pick = self.so.picking_ids pick.force_assign() pick.pack_operation_product_ids.write({'qty_done': 2}) self.assertIsNone(pick.do_new_transfer(), 'Sale Stock: complete delivery should not need a backorder') del_qties = [sol.qty_delivered for sol in self.so.order_line] del_qties_truth = [2.0 if sol.product_id.type in ['product', 'consu'] else 0.0 for sol in self.so.order_line] self.assertEqual(del_qties, del_qties_truth, 'Sale Stock: delivered quantities are wrong after partial delivery') # invoice on delivery: nothing to invoice self.assertFalse(self.so.action_invoice_create(), 'Sale Stock: there should be nothing to invoice') def test_02_sale_stock_return(self): """ Test a SO with a product invoiced on delivery. Deliver and invoice the SO, then do a return of the picking. Check that a refund invoice is well generated. """ # intial so self.partner = self.env.ref('base.res_partner_1') self.product = self.env.ref('product.product_product_47') so_vals = { 'partner_id': self.partner.id, 'partner_invoice_id': self.partner.id, 'partner_shipping_id': self.partner.id, 'order_line': [(0, 0, { 'name': self.product.name, 'product_id': self.product.id, 'product_uom_qty': 5.0, 'product_uom': self.product.uom_id.id, 'price_unit': self.product.list_price})], 'pricelist_id': self.env.ref('product.list0').id, } self.so = self.env['sale.order'].create(so_vals) # confirm our standard so, check the picking self.so.action_confirm() self.assertTrue(self.so.picking_ids, 'Sale Stock: no picking created for "invoice on delivery" stockable products') # invoice in on delivery, nothing should be invoiced self.assertEqual(self.so.invoice_status, 'no', 'Sale Stock: so invoice_status should be "nothing to invoice"') # deliver completely pick = self.so.picking_ids pick.force_assign() pick.pack_operation_product_ids.write({'qty_done': 5}) pick.do_new_transfer() # Check quantity delivered del_qty = sum(sol.qty_delivered for sol in self.so.order_line) self.assertEqual(del_qty, 5.0, 'Sale Stock: delivered quantity should be 5.0 after complete delivery') # Check invoice self.assertEqual(self.so.invoice_status, 'to invoice', 'Sale Stock: so invoice_status should be "to invoice" before invoicing') inv_1_id = self.so.action_invoice_create() self.assertEqual(self.so.invoice_status, 'invoiced', 'Sale Stock: so invoice_status should be "invoiced" after invoicing') self.assertEqual(len(inv_1_id), 1, 'Sale Stock: only one invoice should be created') self.inv_1 = self.env['account.invoice'].browse(inv_1_id) self.assertEqual(self.inv_1.amount_untaxed, self.inv_1.amount_untaxed, 'Sale Stock: amount in SO and invoice should be the same') # Create return picking StockReturnPicking = self.env['stock.return.picking'] default_data = StockReturnPicking.with_context(active_ids=pick.ids, active_id=pick.ids[0]).default_get(['move_dest_exists', 'original_location_id', 'product_return_moves', 'parent_location_id', 'location_id']) return_wiz = StockReturnPicking.with_context(active_ids=pick.ids, active_id=pick.ids[0]).create(default_data) res = return_wiz.create_returns() return_pick = self.env['stock.picking'].browse(res['res_id']) # Validate picking return_pick.force_assign() return_pick.pack_operation_product_ids.write({'qty_done': 5}) return_pick.do_new_transfer() # Check invoice self.assertEqual(self.so.invoice_status, 'to invoice', 'Sale Stock: so invoice_status should be "to invoice" before invoicing') # let's do an invoice with refunds adv_wiz = self.env['sale.advance.payment.inv'].with_context(active_ids=[self.so.id]).create({ 'advance_payment_method': 'all', }) adv_wiz.with_context(open_invoices=True).create_invoices() self.inv_2 = self.so.invoice_ids[1] self.assertEqual(self.so.invoice_status, 'no', 'Sale Stock: so invoice_status should be "no" after invoicing the return') self.assertEqual(self.inv_2.amount_untaxed, self.inv_2.amount_untaxed, 'Sale Stock: amount in SO and invoice should be the same')
gpl-3.0
-8,601,836,444,490,651,000
59.142857
217
0.645986
false
3.671085
true
false
false
Pushjet/Pushjet-Server-Api
utils.py
1
3199
from re import compile from json import dumps from flask import request, jsonify from functools import wraps from models import Service from shared import zmq_relay_socket uuid = compile(r'^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$') service = compile(r'^[a-zA-Z0-9]{4}-[a-zA-Z0-9]{6}-[a-zA-Z0-9]{12}-[a-zA-Z0-9]{5}-[a-zA-Z0-9]{9}$') is_uuid = lambda s: uuid.match(s) is not None is_service = lambda s: service.match(s) is not None is_secret = lambda s: compile(r'^[a-zA-Z0-9]{32}$').match(s) is not None QUERY_ACTION_NEW_MESSAGE = 0 QUERY_UPDATE_LISTEN = 1 class Error(object): @staticmethod def _e(message, error_code, http_status): return (dumps({'error': {'message': message, 'id': error_code}}), http_status) NONE = (dumps({'status': 'ok'}), 200) # OK INVALID_CLIENT = _e.__func__('Invalid client uuid', 1, 400) # Bad request INVALID_SERVICE = _e.__func__('Invalid service', 2, 400) # - || - INVALID_SECRET = _e.__func__('Invalid secret', 3, 400) # - || - DUPLICATE_LISTEN = _e.__func__('Already subscribed to that service', 4, 409) # Conflict RATE_TOOFAST = _e.__func__('Whoaw there cowboy, slow down!', 5, 429) # Too many requests SERVICE_NOTFOUND = _e.__func__('Service not found', 6, 404) INVALID_PUBKEY = _e.__func__('Invalid public key supplied. Please send a DER formatted base64 encoded key.', 8, 400) # Bad request CONNECTION_CLOSING = _e.__func__('Connection closing', 9, 499) # Client closed request NO_CHANGES = _e.__func__('No changes were made', 10, 400) # Bad request NOT_SUBSCRIBED = _e.__func__('Not subscribed to that service', 11, 409) # Conflict @staticmethod def ARGUMENT_MISSING(arg): return Error._e('Missing argument {}'.format(arg), 7, 400) # Bad request def has_uuid(f): @wraps(f) def df(*args, **kwargs): client = request.form.get('uuid', '') or request.args.get('uuid', '') if not client: return Error.ARGUMENT_MISSING('uuid') if not is_uuid(client): return Error.INVALID_CLIENT return f(*args, client=client, **kwargs) return df def has_service(f): @wraps(f) def df(*args, **kwargs): service = request.form.get('service', '') or request.args.get('service', '') if not service: return Error.ARGUMENT_MISSING('service') if not is_service(service): return Error.INVALID_SERVICE srv = Service.query.filter_by(public=service).first() if not srv: return Error.SERVICE_NOTFOUND return f(*args, service=srv, **kwargs) return df def has_secret(f): @wraps(f) def df(*args, **kwargs): secret = request.form.get('secret', '') or request.args.get('secret', '') if not secret: return Error.ARGUMENT_MISSING('secret') if not is_secret(secret): return Error.INVALID_SECRET srv = Service.query.filter_by(secret=secret).first() if not srv: return Error.SERVICE_NOTFOUND return f(*args, service=srv, **kwargs) return df def queue_zmq_message(message): zmq_relay_socket.send_string(message)
bsd-2-clause
53,105,573,924,442,610
35.352273
134
0.615505
false
3.315026
false
false
false
katstalk/android_external_chromium_org
tools/win/toolchain/get_toolchain_if_necessary.py
23
4403
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import ctypes.wintypes import hashlib import json import os import subprocess import sys BASEDIR = os.path.dirname(os.path.abspath(__file__)) GetFileAttributes = ctypes.windll.kernel32.GetFileAttributesW GetFileAttributes.argtypes = (ctypes.wintypes.LPWSTR,) GetFileAttributes.restype = ctypes.wintypes.DWORD FILE_ATTRIBUTE_HIDDEN = 0x2 FILE_ATTRIBUTE_SYSTEM = 0x4 def IsHidden(file_path): """Returns whether the given |file_path| has the 'system' or 'hidden' attribute set.""" p = GetFileAttributes(file_path) assert p != 0xffffffff return bool(p & (FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_SYSTEM)) def GetFileList(root): """Gets a normalized list of files under |root|.""" assert not os.path.isabs(root) assert os.path.normpath(root) == root file_list = [] for base, _, files in os.walk(root): paths = [os.path.join(base, f) for f in files] file_list.extend(x.lower() for x in paths if not IsHidden(x)) return sorted(file_list) def MakeTimestampsFileName(root): return os.path.join(root, '..', '.timestamps') def CalculateHash(root): """Calculates the sha1 of the paths to all files in the given |root| and the contents of those files, and returns as a hex string.""" file_list = GetFileList(root) # Check whether we previously saved timestamps in $root/../.timestamps. If # we didn't, or they don't match, then do the full calculation, otherwise # return the saved value. timestamps_file = MakeTimestampsFileName(root) timestamps_data = {'files': [], 'sha1': ''} if os.path.exists(timestamps_file): with open(timestamps_file, 'rb') as f: try: timestamps_data = json.load(f) except ValueError: # json couldn't be loaded, empty data will force a re-hash. pass matches = len(file_list) == len(timestamps_data['files']) if matches: for disk, cached in zip(file_list, timestamps_data['files']): if disk != cached[0] or os.stat(disk).st_mtime != cached[1]: matches = False break if matches: return timestamps_data['sha1'] digest = hashlib.sha1() for path in file_list: digest.update(path) with open(path, 'rb') as f: digest.update(f.read()) return digest.hexdigest() def SaveTimestampsAndHash(root, sha1): """Save timestamps and the final hash to be able to early-out more quickly next time.""" file_list = GetFileList(root) timestamps_data = { 'files': [[f, os.stat(f).st_mtime] for f in file_list], 'sha1': sha1, } with open(MakeTimestampsFileName(root), 'wb') as f: json.dump(timestamps_data, f) def main(): if sys.platform not in ('win32', 'cygwin'): return 0 if len(sys.argv) != 1: print >> sys.stderr, 'Unexpected arguments.' return 1 # Move to same location as .gclient. This is a no-op when run via gclient. os.chdir(os.path.normpath(os.path.join(BASEDIR, '..\\..\\..\\..'))) toolchain_dir = 'src\\third_party\\win_toolchain' target_dir = os.path.join(toolchain_dir, 'files') sha1path = os.path.join(toolchain_dir, 'toolchain.sha1') desired_hash = '' if os.path.isfile(sha1path): with open(sha1path, 'rb') as f: desired_hash = f.read().strip() # If the current hash doesn't match what we want in the file, nuke and pave. # Typically this script is only run when the .sha1 one file is updated, but # directly calling "gclient runhooks" will also run it, so we cache # based on timestamps to make that case fast. current_hash = CalculateHash(target_dir) if current_hash != desired_hash: print 'Windows toolchain out of date or doesn\'t exist, updating...' if os.path.isdir(target_dir): subprocess.check_call('rmdir /s/q "%s"' % target_dir, shell=True) subprocess.check_call([ sys.executable, 'src\\tools\\win\\toolchain\\toolchain2013.py', '--targetdir', target_dir]) current_hash = CalculateHash(target_dir) if current_hash != desired_hash: print >> sys.stderr, ( 'Got wrong hash after pulling a new toolchain. ' 'Wanted \'%s\', got \'%s\'.' % ( desired_hash, current_hash)) return 1 SaveTimestampsAndHash(target_dir, current_hash) return 0 if __name__ == '__main__': sys.exit(main())
bsd-3-clause
7,618,586,585,814,765,000
30.905797
78
0.671588
false
3.49722
false
false
false
ellisgeek/AllSeeingEye
allSeeingEye.py
1
7922
""" All Seeing Eye Oracle Client Install Helper! Elliott Saille 12/3/13 """ #Include only specific functions from subprocess import call from os import name from os import system from os import access from os import R_OK from os import W_OK from os import makedirs from os import path from os import environ from os import walk from shutil import rmtree from shutil import copy2 from sys import exit from time import sleep from subprocess import call #Variables tempDir = environ["TEMP"] + "/allSeeingEye" tnsnamesTemp = tempDir + "/tnsnames.ora" tnsnames = "C:/oracle/product/10.2.0/client/NETWORK/ADMIN/tnsnames.ora" oraInstaller = "M:/INSTALL/Voyager8/10203_client_vista-win7" installTemp = tempDir + "/oracle" setup = installTemp + "/setup.exe" setupOpts = "\"FROM_LOCATION=%CD%\stage\products.xml\" -responseFile \"%CD%\response\ExLibrisOracle.rsp\"" compatMode = "VISTASP2" def compatabilityChange(path, mode="WINXPSP3", runasadmin=True, verbose=False): """ Borrowed from http://techdiary-viki.blogspot.com/2011/03/script-to-set-compatibility-mode-of.html Change the compatibility mode of a windows EXE Valid Compatibility modes are: WIN95: Windows 95 WIN98: Windows 98 / Windows ME WINXPSP2: Windows XP (Service Pack 2) WINXPSP3: Windows XP (Service Pack 3) VISTARTM: Windows Vista VISTASP1: Windows Vista (Service Pack 1) VISTASP2: Windows Vista (Service Pack 2) WIN7RTM: Windows 7 WIN8RTM: Windows 8 """ #Display path to file that will be changed print("Processing path %s" % path) files = [] for dirpath, dirnames, filenames in walk(path): files.extend(filenames) exec_files = filter(lambda x: x.endswith('.exe'), files) if verbose: print("%d files to process" % len(exec_files)) print("Setting mode to %s" % mode) if runasadmin == True: print("Program will run as Administrator") for ef in exec_files: if verbose: print("Processing file %s" % path + '\\' + ef) system('REG.EXE ADD "HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Layers" /v "%s" /t REG_SZ /d "%s" /f' % (ef, mode)) def confirm(prompt=None, resp=False): """ Prompts for yes or no response from the user. Returns True for yes and False for no. "resp" should be set to the default value assumed by the caller when user simply types ENTER. """ #set default prompt if none set if prompt is None: prompt = "Confirm" #Change the default response if resp: prompt = "%s [%s]|%s: " % (prompt, "y", "n") else: prompt = "%s [%s]|%s: " % (prompt, "n", "y") #Check for user input while True: ans = input(prompt) if not ans: return resp if ans not in ["y", "Y", "n", "N"]: print("please enter y or n.") continue if ans == "y" or ans == "Y": return True if ans == "n" or ans == "N": return False def clear(): """ Clears the screen """ system("cls") def backup(): """ Backs up current tnsnames if it exists """ clear() print("Backing up current tnsnames.ora from:") print(tnsnames) #make sure we can access the file if access(tnsnames, R_OK) == True: try: #Copy it to the Temp Dir copy2(tnsnames, tnsnamesTemp) #or throw error except IOError as e: print("\n") print("({})".format(e)) print("\n") confirm("Backup Failed!\nReturn to main menu?", True) mainMenu() #be happy else: print("\nBackup Complete!\n") else: clear() print("Unable to access tnsnames.ora at:") print(tnsnames) confirm("Return To main Menu?", True) mainMenu() def download(): """ Copies oracle installer from network share """ #Check if installer exists on share if path.exists(oraInstaller): try: #Copy it local system("xcopy" +" /I /S \""+ oraInstaller +"\" \""+ installTemp +"\"") #Throw a useful error except IOError as e: print("\n") print("({})".format(e)) print("\n") confirm("Installation Failed!\nReturn to main menu?", True) mainMenu() #If no errors print happy message! else: print("\nInstaller Copied Successfully!\n") #No installer :( else: confirm("\nInstaller does not exist on share!\nReturn to main menu?", True) mainMenu() #Check if installer has been downloaded if path.exists(setup): #Change compatibility mode compatabilityChange(setup, compatMode, True, False) #Or Fail! else: clear() print("Could not find installer,\nnothing to set compatibility for!\n") confirm("Return to main menu?", True) mainMenu() def install(): """ Sets environment up to run the oracle installer """ clear() print("Installing Oracle database client\n") #Are you shure this is what you want to do? if confirm("Continue Installation?", True) == False: clear() print("Installation aborted") sleep(2) mainMenu() #Check if installer has already been downloaded this session if path.exists(setup): #Ask if you want to reuse downloaded installer and if not re-download if confirm("Installer exists!\nUse downloaded installer?", True) == False: clear() print("Will re-download installer") rmtree(installTemp) download() #If not download the installer else: download() #Write some initial configuration stuff to the Registry system("reg add HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC\MTxOCI /v OracleOciLib /t REG_SZ /d oci.dll /f") system("reg add HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC\MTxOCI /v OracleSqlLib /t REG_SZ /d orasql10.dll /f") system("reg add HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC\MTxOCI /v OracleXaLib /t REG_SZ /d oraclient10.dll /f") #Call the installer call("%s" % setup + " " + setupOpts, shell=True) confirm("Return To main Menu?", True) mainMenu() def tnsnames(): """ Copy preconfigured tnsnames.ora to oracle install location Will eventually include option to add custom entries to tnsnames """ def mainMenu(): """ Display the Main Menu """ clear() print("Oracle Installation and Configuration Helper") print("\n") print("1. Backup current tnsnames.ora") print("2. Install Oracle 10g Client") print("3. Create tnsnames.ora") print("4. Add ODBC Configuration") print("Q. Exit") choise = input("Please Make a Selection: ") if choise == "1": backup() elif choise == "2": install() elif choise == "3": tnsnames() elif choise == "4": print("2") elif choise == "Q" or choise == "q": clear() quit() clear() print("Please make a selection!") confirm("Return To main Menu?", True) mainMenu() #Clean up and Create Temp Dir for session if path.exists(tempDir): print ("Old temp directory found at %s" % tempDir) if confirm("Remove Temp Directory?", True) == True: try: rmtree(tempDir) except IOError as e: print("({})".format(e)) try: makedirs(tempDir) except IOError as e: print("({})".format(e)) else: exit("Will not remove Temp Directory! Please Manually delete directory %s!" % tempDir) else: try: makedirs(tempDir) except IOError as e: print("({})".format(e)) #Do Stuff! mainMenu()
gpl-3.0
-2,110,420,134,937,973,800
29.007576
158
0.601237
false
3.788618
false
false
false
aldian/tensorflow
tensorflow/python/kernel_tests/variable_scope_test.py
4
57583
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for variable store.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc import numpy from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test class VariableScopeTest(test.TestCase): def tearDown(self): gc.collect() # This will only contain uncollectable garbage, i.e. reference cycles # involving objects with __del__ defined. self.assertEqual(0, len(gc.garbage)) def testGetVar(self): vs = variable_scope._get_default_variable_store() v = vs.get_variable("v", [1]) v1 = vs.get_variable("v", [1]) self.assertEqual(v, v1) @test_util.run_in_graph_and_eager_modes() def testResource(self): vs = variable_scope._get_default_variable_store() v1 = vs.get_variable("v", [1], use_resource=True) self.assertTrue(isinstance(v1, resource_variable_ops.ResourceVariable)) def testNameExists(self): vs = variable_scope._get_default_variable_store() # No check by default, so we can both create and get existing names. v = vs.get_variable("v", [1]) v1 = vs.get_variable("v", [1]) self.assertEqual(v, v1) # When reuse is False, we fail when variables are already there. vs.get_variable("w", [1], reuse=False) # That's ok. with self.assertRaises(ValueError): vs.get_variable("v", [1], reuse=False) # That fails. # When reuse is True, we fail when variables are new. vs.get_variable("v", [1], reuse=True) # That's ok. with self.assertRaises(ValueError): vs.get_variable("u", [1], reuse=True) # That fails. def testNamelessStore(self): vs = variable_scope._get_default_variable_store() vs.get_variable("v1", [2]) vs.get_variable("v2", [2]) expected_names = ["%s:0" % name for name in ["v1", "v2"]] self.assertEqual( set(expected_names), set([v.name for v in vs._vars.values()])) @test_util.run_in_graph_and_eager_modes() def testVarScopeInitializer(self): init = init_ops.constant_initializer(0.3) with variable_scope.variable_scope("tower0") as tower: with variable_scope.variable_scope("foo", initializer=init): v = variable_scope.get_variable("v", []) self.evaluate(variables_lib.variables_initializer([v])) self.assertAllClose(self.evaluate(v.value()), 0.3) with variable_scope.variable_scope(tower, initializer=init): w = variable_scope.get_variable("w", []) self.evaluate(variables_lib.variables_initializer([w])) self.assertAllClose(self.evaluate(w.value()), 0.3) @test_util.run_in_graph_and_eager_modes() def testVarScopeConstraint(self): constraint = lambda x: 0. * x with variable_scope.variable_scope("tower1") as tower: with variable_scope.variable_scope("foo", constraint=constraint): v = variable_scope.get_variable("v", []) self.assertEqual(v.constraint, constraint) with variable_scope.variable_scope(tower, constraint=constraint): w = variable_scope.get_variable("w", []) self.assertEqual(w.constraint, constraint) @test_util.run_in_graph_and_eager_modes() def testVarScopeDType(self): with variable_scope.variable_scope("tower2") as tower: with variable_scope.variable_scope("foo", dtype=dtypes.float16): v = variable_scope.get_variable("v", []) self.assertEqual(v.dtype.base_dtype, dtypes.float16) with variable_scope.variable_scope(tower, dtype=dtypes.float16): w = variable_scope.get_variable("w", []) self.assertEqual(w.dtype.base_dtype, dtypes.float16) def testEagerVaribleStore(self): with context.eager_mode(): store = variable_scope.EagerVariableStore() with store.as_default(): v = variable_scope.get_variable("v", shape=(), trainable=True) w = variable_scope.get_variable("w", shape=(), trainable=False) self.assertTrue(v in store.variables()) self.assertTrue(w in store.variables()) self.assertTrue(v in store.trainable_variables()) self.assertFalse(w in store.trainable_variables()) self.assertFalse(v in store.non_trainable_variables()) self.assertTrue(w in store.non_trainable_variables()) @test_util.run_in_graph_and_eager_modes() def testInitFromNonTensorValue(self): v = variable_scope.get_variable("v4", initializer=4, dtype=dtypes.int32) self.evaluate(variables_lib.variables_initializer([v])) self.assertAllClose(self.evaluate(v.value()), 4) w = variable_scope.get_variable( "w4", initializer=numpy.array([1, 2, 3]), dtype=dtypes.int64) self.evaluate(variables_lib.variables_initializer([w])) self.assertAllClose(self.evaluate(w.value()), [1, 2, 3]) if context.in_graph_mode(): with self.assertRaises(TypeError): variable_scope.get_variable("x4", initializer={}) else: with self.assertRaises(ValueError): variable_scope.get_variable("x4", initializer={}) @test_util.run_in_graph_and_eager_modes() def testInitFromNonInitializer(self): # Test various dtypes with zeros initializer as following: types = [ dtypes.int8, dtypes.uint8, dtypes.int16, dtypes.uint16, dtypes.int32, dtypes.int64, dtypes.bool ] # Use different variable_name to distinguish various dtypes for (i, dtype) in enumerate(types): x = variable_scope.get_variable( name="xx%d" % i, shape=(3, 4), dtype=dtype) y = variable_scope.get_variable( name="yy%d" % i, shape=(3, 4), dtype=dtype, initializer=init_ops.zeros_initializer(dtype=dtype)) self.evaluate(variables_lib.global_variables_initializer()) self.assertAllEqual(self.evaluate(x.value()), self.evaluate(y.value())) # TODO(alive): support variable partitioning/caching in eager mode. def testVarScopeCachingDevice(self): with self.test_session(): caching_device = "/job:moo" with variable_scope.variable_scope("tower"): with variable_scope.variable_scope( "caching", caching_device=caching_device): v = variable_scope.get_variable("v", []) self.assertTrue(v.value().device.startswith(caching_device)) with variable_scope.variable_scope("child"): v2 = variable_scope.get_variable("v", []) self.assertTrue(v2.value().device.startswith(caching_device)) with variable_scope.variable_scope("not_cached", caching_device=""): v2_not_cached = variable_scope.get_variable("v", []) self.assertFalse(v2_not_cached.value().device.startswith( caching_device)) with variable_scope.variable_scope( "not_cached_identity_device", caching_device=lambda op: op.device): v2_identity_device = variable_scope.get_variable("v", []) self.assertFalse(v2_identity_device.value().device.startswith( caching_device)) with variable_scope.variable_scope("we_will_do_it_live") as vs_live: vs_live.set_caching_device("/job:live") v_live = variable_scope.get_variable("v", []) self.assertTrue(v_live.value().device.startswith("/job:live")) v_tower = variable_scope.get_variable("v", []) self.assertFalse(v_tower.value().device.startswith(caching_device)) @test_util.run_in_graph_and_eager_modes() def testVarScopeRegularizer(self): init = init_ops.constant_initializer(0.3) def regularizer1(v): return math_ops.reduce_mean(v) + 0.1 def regularizer2(v): return math_ops.reduce_mean(v) + 0.2 with variable_scope.variable_scope( "tower3", regularizer=regularizer1) as tower: with variable_scope.variable_scope("foo", initializer=init): v = variable_scope.get_variable("v", []) self.evaluate(variables_lib.variables_initializer([v])) losses = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(1, len(losses)) self.assertAllClose(self.evaluate(losses[0]), 0.4) with variable_scope.variable_scope(tower, initializer=init) as vs: u = variable_scope.get_variable("u", []) vs.set_regularizer(regularizer2) w = variable_scope.get_variable("w", []) # Next 3 variable not regularized to test disabling regularization. x = variable_scope.get_variable( "x", [], regularizer=variable_scope.no_regularizer) with variable_scope.variable_scope( "baz", regularizer=variable_scope.no_regularizer): y = variable_scope.get_variable("y", []) vs.set_regularizer(variable_scope.no_regularizer) z = variable_scope.get_variable("z", []) # Check results. losses = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(3, len(losses)) self.evaluate(variables_lib.variables_initializer([u, w, x, y, z])) self.assertAllClose(self.evaluate(losses[0]), 0.4) self.assertAllClose(self.evaluate(losses[1]), 0.4) self.assertAllClose(self.evaluate(losses[2]), 0.5) with variable_scope.variable_scope("foo", reuse=True): # reuse=True is for now only supported when eager execution is disabled. if context.in_graph_mode(): v = variable_scope.get_variable("v", []) # "v" is alredy there, reused losses = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(3, len(losses)) # No new loss added. @test_util.run_in_graph_and_eager_modes() def testInitializeFromValue(self): init = constant_op.constant(0.1) w = variable_scope.get_variable("v", initializer=init) self.evaluate(variables_lib.variables_initializer([w])) self.assertAllClose(self.evaluate(w.value()), 0.1) with self.assertRaisesRegexp(ValueError, "shape"): # We disallow explicit shape specification when initializer is constant. variable_scope.get_variable("u", [1], initializer=init) with variable_scope.variable_scope("foo", initializer=init): # Constant initializer can be passed through scopes if needed. v = variable_scope.get_variable("v") self.evaluate(variables_lib.variables_initializer([v])) self.assertAllClose(self.evaluate(v.value()), 0.1) # Check that non-float32 initializer creates a non-float32 variable. init = constant_op.constant(1, dtype=dtypes.int32) t = variable_scope.get_variable("t", initializer=init) self.assertEqual(t.dtype.base_dtype, dtypes.int32) # Raise error if `initializer` dtype and `dtype` are not identical. with self.assertRaisesRegexp(ValueError, "don't match"): variable_scope.get_variable("s", initializer=init, dtype=dtypes.float64) def testControlDeps(self): with self.test_session() as sess: v0 = variable_scope.get_variable( "v0", [1], initializer=init_ops.constant_initializer(0)) with ops.control_dependencies([v0.value()]): v1 = variable_scope.get_variable( "v1", [1], initializer=init_ops.constant_initializer(1)) add = v1 + v0 # v0 should be uninitialized. with self.assertRaisesRegexp(errors.OpError, "uninitialized"): sess.run(v0) # We should be able to initialize and run v1 without initializing # v0, even if the variable was created with a control dep on v0. sess.run(v1.initializer) self.assertEqual(1, sess.run(v1)) # v0 should still be uninitialized. with self.assertRaisesRegexp(errors.OpError, "uninitialized"): sess.run(v0) with self.assertRaisesRegexp(errors.OpError, "uninitialized"): sess.run(add) # If we initialize v0 we should be able to run 'add'. sess.run(v0.initializer) sess.run(add) def testControlFlow(self): with self.test_session() as sess: v0 = variable_scope.get_variable( "v0", [], initializer=init_ops.constant_initializer(0)) var_dict = {} # Call get_variable in each of the cond clauses. def var_in_then_clause(): v1 = variable_scope.get_variable( "v1", [1], initializer=init_ops.constant_initializer(1)) var_dict["v1"] = v1 return v1 + v0 def var_in_else_clause(): v2 = variable_scope.get_variable( "v2", [1], initializer=init_ops.constant_initializer(2)) var_dict["v2"] = v2 return v2 + v0 add = control_flow_ops.cond( math_ops.less(v0, 10), var_in_then_clause, var_in_else_clause) v1 = var_dict["v1"] v2 = var_dict["v2"] # We should be able to initialize and run v1 and v2 without initializing # v0, even if the variable was created with a control dep on v0. sess.run(v1.initializer) self.assertEqual([1], sess.run(v1)) sess.run(v2.initializer) self.assertEqual([2], sess.run(v2)) # v0 should still be uninitialized. with self.assertRaisesRegexp(errors.OpError, "uninitialized"): sess.run(v0) # We should not be able to run 'add' yet. with self.assertRaisesRegexp(errors.OpError, "uninitialized"): sess.run(add) # If we initialize v0 we should be able to run 'add'. sess.run(v0.initializer) sess.run(add) @test_util.run_in_graph_and_eager_modes() def testGetVariableScope(self): # Test the get_variable_scope() function and setting properties of result. init = init_ops.constant_initializer(0.3) with variable_scope.variable_scope("bar"): new_init1 = variable_scope.get_variable_scope().initializer self.assertEqual(new_init1, None) # Check that we can set initializer like this. variable_scope.get_variable_scope().set_initializer(init) v = variable_scope.get_variable("v", []) self.evaluate(variables_lib.variables_initializer([v])) self.assertAllClose(self.evaluate(v.value()), 0.3) if context.in_graph_mode(): # Check that we can set reuse. variable_scope.get_variable_scope().reuse_variables() with self.assertRaises(ValueError): # Fail, w does not exist yet. variable_scope.get_variable("w", [1]) # Check that the set initializer goes away. new_init = variable_scope.get_variable_scope().initializer self.assertEqual(new_init, None) @test_util.run_in_graph_and_eager_modes() def testVarScope(self): with variable_scope.variable_scope("tower4") as tower: self.assertEqual(tower.name, "tower4") with ops.name_scope("scope") as sc: self.assertEqual(sc, "tower4/scope/") with variable_scope.variable_scope("tower5"): with variable_scope.variable_scope("bar") as bar: self.assertEqual(bar.name, "tower5/bar") with ops.name_scope("scope") as sc: self.assertEqual(sc, "tower5/bar/scope/") with variable_scope.variable_scope("tower6"): with variable_scope.variable_scope(tower, reuse=True) as tower_shared: self.assertEqual(tower_shared.name, "tower4") with ops.name_scope("scope") as sc: self.assertEqual(sc, "tower6/tower4/scope/") @test_util.run_in_graph_and_eager_modes() def testVarScopeNameScope(self): with ops.name_scope("testVarScopeNameScope1"): with variable_scope.variable_scope("tower") as tower: with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "testVarScopeNameScope1/tower/scope2/") if context.in_graph_mode(): with variable_scope.variable_scope( tower): # Re-entering acts like another "tower". with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "testVarScopeNameScope1/tower_1/scope2/") with variable_scope.variable_scope( "tower"): # Re-entering by string acts the same. with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "testVarScopeNameScope1/tower_2/scope2/") with ops.name_scope("testVarScopeNameScope2"): with variable_scope.variable_scope("tower"): with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "testVarScopeNameScope2/tower/scope2/") if context.in_graph_mode(): with variable_scope.variable_scope(tower): with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "testVarScopeNameScope2/tower_1/scope2/") root_var_scope = variable_scope.get_variable_scope() with ops.name_scope("testVarScopeNameScope3"): with variable_scope.variable_scope(root_var_scope): with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "testVarScopeNameScope3/scope2/") def testVarScopeOriginalNameScope(self): with self.test_session(): with ops.name_scope("scope1"): with variable_scope.variable_scope("tower") as tower: self.assertEqual(tower.original_name_scope, "scope1/tower/") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "scope1/tower/scope2/") with ops.name_scope("scope2"): with variable_scope.variable_scope(tower) as tower1: # Re-entering preserves original name scope. self.assertEqual(tower1.original_name_scope, "scope1/tower/") with ops.name_scope("foo") as sc2: self.assertEqual(sc2, "scope2/tower/foo/") # Test re-entering original name scope. with ops.name_scope(tower.original_name_scope): with ops.name_scope("bar") as sc3: self.assertEqual(sc3, "scope1/tower/bar/") with ops.name_scope("scope2"): with variable_scope.variable_scope(tower): with ops.name_scope(tower.original_name_scope): with ops.name_scope("bar") as sc3: self.assertEqual(sc3, "scope1/tower/bar_1/") def testVarScopeObjectReuse(self): with self.test_session(): vs = None with variable_scope.variable_scope("jump", reuse=True) as scope: vs = scope with variable_scope.variable_scope(vs) as jump: self.assertTrue(jump.reuse) with variable_scope.variable_scope(vs, reuse=True) as jump_reuse: self.assertTrue(jump_reuse.reuse) with variable_scope.variable_scope(vs, reuse=False) as jump_no_reuse: self.assertTrue(jump_no_reuse.reuse) # Inherited, cannot be undone. with variable_scope.variable_scope("jump", reuse=False) as scope: vs = scope with variable_scope.variable_scope(vs) as jump: self.assertFalse(jump.reuse) with variable_scope.variable_scope(vs, reuse=True) as jump_reuse: self.assertTrue(jump_reuse.reuse) with variable_scope.variable_scope(vs, reuse=False) as jump_no_reuse: self.assertFalse(jump_no_reuse.reuse) def testVarScopeGetOrCreateReuse(self): with self.test_session(): def test_value(value): x = constant_op.constant(value) with variable_scope.variable_scope("testVarScopeGetOrCreateReuse_bar", reuse=variable_scope.AUTO_REUSE): _ = state_ops.assign(variable_scope.get_variable("var", []), x) with variable_scope.variable_scope("testVarScopeGetOrCreateReuse_bar", reuse=variable_scope.AUTO_REUSE): _ = variable_scope.get_variable("var", []) self.assertEqual(value, x.eval()) test_value(42.) # Variable is created. test_value(13.) # Variable is reused hereafter. test_value(17.) def testVarOpScope(self): with self.test_session(): with ops.name_scope("testVarOpScope1"): with variable_scope.variable_scope("tower", "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "tower/w:0") with ops.name_scope("testVarOpScope2") as sc2: self.assertEqual(sc2, "testVarOpScope1/tower/testVarOpScope2/") with variable_scope.variable_scope("tower", "default", []): with self.assertRaises(ValueError): variable_scope.get_variable("w", []) with ops.name_scope("testVarOpScope2") as sc2: self.assertEqual(sc2, "testVarOpScope1/tower_1/testVarOpScope2/") with ops.name_scope("testVarOpScope2"): with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "default/w:0") with ops.name_scope("testVarOpScope2") as sc2: self.assertEqual(sc2, "testVarOpScope2/default/testVarOpScope2/") with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "default_1/w:0") with ops.name_scope("testVarOpScope2") as sc2: self.assertEqual(sc2, "testVarOpScope2/default_1/testVarOpScope2/") def testVarOpScopeUniqueNamesInterleavedSubstringScopes(self): with self.test_session(): with variable_scope.variable_scope(None, "defaultScope1"): with variable_scope.variable_scope(None, "layer"): self.assertEqual( variable_scope.get_variable("w", []).name, "defaultScope1/layer/w:0") with variable_scope.variable_scope(None, "defaultScope1"): with variable_scope.variable_scope(None, "layer"): self.assertEqual( variable_scope.get_variable("w", []).name, "defaultScope1_1/layer/w:0") with variable_scope.variable_scope(None, "defaultScope"): with variable_scope.variable_scope(None, "layer"): self.assertEqual( variable_scope.get_variable("w", []).name, "defaultScope/layer/w:0") with variable_scope.variable_scope(None, "defaultScope1"): with variable_scope.variable_scope(None, "layer"): self.assertEqual( variable_scope.get_variable("w", []).name, "defaultScope1_2/layer/w:0") def testVarOpScopeUniqueNamesWithJump(self): with self.test_session(): with variable_scope.variable_scope("default") as default: with variable_scope.variable_scope(None, "layer"): self.assertEqual( variable_scope.get_variable("w", []).name, "default/layer/w:0") with variable_scope.variable_scope(None, "layer"): self.assertEqual( variable_scope.get_variable("w", []).name, "default/layer_1/w:0") with variable_scope.variable_scope(default): pass # No matter the jump in the middle, unique numbering continues. with variable_scope.variable_scope(None, "layer"): self.assertEqual( variable_scope.get_variable("w", []).name, "default/layer_2/w:0") def testVarOpScopeReuse(self): with self.test_session(): with variable_scope.variable_scope("outer") as outer: with variable_scope.variable_scope("tower", "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/tower/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/tower/scope2/") with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default/scope2/") with variable_scope.variable_scope(outer, reuse=True) as outer: with variable_scope.variable_scope("tower", "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/tower/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/tower/scope2/") with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") def testVarScopeGetVar(self): with self.test_session(): with variable_scope.variable_scope("root"): with variable_scope.variable_scope("towerA") as tower_a: va = variable_scope.get_variable("v", [1]) self.assertEqual(va.name, "root/towerA/v:0") with variable_scope.variable_scope(tower_a, reuse=True): va2 = variable_scope.get_variable("v", [1]) self.assertEqual(va2, va) with variable_scope.variable_scope("towerB"): vb = variable_scope.get_variable("v", [1]) self.assertEqual(vb.name, "root/towerB/v:0") with self.assertRaises(ValueError): with variable_scope.variable_scope("towerA"): va2 = variable_scope.get_variable("v", [1]) with variable_scope.variable_scope("towerA", reuse=True): va2 = variable_scope.get_variable("v", [1]) self.assertEqual(va2, va) with variable_scope.variable_scope("foo"): with variable_scope.variable_scope("bar"): v = variable_scope.get_variable("v", [1]) self.assertEqual(v.name, "root/foo/bar/v:0") with variable_scope.variable_scope(tower_a, reuse=True): va3 = variable_scope.get_variable("v", [1]) self.assertEqual(va, va3) with self.assertRaises(ValueError): with variable_scope.variable_scope(tower_a, reuse=True): with variable_scope.variable_scope("baz"): variable_scope.get_variable("v", [1]) with self.assertRaises(ValueError) as exc: with variable_scope.variable_scope(tower_a, reuse=True): variable_scope.get_variable("v", [2]) # Different shape. self.assertEqual("shape" in str(exc.exception), True) with self.assertRaises(ValueError) as exc: with variable_scope.variable_scope(tower_a, reuse=True): variable_scope.get_variable("v", [1], dtype=dtypes.int32) self.assertEqual("dtype" in str(exc.exception), True) def testVarScopeOuterScope(self): with self.test_session(): with variable_scope.variable_scope("outer") as outer: pass with variable_scope.variable_scope(outer): self.assertEqual(variable_scope.get_variable("w", []).name, "outer/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/scope2/") with variable_scope.variable_scope("default"): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") with variable_scope.variable_scope(outer, reuse=True): self.assertEqual(variable_scope.get_variable("w", []).name, "outer/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_2/scope2/") with variable_scope.variable_scope("default", reuse=True): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_2/default/scope2/") def testVarScopeNestedOuterScope(self): with self.test_session(): with variable_scope.variable_scope("outer") as outer: with variable_scope.variable_scope(outer): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/outer/scope2/") with variable_scope.variable_scope("default"): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default/scope2/") with variable_scope.variable_scope(outer, reuse=True): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/outer_1/scope2/") with variable_scope.variable_scope("default", reuse=True): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default_1/scope2/") def testVarOpScopeReuseParam(self): with self.test_session(): with variable_scope.variable_scope("outer") as outer: with variable_scope.variable_scope("tower", "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/tower/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/tower/scope2/") with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default/scope2/") with variable_scope.variable_scope(outer) as outer: with variable_scope.variable_scope("tower", "default", reuse=True): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/tower/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/tower/scope2/") outer.reuse_variables() with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") def testVarOpScopeReuseError(self): with self.test_session(): with self.assertRaises(ValueError): with variable_scope.variable_scope(None, "default", reuse=True): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/tower/w:0") def testVarOpScopeOuterScope(self): with self.test_session(): with variable_scope.variable_scope("outer") as outer: pass with variable_scope.variable_scope(outer, "default", []): self.assertEqual(variable_scope.get_variable("w", []).name, "outer/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/scope2/") with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") with variable_scope.variable_scope(outer, "default", reuse=True): self.assertEqual(variable_scope.get_variable("w", []).name, "outer/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_2/scope2/") outer.reuse_variables() with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_2/default/scope2/") def testVarOpScopeNestedOuterScope(self): with self.test_session(): with variable_scope.variable_scope("outer") as outer: with variable_scope.variable_scope(outer, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/outer/scope2/") with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer/default/scope2/") with variable_scope.variable_scope(outer, "default", reuse=True): self.assertEqual(variable_scope.get_variable("w", []).name, "outer/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/scope2/") with variable_scope.variable_scope(None, "default", []): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") with ops.name_scope("scope2") as sc2: self.assertEqual(sc2, "outer_1/default/scope2/") def testBasicWhenAuxiliaryNameScopeIsFalse(self): with self.test_session(): with variable_scope.variable_scope( "scope", auxiliary_name_scope=False) as scope: self.assertEqual(scope.original_name_scope, "") self.assertEqual(variable_scope.get_variable("w", []).name, "scope/w:0") self.assertEqual(constant_op.constant([], name="c").name, "c:0") with variable_scope.variable_scope(scope, auxiliary_name_scope=False): self.assertEqual(scope.original_name_scope, "") self.assertEqual( variable_scope.get_variable("w1", []).name, "scope/w1:0") self.assertEqual(constant_op.constant([], name="c1").name, "c1:0") # Recheck: new name scope is NOT created before with ops.name_scope("scope"): self.assertEqual(constant_op.constant([], name="c").name, "scope/c:0") with variable_scope.variable_scope("outer"): with variable_scope.variable_scope( "inner", auxiliary_name_scope=False) as inner: self.assertEqual(inner.original_name_scope, "outer/") self.assertEqual( variable_scope.get_variable("w", []).name, "outer/inner/w:0") self.assertEqual(constant_op.constant([], name="c").name, "outer/c:0") with variable_scope.variable_scope( inner, auxiliary_name_scope=False) as inner1: self.assertEqual(inner1.original_name_scope, "outer/") self.assertEqual( variable_scope.get_variable("w1", []).name, "outer/inner/w1:0") self.assertEqual( constant_op.constant([], name="c1").name, "outer/c1:0") # Recheck: new name scope is NOT created before with ops.name_scope("inner"): self.assertEqual( constant_op.constant([], name="c").name, "outer/inner/c:0") def testCreatedByDefaultNameWhenAuxiliaryNameScopeIsFalse(self): with self.test_session(): with variable_scope.variable_scope( None, default_name="default", auxiliary_name_scope=False) as scope: self.assertEqual(scope.original_name_scope, "") self.assertEqual( variable_scope.get_variable("w", []).name, "default/w:0") self.assertEqual(constant_op.constant([], name="c").name, "c:0") # Recheck: new name scope is NOT created before with ops.name_scope("default"): self.assertEqual(constant_op.constant([], name="c").name, "default/c:0") with variable_scope.variable_scope("outer"): with variable_scope.variable_scope( None, default_name="default", auxiliary_name_scope=False) as inner: self.assertEqual(inner.original_name_scope, "outer/") self.assertEqual( variable_scope.get_variable("w", []).name, "outer/default/w:0") self.assertEqual(constant_op.constant([], name="c").name, "outer/c:0") # Recheck: new name scope is NOT created before with ops.name_scope("default"): self.assertEqual( constant_op.constant([], name="c").name, "outer/default/c:0") def testReenterRootScopeWhenAuxiliaryNameScopeIsFalse(self): with self.test_session(): root_scope = variable_scope.get_variable_scope() with variable_scope.variable_scope( root_scope, auxiliary_name_scope=False) as scope: self.assertEqual(scope.original_name_scope, "") self.assertEqual(variable_scope.get_variable("w", []).name, "w:0") self.assertEqual(constant_op.constant([], name="c").name, "c:0") with variable_scope.variable_scope("outer"): with variable_scope.variable_scope( root_scope, auxiliary_name_scope=False) as inner: self.assertEqual(inner.original_name_scope, "") self.assertEqual(variable_scope.get_variable("w1", []).name, "w1:0") self.assertEqual( constant_op.constant([], name="c1").name, "outer/c1:0") def testAuxiliaryNameScopeIsInvalid(self): with self.test_session(): with self.assertRaisesRegexp(TypeError, "auxiliary_name_scope"): with variable_scope.variable_scope( None, default_name="scope", auxiliary_name_scope="invalid"): pass with self.assertRaisesRegexp(TypeError, "auxiliary_name_scope"): with variable_scope.variable_scope( "scope", auxiliary_name_scope="invalid"): pass with variable_scope.variable_scope("scope") as scope: pass with self.assertRaisesRegexp(TypeError, "auxiliary_name_scope"): with variable_scope.variable_scope( scope, auxiliary_name_scope="invalid"): pass def testReuseScopeWithoutNameScopeCollision(self): # Github issue: #13429 with self.test_session(): with variable_scope.variable_scope("outer"): with variable_scope.variable_scope("inner") as inner: pass with variable_scope.variable_scope( inner, auxiliary_name_scope=False) as scope: with ops.name_scope(scope.original_name_scope): self.assertEqual( variable_scope.get_variable("w", []).name, "outer/inner/w:0") self.assertEqual( constant_op.constant([], name="c").name, "outer/inner/c:0") with ops.name_scope("inner"): self.assertEqual(constant_op.constant([], name="c").name, "inner/c:0") with variable_scope.variable_scope("another"): with variable_scope.variable_scope( inner, auxiliary_name_scope=False) as scope1: with ops.name_scope(scope1.original_name_scope): self.assertEqual( variable_scope.get_variable("w1", []).name, "outer/inner/w1:0") self.assertEqual( constant_op.constant([], name="c1").name, "outer/inner/c1:0") with ops.name_scope("inner"): self.assertEqual( constant_op.constant([], name="c").name, "another/inner/c:0") @test_util.run_in_graph_and_eager_modes() def testGetLocalVar(self): # Check that local variable respects naming. with variable_scope.variable_scope("outer") as outer: with variable_scope.variable_scope(outer, "default", []): local_var = variable_scope.get_local_variable( "w", [], collections=["foo"]) self.assertEqual(local_var.name, "outer/w:0") # Since variable is local, it should be in the local variable collection # but not the trainable collection. if context.in_graph_mode(): self.assertIn(local_var, ops.get_collection(ops.GraphKeys.LOCAL_VARIABLES)) self.assertIn(local_var, ops.get_collection("foo")) self.assertNotIn(local_var, ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)) # Check that local variable respects `reuse`. if context.in_graph_mode(): with variable_scope.variable_scope(outer, "default", reuse=True): self.assertEqual( variable_scope.get_local_variable("w", []).name, "outer/w:0") def testGetVarWithDevice(self): g = ops.Graph() varname_type = [] def device_func(op): if op.type in ["Variable", "VariableV2", "VarHandleOp"]: varname_type.append((op.name, op.get_attr("dtype"))) return "/device:GPU:0" with g.as_default(): with ops.device(device_func): _ = variable_scope.get_variable("x", (100, 200)) _ = variable_scope.get_variable( "y", dtype=dtypes.int64, initializer=numpy.arange(73)) self.assertEqual(varname_type[0], ("x", dtypes.float32)) self.assertEqual(varname_type[1], ("y", dtypes.int64)) def testGetCollection(self): with self.test_session(): _ = variable_scope.get_variable("testGetCollection_a", []) _ = variable_scope.get_variable("testGetCollection_b", [], trainable=False) with variable_scope.variable_scope("testGetCollection_foo_") as scope1: _ = variable_scope.get_variable("testGetCollection_a", []) _ = variable_scope.get_variable("testGetCollection_b", [], trainable=False) self.assertEqual([ v.name for v in scope1.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES) ], ["testGetCollection_foo_/testGetCollection_a:0"]) self.assertEqual([ v.name for v in scope1.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) ], [ "testGetCollection_foo_/testGetCollection_a:0", "testGetCollection_foo_/testGetCollection_b:0" ]) with variable_scope.variable_scope("testGetCollection_foo") as scope2: _ = variable_scope.get_variable("testGetCollection_a", []) _ = variable_scope.get_variable("testGetCollection_b", [], trainable=False) self.assertEqual([ v.name for v in scope2.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES) ], ["testGetCollection_foo/testGetCollection_a:0"]) self.assertEqual([ v.name for v in scope2.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) ], [ "testGetCollection_foo/testGetCollection_a:0", "testGetCollection_foo/testGetCollection_b:0" ]) scope = variable_scope.get_variable_scope() self.assertEqual([ v.name for v in scope.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) ], [ "testGetCollection_a:0", "testGetCollection_b:0", "testGetCollection_foo_/testGetCollection_a:0", "testGetCollection_foo_/testGetCollection_b:0", "testGetCollection_foo/testGetCollection_a:0", "testGetCollection_foo/testGetCollection_b:0" ]) self.assertEqual([ v.name for v in scope.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES) ], [ "testGetCollection_a:0", "testGetCollection_foo_/testGetCollection_a:0", "testGetCollection_foo/testGetCollection_a:0" ]) def testGetTrainableVariables(self): with self.test_session(): _ = variable_scope.get_variable("testGetTrainableVariables_a", []) with variable_scope.variable_scope( "testGetTrainableVariables_foo") as scope: _ = variable_scope.get_variable("testGetTrainableVariables_b", []) _ = variable_scope.get_variable("testGetTrainableVariables_c", [], trainable=False) self.assertEqual([v.name for v in scope.trainable_variables()], ["testGetTrainableVariables_foo/" "testGetTrainableVariables_b:0"]) def testGetGlobalVariables(self): with self.test_session(): _ = variable_scope.get_variable("testGetGlobalVariables_a", []) with variable_scope.variable_scope("testGetGlobalVariables_foo") as scope: _ = variable_scope.get_variable("testGetGlobalVariables_b", []) self.assertEqual([v.name for v in scope.global_variables()], ["testGetGlobalVariables_foo/" "testGetGlobalVariables_b:0"]) def testGetLocalVariables(self): with self.test_session(): _ = variable_scope.get_variable( "a", [], collections=[ops.GraphKeys.LOCAL_VARIABLES]) with variable_scope.variable_scope("foo") as scope: _ = variable_scope.get_variable( "b", [], collections=[ops.GraphKeys.LOCAL_VARIABLES]) _ = variable_scope.get_variable( "c", []) self.assertEqual([v.name for v in scope.local_variables()], ["foo/b:0"]) def testGetVariableWithRefDtype(self): v = variable_scope.get_variable("v", shape=[3, 4], dtype=dtypes.float32) # Ensure it is possible to do get_variable with a _ref dtype passed in. _ = variable_scope.get_variable("w", shape=[5, 6], dtype=v.dtype) def axis0_into1_partitioner(shape=None, **unused_kwargs): part = [1] * len(shape) return part def axis0_into2_partitioner(shape=None, **unused_kwargs): part = [1] * len(shape) part[0] = 2 return part def axis0_into3_partitioner(shape=None, **unused_kwargs): part = [1] * len(shape) part[0] = 3 return part class VariableScopeWithPartitioningTest(test.TestCase): def testResultNameMatchesRequested(self): with variable_scope.variable_scope( "scope0", partitioner=axis0_into2_partitioner): v = variable_scope.get_variable("name0", shape=(3, 1, 1)) self.assertEqual(v.name, "scope0/name0") v_concat = v.as_tensor() self.assertEqual(v_concat.name, "scope0/name0:0") variables = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) self.assertIn("scope0/name0/part_0:0", [x.name for x in variables]) self.assertIn("scope0/name0/part_1:0", [x.name for x in variables]) self.assertNotIn("scope0/name0/part_2:0", [x.name for x in variables]) def testBreaksIfPartitioningChanges(self): with variable_scope.variable_scope( "scope0", partitioner=axis0_into2_partitioner): variable_scope.get_variable("name0", shape=(3, 1, 1)) with variable_scope.variable_scope( "scope0", partitioner=axis0_into3_partitioner, reuse=True): with self.assertRaisesRegexp( ValueError, "Trying to reuse partitioned variable .* but specified partitions .* " "and found partitions .*"): variable_scope.get_variable("name0", shape=(3, 1, 1)) with variable_scope.variable_scope( "scope0", partitioner=axis0_into1_partitioner, reuse=True): with self.assertRaisesRegexp( ValueError, "Trying to reuse partitioned variable .* but specified partitions .* " "and found partitions .*"): variable_scope.get_variable("name0", shape=(3, 1, 1)) def testReturnsExistingConcatenatedValueIfReuse(self): with variable_scope.variable_scope( "scope0", partitioner=axis0_into2_partitioner): v_concat = variable_scope.get_variable("name0", shape=(3, 1, 1)) variable_scope.get_variable_scope().reuse_variables() v_concat_2 = variable_scope.get_variable("name0", shape=(3, 1, 1)) self.assertEqual(v_concat, v_concat_2) def testAllowsReuseWithoutPartitioner(self): with variable_scope.variable_scope( "scope0", partitioner=axis0_into2_partitioner): v = variable_scope.get_variable("name0", shape=(3, 1, 1)) with variable_scope.variable_scope("scope0", reuse=True): v_reused = variable_scope.get_variable("name0") self.assertEqual(v, v_reused) def testPropagatePartitionerOnReopening(self): with variable_scope.variable_scope( "scope0", partitioner=axis0_into2_partitioner) as vs: self.assertEqual(axis0_into2_partitioner, vs.partitioner) with variable_scope.variable_scope(vs) as vs1: self.assertEqual(axis0_into2_partitioner, vs1.partitioner) def testScalarIgnoresPartitioner(self): with variable_scope.variable_scope( "scope0", partitioner=axis0_into2_partitioner): v = variable_scope.get_variable("name0", shape=()) self.assertEqual(v.name, "scope0/name0:0") variables = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) self.assertIn("scope0/name0:0", [x.name for x in variables]) def _testPartitionConcatenatesAlongCorrectAxis(self, use_resource): def _part_axis_0(**unused_kwargs): return (2, 1, 1) def _part_axis_1(**unused_kwargs): return (1, 2, 1) with variable_scope.variable_scope("root", use_resource=use_resource): v0 = variable_scope.get_variable( "n0", shape=(2, 2, 2), partitioner=_part_axis_0) v1 = variable_scope.get_variable( "n1", shape=(2, 2, 2), partitioner=_part_axis_1) self.assertEqual(v0.get_shape(), (2, 2, 2)) self.assertEqual(v1.get_shape(), (2, 2, 2)) n0_0 = list(v0)[0] n0_1 = list(v0)[1] self.assertEqual(n0_0.get_shape(), (1, 2, 2)) self.assertEqual(n0_1.get_shape(), (1, 2, 2)) n1_0 = list(v1)[0] n1_1 = list(v1)[1] self.assertEqual(n1_0.get_shape(), (2, 1, 2)) self.assertEqual(n1_1.get_shape(), (2, 1, 2)) def testPartitionConcatenatesAlongCorrectAxis(self): self._testPartitionConcatenatesAlongCorrectAxis(use_resource=False) def testPartitionConcatenatesAlongCorrectAxisResource(self): self._testPartitionConcatenatesAlongCorrectAxis(use_resource=True) class VariableScopeWithCustomGetterTest(test.TestCase): def testNonCallableGetterFails(self): with self.assertRaisesRegexp(ValueError, r"custom_getter .* not callable:"): with variable_scope.variable_scope("scope0", custom_getter=3): variable_scope.get_variable("name0") with self.assertRaisesRegexp(ValueError, r"custom_getter .* not callable:"): variable_scope.get_variable("name0", custom_getter=3) def testNoSideEffectsWithIdentityCustomGetter(self): called = [0] def custom_getter(getter, *args, **kwargs): called[0] += 1 return getter(*args, **kwargs) with variable_scope.variable_scope( "scope", custom_getter=custom_getter) as scope: v = variable_scope.get_variable("v", [1]) with variable_scope.variable_scope(scope, reuse=True): v2 = variable_scope.get_variable("v", [1]) with variable_scope.variable_scope("new_scope") as new_scope: v3 = variable_scope.get_variable("v3", [1]) with variable_scope.variable_scope( new_scope, reuse=True, custom_getter=custom_getter): v4 = variable_scope.get_variable("v3", [1]) self.assertEqual(v, v2) self.assertEqual(v3, v4) self.assertEqual(3, called[0]) # skipped one in the first new_scope def testCustomGetterWithReuse(self): # Custom getter can choose to behave differently on reused variables. def custom_getter(getter, *args, **kwargs): var = getter(*args, **kwargs) if kwargs["reuse"]: # This can be used, e.g., for changing the caching device if needed. return array_ops.identity(var, name="reused") else: return array_ops.identity(var, name="not_reused") with variable_scope.variable_scope( "scope", custom_getter=custom_getter) as scope: v = variable_scope.get_variable("v", [1]) with variable_scope.variable_scope(scope, reuse=True): v2 = variable_scope.get_variable("v", [1]) self.assertEqual(v.name, "not_reused:0") self.assertEqual(v2.name, "reused:0") def testGetterThatCreatesTwoVariablesAndSumsThem(self): def custom_getter(getter, name, *args, **kwargs): g_0 = getter("%s/0" % name, *args, **kwargs) g_1 = getter("%s/1" % name, *args, **kwargs) with ops.name_scope("custom_getter"): return g_0 + g_1 with variable_scope.variable_scope("scope", custom_getter=custom_getter): v = variable_scope.get_variable("v", [1, 2, 3]) self.assertEqual([1, 2, 3], v.get_shape()) true_vars = variables_lib.trainable_variables() self.assertEqual(2, len(true_vars)) self.assertEqual("scope/v/0:0", true_vars[0].name) self.assertEqual("scope/v/1:0", true_vars[1].name) self.assertEqual("custom_getter/add:0", v.name) with self.test_session() as sess: variables_lib.global_variables_initializer().run() np_vars, np_v = sess.run([true_vars, v]) self.assertAllClose(np_v, sum(np_vars)) def testNestedCustomGetters(self): def sum_getter(getter, name, *args, **kwargs): g_0 = getter("%s/sum_0" % name, *args, **kwargs) g_1 = getter("%s/sum_1" % name, *args, **kwargs) with ops.name_scope("sum_getter"): return g_0 + g_1 def prod_getter(getter, name, *args, **kwargs): g_0 = getter("%s/prod_0" % name, *args, **kwargs) g_1 = getter("%s/prod_1" % name, *args, **kwargs) with ops.name_scope("prod_getter"): return g_0 * g_1 with variable_scope.variable_scope( "prod_scope", custom_getter=prod_getter): with variable_scope.variable_scope( "sum_scope", custom_getter=sum_getter): with variable_scope.variable_scope( "inner_sum_scope", custom_getter=sum_getter): # take sums of sums of products v = variable_scope.get_variable("v", [1, 2, 3]) self.assertEqual([1, 2, 3], v.get_shape()) true_vars = variables_lib.trainable_variables() self.assertEqual(8, len(true_vars)) template = ( "prod_scope/sum_scope/inner_sum_scope/v/sum_%d/sum_%d/prod_%d:0") self.assertEqual(template % (0, 0, 0), true_vars[0].name) self.assertEqual(template % (0, 0, 1), true_vars[1].name) self.assertEqual(template % (0, 1, 0), true_vars[2].name) self.assertEqual(template % (0, 1, 1), true_vars[3].name) self.assertEqual(template % (1, 0, 0), true_vars[4].name) self.assertEqual(template % (1, 0, 1), true_vars[5].name) self.assertEqual(template % (1, 1, 0), true_vars[6].name) self.assertEqual(template % (1, 1, 1), true_vars[7].name) with self.test_session() as sess: variables_lib.global_variables_initializer().run() np_vars, np_v = sess.run([true_vars, v]) # take products of sums of products self.assertAllClose( np_v, (((np_vars[0] * np_vars[1]) + (np_vars[2] * np_vars[3])) + ((np_vars[4] * np_vars[5]) + (np_vars[6] * np_vars[7])))) class PartitionInfoTest(test.TestCase): def testConstructorChecks(self): # Invalid arg types. with self.assertRaises(TypeError): variable_scope._PartitionInfo(full_shape=None, var_offset=[0, 1]) with self.assertRaises(TypeError): variable_scope._PartitionInfo(full_shape=[0, 1], var_offset=None) with self.assertRaises(TypeError): variable_scope._PartitionInfo(full_shape="foo", var_offset=[0, 1]) with self.assertRaises(TypeError): variable_scope._PartitionInfo(full_shape=[0, 1], var_offset="foo") # full_shape and var_offset must have same length. with self.assertRaises(ValueError): variable_scope._PartitionInfo(full_shape=[0, 1], var_offset=[0]) # Offset must always be less than shape. with self.assertRaises(ValueError): variable_scope._PartitionInfo(full_shape=[1, 1], var_offset=[0, 1]) def testSingleOffset(self): partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[4, 0]) self.assertEqual(4, partition_info.single_offset([1, 3])) # Tests when the variable isn't partitioned at all. partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[0, 0]) self.assertEqual(0, partition_info.single_offset([9, 3])) def testSingleSliceDim(self): partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[4, 0]) # Invalid shape. with self.assertRaises(TypeError): partition_info.single_slice_dim(None) # Rank of shape differs from full_shape. with self.assertRaises(ValueError): partition_info.single_slice_dim([1, 2, 3]) # Shape is too large given var_offset (4+6 > 9). with self.assertRaises(ValueError): partition_info.single_slice_dim([6, 3]) # Multiple possible slice dim from shape. with self.assertRaises(ValueError): partition_info.single_slice_dim([1, 1]) partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[0, 0]) self.assertEqual(1, partition_info.single_slice_dim([9, 2])) partition_info = variable_scope._PartitionInfo( full_shape=[9, 3], var_offset=[4, 0]) self.assertEqual(0, partition_info.single_slice_dim([2, 3])) if __name__ == "__main__": test.main()
apache-2.0
-5,723,243,853,738,241,000
43.192632
80
0.639998
false
3.648882
true
false
false
jmckib/soundcurl
src/soundcurl.py
1
4951
#!/usr/bin/env python from HTMLParser import HTMLParser import json import shutil from StringIO import StringIO import sys import traceback import urllib2 from bs4 import BeautifulSoup from mutagen.id3 import ID3, APIC, TIT2, TPE1 unescape_html = HTMLParser().unescape def main(): try: if len(sys.argv) != 2: raise ValueError('Expecting one argument, the URL of a song on SoundCloud.') sound_cloud_page = SoundCloudPage(sys.argv[1]) sound_cloud_page.download_song() except: traceback.print_exception(*sys.exc_info()) print ('\nSorry, you just experienced an error :(\nPlease it ' 'to me here: https://github.com/jmckib/soundcurl/issues/new') class SoundCloudPage(object): def __init__(self, page_url): # Http GET parameters screw up the expected format of the page # sometimes. Example: `?fb_action_ids` from soundcloud links on # facebook. self._page_url = page_url.split('?')[0] # Use StringIO so we can consume the response multiple times. self._http_response = StringIO(urllib2.urlopen(self._page_url).read()) def download_song(self): """Download song from given SoundCloud URL and write to disk as mp3. The URL must be for a single song, not a set or an artist's page. Title, artist, and cover art metadata are included in the mp3. """ stream_url_line = self._get_stream_url_line() if not stream_url_line: raise ValueError( "Can't find stream URL. Are you sure '%s' is the url of a " "song on SoundCloud?" % self._page_url) stream_data = self._get_stream_data(stream_url_line) # A file-like object containing the song data. song = urllib2.urlopen(stream_data['streamUrl']) # Write the song to disk. song_title, artist = self._get_title_and_artist(stream_data) # Believe it or not, there are songs with forward slahes in their # titles, but we can't use that as a file name. song_filename = '%s.mp3' % song_title.replace('/', '|') print "Writing '%s'" % song_filename shutil.copyfileobj(song, open(song_filename, 'wb')) print 'Writing song metadata...' tags = ID3() tags.add(TIT2(encoding=3, text=song_title)) # Song title print "\ttitle: '%s'" % song_title tags.add(TPE1(encoding=3, text=artist)) # Artist print "\tartist: '%s'" % artist # Add track artwork. # First, get a URL for the artwork as a jpeg. soup = BeautifulSoup(self._get_fresh_http_response()) artwork_img = soup.find('img', alt="Track artwork") artwork_url = artwork_img.get('src') if artwork_img else None if not artwork_url: print 'Failed to find artwork URL.' else: print 'Writing cover art...' artwork = urllib2.urlopen(artwork_url) tags.add(APIC( encoding=3, mime='image/jpeg', desc=u'', type=3, # indicates that this is the front cover art data=artwork.read()) ) tags.save(song_filename) def _get_fresh_http_response(self): self._http_response.seek(0) return self._http_response def _get_stream_url_lines(self): """Return an iterator of the stream url lines in the http response. A "stream url line" is a line of javascript code in the page's html that contains the url of an mp3. The stream url lines are in the same order as the songs on the page. """ return (line for line in self._get_fresh_http_response() if 'http://media.soundcloud.com/stream/' in line) def _get_stream_url_line(self): """Return the first line in the http response with a stream url in it. If there are no stream urls, return None. See `_get_stream_url_lines` for more explanation. """ return next(self._get_stream_url_lines(), None) def _get_stream_data(self, stream_url_line): """Return dictionary of stream data from a stream url line.""" # stream_url_line looks something like this # window.SC.bufferTracks.push(<BIG_JAVASCRIPT_DICT>);\n # Since a javascript dict is really a json dict, we decode it as one. return json.loads(stream_url_line[28:-3]) def _get_all_stream_data(self): return (self._get_stream_data(stream_url_line) for stream_url_line in self._get_stream_url_lines()) def _get_title_and_artist(self, stream_data): try: artist, title = stream_data['title'].split(' - ') except ValueError: artist = stream_data['user']['username'] title = stream_data['title'] return unescape_html(title).strip(), unescape_html(artist).strip() if __name__ == '__main__': main()
apache-2.0
-6,992,734,706,741,720,000
36.793893
88
0.611392
false
3.802611
false
false
false
vbatoufflet/machette
machette/module/split.py
1
3365
# -*- coding: utf-8 -*- # # This file is a part of Machette. # # Copyright (C) 2010 Vincent Batoufflet <vincent@batoufflet.info> # # This software is released under the terms of the GNU General Public License # version 3 or any later version. See LICENSE file for further details. # # $Id$ import gtk import pygtk import os import re from machette.module import MachetteModule from machette.path import DATA_DIR pygtk.require('2.0') # Set module class name classname = 'MachetteModuleSplit' # Set module information mandatory = True # Set configuration options list options = { 'window.split-delimiter': (int, 0), } class MachetteModuleSplit(MachetteModule): def register(self): """ Register MachetteModuleSplit module void register(void) """ # Load module UI file self.parent.wtree.add_from_file(os.path.join(DATA_DIR, 'ui', 'module', 'split.ui')) # Initialize split delimiter GtkComboBox for delim in ['|', '#', '@', unichr(0xb6), unichr(0x25a0)]: self.parent.wtree.get_object('combobox-split-delimiter').\ append_text(delim) # Restore last state self.parent.wtree.get_object('combobox-split-delimiter').set_active( self.parent.config.get('window.split-delimiter')) # Attach UI to the parent window self.parent.wtree.get_object('notebook-extension').append_page( self.parent.wtree.get_object('vbox-split'), gtk.Label(_('Split'))) # Connect signals self.parent.rbuffer.connect('changed', self.update_tab) self.parent.tbuffer.connect('changed', self.update_tab) self.parent.wtree.get_object('combobox-split-delimiter').\ connect('changed', self.update_tab) self.parent.wtree.get_object('vbox-split').\ connect('map', self.update_tab) def unregister(self): """ Unregister MachetteModuleSplit module void unregister(void) """ # Save state if self.parent.config.get('window.save-state'): self.parent.config.set('window.split-delimiter', self.parent.\ wtree.get_object('combobox-split-delimiter').get_active()) def update_tab(self, source=None, event=None): """ Update split GtkNotebook tab void update_tab(event source: gtk.Object, event: gtk.gdk.Event) """ # Reset buffer text self.parent.wtree.get_object('textview-split-result').get_buffer().\ set_text('') # Stop if updating is active or regex not available if self.parent.updating or not self.parent.regex: return try: delimiter = self.parent.wtree.\ get_object('combobox-split-delimiter').get_active_text() # Get split chunks regex = re.compile(self.parent.rbuffer.get_text( self.parent.rbuffer.get_start_iter(), self.parent.rbuffer.get_end_iter()), self.parent.flags) chunks = regex.split(self.parent.target, self.parent.limit) chunks = [a if a else '' for a in chunks] self.parent.wtree.get_object('textview-split-result').\ get_buffer().set_text(delimiter.join(chunks)) except (IndexError, re.error), e: pass
gpl-3.0
8,518,862,810,468,989,000
31.355769
78
0.618425
false
3.806561
false
false
false
webeng/DeepLearningTutorials
code/sktheano_cnn_v2.py
1
37558
"""This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a convolutional neural network, good for classifying images. This tutorial shows how to build the architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST results. This implementation simplifies the model in the following ways: - LeNetConvPool doesn't implement location-specific gain and bias parameters - LeNetConvPool doesn't implement pooling by average, it implements pooling by max. - Digit classification is implemented with a logistic regression rather than an RBF network - LeNet5 was not fully-connected convolutions at second layer References: - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf """ """ Aaron Berndsen: A Conformal Neural Network using Theano for computation and structure, but built to obey sklearn's basic 'fit' 'predict' functionality *code largely motivated from deeplearning.net examples and Graham Taylor's "Vanilla RNN" (https://github.com/gwtaylor/theano-rnn/blob/master/rnn.py) You'll require theano and libblas-dev tips/tricks/notes: * if training set is large (>O(100)) and redundant, use stochastic gradient descent (batch_size=1), otherwise use conjugate descent (batch_size > 1) * Basic usage: import nnetwork as NN n = NN.NeuralNetwork(design=[8,8]) # a NN with two hidden layers of 8 neurons each n.fit(Xtrain, ytrain) pred = n.predict(Xtest) """ import cPickle as pickle import logging import numpy as np import timeit from sklearn.base import BaseEstimator import theano import theano.tensor as T from theano.tensor.signal import downsample from theano.tensor.nnet import conv import logging import os import sys from logistic_sgd_test import LogisticRegression, load_data _logger = logging.getLogger("theano.gof.compilelock") _logger.setLevel(logging.WARN) logger = logging.getLogger(__name__) root = logging.getLogger() root.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) #formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') formatter = logging.Formatter('%(message)s') ch.setFormatter(formatter) root.addHandler(ch) mode = theano.Mode(linker='cvm') #mode = 'DEBUG_MODE' class CNN(object): """ Convolutional Neural Network (CNN), backend by Theano, but compliant with sklearn interface. This class defines all the layers in the network. At present the CNN has 7 layers: 3 LeNetConvPoolLayer, 3 MLP HiddenLayers and 1 LogisticRegression. This architecture is for classifying 128x128 grayscale images. The class MetaCNN has more lower level routines such as initialization, prediction and save. You should init with MetaCNN. """ def __init__(self, input, im_width=128, im_height=128, n_out=2, activation=T.tanh, nkerns=[48,128,256], filters=[13,5,4], poolsize=[(2,2),(2,2),(2,2)], n_hidden=[200,50,2], output_type='softmax', batch_size=128, use_symbolic_softmax=False,verbose = True): """ im_width : width of input image im_height : height of input image n_out : number of class labels :type nkerns: list of integers :param nkerns: number of kernels on each layer :type filters: list of integers :param filters: width of convolution :type poolsize: list of 2-tuples :param poolsize: maxpooling in convolution layer (index-0), and direction x or y (index-1) :type n_hidden: list of integers :param n_hidden: number of hidden neurons :type output_type: string :param output_type: type of decision 'softmax', 'binary', 'real' :type batch_size: integers :param batch_size: number of samples in each training batch. Default 200. """ self.activation = activation self.output_type = output_type self.verbose = verbose if verbose: logger.info("\n Input image with:{} height:{} ".format(im_width,im_height)) # if use_symbolic_softmax: # def symbolic_softmax(x): # e = T.exp(x) # return e / T.sum(e, axis=1).dimshuffle(0, 'x') # self.softmax = symbolic_softmax # else: # self.softmax = T.nnet.softmax rng = np.random.RandomState(23455) # Reshape matrix of rasterized images of shape (batch_size, nx*ny) # to a 4D tensor, compatible with our LeNetConvPoolLayer layer0_input = input.reshape((batch_size, 1, im_width, im_height)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (im_width - filters[0]+1, im_height-filters[0] + 1 )=(x,x) # maxpooling reduces this further to (x/2,x/2) = (y,y) # 4D output tensor is thus of shape (batch_size,nkerns[0],y,y) self.layer0 = LeNetConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, im_width, im_height), filter_shape=(nkerns[0], 1, filters[0], filters[0]), poolsize=poolsize[0] ) if self.verbose: logger.info('\n Layer {} \n image_shape: ({},{},{},{}) \n filter_shape: ({},{},{},{}) \n poolsize:{}'.format(0, batch_size, 1, im_width, im_height, nkerns[0], 1, filters[0], filters[0], poolsize[0]) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (im_width-filters[0]+1,im_height-filters[0]+1) = (x,x) # maxpooling reduces this further to (x/2,x/2) = y # 4D output tensor is thus of shape (nkerns[0],nkerns[1],y,y) im_width_l1 = (im_width - filters[0] + 1)/poolsize[0][0] im_height_l1 = (im_height - filters[0] + 1)/poolsize[0][1] self.layer1 = LeNetConvPoolLayer( rng, input=self.layer0.output, image_shape=(batch_size, nkerns[0], im_width_l1, im_height_l1), filter_shape=(nkerns[1], nkerns[0], filters[1], filters[1]), poolsize=poolsize[1] ) if self.verbose: logger.info('\n Layer {} \n image_shape: ({},{},{},{}) \n filter_shape: ({},{},{},{}) \n poolsize:{}'.format(1 ,batch_size, nkerns[0], im_width_l1, im_height_l1, nkerns[1], nkerns[0], filters[1], filters[1], poolsize[1]) ) # Construct the third convolutional pooling layer # filtering reduces the image size to (im_width_l1-filters[1]+1,im_height_l1-filters[1]+1) = (x,x) # maxpooling reduces this further to (x/2,x/2) = y # 4D output tensor is thus of shape (nkerns[1],nkerns[2],y,y) im_width_l2 = (im_width_l1 - filters[1] + 1)/poolsize[1][0] im_height_l2 = (im_height_l1 - filters[1] + 1)/poolsize[1][1] self.layer2 = LeNetConvPoolLayer( rng, input=self.layer1.output, image_shape=(batch_size, nkerns[1], im_width_l2, im_height_l2), filter_shape=(nkerns[2], nkerns[1], filters[2], filters[2]), poolsize=poolsize[2] ) if self.verbose: logger.info('\n Layer {} \n image_shape: ({},{},{},{}) \n filter_shape: ({},{},{},{}) \n poolsize:{}'.format(2, batch_size, nkerns[1], im_width_l2, im_height_l2, nkerns[2], nkerns[1], filters[2], filters[2], poolsize[2]) ) # the TanhLayer being fully-connected, it operates on 2D matrices of # shape (batch_size,num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (20,32*4*4) = (20,512) layer3_input = self.layer2.output.flatten(2) # construct a fully-connected sigmoidal layer im_width_l3 = (im_width_l2-filters[2]+1)/poolsize[2][0] im_height_l3 = (im_height_l2-filters[2]+1)/poolsize[2][1] self.layer3 = HiddenLayer( rng, input=layer3_input, n_in=nkerns[2] * im_width_l3 * im_height_l3, n_out=n_hidden[0], activation=T.tanh ) if self.verbose: logger.info("\n Layer {} input: ({},{})".format(3,batch_size,nkerns[2] * im_width_l3 * im_height_l3)) # construct a fully-connected sigmoidal layer self.layer4 = HiddenLayer( rng, input=self.layer3.output, n_in=n_hidden[0], n_out=n_hidden[1], activation=T.tanh ) if self.verbose: logger.info("\n Layer {} input: {}".format(4,n_hidden[1])) # construct a fully-connected sigmoidal layer self.layer5 = HiddenLayer( rng, input=self.layer4.output, n_in=n_hidden[1], n_out=n_hidden[2], activation=T.tanh ) if self.verbose: logger.info("\n Layer {} input: {}".format(5,n_hidden[2])) # classify the values of the fully-connected sigmoidal layer self.layer6 = LogisticRegression( input=self.layer5.output, n_in=n_hidden[2], n_out=n_out ) if self.verbose: logger.info("\n Layer {} input: {}".format(6,n_hidden[2])) # CNN regularization self.L1 = self.layer6.L1 self.L2_sqr = self.layer6.L2_sqr # create a list of all model parameters to be fit by gradient descent self.params = self.layer6.params + self.layer5.params + self.layer4.params + self.layer3.params + self.layer2.params + self.layer1.params + self.layer0.params self.y_pred = self.layer6.y_pred self.p_y_given_x = self.layer6.p_y_given_x #self.layer3_output = self.layer5.input self.layer5_output = self.layer5.input if self.output_type == 'real': self.loss = lambda y: self.mse(y) elif self.output_type == 'binary': self.loss = lambda y: self.nll_binary(y) elif self.output_type == 'softmax': # push through softmax, computing vector of class-membership # probabilities in symbolic form self.loss = lambda y: self.nll_multiclass(y) else: raise NotImplementedError def mse(self, y): # error between output and target return T.mean((self.y_pred - y) ** 2) def nll_binary(self, y): # negative log likelihood based on binary cross entropy error return T.mean(T.nnet.binary_crossentropy(self.p_y_given_x, y)) #same as negative-log-likelikhood def nll_multiclass(self, y): # negative log likelihood based on multiclass cross entropy error # y.shape[0] is (symbolically) the number of rows in y, i.e., # number of time steps (call it T) in the sequence # T.arange(y.shape[0]) is a symbolic vector which will contain # [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of # Log-Probabilities (call it LP) with one row per example and # one column per class LP[T.arange(y.shape[0]),y] is a vector # v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., # LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is # the mean (across minibatch examples) of the elements in v, # i.e., the mean log-likelihood across the minibatch. return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) def errors(self, y): """Return a float representing the number of errors in the sequence over the total number of examples in the sequence ; zero one loss over the size of the sequence :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred if y.ndim != self.y_out.ndim: raise TypeError('y should have the same shape as self.y_out', ('y', y.type, 'y_pred', self.y_pred.type)) if self.output_type in ('binary', 'softmax'): # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() class MetaCNN(BaseEstimator): """ the actual CNN is not init-ed until .fit is called. We determine the image input size (assumed square images) and the number of outputs in .fit from the training data """ def __init__( self, learning_rate=0.05, n_epochs=60, batch_size=128, activation='tanh', nkerns=[20,45], n_hidden=500, filters=[15,7], poolsize=[(3,3),(2,2)], output_type='softmax',L1_reg=0.00, L2_reg=0.00, use_symbolic_softmax=False, im_width=128, im_height=128, n_out=2,verbose = True): self.learning_rate = float(learning_rate) self.nkerns = nkerns self.n_hidden = n_hidden self.filters = filters self.poolsize = poolsize self.n_epochs = int(n_epochs) self.batch_size = int(batch_size) self.L1_reg = float(L1_reg) self.L2_reg = float(L2_reg) self.activation = activation self.output_type = output_type self.use_symbolic_softmax = use_symbolic_softmax self.im_width = im_width self.im_height = im_height self.n_out = n_out self.verbose = verbose def ready(self): """ this routine is called from "fit" since we determine the image size (assumed square) and output labels from the training data. """ #input self.x = T.matrix('x') #output (a label) self.y = T.ivector('y') if self.activation == 'tanh': activation = T.tanh elif self.activation == 'sigmoid': activation = T.nnet.sigmoid elif self.activation == 'relu': activation = lambda x: x * (x > 0) elif self.activation == 'cappedrelu': activation = lambda x: T.minimum(x * (x > 0), 6) else: raise NotImplementedError self.cnn = CNN( input=self.x, n_out=self.n_out, activation=activation, nkerns=self.nkerns, filters=self.filters, n_hidden=self.n_hidden, poolsize=self.poolsize, output_type=self.output_type, batch_size=self.batch_size, use_symbolic_softmax=self.use_symbolic_softmax, verbose=self.verbose ) #self.cnn.predict expects batch_size number of inputs. #we wrap those functions and pad as necessary in 'def predict' and 'def predict_proba' self.predict_wrap = theano.function(inputs=[self.x], outputs=self.cnn.y_pred, mode=mode) # self.predict_vector = theano.function(inputs=[self.x], # outputs=self.cnn.layer5.output, # mode=mode) self.predict_vector = theano.function(inputs=[self.x], outputs=self.cnn.layer5_output, mode=mode) self.predict_proba_wrap = theano.function(inputs=[self.x], outputs=self.cnn.p_y_given_x, mode=mode) def score(self, X, y): """Returns the mean accuracy on the given test data and labels. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training set. y : array-like, shape = [n_samples] Labels for X. Returns ------- z : float """ return np.mean(self.predict(X) == y) def fit(self, train_set_x, train_set_y, valid_set_x=None, valid_set_y=None,test_set_x = None,test_set_y = None, n_epochs=None): """ Fit model Pass in X_test, Y_test to compute test error and report during training. X_train : ndarray (T x n_in) Y_train : ndarray (T x n_out) validation_frequency : int in terms of number of sequences (or number of weight updates) n_epochs : None (used to override self.n_epochs from init. """ self.ready() # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= self.batch_size n_valid_batches /= self.batch_size n_test_batches /= self.batch_size ###################### # BUILD ACTUAL MODEL # ###################### if self.verbose: logger.info('\n ... building the model') index = T.lscalar('index') # index to a [mini]batch # cost = self.cnn.loss(self.y)\ # + self.L1_reg * self.cnn.L1\ # + self.L2_reg * self.cnn.L2_sqr #cost = self.cnn.loss(self.y) cost = self.cnn.layer6.negative_log_likelihood(self.y) #self.cnn.loss(self.y), test_model = theano.function( [index], self.cnn.layer6.errors(self.y), givens={ self.x: test_set_x[index * self.batch_size: (index + 1) * self.batch_size], self.y: test_set_y[index * self.batch_size: (index + 1) * self.batch_size] } ) #self.cnn.loss(self.y), validate_model = theano.function( [index], self.cnn.layer6.errors(self.y), givens={ self.x: valid_set_x[index * self.batch_size: (index + 1) * self.batch_size], self.y: valid_set_y[index * self.batch_size: (index + 1) * self.batch_size] } ) # create a list of all model parameters to be fit by gradient descent self.params = self.cnn.params # create a list of gradients for all model parameters self.grads = T.grad(cost, self.params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates dictionary by automatically looping over all # (params[i],grads[i]) pairs. # self.updates = {} # for param_i, grad_i in zip(self.params, self.grads): # self.updates[param_i] = param_i - self.learning_rate * grad_i self.updates = [ (param_i, param_i - self.learning_rate * grad_i) for param_i, grad_i in zip(self.params, self.grads) ] train_model = theano.function( [index], cost, updates=self.updates, givens={ self.x: train_set_x[index * self.batch_size: (index + 1) * self.batch_size], self.y: train_set_y[index * self.batch_size: (index + 1) * self.batch_size] } ) ############### # TRAIN MODEL # ############### if self.verbose: logger.info('\n... training') # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = np.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: logger.info('... training @ iter = {}'.format(iter)) cost_ij = train_model(minibatch_index) print cost_ij if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = np.mean(validation_losses) logger.info('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [ test_model(i) for i in xrange(n_test_batches) ] test_score = np.mean(test_losses) logger.info((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) self.save(fpath=base_path + '/data/') if patience <= iter: done_looping = True break end_time = timeit.default_timer() logger.info('Optimization complete.') logger.info('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) def predict(self, data): """ the CNN expects inputs with Nsamples = self.batch_size. In order to run 'predict' on an arbitrary number of samples we pad as necessary. """ if isinstance(data, list): data = np.array(data) if data.ndim == 1: data = np.array([data]) nsamples = data.shape[0] n_batches = nsamples//self.batch_size n_rem = nsamples%self.batch_size if n_batches > 0: preds = [list(self.predict_wrap(data[i*self.batch_size:(i+1)*self.batch_size]))\ for i in range(n_batches)] else: preds = [] if n_rem > 0: z = np.zeros((self.batch_size, self.im_width * self.im_height)) z[0:n_rem] = data[n_batches*self.batch_size:n_batches*self.batch_size+n_rem] preds.append(self.predict_wrap(z)[0:n_rem]) return np.hstack(preds).flatten() def predict_proba(self, data): """ the CNN expects inputs with Nsamples = self.batch_size. In order to run 'predict_proba' on an arbitrary number of samples we pad as necessary. """ if isinstance(data, list): data = np.array(data) if data.ndim == 1: data = np.array([data]) nsamples = data.shape[0] n_batches = nsamples//self.batch_size n_rem = nsamples%self.batch_size if n_batches > 0: preds = [list(self.predict_proba_wrap(data[i*self.batch_size:(i+1)*self.batch_size]))\ for i in range(n_batches)] else: preds = [] if n_rem > 0: z = np.zeros((self.batch_size, self.n_in * self.n_in)) z[0:n_rem] = data[n_batches*self.batch_size:n_batches*self.batch_size+n_rem] preds.append(self.predict_proba_wrap(z)[0:n_rem]) return np.vstack(preds) def shared_dataset(self, data_xy): """ Load the dataset into shared variables """ data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX)) shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX)) if self.output_type in ('binary', 'softmax'): return shared_x, T.cast(shared_y, 'int32') else: return shared_x, shared_y def __getstate__(self): """ Return state sequence.""" #check if we're using ubc_AI.classifier wrapper, #adding it's params to the state if hasattr(self, 'orig_class'): superparams = self.get_params() #now switch to orig. class (MetaCNN) oc = self.orig_class cc = self.__class__ self.__class__ = oc params = self.get_params() for k, v in superparams.iteritems(): params[k] = v self.__class__ = cc else: params = self.get_params() #sklearn.BaseEstimator if hasattr(self, 'cnn'): weights = [p.get_value() for p in self.cnn.params] else: weights = [] state = (params, weights) return state def _set_weights(self, weights): """ Set fittable parameters from weights sequence. Parameters must be in the order defined by self.params: W, W_in, W_out, h0, bh, by """ i = iter(weights) if hasattr(self, 'cnn'): for param in self.cnn.params: param.set_value(i.next()) def __setstate__(self, state): """ Set parameters from state sequence. Parameters must be in the order defined by self.params: W, W_in, W_out, h0, bh, by """ params, weights = state #we may have several classes or superclasses for k in ['n_comp', 'use_pca', 'feature']: if k in params: self.set_params(**{k:params[k]}) params.pop(k) #now switch to MetaCNN if necessary if hasattr(self,'orig_class'): cc = self.__class__ oc = self.orig_class self.__class__ = oc self.set_params(**params) self.ready() if len(weights) > 0: self._set_weights(weights) self.__class__ = cc else: self.set_params(**params) self.ready() self._set_weights(weights) def save(self, fpath='.', fname=None): """ Save a pickled representation of Model state. """ import datetime fpathstart, fpathext = os.path.splitext(fpath) if fpathext == '.pkl': # User supplied an absolute path to a pickle file fpath, fname = os.path.split(fpath) elif fname is None: # Generate filename based on date date_obj = datetime.datetime.now() date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S') class_name = self.__class__.__name__ #fname = '%s.%s.pkl' % (class_name, date_str) fname = 'best_model.pkl' fabspath = os.path.join(fpath, fname) logger.info("Saving to %s ..." % fabspath) file = open(fabspath, 'wb') state = self.__getstate__() pickle.dump(state, file, protocol=pickle.HIGHEST_PROTOCOL) file.close() def load(self, path): """ Load model parameters from path. """ logger.info("Loading from %s ..." % path) file = open(path, 'rb') state = pickle.load(file) self.__setstate__(state) file.close() class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared(value=np.zeros((n_in, n_out), dtype=theano.config.floatX), name='W', borrow=True) # initialize the baises b as a vector of n_out 0s self.b = theano.shared(value=np.zeros((n_out,), dtype=theano.config.floatX), name='b', borrow=True) # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred = T.argmax(self.p_y_given_x, axis=1) # parameters of the model self.params = [self.W, self.b] # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = 0 self.L1 += abs(self.W.sum()) # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = 0 self.L2_sqr += (self.W ** 2).sum() def negative_log_likelihood(self, y): """Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. .. math:: \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ \ell (\theta=\{W,b\}, \mathcal{D}) :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label Note: we use the mean instead of the sum so that the learning rate is less dependent on the batch size """ # y.shape[0] is (symbolically) the number of rows in y, i.e., # number of examples (call it n) in the minibatch # T.arange(y.shape[0]) is a symbolic vector which will contain # [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of # Log-Probabilities (call it LP) with one row per example and # one column per class LP[T.arange(y.shape[0]),y] is a vector # v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., # LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is # the mean (across minibatch examples) of the elements in v, # i.e., the mean log-likelihood across the minibatch. return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() class HiddenLayer(object): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): """ Typical hidden layer of a MLP: units are fully-connected and have sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) and the bias vector b is of shape (n_out,). NOTE : The nonlinearity used here is tanh Hidden unit activation is given by: tanh(dot(input,W) + b) :type rng: np.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dmatrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units :type activation: theano.Op or function :param activation: Non linearity to be applied in the hidden layer """ self.input = input # `W` is initialized with `W_values` which is uniformely sampled # from sqrt(-6./(n_in+n_hidden)) and sqrt(6./(n_in+n_hidden)) # for tanh activation function # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU # Note : optimal initialization of weights is dependent on the # activation function used (among other things). # For example, results presented in [Xavier10] suggest that you # should use 4 times larger initial weights for sigmoid # compared to tanh # We have no info for other function, so we use the same as # tanh. if W is None: W_values = np.asarray(rng.uniform( low=-np.sqrt(6. / (n_in + n_out)), high=np.sqrt(6. / (n_in + n_out)), size=(n_in, n_out)), dtype=theano.config.floatX) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) if b is None: b_values = np.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b lin_output = T.dot(input, self.W) + self.b self.output = (lin_output if activation is None else activation(lin_output)) # parameters of the model self.params = [self.W, self.b] class LeNetConvPoolLayer(object): """Pool Layer of a convolutional network """ def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: np.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height,filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows,#cols) """ assert image_shape[1] == filter_shape[1] self.input = input # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = np.prod(filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) / np.prod(poolsize)) # initialize weights with random weights W_bound = np.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared( np.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ), borrow=True ) # the bias is a 1D tensor -- one bias per output feature map b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) # convolve input feature maps with filters conv_out = conv.conv2d( input=input, filters=self.W, filter_shape=filter_shape, image_shape=image_shape ) # downsample each feature map individually, using maxpooling pooled_out = downsample.max_pool_2d( input=conv_out, ds=poolsize, ignore_border=True ) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will # thus be broadcasted across mini-batches and feature map # width & height self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) # store parameters of this layer self.params = [self.W, self.b] self.input = input def cosine_distance(a, b): import numpy as np from numpy import linalg as LA dot_product = np.dot(a,b.T) cosine_distance = dot_product / (LA.norm(a) * LA.norm(b)) return cosine_distance if __name__ == '__main__': base_path = '/Applications/MAMP/htdocs/DeepLearningTutorials' #base_path = '/home/ubuntu/DeepLearningTutorials' from fetex_image import FetexImage from PIL import Image import random datasets = load_data('mnist.pkl.gz') train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] cnn = MetaCNN(learning_rate=0.05,nkerns=[48,128,256], filters=[13,5,4], batch_size=64,poolsize=[(2,2),(2,2),(2,2)], n_hidden=[200,50,2] , n_out=2, im_width=128,im_height=128) # cnn.fit(train_set_x,train_set_y,valid_set_x,valid_set_y,test_set_x,test_set_y, n_epochs=5) # cnn.save(fpath=base_path + '/data/') #folder = base_path + '/data/cnn-furniture/' # Predictions after training cnn.load(base_path + '/data/best_model.pkl') #cnn.load('/home/ubuntu/DeepLearningTutorials/data/MetaCNN.2015-10-19-13:59:18.pkl') #sample = np.asarray(X_train, dtype=theano.config.floatX) #print sample[0].reshape((64,64)).shape #Image.fromarray(sample[2].reshape((64,64)),mode="L").show() pkl_file = open( '../data/train_set.pkl', 'rb') train_set = pickle.load(pkl_file) X_train, Y_train = train_set pkl_file = open( '../data/lb.pkl', 'rb') lb = pickle.load(pkl_file) # arr = np.array(np.round((X_train[0] * 256).reshape((128,128))),dtype=np.uint8) # Image.fromarray(arr,mode="L").show() # arr = np.array(np.round((X_train[1] * 256).reshape((128,128))),dtype=np.uint8) # Image.fromarray(arr,mode="L").show() # arr = np.array(np.round((X_train[2] * 256).reshape((128,128))),dtype=np.uint8) # Image.fromarray(arr,mode="L").show() #print Y_train[0:3] # arr = np.array(np.round((X_train[1300] * 256).reshape((64,64))),dtype=np.uint8) # Image.fromarray(arr,mode="L").show() #print sample[0] # #print sample.shape #sample = X_train[0:25] #print lb.classes_ #sample = X_train[0] #print Y_train[4000:4100] #print cnn.predict(X_train[0:3]) # sample = X_train[4400] # print Y_train[4400] # print cnn.predict(sample) # pkl_file = open( '../data/X_original.pkl', 'rb') # X_original = cPickle.load(pkl_file) # a = X_original[0:25] # a = np.asarray(a, dtype=theano.config.floatX) # #fe.reconstructImage(a[2]).show() def flaten_aux(V): return V.flatten(order='F') #print X_train[0].shape # cnn_output_vectors = np.array([]) # for i in xrange(1,8): # #a = map(flaten_aux, X_train[128 * (i - 1): 128 * i ]) # a = X_train[64 * (i - 1): 64 * i ] # # #print cnn.predict(a) # a = cnn.predict_vector(a) # #print a # print len(cnn_output_vectors) # #cnn_output_vectors.append(a) # if len(cnn_output_vectors) == 0: # cnn_output_vectors = a # else: # cnn_output_vectors = np.concatenate((cnn_output_vectors, a), axis=0) # #cnn_output_vectors = cnn_output_vectors + a # print len(cnn_output_vectors) # file = open('../data/cnn_output_vectors.pkl', 'wb') # pickle.dump(cnn_output_vectors, file, protocol=pickle.HIGHEST_PROTOCOL) # file.close() file = open('../data/cnn_output_vectors.pkl', 'rb') cnn_output_vectors = pickle.load(file) file.close() print len(cnn_output_vectors) #print len(cnn_output_vectors) #print len(X_train) #print cnn.predict(sample) #print cnn.predict_wrap(a) #rn_im_index = random.randint(0, len(X_train)) #base_image_index = 1 base_image_index = random.randint(0, 448) max_similarity = 0 max_similarity_pos = -1 #max_similarity_pos = [] #for i in xrange(1,len(train_set_x)): a = cnn_output_vectors[base_image_index] #a = X_train[base_image_index] #print a.shape for i in xrange(0,64 * 7): if i != base_image_index: b = cnn_output_vectors[i] #b = X_train[i] d = cosine_distance(a, b) print d #if d > max_similarity: if d > max_similarity: max_similarity = d max_similarity_pos = i #max_similarity_pos.append(i) print 'max_similarity: {}'.format(max_similarity) fe = FetexImage(mode='L') fe.reconstructImage(X_train[base_image_index]).show() fe.reconstructImage(X_train[max_similarity_pos]).show() # fe.reconstructImage(X_train[max_similarity_pos[0]]).show() # fe.reconstructImage(X_train[max_similarity_pos[1]]).show() # fe.reconstructImage(X_train[max_similarity_pos[2]]).show() # fe.reconstructImage(X_train[max_similarity_pos[3]]).show() # print a.shape # print b.shape # print cosine_distance(a, b)
bsd-3-clause
1,384,039,947,904,350,500
31.631625
175
0.664785
false
2.902024
true
false
false
skewerr/deskbot
modules/commands/decide.py
1
1511
import random from .. import irc, var # Fill command dictionary. def ins_command (): var.commands["decide"] = type("command", (object,), {})() var.commands["decide"].method = decide var.commands["decide"].tags = ["other"] var.commands["decide"].aliases = [".decide", ".choose"] var.commands["decide"].usage = [ "{} a|b|c|d|... - Decide between a, b, c, ...", "{} a or b or c or ... - Decide between a, b, c, ...", "{} a,b,c,... - Decide between a, b, c, ...", "{} a - Decide between Yes and No.", "That is the order of preference. You can do {} a or b | c, which will decide between \"a or b\" and c." ] # Command method. def decide (user, channel, word): if len(word) == 1: irc.msg(channel, "{}: You have to give me some choices.".format(user)) else: string = " ".join(word[1:]) if "|" in string: choices = [choice.strip() for choice in string.split("|") if choice] elif " or " in string: choices = [choice.strip() for choice in string.split(" or ") if choice] elif "," in string: choices = [choice.strip() for choice in string.split(",") if choice] else: choices = ["Yes.", "No."] # Empty lists can't be taken. if not choices: irc.msg(channel, "{}: Give me some choices, man, come on.".format(user)) return if random.random() < 0.05: if choices == ["Yes.", "No."]: irc.msg(channel, "{}: Maybe.".format(user)) else: irc.msg(channel, "{}: Neither.".format(user)) else: irc.msg(channel, "{}: {}".format(user, random.choice(choices)))
bsd-3-clause
-9,165,051,844,989,602,000
32.577778
106
0.598279
false
2.939689
false
false
false
CeltonMcGrath/TACTIC
src/tactic/ui/startup/column_edit_wdg.py
6
10659
########################################################### # # Copyright (c) 2005-2008, Southpaw Technology # All Rights Reserved # # PROPRIETARY INFORMATION. This software is proprietary to # Southpaw Technology, and is not to be reproduced, transmitted, # or disclosed in any way without written permission. # # # __all__ = ['ColumnEditWdg', 'ColumnEditCbk'] from pyasm.biz import Pipeline, Project from pyasm.command import Command, CommandException from pyasm.search import Search, SearchType from pyasm.web import DivWdg, Table from pyasm.widget import TextWdg, IconWdg, SelectWdg, HiddenWdg, WidgetConfigView from pyasm.common import TacticException from tactic.ui.common import BaseRefreshWdg from tactic.ui.widget import SingleButtonWdg, ActionButtonWdg, IconButtonWdg class ColumnEditWdg(BaseRefreshWdg): def get_display(my): top = my.top top.add_color("background", "background") top.add_class("spt_columns_top") my.set_as_panel(top) top.add_style("padding: 10px") search_type = my.kwargs.get("search_type") search_type_obj = SearchType.get(search_type) inner = DivWdg() top.add(inner) inner.add_style("width: 500px") #text = TextWdg("search_type") text = HiddenWdg("search_type") inner.add(text) text.set_value(search_type) title_wdg = DivWdg() inner.add(title_wdg) title_wdg.add( search_type_obj.get_title() ) title_wdg.add(" <i style='font-size: 9px;opacity: 0.5'>(%s)</i>" % search_type) title_wdg.add_style("padding: 5px") title_wdg.add_color("background", "background3") title_wdg.add_color("color", "color3") title_wdg.add_style("margin: -10px -10px 10px -10px") title_wdg.add_style("font-weight: bold") shelf_wdg = DivWdg() inner.add(shelf_wdg) shelf_wdg.add_style("height: 30px") button = ActionButtonWdg(title='Create', icon=IconWdg.SAVE) shelf_wdg.add(button) shelf_wdg.add_style("float: right") button.add_behavior( { 'type': 'click_up', 'search_type': search_type, 'cbjs_action': ''' var class_name = 'tactic.ui.startup.ColumnEditCbk'; var top = bvr.src_el.getParent(".spt_columns_top"); var elements = top.getElements(".spt_columns_element"); var values = []; for (var i = 0; i < elements.length; i++ ) { var data = spt.api.Utility.get_input_values(elements[i], null, false); values.push(data) } var kwargs = { search_type: bvr.search_type, values: values } var server = TacticServerStub.get(); try { server.execute_cmd(class_name, kwargs); var names = []; for (var i = 0; i < values.length; i++) { var name = values[i].name; name = name.strip(); if (name == '') { continue; } names.push(name); } spt.table.add_columns(names) // prevent grabbing all values, pass in a dummy one spt.panel.refresh(top, {'refresh': true}); } catch(e) { spt.alert(spt.exception.handler(e)); } ''' } ) # add the headers table = Table() inner.add(table) table.add_style("width: 100%") tr = table.add_row() tr.add_gradient("background", "background3") tr.add_style("padding", "3px") th = table.add_header("Column Name") th.add_style("width: 170px") th.add_style("text-align: left") th = table.add_header("Format") th.add_style("text-align: left") from tactic.ui.container import DynamicListWdg dyn_list = DynamicListWdg() inner.add(dyn_list) from tactic.ui.manager import FormatDefinitionEditWdg for i in range(0, 4): column_div = DivWdg() column_div.add_class("spt_columns_element") if i == 0: dyn_list.add_template(column_div) else: dyn_list.add_item(column_div) column_div.add_style("padding: 3px") column_div.add_style("float: left") table = Table() column_div.add(table) table.add_row() text_wdg = NewTextWdg("name") td = table.add_cell(text_wdg) text_wdg.add_behavior( { 'type': 'blur', 'cbjs_action': ''' var value = bvr.src_el.value; var code = spt.convert_to_alpha_numeric(value); bvr.src_el.value = code; ''' } ) option = { 'name': 'xxx', 'values': 'integer|float|percent|currency|date|time|scientific|boolean|text|timecode', } format_wdg = FormatDefinitionEditWdg(option=option) td = table.add_cell(format_wdg) td.add_style("width: 260px") td.add_style("padding-left: 40px") # show the current columns title_wdg = DivWdg() inner.add(title_wdg) title_wdg.add_style("margin-top: 20px") title_wdg.add("<b>Existing Columns</b>") title_wdg.add_color("background", "background3") title_wdg.add_style("padding: 5px") title_wdg.add_style("margin: 20px -10px 10px -10px") config = WidgetConfigView.get_by_search_type(search_type, "definition") element_names = config.get_element_names() table = Table() inner.add(table) table.add_style("width: 100%") tr = table.add_row() tr.add_gradient("background", "background3") th = table.add_header("Column") th.add_style("text-align: left") th = table.add_header("Data Type") th.add_style("text-align: left") th = table.add_header("Format") th.add_style("text-align: left") th = table.add_header("Edit") th.add_style("text-align: left") count = 0 for element_name in element_names: display_class = config.get_display_handler(element_name) if display_class != 'tactic.ui.table.FormatElementWdg': continue table.add_row() display_options = config.get_display_options(element_name) format = display_options.get("format") if not format: format = '<i>text</i>' data_type = display_options.get("type") table.add_cell(element_name) table.add_cell(data_type) table.add_cell(format) td = table.add_cell() button = IconButtonWdg(title="Edit Definition", icon=IconWdg.EDIT) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_type': search_type, 'element_name': element_name, 'cbjs_action': ''' var class_name = 'tactic.ui.manager.ElementDefinitionWdg'; var kwargs = { search_type: bvr.search_type, view: 'definition', element_name: bvr.element_name }; spt.panel.load_popup("Element Definition", class_name, kwargs); ''' } ) count += 1 if not count: table.add_row() td = table.add_cell() td.add_style("height: 50px") td.add("No existing columns found") td.add_style("text-align: center") td.add_border() td.add_color("background", "background", -5) if my.kwargs.get("is_refresh"): return inner else: return top class ColumnEditCbk(Command): def execute(my): search_type = my.kwargs.get("search_type") column_info = SearchType.get_column_info(search_type) values = my.kwargs.get("values") # get the definition config for this search_type from pyasm.search import WidgetDbConfig config = WidgetDbConfig.get_by_search_type(search_type, "definition") if not config: config = SearchType.create("config/widget_config") config.set_value("search_type", search_type) config.set_value("view", "definition") config.commit() config._init() for data in values: name = data.get("name") name = name.strip() if name == '': continue try: name.encode('ascii') except UnicodeEncodeError: raise TacticException('Column name needs to be in English. Non-English characters can be used in Title when performing [Edit Column Definition] afterwards.') if column_info.get(name): raise CommandException("Column [%s] is already defined" % name) format = data.get("format") fps = data.get("fps") data_type = data.get("data_type") from pyasm.command import ColumnAddCmd cmd = ColumnAddCmd(search_type, name, data_type) cmd.execute() #(my, search_type, attr_name, attr_type, nullable=True): class_name = 'tactic.ui.table.FormatElementWdg' options = { 'format': format, 'type': data_type, 'fps': fps } # add a new widget to the definition config.append_display_element(name, class_name, options=options) config.commit_config() class NewTextWdg(TextWdg): def init(my): #color = my.get_color("border", -20) color2 = my.get_color("border") color = my.get_color("border", -20) my.add_event("onfocus", "this.focused=true") my.add_event("onblur", "this.focused=false;$(this).setStyle('border-color','%s')" % color2) my.add_behavior( { 'type': 'mouseover', 'color': color, 'cbjs_action': ''' bvr.src_el.setStyle("border-color", bvr.color); ''' } ) my.add_behavior( { 'type': 'mouseout', 'color': color2, 'cbjs_action': ''' if (!bvr.src_el.focused) { bvr.src_el.setStyle("border-color", bvr.color); } ''' } ) super(NewTextWdg,my).init()
epl-1.0
-5,752,984,038,108,893,000
28.941011
173
0.535604
false
3.810869
true
false
false
polarise/python-bioclasses
BioClasses/FrameshiftTranscript.py
1
3519
# -*- encoding: utf-8 -*- from __future__ import division import sys import scipy from FrameshiftSite import * class FrameshiftTranscript( object ): def __init__( self, name, length ): self.name = name self.length = length self.frameshift_sites = dict() def add_frameshift_site( self, position, signal, radians_vector=( 2*scipy.pi/3, 2*scipy.pi/3, 2*scipy.pi/3 ), desig=None ): def frameshift_position_score( x, L ): """ triangular function P( frameshift ) is maximum in the middle and decreases to the edges """ if x < L/2: return x/(L/2) else: return ( L - x )/(L/2) position_score = frameshift_position_score( position, self.length ) self.frameshift_sites[position] = FrameshiftSite( ( 0, position ), \ ( 0, 0 ), signal, self.length, position_score, radians_vector, desig ) def __repr__( self ): output_str = "Transcript: %s of length %s\n" % ( self.name, self.length ) i = 1 for pos,FS in self.frameshift_sites.iteritems(): output_str += "Frameshift #%s: %s (desig: %s) at %s (pos-score = %s).\n" % ( i, \ FS.signal, FS.designation, FS.position, FS.position_score ) i += 1 return output_str def filtered_print( self, p0=0, p1=1, theta0=scipy.pi ): output_str = "Transcript: %s of length %s\n" % ( self.name, self.length ) i = 1 for pos,FS in self.frameshift_sites.iteritems(): if p0 <= FS.posscore2proportion( self.length ) <= p1 and FS.radians_vector_f[0] <= theta0: output_str += "Frameshift #%s: %s (desig: %s) at %s (pos-score = %s).\n" % ( i, \ FS.signal, FS.designation, FS.position, FS.position_score ) i += 1 return output_str def frameshifts( self, p0=0, p1=1, theta0=scipy.pi ): for fss_i,fss in self.frameshift_sites.iteritems(): if p0 <= fss.posscore2proportion( self.length ) <= p1 and fss.radians_vector_f[0] <= theta0: yield self.name, fss def has_frameshift( self, p0=0, p1=1, theta0=scipy.pi ): """ beware! """ frameshift_count = 0 for fss_i,fss in self.frameshift_sites.iteritems(): if p0 <= fss.posscore2proportion( self.length ) <= p1 and fss.radians_vector_f[0] <= theta0: frameshift_count += 1 if frameshift_count > 0: return True else: return False def has_exact_frameshift( self, other, p0=0, p1=1, theta0=scipy.pi, tol=3 ): """ beware! """ self_fsss = self.frameshift_sites.values() other_fsss = other.frameshift_sites.values() present = False for fss in self_fsss: for oss in other_fsss: if p0 <= fss.posscore2proportion( self.length ) <= p1 and fss.radians_vector_f[0] <= theta0 and -tol <= fss.distance_from_5prime - oss.distance_from_5prime <= tol and fss.signal == oss.signal and fss.designation == oss.designation: present = True return present def rough_equality( self, other ): if len( self.frameshift_sites ) > 0 and len( other.frameshift_sites ) > 0: return True else: return False def is_equal( self, other, p0, p1, theta0 ): # each FSTObject has one or more FSSObjects # we look for equality on FSSObjects by comparing positions and signals equal = False number_equal = 0 frameshift_sites_self = [ fss for fsss in self.frameshift_sites.values() if p0 <= fss.posscore2proportion( self.length ) <= p1 and fss.radians_vector <= theta0 ] frameshift_sites_other = other.frameshift_sites.values() for fsss in frameshift_sites_self: for fsso in frameshift_sites_other: if fsss == fsso: equal = True number_equal += 1 return equal, number_equal
gpl-2.0
-4,739,742,955,990,341,000
33.165049
236
0.658142
false
2.786223
false
false
false
tcpcloud/openvstorage
webapps/api/backend/views/users.py
1
6661
# Copyright 2014 Open vStorage NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module for users """ import hashlib import random import string from backend.serializers.user import PasswordSerializer from backend.serializers.serializers import FullSerializer from backend.decorators import required_roles, load, return_object, return_list, log from backend.toolbox import Toolbox from rest_framework import status, viewsets from rest_framework.exceptions import PermissionDenied from rest_framework.response import Response from rest_framework.decorators import action from rest_framework.permissions import IsAuthenticated from ovs.dal.hybrids.user import User from ovs.dal.hybrids.client import Client from ovs.dal.hybrids.j_roleclient import RoleClient from ovs.dal.lists.userlist import UserList class UserViewSet(viewsets.ViewSet): """ Information about Users """ permission_classes = (IsAuthenticated,) prefix = r'users' base_name = 'users' @log() @required_roles(['read']) @return_list(User) @load() def list(self, request): """ Lists all available Users where the logged in user has access to """ if Toolbox.is_client_in_roles(request.client, ['manage']): return UserList.get_users() else: return [request.client.user] @log() @required_roles(['read']) @return_object(User) @load(User) def retrieve(self, request, user): """ Load information about a given User Only the currently logged in User is accessible, or all if the logged in User has a system role """ if user.guid == request.client.user_guid or Toolbox.is_client_in_roles(request.client, ['manage']): return user raise PermissionDenied('Fetching user information not allowed') @log() @required_roles(['read', 'write', 'manage']) @load() def create(self, request): """ Creates a User """ serializer = FullSerializer(User, instance=User(), data=request.DATA, allow_passwords=True) if serializer.is_valid(): user = serializer.object if UserList.get_user_by_username(user.username) is not None: return Response('User already exists', status=status.HTTP_303_SEE_OTHER) user.save() pw_client = Client() pw_client.ovs_type = 'INTERNAL' pw_client.grant_type = 'PASSWORD' pw_client.user = user pw_client.save() cc_client = Client() cc_client.ovs_type = 'INTERNAL' cc_client.grant_type = 'CLIENT_CREDENTIALS' cc_client.client_secret = ''.join(random.choice(string.ascii_letters + string.digits + '|_=+*#@!/-[]{}<>.?,\'";:~') for _ in range(128)) cc_client.user = user cc_client.save() for junction in user.group.roles: for client in [cc_client, pw_client]: roleclient = RoleClient() roleclient.client = client roleclient.role = junction.role roleclient.save() serializer = FullSerializer(User, instance=user) return Response(serializer.data, status=status.HTTP_201_CREATED) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @log() @required_roles(['read', 'write', 'manage']) @load(User) def destroy(self, request, user): """ Deletes a user """ if request.client.user_guid == user.guid: raise PermissionDenied('A user cannot delete itself') for client in user.clients: for token in client.tokens: for junction in token.roles.itersafe(): junction.delete() token.delete() for junction in client.roles.itersafe(): junction.delete() client.delete() user.delete(abandon=['logs']) # Detach from the log entries return Response(status=status.HTTP_204_NO_CONTENT) @log() @required_roles(['read', 'write', 'manage']) @load(User) def partial_update(self, contents, user, request): """ Update a User """ contents = None if contents is None else contents.split(',') serializer = FullSerializer(User, contents=contents, instance=user, data=request.DATA) if serializer.is_valid(): if user.guid == request.client.user_guid: raise PermissionDenied('A user cannot update itself') serializer.save() return Response(serializer.data, status=status.HTTP_202_ACCEPTED) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @action() @log() @required_roles(['read', 'write']) @load(User) def set_password(self, request, user): """ Sets the password of a given User. A logged in User can only changes its own password, or all passwords if the logged in User has a system role """ if user.guid == request.client.user_guid or Toolbox.is_client_in_roles(request.client, ['manage']): serializer = PasswordSerializer(data=request.DATA) if serializer.is_valid(): user.password = hashlib.sha256(str(serializer.data['new_password'])).hexdigest() user.save() # Now, invalidate all access tokens granted for client in user.clients: for token in client.tokens: for junction in token.roles: junction.delete() token.delete() return Response(serializer.data, status=status.HTTP_202_ACCEPTED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) raise PermissionDenied('Updating password not allowed')
apache-2.0
967,324,019,206,811,600
38.414201
107
0.605915
false
4.42004
false
false
false
Godricly/zhihu_cup
concise_data.py
2
2604
from read_embed import read_embed char_raw = open('sorted_char_count.txt').readlines() word_raw = open('sorted_word_count.txt').readlines() char_raw = [v.strip().split(',') for v in char_raw] word_raw = [v.strip().split(',') for v in word_raw] char = [v[0] for v in char_raw] char = {k:0 for k in char} word = [v[0] for v in word_raw] word = {k:0 for k in word} char_embed_path='./char_embedding.txt' word_embed_path='./word_embedding.txt' word_dict,_,_ = read_embed(word_embed_path) char_dict,_,_ = read_embed(char_embed_path) word = {k:0 for k in word if word_dict.has_key(k)} char = {k:0 for k in char if char_dict.has_key(k)} f = open('question_topic_train_set.txt') question_topic = f.readlines() f = open('question_train_set.txt') raw_questions = f.readlines() f_tidy_question = open('tidy_question_train_set.txt','w') f_tidy_topic = open('tidy_question_topic_train_set.txt','w') tc_length = {i:0 for i in range(10000)} cc_length = {i:0 for i in range(30000)} tw_length = {i:0 for i in range(1000)} cw_length = {i:0 for i in range(4000)} for raw_value, raw_label in zip(raw_questions, question_topic): value = raw_value.split() if len(value) < 3: continue #f_tidy_question.write(value[0]) tc = value[1].split(',') tc = [v for v in tc if char.has_key(v)] tc_length[len(tc)] +=1 tc = ','.join(tc) #f_tidy_question.write('\t'+tc) tw = value[2].split(',') tw = [v for v in tw if word.has_key(v)] tw_length[len(tw)] +=1 tw = ','.join(tw) #f_tidy_question.write('\t'+tw) if len(tc)==0 or len(tw) ==0: continue write_line = '\t'.join([value[0], tc, tw]) if len(value)>3: cc = value[3].split(',') cc = [v for v in cc if char.has_key(v)] cc_length[len(cc)] +=1 cc = ','.join(cc) write_line += '\t'+cc if len(value)>4: cw = value[4].split(',') cw = [v for v in cw if word.has_key(v)] cw_length[len(cw)] +=1 cw = ','.join(cw) write_line += '\t'+cw write_line += '\n' f_tidy_question.write(write_line) f_tidy_topic.write(raw_label) f_tidy_question.close() f_tidy_topic.close() with open('tc_length.txt','w') as f: for k,v in tc_length.items(): f.write(str(k)+','+str(v)+'\n') with open('cc_length.txt','w') as f: for k,v in cc_length.items(): f.write(str(k)+','+str(v)+'\n') with open('tw_length.txt','w') as f: for k,v in tw_length.items(): f.write(str(k)+','+str(v)+'\n') with open('cw_length.txt','w') as f: for k,v in cw_length.items(): f.write(str(k)+','+str(v)+'\n')
mit
-8,551,566,206,774,961,000
29.635294
63
0.580261
false
2.649034
false
false
false
yfried/ansible
lib/ansible/module_utils/facts/virtual/openbsd.py
199
2319
# This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) __metaclass__ = type import re from ansible.module_utils.facts.virtual.base import Virtual, VirtualCollector from ansible.module_utils.facts.virtual.sysctl import VirtualSysctlDetectionMixin from ansible.module_utils.facts.utils import get_file_content class OpenBSDVirtual(Virtual, VirtualSysctlDetectionMixin): """ This is a OpenBSD-specific subclass of Virtual. It defines - virtualization_type - virtualization_role """ platform = 'OpenBSD' DMESG_BOOT = '/var/run/dmesg.boot' def get_virtual_facts(self): virtual_facts = {} # Set empty values as default virtual_facts['virtualization_type'] = '' virtual_facts['virtualization_role'] = '' virtual_product_facts = self.detect_virt_product('hw.product') virtual_facts.update(virtual_product_facts) if virtual_facts['virtualization_type'] == '': virtual_vendor_facts = self.detect_virt_vendor('hw.vendor') virtual_facts.update(virtual_vendor_facts) # Check the dmesg if vmm(4) attached, indicating the host is # capable of virtualization. dmesg_boot = get_file_content(OpenBSDVirtual.DMESG_BOOT) for line in dmesg_boot.splitlines(): match = re.match('^vmm0 at mainbus0: (SVM/RVI|VMX/EPT)$', line) if match: virtual_facts['virtualization_type'] = 'vmm' virtual_facts['virtualization_role'] = 'host' return virtual_facts class OpenBSDVirtualCollector(VirtualCollector): _fact_class = OpenBSDVirtual _platform = 'OpenBSD'
gpl-3.0
5,320,738,837,033,867,000
35.234375
81
0.695558
false
3.964103
false
false
false
massimo-nocentini/on-python
beazley-metaprogramming/execly/execly.py
1
3654
# execly.py # # Example of generating code and executing it with exec() # in the context of descriptors/metaclasses from inspect import Parameter, Signature import re from collections import OrderedDict # Utility functions def _make_init(fields): ''' Give a list of field names, make an __init__ method ''' code = 'def __init__(self, %s):\n' % \ ','.join(fields) for name in fields: code += ' self.%s = %s\n' % (name, name) return code def _make_setter(dcls): code = 'def __set__(self, instance, value):\n' for d in dcls.__mro__: if 'set_code' in d.__dict__: for line in d.set_code(): code += ' ' + line + '\n' return code class DescriptorMeta(type): def __init__(self, clsname, bases, clsdict): if '__set__' not in clsdict: code = _make_setter(self) exec(code, globals(), clsdict) setattr(self, '__set__', clsdict['__set__']) else: raise TypeError('Define set_code(), not __set__()') class Descriptor(metaclass=DescriptorMeta): def __init__(self, name=None): self.name = name @staticmethod def set_code(): return [ 'instance.__dict__[self.name] = value' ] def __delete__(self, instance): raise AttributeError("Can't delete") class Typed(Descriptor): ty = object @staticmethod def set_code(): return [ 'if not isinstance(value, self.ty):', ' raise TypeError("Expected %s" % self.ty)' ] # Specialized types class Integer(Typed): ty = int class Float(Typed): ty = float class String(Typed): ty = str # Value checking class Positive(Descriptor): @staticmethod def set_code(): return [ 'if value < 0:', ' raise ValueError("Expected >= 0")', ] super().__set__(instance, value) # More specialized types class PosInteger(Integer, Positive): pass class PosFloat(Float, Positive): pass # Length checking class Sized(Descriptor): def __init__(self, *args, maxlen, **kwargs): self.maxlen = maxlen super().__init__(*args, **kwargs) @staticmethod def set_code(): return [ 'if len(value) > self.maxlen:', ' raise ValueError("Too big")', ] class SizedString(String, Sized): pass # Pattern matching class Regex(Descriptor): def __init__(self, *args, pat, **kwargs): self.pat = re.compile(pat) super().__init__(*args, **kwargs) @staticmethod def set_code(): return [ 'if not self.pat.match(value):', ' raise ValueError("Invalid string")', ] class SizedRegexString(SizedString, Regex): pass # Structure definition code class StructMeta(type): @classmethod def __prepare__(cls, name, bases): return OrderedDict() def __new__(cls, clsname, bases, clsdict): fields = [key for key, val in clsdict.items() if isinstance(val, Descriptor) ] for name in fields: clsdict[name].name = name # Make the init function if fields: exec(_make_init(fields), globals(), clsdict) clsobj = super().__new__(cls, clsname, bases, dict(clsdict)) setattr(clsobj, '_fields', fields) return clsobj class Structure(metaclass=StructMeta): pass if __name__ == '__main__': class Stock(Structure): name = SizedRegexString(maxlen=8, pat='[A-Z]+$') shares = PosInteger() price = PosFloat()
mit
-5,169,347,624,705,959,000
23.689189
68
0.557471
false
3.95027
false
false
false
snakedragon/scrapy-hive
starlord/test/geetest-demo.py
1
3901
# -*- coding: utf-8 -*- from starlord.ocr.api import * import requests import selenium from selenium import webdriver import json, urllib,urllib2 import hashlib from urllib import urlencode from selenium.webdriver.common import keys as KEYS import bs4 import sys import time from selenium.webdriver.common.action_chains import ActionChains from PIL import Image as PILImage import cv2 from PIL import Image import random def extractEdges(image_file): edges = [] img = cv2.imread(image_file, 0) gray_lap = cv2.Laplacian(img,cv2.CV_16S,ksize = 3) dst = cv2.convertScaleAbs(gray_lap) cv2.imwrite("verify2.png",dst) #cv2.imshow("showimage", dst) #cv2.waitKey(0) #cv2.destroyAllWindows() image = Image.open("verify2.png") image_rgb = image.convert("RGB") for x in xrange(2, image_rgb.size[0] - 1): for y in xrange(2, image_rgb.size[1] - 1): color1 = image_rgb.getpixel((x,y)) #白色 if color1==(255,255,255): k = min(y+22,image.size[1] - 1) allwhite = False for j in xrange(y+1,k): #余下竖线为白色 color2= image_rgb.getpixel((x,j)) if color2==color1: allwhite = True continue else: allwhite=False break if allwhite: if edges.count(x)==0: edges.append(x) for i in xrange(0,len(edges)-1): if edges[i]+1==edges[i+1]: edges[i]=0 for x in edges: if x==0: edges.remove(x) for z in edges: print str(z) if len(edges)==2: distance1 = edges[1]-edges[0] elif len(edges)>2: distance1 = edges[2]-edges[0] return distance1 headers0 = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64; rv:50.0) Gecko/20100101 Firefox/50.0', 'Content-Type': 'application/x-www-form-urlencoded', 'Connection': 'keep-alive', 'Accept-Encoding': 'gzip,deflate', 'Accept-Language': 'zh-CN,zh;q=0.8', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Cache-Control': 'max-age=0' } driver = webdriver.Chrome() driver.maximize_window() page = driver.get("http://www.qixin.com/login") #elem = driver.find_element_by_xpath("//script[6]") time.sleep(2) #elem = driver.find_element_by_xpath("//div[@class='behavior_verify_content']") elem = driver.find_element_by_css_selector('.gt_slider_knob.gt_show') ActionChains(driver).click_and_hold(elem).perform() time.sleep(1) driver.get_screenshot_as_file('web.png') #print elem.location.values() elem2 = driver.find_element_by_css_selector('.gt_cut_fullbg.gt_show') #ActionChains(driver).move_to_element(elem).perform() #driver.get_screenshot_as_file('2.png') #print elem2.location.values() #print elem2.size.values() topx = elem2.location.values()[1] topy = elem2.location.values()[0] botx = topx + elem2.size.values()[0] boty = topy + elem2.size.values()[1] box=(topx, topy, botx, boty) image1 = PILImage.open('web.png') image1.crop(box).save('verify.png') image1.close() distance = extractEdges("verify.png") ActionChains(driver).move_to_element(elem) #ActionChains(driver).drag_and_drop_by_offset(elem,distance,0).perform() road = 0 for seconds in xrange(0,20): if seconds==19: bias = distance-road ActionChains(driver).move_by_offset(bias, 0).perform() else: ActionChains(driver).move_by_offset(0.05 * distance, 0).perform() road = road + 0.05*distance time.sleep(1*random.random()) #ActionChains(driver).move_to_element_with_offset(elem,distance, 0).perform() driver.get_screenshot_as_file('web2.png') ActionChains(driver).release(elem) time.sleep(10)
apache-2.0
-1,942,913,534,372,948,200
20.692737
93
0.617564
false
3.055075
false
false
false
HackerTool/vivisect
vivisect/impemu/emulator.py
2
19864
import struct import traceback import itertools import envi import envi.bits as e_bits import envi.memory as e_mem import envi.registers as e_reg import visgraph.pathcore as vg_path from vivisect.const import * # Pre-initialize a stack memory bytes init_stack_map = '' for i in xrange(8192/4): init_stack_map += struct.pack("<I", 0xfefe0000+(i*4)) def imphook(impname): def imptemp(f): f.__imphook__ = impname return f return imptemp class WorkspaceEmulator: taintregs = [] def __init__(self, vw, logwrite=False, logread=False): self.vw = vw self.funcva = None # Set if using runFunction self.emustop = False self.hooks = {} self.taints = {} self.taintva = itertools.count(0x41560000, 8192) self.uninit_use = {} self.logwrite = logwrite self.logread = logread self.path = self.newCodePathNode() self.curpath = self.path self.op = None self.opcache = {} self.emumon = None self.psize = self.getPointerSize() # Possibly need an "options" API? self._safe_mem = True # Should we be forgiving about memory accesses? self._func_only = True # is this emulator meant to stay in one function scope? self.strictops = True # shoudl we bail on emulation if unsupported instruction encountered # Map in all the memory associated with the workspace for va, size, perms, fname in vw.getMemoryMaps(): offset, bytes = vw.getByteDef(va) self.addMemoryMap(va, perms, fname, bytes) for regidx in self.taintregs: rname = self.getRegisterName(regidx) regval = self.setVivTaint( 'uninitreg', regidx ) self.setRegister(regidx, regval) for name in dir(self): val = getattr(self, name, None) if val == None: continue impname = getattr(val, '__imphook__',None) if impname == None: continue self.hooks[impname] = val self.stack_map_mask = None self.stack_map_base = None self.stack_map_top = None self.stack_pointer = None self.initStackMemory() def initStackMemory(self, stacksize=4096): ''' Setup and initialize stack memory. You may call this prior to emulating instructions. ''' if self.stack_map_base is None: self.stack_map_mask = e_bits.sign_extend(0xfff00000, 4, self.vw.psize) self.stack_map_base = e_bits.sign_extend(0xbfb00000, 4, self.vw.psize) self.stack_map_top = self.stack_map_base + stacksize self.stack_pointer = self.stack_map_top # Map in a memory map for the stack stack_map = init_stack_map if stacksize != 4096: stack_map = ''.join([struct.pack('<I', self.stack_map_base+(i*4)) for i in xrange(stacksize)]) self.addMemoryMap(self.stack_map_base, 6, "[stack]", stack_map) self.setStackCounter(self.stack_pointer) # Create some pre-made taints for positive stack indexes # NOTE: This is *ugly* for speed.... taints = [ self.setVivTaint('funcstack', i * self.psize) for i in xrange(20) ] taintbytes = ''.join([ e_bits.buildbytes(taint,self.psize) for taint in taints ]) self.writeMemory(self.stack_pointer, taintbytes) else: existing_map_size = self.stack_map_top - self.stack_map_base new_map_size = stacksize - existing_map_size if new_map_size < 0: raise RuntimeError('cannot shrink stack') new_map_top = self.stack_map_base new_map_base = new_map_top - new_map_size stack_map = ''.join([struct.pack('<I', new_map_base+(i*4)) for i in xrange(new_map_size)]) self.addMemoryMap(new_map_base, 6, "[stack]", stack_map) self.stack_map_base = new_map_base # no need to do tainting here, since SP will always be in the # first map def stopEmu(self): ''' This is called by monitor to stop emulation ''' self.emustop = True def getPathProp(self, key): ''' Retrieve a named value from the current code path context. ''' return vg_path.getNodeProp(self.curpath, key) def setPathProp(self, key, value): """ Set a named value which is only relevant for the current code path. """ return vg_path.setNodeProp(self.curpath, key, value) def setEmulationMonitor(self, emumon): """ Snap in an emulation monitor. (see EmulationMonitor doc from vivisect.impemu) """ self.emumon = emumon def parseOpcode(self, pc): # We can make an opcode *faster* with the workspace because of # getByteDef etc... use it. op = self.opcache.get(pc) if op == None: op = envi.Emulator.parseOpcode(self, pc) self.opcache[pc] = op return op def checkCall(self, starteip, endeip, op): """ Check if this was a call, and if so, do the required import emulation and such... """ iscall = bool(op.iflags & envi.IF_CALL) if iscall: api = self.getCallApi(endeip) rtype,rname,convname,callname,funcargs = api callconv = self.getCallingConvention(convname) argv = callconv.getCallArgs(self, len(funcargs)) ret = None if self.emumon != None: try: ret = self.emumon.apicall(self, op, endeip, api, argv) except Exception, e: self.emumon.logAnomaly(self, endeip, "%s.apicall failed: %s" % (self.emumon.__class__.__name__, e)) hook = self.hooks.get(callname) if ret == None and hook: hook( self, callconv, api, argv ) else: if ret == None: ret = self.setVivTaint('apicall', (op,endeip,api,argv)) callconv.execCallReturn( self, ret, len(funcargs) ) # Either way, if it's a call PC goes to next instruction if self._func_only: self.setProgramCounter(starteip+len(op)) return iscall def newCodePathNode(self, parent=None, bva=None): ''' NOTE: Right now, this is only called from the actual branch state which needs it. it must stay that way for now (register context is being copied for symbolic emulator...) ''' props = { 'bva':bva, # the entry virtual address for this branch 'valist':[], # the virtual addresses in this node in order 'calllog':[], # FIXME is this even used? 'readlog':[], # a log of all memory reads from this block 'writelog':[],# a log of all memory writes from this block } ret = vg_path.newPathNode(parent=parent, **props) return ret def getBranchNode(self, node, bva): ''' If a node exists already for the specified branch, return it. Otherwise, create a new one and return that... ''' for knode in vg_path.getNodeKids(node): if vg_path.getNodeProp(knode, 'bva') == bva: return knode return self.newCodePathNode(node, bva) def checkBranches(self, starteip, endeip, op): """ This routine gets the current branch list for this opcode, adds branch entries to the current path, and updates current path as needed (returns a list of (va, CodePath) tuples. """ ret = [] # Add all the known branches to the list blist = op.getBranches(emu=self) # FIXME this should actually check for conditional... # If there is more than one branch target, we need a new code block if len(blist) > 1: for bva,bflags in blist: if bva == None: print "Unresolved branch even WITH an emulator?" continue bpath = self.getBranchNode(self.curpath, bva) ret.append((bva, bpath)) return ret def stepi(self): # NOTE: when we step, we *always* want to be stepping over calls # (and possibly import emulate them) starteip = self.getProgramCounter() # parse out an opcode op = self.parseOpcode(starteip) if self.emumon: self.emumon.prehook(self, op, starteip) # Execute the opcode self.executeOpcode(op) vg_path.getNodeProp(self.curpath, 'valist').append(starteip) endeip = self.getProgramCounter() if self.emumon: self.emumon.posthook(self, op, endeip) if not self.checkCall(starteip, endeip, op): self.checkBranches(starteip, endeip, op) def runFunction(self, funcva, stopva=None, maxhit=None, maxloop=None): """ This is a utility function specific to WorkspaceEmulation (and impemu) that will emulate, but only inside the given function. You may specify a stopva to return once that location is hit. """ self.funcva = funcva # Let the current (should be base also) path know where we are starting vg_path.setNodeProp(self.curpath, 'bva', funcva) hits = {} todo = [(funcva,self.getEmuSnap(),self.path),] vw = self.vw # Save a dereference many many times while len(todo): va,esnap,self.curpath = todo.pop() self.setEmuSnap(esnap) self.setProgramCounter(va) # Check if we are beyond our loop max... if maxloop != None: lcount = vg_path.getPathLoopCount(self.curpath, 'bva', va) if lcount > maxloop: continue while True: starteip = self.getProgramCounter() if not vw.isValidPointer(starteip): break if starteip == stopva: return # Check straight hit count... if maxhit != None: h = hits.get(starteip, 0) h += 1 if h > maxhit: break hits[starteip] = h # If we ran out of path (branches that went # somewhere that we couldn't follow? if self.curpath == None: break try: # FIXME unify with stepi code... op = self.parseOpcode(starteip) self.op = op if self.emumon: self.emumon.prehook(self, op, starteip) if self.emustop: return # Execute the opcode self.executeOpcode(op) vg_path.getNodeProp(self.curpath, 'valist').append(starteip) endeip = self.getProgramCounter() if self.emumon: self.emumon.posthook(self, op, endeip) if self.emustop: return iscall = self.checkCall(starteip, endeip, op) if self.emustop: return # If it wasn't a call, check for branches, if so, add them to # the todo list and go around again... if not iscall: blist = self.checkBranches(starteip, endeip, op) if len(blist): # pc in the snap will be wrong, but over-ridden at restore esnap = self.getEmuSnap() for bva,bpath in blist: todo.append((bva, esnap, bpath)) break # If we enounter a procedure exit, it doesn't # matter what EIP is, we're done here. if op.iflags & envi.IF_RET: vg_path.setNodeProp(self.curpath, 'cleanret', True) break except envi.UnsupportedInstruction, e: if self.strictops: break else: print 'runFunction continuing after unsupported instruction: 0x%08x %s' % (e.op.va, e.op.mnem) self.setProgramCounter(e.op.va+ e.op.size) except Exception, e: #traceback.print_exc() if self.emumon != None: self.emumon.logAnomaly(self, starteip, str(e)) break # If we exc during execution, this branch is dead. def getCallApi(self, va): ''' Retrieve an API definition from either the vivisect workspace ( if the call target is a function within the workspace ) or the impapi definition subsystem ( if the call target is a known import definition ) ''' vw = self.vw ret = None if vw.isFunction(va): ret = vw.getFunctionApi(va) if ret != None: return ret else: taint = self.getVivTaint(va) if taint: tva,ttype,tinfo = taint if ttype == 'import': lva,lsize,ltype,linfo = tinfo ret = vw.getImpApi( linfo ) elif ttype == 'dynfunc': libname,funcname = tinfo ret = vw.getImpApi('%s.%s' % (libname,funcname)) if ret: return ret defcall = vw.getMeta("DefaultCall") return ('int', None, defcall, 'UnknownApi', () ) def nextVivTaint(self): # One page into the new taint range return self.taintva.next() + 4096 def setVivTaint(self, typename, taint): ''' Set a taint in the emulator. Returns the new value for the created taint. ''' va = self.nextVivTaint() self.taints[ va & 0xffffe000 ] = (va,typename,taint) return va def getVivTaint(self, va): ''' Retrieve a previously registered taint ( this will automagically mask values down and allow you to retrieve "near taint" values.) ''' return self.taints.get( va & 0xffffe000 ) def reprVivTaint(self, taint): ''' For the base "known" taint types, return a humon readable string to represent the value of the taint. ''' va,ttype,tinfo = taint if ttype == 'uninitreg': return self.getRegisterName(tinfo) if ttype == 'import': lva,lsize,ltype,linfo = tinfo return linfo if ttype == 'dynlib': libname = tinfo return libname if ttype == 'dynfunc': libname,funcname = tinfo return '%s.%s' % (libname,funcname) if ttype == 'funcstack': stackoff = tinfo if self.funcva: flocal = self.vw.getFunctionLocal(self.funcva, stackoff) if flocal != None: typename,argname = flocal return argname o = '+' if stackoff < 0: o = '-' return 'sp%s%d' % (o, abs(stackoff)) if ttype == 'apicall': op,pc,api,argv = tinfo rettype,retname,callconv,callname,callargs = api callstr = self.reprVivValue( pc ) argsstr = ','.join([ self.reprVivValue( x ) for x in argv]) return '%s(%s)' % (callstr,argsstr) return 'taint: 0x%.8x %s %r' % (va, ttype, tinfo) def reprVivValue(self, val): ''' Return a humon readable string which is the best description for the given value ( given knowledge of the workspace, emu, and taint subsystems ). ''' if self.vw.isFunction(val): thunk = self.vw.getFunctionMeta(val,'Thunk') if thunk: return thunk vivname = self.vw.getName(val) if vivname: return vivname taint = self.getVivTaint(val) if taint: # NOTE we need to prevent infinite recursion due to args being # tainted and then referencing the same api call va,ttype,tinfo = taint if ttype == 'apicall': op,pc,api,argv = tinfo rettype,retname,callconv,callname,callargs = api if val not in argv: return self.reprVivTaint(taint) stackoff = self.getStackOffset(val) if stackoff != None: funclocal = self.vw.getFunctionLocal(self.funcva, stackoff) if funclocal != None: typename,varname = funclocal return varname if val < 4096: return str(val) return '0x%.8x' % val def _useVirtAddr(self, va): taint = self.getVivTaint(va) if taint == None: return tva,ttype,tinfo = taint if ttype == 'uninitreg': self.logUninitRegUse(tinfo) def writeMemory(self, va, bytes): """ Try to write the bytes to the memory object, otherwise, dont' complain... """ if self.logwrite: wlog = vg_path.getNodeProp(self.curpath, 'writelog') wlog.append((self.getProgramCounter(),va,bytes)) self._useVirtAddr( va ) # It's totally ok to write to invalid memory during the # emulation pass (as long as safe_mem is true...) probeok = self.probeMemory(va, len(bytes), e_mem.MM_WRITE) if self._safe_mem and not probeok: return return e_mem.MemoryObject.writeMemory(self, va, bytes) def logUninitRegUse(self, regid): self.uninit_use[regid] = True def getUninitRegUse(self): return self.uninit_use.keys() def readMemory(self, va, size): if self.logread: rlog = vg_path.getNodeProp(self.curpath, 'readlog') rlog.append((self.getProgramCounter(),va,size)) # If they read an import entry, start a taint... loc = self.vw.getLocation(va) if loc != None: lva, lsize, ltype, ltinfo = loc if ltype == LOC_IMPORT and lsize == size: # They just read an import. ret = self.setVivTaint('import', loc) return e_bits.buildbytes(ret, lsize) self._useVirtAddr(va) # Read from the emulator's pages if we havent resolved it yet probeok = self.probeMemory(va, size, e_mem.MM_READ) if self._safe_mem and not probeok: return 'A' * size return e_mem.MemoryObject.readMemory(self, va, size) # Some APIs for telling if pointers are in runtime memory regions def isUninitStack(self, val): """ If val is a numerical value in the same memory page as the un-initialized stack values return True """ #NOTE: If uninit_stack_byte changes, so must this! if (val & 0xfffff000) == 0xfefef000: return True return False def isStackPointer(self, va): return (va & self.stack_map_mask) == self.stack_map_base def getStackOffset(self, va): if (va & self.stack_map_mask) == self.stack_map_base: return va - self.stack_pointer
apache-2.0
-5,625,522,150,030,716,000
32.724958
119
0.540727
false
3.967246
false
false
false
mday299/MAVProxy
setup.py
2
2663
from setuptools import setup version = "1.5.1" setup(name='MAVProxy', version=version, zip_safe=True, description='MAVProxy MAVLink ground station', long_description='''A MAVLink protocol proxy and ground station. MAVProxy is oriented towards command line operation, and is suitable for embedding in small autonomous vehicles or for using on ground control stations. It also features a number of graphical tools such as a slipmap for satellite mapping view of the vehicles location, and status console and several useful vehicle control modules. MAVProxy is extensible via a modules system - see the modules subdirectory for some example modules. MAVProxy was developed by CanberraUAV for use in the 2012 Outback Challenge, and includes a module for the CanberraUAV search and rescue system. See http://Dronecode.github.io/MAVProxy/ for more information on how to use MAVProxy.''', url='https://github.com/Dronecode/MAVProxy', author='Andrew Tridgell', author_email='andrew@tridgell.net', classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Topic :: Scientific/Engineering'], license='GPLv3', packages=['MAVProxy', 'MAVProxy.modules', 'MAVProxy.modules.mavproxy_map', 'MAVProxy.modules.mavproxy_misseditor', 'MAVProxy.modules.mavproxy_smartcamera', 'MAVProxy.modules.lib', 'MAVProxy.modules.lib.ANUGA', 'MAVProxy.modules.lib.optparse_gui'], # note that we do not include all the real dependencies here (like matplotlib etc) # as that breaks the pip install. It seems that pip is not smart enough to # use the system versions of these dependencies, so it tries to download and install # large numbers of modules like numpy etc which may be already installed install_requires=['pymavlink>=1.1.73', 'pyserial>=3.0'], scripts=['MAVProxy/mavproxy.py', 'MAVProxy/tools/mavflightview.py', 'MAVProxy/tools/MAVExplorer.py', 'MAVProxy/modules/mavproxy_map/mp_slipmap.py', 'MAVProxy/modules/mavproxy_map/mp_tile.py'], package_data={'MAVProxy': ['modules/mavproxy_map/data/*.jpg', 'modules/mavproxy_map/data/*.png', 'tools/graphs/*.xml']} )
gpl-3.0
8,074,820,753,599,540,000
47.418182
90
0.651145
false
4.206951
false
false
false
pydicom/sendit
sendit/logger.py
1
8575
# -*- coding: utf-8 -*- ''' logger.py: Simple logger for sendit. Note that levels info and log are the only two considered stdout, the rest are sent to stderr. Copyright (c) 2017 Vanessa Sochat Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import os import sys ABRT = -4 ERROR = -3 WARNING = -2 LOG = -1 INFO = 1 QUIET = 0 VERBOSE = VERBOSE1 = 2 VERBOSE2 = 3 VERBOSE3 = 4 DEBUG = 5 class SenditMessage: def __init__(self,MESSAGELEVEL=None): self.level = get_logging_level() self.history = [] self.errorStream = sys.stderr self.outputStream = sys.stdout self.colorize = self.useColor() self.colors = {ABRT:"\033[31m", # dark red ERROR: "\033[91m", # red WARNING:"\033[93m", # dark yellow LOG:"\033[95m", # purple DEBUG:"\033[36m", # cyan 'OFF':"\033[0m"} # end sequence # Colors -------------------------------------------- def useColor(self): '''useColor will determine if color should be added to a print. Will check if being run in a terminal, and if has support for asci''' COLORIZE = get_user_color_preference() if COLORIZE is not None: return COLORIZE streams = [self.errorStream,self.outputStream] for stream in streams: if not hasattr(stream, 'isatty'): return False if not stream.isatty(): return False return True def addColor(self,level,text): '''addColor to the prompt (usually prefix) if terminal supports, and specified to do so''' if self.colorize: if level in self.colors: text = "%s%s%s" %(self.colors[level], text, self.colors["OFF"]) return text def emitError(self,level): '''determine if a level should print to stderr, includes all levels but INFO and QUIET''' if level in [ABRT, ERROR, WARNING, VERBOSE, VERBOSE1, VERBOSE2, VERBOSE3, DEBUG ]: return True return False def emitOutput(self,level): '''determine if a level should print to stdout only includes INFO''' if level in [LOG, INFO]: return True return False def isEnabledFor(self,messageLevel): '''check if a messageLevel is enabled to emit a level ''' if messageLevel <= self.level: return True return False def emit(self,level,message,prefix=None): '''emit is the main function to print the message optionally with a prefix :param level: the level of the message :param message: the message to print :param prefix: a prefix for the message ''' if prefix is not None: prefix = self.addColor(level,"%s " %(prefix)) else: prefix = "" message = self.addColor(level,message) # Add the prefix message = "%s%s" %(prefix,message) if not message.endswith('\n'): message = "%s\n" %message # If the level is quiet, only print to error if self.level == QUIET: pass # Otherwise if in range print to stdout and stderr elif self.isEnabledFor(level): if self.emitError(level): self.write(self.errorStream,message) else: self.write(self.outputStream,message) # Add all log messages to history self.history.append(message) def write(self,stream,message): '''write will write a message to a stream, first checking the encoding ''' if isinstance(message,bytes): message = message.decode('utf-8') stream.write(message) def get_logs(self,join_newline=True): ''''get_logs will return the complete history, joined by newline (default) or as is. ''' if join_newline: return '\n'.join(self.history) return self.history def show_progress(self,iteration,total,length=40,min_level=0,prefix=None, carriage_return=True,suffix=None,symbol=None): '''create a terminal progress bar, default bar shows for verbose+ :param iteration: current iteration (Int) :param total: total iterations (Int) :param length: character length of bar (Int) ''' percent = 100 * (iteration / float(total)) progress = int(length * iteration // total) if suffix is None: suffix = '' if prefix is None: prefix = 'Progress' # Download sizes can be imperfect, setting carriage_return to False # and writing newline with caller cleans up the UI if percent >= 100: percent = 100 progress = length if symbol is None: symbol = "=" if progress < length: bar = symbol * progress + '|' + '-' * (length - progress - 1) else: bar = symbol * progress + '-' * (length - progress) # Only show progress bar for level > min_level if self.level > min_level: percent = "%5s" %("{0:.1f}").format(percent) output = '\r' + prefix + " |%s| %s%s %s" % (bar, percent, '%', suffix) sys.stdout.write(output), if iteration == total and carriage_return: sys.stdout.write('\n') sys.stdout.flush() def abort(self,message): self.emit(ABRT,message,'ABRT') def error(self,message): self.emit(ERROR,message,'ERROR') def warning(self,message): self.emit(WARNING,message,'WARNING') def log(self,message): self.emit(LOG,message,'LOG') def info(self,message): self.emit(INFO,message) def verbose(self,message): self.emit(VERBOSE,message,"VERBOSE") def verbose1(self,message): self.emit(VERBOSE,message,"VERBOSE1") def verbose2(self,message): self.emit(VERBOSE2,message,'VERBOSE2') def verbose3(self,message): self.emit(VERBOSE3,message,'VERBOSE3') def debug(self,message): self.emit(DEBUG,message,'DEBUG') def is_quiet(self): '''is_quiet returns true if the level is under 1 ''' if self.level < 1: return False return True def get_logging_level(): '''get_logging_level will configure a logging to standard out based on the user's selected level, which should be in an environment variable called SENDIT_MESSAGELEVEL. if SENDIT_MESSAGELEVEL is not set, the maximum level (5) is assumed (all messages). ''' return int(os.environ.get("SENDIT_MESSAGELEVEL",5)) def get_user_color_preference(): COLORIZE = os.environ.get('SENDIT_COLORIZE',None) if COLORIZE is not None: COLORIZE = convert2boolean(COLORIZE) return COLORIZE def convert2boolean(arg): '''convert2boolean is used for environmental variables that must be returned as boolean''' if not isinstance(arg,bool): return arg.lower() in ("yes", "true", "t", "1","y") return arg bot = SenditMessage()
mit
2,299,047,214,545,847,600
29.734767
95
0.580175
false
4.293941
false
false
false
cyanfish/heltour
heltour/tournament/automod.py
1
17435
from heltour import settings from heltour.tournament.models import * from django.db.models.signals import post_save from django.dispatch.dispatcher import receiver from heltour.tournament.tasks import pairings_published import reversion import time logger = logging.getLogger(__name__) @receiver(post_save, sender=ModRequest, dispatch_uid='heltour.tournament.automod') def mod_request_saved(instance, created, **kwargs): if created: signals.mod_request_created.send(sender=MOD_REQUEST_SENDER[instance.type], instance=instance) @receiver(signals.mod_request_created, sender=MOD_REQUEST_SENDER['appeal_late_response'], dispatch_uid='heltour.tournament.automod') def appeal_late_response_created(instance, **kwargs): # Figure out which round to use if not instance.round or instance.round.publish_pairings: instance.round = instance.season.round_set.order_by('number').filter(publish_pairings=True, is_completed=False).first() instance.save() @receiver(signals.mod_request_created, sender=MOD_REQUEST_SENDER['request_continuation'], dispatch_uid='heltour.tournament.automod') def request_continuation_created(instance, **kwargs): # Figure out which round to use if not instance.round or instance.round.publish_pairings: instance.round = instance.season.round_set.order_by('number').filter( publish_pairings=False).first() instance.save() @receiver(signals.mod_request_created, sender=MOD_REQUEST_SENDER['withdraw'], dispatch_uid='heltour.tournament.automod') def withdraw_created(instance, **kwargs): # Figure out which round to add the withdrawal on if not instance.round or instance.round.publish_pairings: instance.round = instance.season.round_set.order_by('number').filter( publish_pairings=False).first() instance.save() # Check that the requester is part of the season sp = SeasonPlayer.objects.filter(player=instance.requester, season=instance.season).first() if sp is None: instance.reject(response='You aren\'t currently a participant in %s.' % instance.season) return if not instance.round: instance.reject(response='You can\'t withdraw from the season at this time.') return instance.approve(response='You\'ve been withdrawn for round %d.' % instance.round.number) @receiver(signals.mod_request_approved, sender=MOD_REQUEST_SENDER['withdraw'], dispatch_uid='heltour.tournament.automod') def withdraw_approved(instance, **kwargs): if not instance.round: return # Add the withdrawal if it doesn't already exist with reversion.create_revision(): reversion.set_comment('Withdraw request approved by %s' % instance.status_changed_by) PlayerWithdrawal.objects.get_or_create(player=instance.requester, round=instance.round) @receiver(signals.automod_unresponsive, dispatch_uid='heltour.tournament.automod') def automod_unresponsive(round_, **kwargs): groups = {'warning': [], 'yellow': [], 'red': []} for p in round_.pairings.filter(game_link='', result='', scheduled_time=None).exclude( white=None).exclude(black=None): # verify that neither player is previously marked unavailable if round_.season.league.competitor_type == 'team': white_unavail = PlayerAvailability.objects.filter(round=round_, player=p.white, is_available=False).exists() black_unavail = PlayerAvailability.objects.filter(round=round_, player=p.black, is_available=False).exists() if white_unavail or black_unavail: continue # check who is not present white_present = p.get_player_presence(p.white).first_msg_time is not None black_present = p.get_player_presence(p.black).first_msg_time is not None if not white_present: player_unresponsive(round_, p, p.white, groups) if black_present: signals.notify_opponent_unresponsive.send(sender=automod_unresponsive, round_=round_, player=p.black, opponent=p.white, pairing=p) time.sleep(1) if not black_present: player_unresponsive(round_, p, p.black, groups) if white_present: signals.notify_opponent_unresponsive.send(sender=automod_unresponsive, round_=round_, player=p.white, opponent=p.black, pairing=p) time.sleep(1) signals.notify_mods_unresponsive.send(sender=automod_unresponsive, round_=round_, warnings=groups['warning'], yellows=groups['yellow'], reds=groups['red']) def player_unresponsive(round_, pairing, player, groups): season = round_.season league = season.league has_warning = PlayerWarning.objects.filter(player=player, round__season=season, type='unresponsive').exists() if not has_warning and league.get_leaguesetting().warning_for_late_response: with reversion.create_revision(): reversion.set_comment('Automatic warning for unresponsiveness') PlayerWarning.objects.get_or_create(player=player, round=round_, type='unresponsive') punishment = 'You may receive a yellow card.' allow_continue = league.competitor_type != 'team' groups['warning'].append(player) else: card_color = give_card(round_, player, 'card_unresponsive') if not card_color: return punishment = 'You have been given a %s card.' % card_color allow_continue = card_color != 'red' and league.competitor_type != 'team' groups[card_color].append(player) if league.competitor_type == 'team': avail, _ = PlayerAvailability.objects.get_or_create(round=round_, player=player) avail.is_available = False avail.save() signals.notify_unresponsive.send(sender=automod_unresponsive, round_=round_, player=player, punishment=punishment, allow_continue=allow_continue, pairing=pairing) @receiver(signals.mod_request_approved, sender=MOD_REQUEST_SENDER['appeal_late_response'], dispatch_uid='heltour.tournament.automod') def appeal_late_response_approved(instance, **kwargs): if not instance.pairing: return with reversion.create_revision(): reversion.set_comment('Late response appeal approved by %s' % instance.status_changed_by) warning = PlayerWarning.objects.filter(player=instance.requester, round=instance.round, type='unresponsive').first() if warning: warning.delete() else: revoke_card(instance.round, instance.requester, 'card_unresponsive') @receiver(signals.automod_noshow, dispatch_uid='heltour.tournament.automod') def automod_noshow(pairing, **kwargs): if pairing.game_link: # Game started, no action necessary return white_online = pairing.get_player_presence(pairing.white).online_for_game black_online = pairing.get_player_presence(pairing.black).online_for_game if white_online and not black_online: player_noshow(pairing, pairing.white, pairing.black) if black_online and not white_online: player_noshow(pairing, pairing.black, pairing.white) def player_noshow(pairing, player, opponent): round_ = pairing.get_round() signals.notify_noshow.send(sender=automod_unresponsive, round_=round_, player=player, opponent=opponent) @receiver(signals.mod_request_created, sender=MOD_REQUEST_SENDER['claim_win_noshow'], dispatch_uid='heltour.tournament.automod') def claim_win_noshow_created(instance, **kwargs): # Figure out which round to add the claim on if not instance.round: instance.round = instance.season.round_set.order_by('number').filter(is_completed=False, publish_pairings=True).first() instance.save() if not instance.pairing and instance.round: instance.pairing = instance.round.pairing_for(instance.requester) instance.save() # Check that the requester is part of the season sp = SeasonPlayer.objects.filter(player=instance.requester, season=instance.season).first() if sp is None: instance.reject(response='You aren\'t currently a participant in %s.' % instance.season) return if not instance.round: instance.reject(response='You can\'t claim a win at this time.') return if not instance.pairing: instance.reject(response='You don\'t currently have a pairing you can claim a win for.') return p = instance.pairing opponent = p.white if p.white != instance.requester else p.black if p.get_player_presence(instance.requester).online_for_game \ and not p.get_player_presence(opponent).online_for_game \ and timezone.now() > p.scheduled_time + timedelta(minutes=21): instance.approve(response='You\'ve been given a win by forfeit.') @receiver(signals.mod_request_approved, sender=MOD_REQUEST_SENDER['claim_win_noshow'], dispatch_uid='heltour.tournament.automod') def claim_win_noshow_approved(instance, **kwargs): if not instance.pairing: return p = instance.pairing opponent = p.white if p.white != instance.requester else p.black with reversion.create_revision(): reversion.set_comment('Auto forfeit for no-show') if p.white == instance.requester: p.result = '1X-0F' if p.black == instance.requester: p.result = '0F-1X' p.save() add_system_comment(p, '%s no-show' % opponent.lichess_username) sp = SeasonPlayer.objects.filter(player=opponent, season=instance.season).first() add_system_comment(sp, 'Round %d no-show' % instance.round.number) card_color = give_card(instance.round, opponent, 'card_noshow') if not card_color: return punishment = 'You have been given a %s card.' % card_color allow_continue = card_color != 'red' and instance.season.league.competitor_type != 'team' signals.notify_noshow_claim.send(sender=claim_win_noshow_approved, round_=instance.round, player=opponent, punishment=punishment, allow_continue=allow_continue) @receiver(signals.mod_request_created, sender=MOD_REQUEST_SENDER['appeal_noshow'], dispatch_uid='heltour.tournament.automod') def appeal_noshow_created(instance, **kwargs): # Figure out which round to use if not instance.round: instance.round = instance.season.round_set.order_by('number').filter(publish_pairings=True, is_completed=False).first() instance.save() if not instance.pairing and instance.round: instance.pairing = instance.round.pairing_for(instance.requester) instance.save() @receiver(signals.mod_request_approved, sender=MOD_REQUEST_SENDER['appeal_noshow'], dispatch_uid='heltour.tournament.automod') def appeal_noshow_approved(instance, **kwargs): if not instance.pairing: return with reversion.create_revision(): reversion.set_comment('No-show appeal approved by %s' % instance.status_changed_by) revoke_card(instance.round, instance.requester, 'card_noshow') with reversion.create_revision(): reversion.set_comment('No-show appeal approved by %s' % instance.status_changed_by) instance.pairing.result = '' instance.pairing.save() @receiver(signals.mod_request_created, sender=MOD_REQUEST_SENDER['claim_draw_scheduling'], dispatch_uid='heltour.tournament.automod') def claim_draw_scheduling_created(instance, **kwargs): # Figure out which round to add the claim on if not instance.round: instance.round = instance.season.round_set.order_by('number').filter(is_completed=False, publish_pairings=True).first() instance.save() if not instance.pairing and instance.round: instance.pairing = instance.round.pairing_for(instance.requester) instance.save() # Check that the requester is part of the season sp = SeasonPlayer.objects.filter(player=instance.requester, season=instance.season).first() if sp is None: instance.reject(response='You aren\'t currently a participant in %s.' % instance.season) return if not instance.round: instance.reject(response='You can\'t claim a scheduling draw at this time.') return if not instance.pairing: instance.reject( response='You don\'t currently have a pairing you can claim a scheduling draw for.') return if instance.pairing.result: instance.reject( response='You can\'t claim a scheduling draw for a game which already has a set result.') return add_system_comment(instance.pairing, 'Scheduling draw claim made by %s' % instance.requester) @receiver(signals.mod_request_approved, sender=MOD_REQUEST_SENDER['claim_draw_scheduling'], dispatch_uid='heltour.tournament.automod') def claim_scheduling_draw_approved(instance, **kwargs): if not instance.pairing: return p = instance.pairing opponent = p.white if p.white != instance.requester else p.black comment_ = 'Scheduling draw claim approved by %s' % instance.status_changed_by with reversion.create_revision(): reversion.set_comment(comment_) p.result = '1/2Z-1/2Z' p.save() add_system_comment(p, comment_) signals.notify_scheduling_draw_claim.send(sender=claim_scheduling_draw_approved, round_=instance.round, player=opponent) @receiver(signals.mod_request_created, sender=MOD_REQUEST_SENDER['appeal_draw_scheduling'], dispatch_uid='heltour.tournament.automod') def appeal_scheduling_draw_created(instance, **kwargs): # Figure out which round to use if not instance.round: instance.round = instance.season.round_set.order_by('number').filter(publish_pairings=True, is_completed=False).first() instance.save() if not instance.pairing and instance.round: instance.pairing = instance.round.pairing_for(instance.requester) instance.save() add_system_comment(instance.pairing, 'Scheduling draw appeal by %s' % instance.requester) @receiver(signals.mod_request_approved, sender=MOD_REQUEST_SENDER['appeal_draw_scheduling'], dispatch_uid='heltour.tournament.automod') def appeal_scheduling_draw_approved(instance, **kwargs): if not instance.pairing: return comment_ = 'Scheduling draw appeal approved by %s' % instance.status_changed_by with reversion.create_revision(): reversion.set_comment(comment_) instance.pairing.result = '' instance.pairing.save() add_system_comment(instance.pairing, comment_) def give_card(round_, player, type_): # TODO: Unit tests? with transaction.atomic(): sp = SeasonPlayer.objects.filter(season=round_.season, player=player).first() if not sp: logger.error('Season player did not exist for %s %s' % (round_.season, player)) return None already_has_card = PlayerWarning.objects.filter(player=player, round=round_, type__startswith='card').exists() card, _ = PlayerWarning.objects.get_or_create(player=player, round=round_, type=type_) if not already_has_card: sp.games_missed += 1 with reversion.create_revision(): reversion.set_comment('Automatic %s %s' % (sp.card_color, card.get_type_display())) sp.save() return sp.card_color def revoke_card(round_, player, type_): with transaction.atomic(): sp = SeasonPlayer.objects.filter(season=round_.season, player=player).first() if not sp: logger.error('Season player did not exist for %s %s' % (round_.season, player)) return card = PlayerWarning.objects.filter(player=player, round=round_, type=type_).first() if not card: return card.delete() has_other_card = PlayerWarning.objects.filter(player=player, round=round_, type__startswith='card').exists() if not has_other_card and sp.games_missed > 0: sp.games_missed -= 1 with reversion.create_revision(): reversion.set_comment('Card revocation') sp.save()
mit
-8,901,362,672,809,592,000
45.002639
107
0.638142
false
3.958002
false
false
false
kescobo/util_hutlab
workflows/strainphlan_workflow.py
1
4981
#!/usr/bin/env python """ bioBakery Workflows: strainphlan Copyright (c) 2018 Harvard School of Public Health Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys import os, fnmatch # import the workflow class from anadama2 from anadama2 import Workflow # import the library of biobakery_workflow tasks for shotgun sequences from biobakery_workflows.tasks import shotgun, general # import the utilities functions and config settings from biobakery_workflows from biobakery_workflows import utilities, config # create a workflow instance, providing the version number and description # the version number will appear when running this script with the "--version" option # the description will appear when running this script with the "--help" option workflow = Workflow(version="0.1", description="A workflow to run strainphlan") # add the custom arguments to the workflow workflow_config = config.ShotGun() workflow.add_argument("input-extension", desc="the input file extension", default="fastq.gz", choices=["fastq.gz","fastq","fq.gz","fq","fasta","fasta.gz"]) workflow.add_argument("threads", desc="number of threads/cores for each task to use", default=1) workflow.add_argument("bypass-taxonomic-profiling", desc="do not run the taxonomic profiling tasks (a tsv profile for each sequence file must be included in the input folder using the same sample name)", action="store_true") workflow.add_argument("strain-profiling-options", desc="additional options when running the strain profiling step", default="") workflow.add_argument("max-strains", desc="the max number of strains to profile", default=20, type=int) # get the arguments from the command line args = workflow.parse_args() # get all input files with the input extension provided on the command line # return an error if no files are found input_files = utilities.find_files(args.input, extension=args.input_extension, exit_if_not_found=True) ### STEP #1: Run taxonomic profiling on all of the filtered files ### if not args.bypass_taxonomic_profiling: merged_taxonomic_profile, taxonomy_tsv_files, taxonomy_sam_files = shotgun.taxonomic_profile(workflow, input_files,args.output,args.threads,args.input_extension) elif: sample_names = utilities.sample_names(input_files,args.input_extension) tsv_profiles = utilities.name_files(sample_names, demultiplex_output_folder, tag="taxonomic_profile", extension="tsv") # check all of the expected profiles are found if len(tsv_profiles) != len(list(filter(os.path.isfile,tsv_profiles))): sys.exit("ERROR: Bypassing taxonomic profiling but all of the tsv taxonomy profile files are not found in the input folder. Expecting the following input files:\n"+"\n".join(tsv_profiles)) # run taxonomic profile steps bypassing metaphlan2 merged_taxonomic_profile, taxonomy_tsv_files, taxonomy_sam_files = shotgun.taxonomic_profile(workflow, tsv_profiles,args.output,args.threads,"tsv",already_profiled=True) # look for the sam profiles taxonomy_sam_files = utilities.name_files(sample_names, demultiplex_output_folder, tag="bowtie2", extension="sam") # if they do not all exist, then bypass strain profiling if not already set if len(taxonomy_sam_files) != len(list(filter(os.path.isfile,taxonomy_sam_files))): print("Warning: Bypassing taxonomic profiling but not all taxonomy sam files are present in the input folder. Strain profiling will be bypassed. Expecting the following input files:\n"+"\n".join(taxonomy_sam_files)) args.bypass_strain_profiling = True ### STEP #2: Run strain profiling # Provide taxonomic profiling output so top strains by abundance will be selected if not args.bypass_strain_profiling: shotgun.strain_profile(workflow,taxonomy_sam_files,args.output,args.threads, workflow_config.strainphlan_db_reference,workflow_config.strainphlan_db_markers,merged_taxonomic_profile, args.strain_profiling_options,args.max_strains) # start the workflow workflow.go()
mit
1,441,946,323,739,177,000
56.918605
224
0.775146
false
3.846332
true
false
false
gudeg-united/mishapp-api
mishapp_api/views/__init__.py
1
3263
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from flask import Blueprint from flask import jsonify from webargs import Arg from webargs import ValidationError from webargs.flaskparser import use_args from mishapp_api.database import Disaster disaster_api = Blueprint("disaster", __name__) def radius_gte_zero(val): if val < 0: raise ValidationError("radius must greater than equal 0") @disaster_api.errorhandler(400) def handle_bad_request(err): data = getattr(err, "data") if data: err_message = data["message"] else: err_message = "Bad request" return jsonify({"message": err_message}), 400 @disaster_api.errorhandler(404) def handle_not_found(err): return jsonify({"message": "Not found"}), 404 @disaster_api.route("/disasters") @use_args({ "page": Arg(int, default=1), "per_page": Arg(int, default=20), "category": Arg(str), }) def index(args): q = Disaster.objects if args["category"]: q = q(properties__type=args["category"]) docs = q.order_by("-modified_at").paginate( args["page"], min(args["per_page"], 20), ) return jsonify({ "meta": { "total": docs.total, "page": docs.page, "per_page": docs.per_page, }, "items": [doc.asdict() for doc in docs.items] }) @disaster_api.route("/disasters/nearby") @use_args({ "lat": Arg(float, required=True), "lon": Arg(float, required=True), "radius": Arg(float, validate=radius_gte_zero, required=True), "page": Arg(int, default=1), "per_page": Arg(int, default=20), "category": Arg(str), }) def nearby(args): q = Disaster.objects( geometry__near={ "$geometry": { "type": "Point", "coordinates": [args["lon"], args["lat"]], }, "$maxDistance": args["radius"], }, ) if args["category"]: q = q(properties__type=args["category"]) docs = q.order_by("-modified_at").paginate( args["page"], min(args["per_page"], 20), ) return jsonify({ "meta": { "total": docs.total, "page": docs.page, "per_page": docs.per_page, }, "items": [doc.asdict() for doc in docs.items] }) @disaster_api.route("/disasters/verify") @use_args({ "lat": Arg(float, required=True), "lon": Arg(float, required=True), "radius": Arg(float, validate=radius_gte_zero, required=True), "category": Arg(str), }) def verify(args): q = Disaster.objects( geometry__near={ "$geometry": { "type": "Point", "coordinates": [args["lon"], args["lat"]], }, "$maxDistance": args["radius"], }, ) if args["category"]: q = q(properties__type=args["category"]) counter = q.count() if counter > 0: return jsonify({"message": "OK"}) return jsonify({"message": "Not found"}), 404 @disaster_api.route("/disasters/<id>") def get(id): disaster = Disaster.objects.get_or_404(id=id) return jsonify(disaster.asdict())
bsd-3-clause
3,217,415,846,938,317,300
24.692913
66
0.569108
false
3.550598
false
false
false
ehliang/myo-unlock
myo/lowlevel/enums.py
1
3312
# Copyright (c) 2015 Niklas Rosenstein # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. __all__ = [ 'Result', 'VibrationType', 'StreamEmg', 'Pose', 'EventType', 'VersionComponent', 'OrientationIndex', 'HandlerResult', 'LockingPolicy', 'Arm', 'XDirection', # Backwards compatibility 'result_t', 'vibration_type_t', 'stream_emg', 'pose_t', 'event_type_t', 'version_component_t', 'orientation_index_t', 'handler_result_t', 'locking_policy_t', 'arm_t', 'x_direction_t'] from ..utils.enum import Enumeration class Result(Enumeration): success = 0 error = 1 error_invalid_argument = 2 error_runtime = 3 __fallback__ = -1 class VibrationType(Enumeration): short = 0 medium = 1 long = 2 __fallback__ = -1 class StreamEmg(Enumeration): disabled = 0 enabled = 1 __fallback__ = -1 class Pose(Enumeration): rest = 0 fist = 1 wave_in = 2 wave_out = 3 fingers_spread = 4 double_tap = 5 __fallback__ = -1 num_poses = Enumeration.Data(6) class EventType(Enumeration): paired = 0 unpaired = 1 connected = 2 disconnected = 3 arm_synced = 4 arm_unsynced = 5 orientation = 6 pose = 7 rssi = 8 unlocked = 9 locked = 10 emg = 11 __fallback__ = -1 class VersionComponent(Enumeration): major = 0 minor = 1 patch = 2 __fallback__ = -1 class OrientationIndex(Enumeration): x = 0 y = 1 z = 2 w = 3 __fallback__ = -1 class HandlerResult(Enumeration): continue_ = 0 stop = 1 __fallback__ = -1 class LockingPolicy(Enumeration): none = 0 # Pose events are always sent. standard = 1 # (default) Pose events are not sent while a Myo is locked. __fallback__ = -1 class Arm(Enumeration): right = 0 left = 1 unknown = 2 __fallback__ = -1 class XDirection(Enumeration): toward_wrist = 0 toward_elbow = 1 unknown = 2 __fallback__ = -1 # Backwards compatibility result_t = Result vibration_type_t = VibrationType stream_emg = StreamEmg pose_t = Pose event_type_t = EventType version_component_t = VersionComponent orientation_index_t = OrientationIndex handler_result_t = HandlerResult locking_policy_t = LockingPolicy arm_t = Arm x_direction_t = XDirection
mit
4,962,799,579,743,529,000
23.533333
79
0.670592
false
3.603917
false
false
false
ClimateImpactLab/open-estimate
openest/generate/smart_curve.py
1
19082
"""Curve classes that apply to xarray Datasets. Curves are mathematical functions on one or more independent variables. The basic form of the curves classes is in `models/curve.py`. The curve classes defined here, derived from `SmartCurve`, take Datasets as arguments. Smart Curves fall back on Curve logic, but take xarray DataSets and know which variables they want. """ import numpy as np from . import juliatools, latextools, formatting, diagnostic, formattools from statsmodels.distributions.empirical_distribution import StepFunction from openest.models import curve as curve_module class SmartCurve(object): def __init__(self): self.xx = [-np.inf, np.inf] # Backwards compatibility to functions expecting curves self.deltamethod = False def __call__(self, ds): raise NotImplementedError("call not implemented") @property def univariate(self): raise NotImplementedError("univariate not implemented") def format(self, lang): raise NotImplementedError() @staticmethod def format_call(lang, curve, *args): if isinstance(curve, SmartCurve): return curve.format(lang) if lang == 'latex': return latextools.call(curve, None, *args) elif lang == 'julia': return juliatools.call(curve, None, *args) class CurveCurve(SmartCurve): def __init__(self, curve, variable): super(CurveCurve, self).__init__() self.curve = curve self.variable = variable def __call__(self, ds): return self.curve(ds[self.variable]) def format(self, lang): return SmartCurve.format_call(self.curve, lang, self.variable) class ConstantCurve(SmartCurve): def __init__(self, constant, dimension): super(ConstantCurve, self).__init__() self.constant = constant self.dimension = dimension def __call__(self, ds): return np.repeat(self.constant, len(ds[self.dimension])) def format(self, lang): return {'main': formatting.FormatElement(str(self.constant))} class LinearCurve(CurveCurve): def __init__(self, slope, variable): super(LinearCurve, self).__init__(lambda x: slope * x, variable) class StepCurve(CurveCurve): def __init__(self, xxlimits, levels, variable): step_function = StepFunction(xxlimits[1:-1], levels[1:], ival=levels[0]) super(StepCurve, self).__init__(step_function, variable) self.xxlimits = xxlimits self.levels = levels class CoefficientsCurve(SmartCurve): def __init__(self, coeffs, variables): super(CoefficientsCurve, self).__init__() self.coeffs = coeffs self.variables = variables assert isinstance(variables, list) and len(variables) == len(coeffs), "Variables do not match coefficients: %s <> %s" % (variables, coeffs) def __call__(self, ds): result = np.zeros(ds[self.variables[0]].shape) for ii in range(len(self.variables)): #result += self.coeffs[ii] * ds[self.variables[ii]].values # TOO SLOW result += self.coeffs[ii] * ds._variables[self.variables[ii]]._data return result def format(self, lang): coeffvar = formatting.get_variable() if lang == 'latex': return {'main': formatting.FormatElement(r"(%s) \cdot \vec{%s}" % (', '.join([varname for varname in self.variables]), coeffvar))} elif lang == 'julia': return {'main': formatting.FormatElement(' + '.join(["%s * %s_%d" % (self.variables[ii], coeffvar, ii + 1) for ii in range(len(self.variables))]))} class ZeroInterceptPolynomialCurve(CoefficientsCurve): def __init__(self, coeffs, variables, allow_raising=False, descriptions=None): super(ZeroInterceptPolynomialCurve, self).__init__(coeffs, variables) if descriptions is None: descriptions = {} self.allow_raising = allow_raising self.descriptions = descriptions self.getters = [((lambda ds, var=variable: ds._variables[var]) if isinstance(variable, str) else variable) for variable in self.variables] def __call__(self, ds): result = self.coeffs[0] * self.getters[0](ds)._data for ii in range(1, len(self.variables)): if not self.allow_raising or self.variables[ii] in ds._variables: #result += self.coeffs[ii] * ds[self.variables[ii]].values # TOO SLOW result += self.coeffs[ii] * self.getters[ii](ds)._data else: result += self.coeffs[ii] * (self.getters[0](ds)._data ** (ii + 1)) return result @property def univariate(self): return curve_module.ZeroInterceptPolynomialCurve([-np.inf, np.inf], self.coeffs) def format(self, lang): coeffvar = formatting.get_variable() variable = formatting.get_variable() funcvars = {} repterms = [] if lang == 'latex': if isinstance(self.variables[0], str): repterms.append(r"%s_1 %s" % (coeffvar, variable)) else: funcvar = formatting.get_function() funcvars[self.variables[0]] = funcvar repterms.append(r"%s_1 %s(%s)" % (coeffvar, funcvar, variable)) elif lang == 'julia': if isinstance(self.variables[0], str): repterms.append(r"%s[1] * %s" % (coeffvar, variable)) else: funcvar = formatting.get_function() funcvars[self.variables[0]] = funcvar repterms.append(r"%s[1] * %s(%s)" % (coeffvar, funcvar, variable)) for ii in range(1, len(self.variables)): if lang == 'latex': if isinstance(self.variables[0], str): repterms.append(r"%s_1 %s^%d" % (coeffvar, variable, ii + 1)) else: funcvar = formatting.get_function() funcvars[self.variables[ii]] = funcvar repterms.append(r"%s_1 %s(%s)^%d" % (coeffvar, funcvar, variable, ii + 1)) elif lang == 'julia': if isinstance(self.variables[0], str): repterms.append(r"%s[1] * %s^%d" % (coeffvar, variable, ii + 1)) else: funcvar = formatting.get_function() funcvars[self.variables[ii]] = funcvar repterms.append(r"%s[1] * %s(%s)^%d" % (coeffvar, funcvar, variable, ii + 1)) result = {'main': formatting.FormatElement(' + '.join(repterms))} for variable in funcvars: result[funcvars[variable]] = formatting.FormatElement(self.descriptions.get(variable, "Unknown")) return result class SumByTimePolynomialCurve(SmartCurve): """Equivalent to `ZeroInterceptPolynomialCurve`, but with a different coefficient per timestep. Parameters ---------- coeffmat : array_like Matrix of K (order) x T (timesteps) variables : list of str or function Name of variable in DataSet or getter function for each exponent term allow_raising : bool, optional Can we just raise the linear term to an exponent, or should each bein the ds (default) descriptions : dict of str => str Description of each getter function """ def __init__(self, coeffmat, variables, allow_raising=False, descriptions=None): super(SumByTimePolynomialCurve, self).__init__() self.coeffmat = coeffmat # K x T assert len(self.coeffmat.shape) == 2 self.variables = variables self.allow_raising = allow_raising if descriptions is None: descriptions = {} self.descriptions = descriptions self.getters = [(lambda ds: ds._variables[variable]) if isinstance(variable, str) else variable for variable in self.variables] # functions return vector of length T def __call__(self, ds): maxtime = self.coeffmat.shape[1] lindata = self.getters[0](ds)._data[:maxtime] result = np.sum(self.coeffmat[0, :len(lindata)] * lindata) for ii in range(1, len(self.variables)): if not self.allow_raising or self.variables[ii] in ds._variables: termdata = self.getters[ii](ds)._data[:maxtime] result += np.sum(self.coeffmat[ii, :len(lindata)] * termdata) # throws error if length mismatch else: result += np.sum(self.coeffmat[ii, :len(lindata)] * (lindata ** (ii + 1))) return result @property def univariate(self): raise NotImplementedError("Probably want to define a matrix-taking curve before this.") def format(self, lang): coeffvar = formatting.get_variable() variable = formatting.get_variable() funcvars = {} repterms = [] if lang == 'latex': if isinstance(self.variables[0], str): repterms.append(r"%s_1 \cdot %s" % (coeffvar, variable)) else: funcvar = formatting.get_function() funcvars[self.variables[0]] = funcvar repterms.append(r"%s_1 \cdot %s(%s)" % (coeffvar, funcvar, variable)) elif lang == 'julia': if isinstance(self.variables[0], str): repterms.append(r"sum(%s[1,:] * %s)" % (coeffvar, variable)) else: funcvar = formatting.get_function() funcvars[self.variables[0]] = funcvar repterms.append(r"sum(%s[1,:] * %s(%s))" % (coeffvar, funcvar, variable)) for ii in range(1, len(self.variables)): if lang == 'latex': if isinstance(self.variables[0], str): repterms.append(r"%s_1 \cdot %s^%d" % (coeffvar, variable, ii + 1)) else: funcvar = formatting.get_function() funcvars[self.variables[ii]] = funcvar repterms.append(r"%s_1 \cdot %s(%s)^%d" % (coeffvar, funcvar, variable, ii + 1)) elif lang == 'julia': if isinstance(self.variables[0], str): repterms.append(r"sum(%s[1,:] * %s^%d)" % (coeffvar, variable, ii + 1)) else: funcvar = formatting.get_function() funcvars[self.variables[ii]] = funcvar repterms.append(r"sum(%s[1,:] * %s(%s)^%d)" % (coeffvar, funcvar, variable, ii + 1)) result = {'main': formatting.FormatElement(' + '.join(repterms))} for variable in funcvars: result[funcvars[variable]] = formatting.FormatElement(self.descriptions.get(variable, "Unknown")) return result class SumByTimeCoefficientsCurve(SmartCurve): """Equivalent to `TransformCoefficientsCurve`, but with a different coefficient per timestep. Parameters ---------- coeffmat : array_like Matrix of K (#predictors) x T (timesteps) transforms : list of functions Functions of DataSet to return each predictor descriptions : list of str Descriptions of each transformation/predictor diagnames : list of str Keys to be used for each predictor in the diagnostic files, or None for no-recording """ def __init__(self, coeffmat, transforms, descriptions, diagnames=None): super(SumByTimeCoefficientsCurve, self).__init__() self.coeffmat = coeffmat # K x T assert len(coeffmat.shape) == 2 or np.all(coeffmat == 0) self.transforms = transforms self.descriptions = descriptions self.diagnames = diagnames assert isinstance(transforms, list) and len(transforms) == coeffmat.shape[0], "Transforms do not match coefficients: %s <> %s" % (transforms, coeffmat.shape) assert diagnames is None or isinstance(diagnames, list) and len(diagnames) == len(transforms) def __call__(self, ds): if np.all(self.coeffmat == 0): # Happens with edge case of conditional suffixes return 0 maxtime = self.coeffmat.shape[1] result = None for ii in range(len(self.transforms)): predictor = self.transforms[ii](ds)._data.ravel()[:maxtime] if self.diagnames: diagnostic.record(ds.region, ds.year, self.diagnames[ii], np.sum(predictor)) if result is None: result = np.sum(self.coeffmat[ii, :] * predictor) else: result += np.sum(self.coeffmat[ii, :] * predictor) return result @property def univariate(self): raise NotImplementedError("Probably want to define a matrix-taking curve before this.") def format(self, lang): raise NotImplementedError() class CubicSplineCurve(CoefficientsCurve): def __init__(self, coeffs, knots, variables, allow_raising=False): super(CubicSplineCurve, self).__init__(coeffs, variables) self.allow_raising = allow_raising self.knots = knots def __call__(self, ds): result = np.zeros(ds[self.variables[0]].shape) try: for ii in range(len(self.variables)): result += self.coeffs[ii] * ds._variables[self.variables[ii]]._data return result except KeyError as ex: # This should only catch KeyErrors coming from coming from # ds._variables[x]. if self.allow_raising: return curve_module.CubicSplineCurve(self.knots, self.coeffs)(ds._variables[self.variables[0]]._data) raise ex @property def univariate(self): return curve_module.CubicSplineCurve(self.knots, self.coeffs) class TransformCoefficientsCurve(SmartCurve): """Use a transformation of ds to produce each predictor. Parameters ---------- coeffs : array_like Vector of coefficients on each [transformed] predictor transforms : list of functions Functions of DataSet to return each predictor descriptions : list of str Descriptions of each transformation/predictor diagnames : list of str (optional) Keys to be used for each predictor in the diagnostic files, or None for no-recording univariate_curve : UnivariateCurve (optional) If a univariate function is requested, can we produce one? """ def __init__(self, coeffs, transforms, descriptions, diagnames=None, univariate_curve=None): super(TransformCoefficientsCurve, self).__init__() self.coeffs = coeffs self.transforms = transforms self.descriptions = descriptions self.diagnames = diagnames self._univariate_curve = univariate_curve assert isinstance(transforms, list) and len(transforms) == len(coeffs), "Transforms do not match coefficients: %s <> %s" % (transforms, coeffs) assert diagnames is None or isinstance(diagnames, list) and len(diagnames) == len(transforms) def __call__(self, ds): result = None for ii in range(len(self.transforms)): predictor = self.transforms[ii](ds) if self.diagnames: diagnostic.record(ds.region, ds.year, self.diagnames[ii], np.sum(predictor._data)) if result is None: result = self.coeffs[ii] * predictor._data else: result += self.coeffs[ii] * predictor._data return result def format(self, lang): coeffvar = formatting.get_variable() funcvars = [formatting.get_function() for transform in self.transforms] if lang == 'latex': result = {'main': formatting.FormatElement(r"(%s) \cdot \vec{%s}" % (', '.join(["%s" % funcvars[ii] for ii in range(len(funcvars))]), coeffvar))} elif lang == 'julia': result = {'main': formatting.FormatElement(' + '.join(["%s() * %s_%d" % (funcvars[ii], coeffvar, ii + 1) for ii in range(len(funcvars))]))} for ii in range(len(funcvars)): result[funcvars[ii]] = formatting.FormatElement(self.descriptions[ii]) return result @property def univariate(self): if self._univariate_curve is not None: return self._univariate_curve raise NotImplementedError("univariate transform not specified") class SelectiveInputCurve(SmartCurve): """Assumes input is a matrix, and only pass selected input columns to child curve.""" def __init__(self, curve, variable): super(SelectiveInputCurve, self).__init__() self.curve = curve self.variable = variable def __call__(self, ds): return self.curve(ds[self.variable]._data) def format(self, lang, dsname): return SmartCurve.format_call(self.curve, lang, self.variable) class SumCurve(SmartCurve): def __init__(self, curves): super(SmartCurve, self).__init__() self.curves = curves def __call__(self, ds): total = 0 for curve in self.curves: total += curve(ds) return total def format(self, lang): formatteds = [SmartCurve.format_call(self.curves[ii], lang, self.variable) for ii in range(len(self.curves))] return formattools.join(' + ', formatteds) class ProductCurve(SmartCurve): def __init__(self, curve1, curve2): super(ProductCurve, self).__init__() self.curve1 = curve1 self.curve2 = curve2 def __call__(self, ds): return self.curve1(ds) * self.curve2(ds) def format(self, lang): return formatting.build_recursive({'latex': r"(%s) (%s)", 'julia': r"(%s) .* (%s)"}, lang, self.curve1, self.curve2) class ShiftedCurve(SmartCurve): def __init__(self, curve, offset): super(ShiftedCurve, self).__init__() self.curve = curve self.offset = offset def __call__(self, ds): return self.curve(ds) + self.offset @property def univariate(self): return curve_module.ShiftedCurve(self.curve.univariate, self.offset) def format(self, lang): return formatting.build_recursive({'latex': r"(%s + " + str(self.offset) + ")", 'julia': r"(%s + " + str(self.offset) + ")"}, lang, self.curve) class ClippedCurve(curve_module.ClippedCurve, SmartCurve): @property def univariate(self): return curve_module.ClippedCurve(self.curve.univariate, self.cliplow) class OtherClippedCurve(curve_module.OtherClippedCurve, SmartCurve): @property def univariate(self): return curve_module.OtherClippedCurve(self.clipping_curve.univariate, self.curve.univariate, self.clipy) class MinimumCurve(curve_module.MinimumCurve, SmartCurve): @property def univariate(self): return curve_module.MinimumCurve(self.curve1.univariate, self.curve2.univariate)
gpl-3.0
1,786,271,144,499,775,000
39.427966
173
0.600933
false
3.987879
false
false
false
leopoul/ncclient
ncclient/devices/nexus.py
15
3378
""" Handler for Cisco Nexus device specific information. Note that for proper import, the classname has to be: "<Devicename>DeviceHandler" ...where <Devicename> is something like "Default", "Nexus", etc. All device-specific handlers derive from the DefaultDeviceHandler, which implements the generic information needed for interaction with a Netconf server. """ from ncclient.xml_ import BASE_NS_1_0 from ncclient.operations.third_party.nexus.rpc import ExecCommand from .default import DefaultDeviceHandler class NexusDeviceHandler(DefaultDeviceHandler): """ Cisco Nexus handler for device specific information. In the device_params dictionary, which is passed to __init__, you can specify the parameter "ssh_subsystem_name". That allows you to configure the preferred SSH subsystem name that should be tried on your Nexus switch. If connecting with that name fails, or you didn't specify that name, the other known subsystem names will be tried. However, if you specify it then this name will be tried first. """ _EXEMPT_ERRORS = [ "*VLAN with the same name exists*", # returned even if VLAN was created, but # name was already in use (switch will # automatically choose different, unique # name for VLAN) ] def __init__(self, device_params): super(NexusDeviceHandler, self).__init__(device_params) def add_additional_operations(self): dict = {} dict['exec_command'] = ExecCommand return dict def get_capabilities(self): # Just need to replace a single value in the default capabilities c = super(NexusDeviceHandler, self).get_capabilities() c[0] = "urn:ietf:params:xml:ns:netconf:base:1.0" return c def get_xml_base_namespace_dict(self): """ Base namespace needs a None key. See 'nsmap' argument for lxml's Element(). """ return { None : BASE_NS_1_0 } def get_xml_extra_prefix_kwargs(self): """ Return keyword arguments per request, which are applied to Element(). Mostly, this is a dictionary containing the "nsmap" key. See 'nsmap' argument for lxml's Element(). """ d = { "nxos":"http://www.cisco.com/nxos:1.0", "if":"http://www.cisco.com/nxos:1.0:if_manager", "nfcli": "http://www.cisco.com/nxos:1.0:nfcli", "vlan_mgr_cli": "http://www.cisco.com/nxos:1.0:vlan_mgr_cli" } d.update(self.get_xml_base_namespace_dict()) return { "nsmap" : d } def get_ssh_subsystem_names(self): """ Return a list of possible SSH subsystem names. Different NXOS versions use different SSH subsystem names for netconf. Therefore, we return a list so that several can be tried, if necessary. The Nexus device handler also accepts """ preferred_ssh_subsystem = self.device_params.get("ssh_subsystem_name") name_list = [ "netconf", "xmlagent" ] if preferred_ssh_subsystem: return [ preferred_ssh_subsystem ] + \ [ n for n in name_list if n != preferred_ssh_subsystem ] else: return name_list
apache-2.0
8,493,074,875,138,781,000
34.1875
87
0.618413
false
4.134639
false
false
false
em-2/em2
em2/utils/network.py
1
2025
import asyncio import logging from aiohttp import ClientSession from async_timeout import timeout from em2 import Settings from em2.exceptions import StartupException logger = logging.getLogger('em2.utils') async def _wait_port_open(host, port, delay, loop): step_size = 0.05 steps = int(delay / step_size) start = loop.time() for i in range(steps): try: with timeout(step_size, loop=loop): transport, proto = await loop.create_connection(lambda: asyncio.Protocol(), host=host, port=port) except asyncio.TimeoutError: pass except OSError: await asyncio.sleep(step_size, loop=loop) else: transport.close() logger.debug('Connected successfully to %s:%s after %0.2fs', host, port, loop.time() - start) return raise StartupException(f'Unable to connect to {host}:{port} after {loop.time() - start:0.2f}s') def wait_for_services(settings, *, delay=5): """ Wait for up to `delay` seconds for postgres and redis ports to be open """ loop = asyncio.get_event_loop() coros = [ _wait_port_open(settings.pg_host, settings.pg_port, delay, loop), _wait_port_open(settings.R_HOST, settings.R_PORT, delay, loop), ] logger.debug('waiting for postgres and redis to come up...') loop.run_until_complete(asyncio.gather(*coros, loop=loop)) async def check_server(settings: Settings, path='/', expected_status=200): url = f'http://127.0.0.1:{settings.web_port}' + path try: async with ClientSession() as session: async with session.get(url) as r: assert r.status == expected_status, f'response error {r.status} != {expected_status}' except (ValueError, AssertionError, OSError) as e: logger.error('web check error: %s: %s, url: "%s"', e.__class__.__name__, e, url) return 1 else: logger.info('web check successful "%s", response %d', url, expected_status) return 0
mit
-8,350,600,370,374,822,000
35.160714
113
0.633086
false
3.715596
false
false
false
ushahidi/riverid-python
api/riversite.py
1
1288
# RiverID Site Class # ================== # # This file is part of RiverID. # # RiverID is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RiverID is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with RiverID. If not, see <http://www.gnu.org/licenses/>. from riverexception import RiverException class RiverSite(object): def __init__(self, db): self.db = db def add_site(self, url): self.db.site.insert({'url': url}) def add_user(self, url, user_id): self.db.site.update({'url': url}, {'$push': {'user_id': user_id}}) def exists(self, url): return self.db.site.find_one({'url': url}) != None def get_user_urls(self, user_id): urls = [] for site in self.db.site.find({'user_id': user_id}): urls.append(site['url']) return urls
agpl-3.0
-7,584,865,214,060,750,000
32.894737
77
0.659161
false
3.638418
false
false
false
mendrugory/monkey-note-bot
app/model/notelist.py
1
2987
def find(db, user): """ find the notelist :param db: :param user: :return: """ document = db.notelist.find_one({"_id": user}) return document def find_all_lists(db, user): """ It finds all lists :param db: :param user: :return: """ document = db.notelist.find_one({"_id": user}, {"lists": 1}) return document.get("lists", []) def find_list(db, user, list_name): """ It finds the list :param db: :param user: :param list_name: :return: """ document = db.notelist.find_one({"_id": user}, {"lists.{}".format(list_name): 1}) if not document: return [] return document["lists"].get(list_name, []) def find_all_lists_names(db, user): """ It finds all the lists names :param db: :param user: :return: """ document = db.notelist.find_one({"_id": user}, {"lists": 1}) return [name for name in document["lists"].keys()] def find_notes(db, user, list_name): """ It returns all the notes of a list :param db: :param user: :param list_name: :return: """ document = db.notelist.find_one({"_id": user}, {"lists": 1}) return document["lists"][list_name] def insert_new_notelist(db, user): """ It inserts a new notelist :param db: :param user: :return: """ db.notelist.insert({"_id": user, "lists": {}}) def add_new_list(db, user, list_name): """ It adds a new list :param db: :param user: :param list_name: :return: """ notelist = find(db, user) if not notelist: insert_new_notelist(db, user) db.notelist.update({"_id": user}, {"$set": {"lists.{}".format(list_name): []}}) def remove_list(db, user, list_name): """ It removes the given list :param db: :param user: :param list_name: :return: """ db.notelist.update({"_id": user}, {"$unset": {"lists.{}".format(list_name): 1}}) def add_note(db, user, list_name, note): """ It adds a note :param db: :param user: :param list_name: :param note: :return: """ the_list = find_list(db, user, list_name) if not the_list: add_new_list(db, user, list_name) db.notelist.update({"_id": user}, {"$addToSet": {"lists.{}".format(list_name): note}}) return True def remove_note(db, user, list_name, note): """ It removes a note :param db: :param user: :param list_name: :param note: :return: """ result = False the_list = find_list(db, user, list_name) if the_list: try: index = int(note) - 1 db.notelist.update({"_id": user}, {"$unset": {"lists.{}.{}".format(list_name, index): 1}}) db.notelist.update({"_id": user}, {"$pull": {"lists.{}".format(list_name): None}}) except: db.notelist.update({"_id": user}, {"$pull": {"lists.{}".format(list_name): note}}) result = True return result
mit
5,042,442,036,290,355,000
21.976923
102
0.544024
false
3.239696
false
false
false
LTD-Beget/sprutio-rpc
lib/FileManager/workers/local/extractArchive.py
1
12194
import gzip import os import pprint import threading import time import traceback import libarchive import pyinotify import rarfile from lib.FileManager.FM import REQUEST_DELAY from lib.FileManager.LibArchiveEntry import Entry from lib.FileManager.SevenZFile import SevenZFile from lib.FileManager.ZipFile import ZipFile, is_zipfile from lib.FileManager.workers.baseWorkerCustomer import BaseWorkerCustomer class ExtractArchive(BaseWorkerCustomer): def __init__(self, params, *args, **kwargs): super(ExtractArchive, self).__init__(*args, **kwargs) self.file = params.get('file') self.extract_path = params.get('extract_path') self.params = params self.NUM_WORKING_THREADS = 48 self.extracted_files = { "count": 0, "done": False } def run(self): try: self.preload() abs_extract_path = self.get_abs_path(self.extract_path) if not os.path.exists(abs_extract_path): try: os.makedirs(abs_extract_path) except Exception as e: self.logger.error("Cannot create extract path %s. %s" % (str(e), traceback.format_exc())) raise Exception("Cannot create extract path") elif os.path.isfile(abs_extract_path): raise Exception("Extract path incorrect - file exists") abs_archive_path = self.get_abs_path(self.file.get("path")) if not os.path.exists(abs_archive_path): raise Exception("Archive file is not exist") self.on_running(self.status_id, pid=self.pid, pname=self.name) self.logger.debug("Start extracting %s", abs_archive_path) # for rar and zip same algorithm if is_zipfile(abs_archive_path) or rarfile.is_rarfile(abs_archive_path) or SevenZFile.is_7zfile( abs_archive_path): if is_zipfile(abs_archive_path): self.logger.info("Archive ZIP type, using zipfile (beget)") a = ZipFile(abs_archive_path) elif rarfile.is_rarfile(abs_archive_path): self.logger.info("Archive RAR type, using rarfile") a = rarfile.RarFile(abs_archive_path) else: self.logger.info("Archive 7Zip type, using py7zlib") a = SevenZFile(abs_archive_path) # extract Empty Files first for fileinfo in a.archive.header.files.files: if not fileinfo['emptystream']: continue name = fileinfo['filename'] try: unicode_name = name.encode('UTF-8').decode('UTF-8') except UnicodeDecodeError: unicode_name = name.encode('cp866').decode('UTF-8') unicode_name = unicode_name.replace('\\', '/') # For windows name in rar etc. file_name = os.path.join(abs_extract_path, unicode_name) dir_name = os.path.dirname(file_name) if not os.path.exists(dir_name): os.makedirs(dir_name) if os.path.exists(dir_name) and not os.path.isdir(dir_name): os.remove(dir_name) os.makedirs(dir_name) if os.path.isdir(file_name): continue f = open(file_name, 'w') f.close() infolist = a.infolist() not_ascii = False # checking ascii names try: abs_extract_path.encode('utf-8').decode('ascii') for name in a.namelist(): name.encode('utf-8').decode('ascii') except UnicodeDecodeError: not_ascii = True except UnicodeEncodeError: not_ascii = True t = threading.Thread(target=self.progress, args=(infolist, self.extracted_files, abs_extract_path)) t.daemon = True t.start() try: if not_ascii: for name in a.namelist(): try: unicode_name = name.encode('UTF-8').decode('UTF-8') except UnicodeDecodeError: unicode_name = name.encode('cp866').decode('UTF-8') unicode_name = unicode_name.replace('\\', '/') # For windows name in rar etc. file_name = os.path.join(abs_extract_path, unicode_name) dir_name = os.path.dirname(file_name) if not os.path.exists(dir_name): os.makedirs(dir_name) if os.path.exists(dir_name) and not os.path.isdir(dir_name): os.remove(dir_name) os.makedirs(dir_name) if os.path.isdir(file_name): continue f = open(file_name, 'wb') try: data = a.read(name) f.write(data) f.close() except TypeError: # pass for directories its make recursively for files f.close() os.remove(file_name) else: self.logger.info("EXTRACT ALL to %s , encoded = %s" % ( pprint.pformat(abs_extract_path), pprint.pformat(abs_extract_path))) a.extractall(abs_extract_path) # Not working with non-ascii windows folders except Exception as e: self.logger.error("Error extract path %s. %s" % (str(e), traceback.format_exc())) raise e finally: self.extracted_files["done"] = True t.join() elif libarchive.is_archive(abs_archive_path): self.logger.info("Archive other type, using libarchive") next_tick = time.time() + REQUEST_DELAY print(pprint.pformat("Clock = %s , tick = %s" % (str(time.time()), str(next_tick)))) infolist = [] with libarchive.Archive(abs_archive_path, entry_class=Entry) as a: for entry in a: infolist.append(entry) with libarchive.Archive(abs_archive_path, entry_class=Entry) as a: for entry in a: entry_path = os.path.join(abs_extract_path, entry.pathname) self.logger.debug("Entry pathname %s - %s", entry.pathname, entry.size) if time.time() > next_tick: progress = { 'percent': round(float(self.extracted_files["count"]) / float(len(infolist)), 2), 'text': str(int( round(float(self.extracted_files["count"]) / float(len(infolist)), 2) * 100)) + '%' } self.on_running(self.status_id, progress=progress, pid=self.pid, pname=self.name) next_tick = time.time() + REQUEST_DELAY self.extracted_files["count"] += 1 dir_name = os.path.dirname(entry_path) if not os.path.exists(dir_name): os.makedirs(dir_name) if os.path.exists(dir_name) and not os.path.isdir(dir_name): os.remove(dir_name) os.makedirs(dir_name) if os.path.isdir(entry_path): continue f = open(entry_path, 'w') a.readpath(f) elif abs_archive_path[-3:] == ".gz": self.logger.info("gz file type, using gzip") try: # if its just a gz file a = gzip.open(abs_archive_path) file_content = a.read() a.close() file_name = os.path.splitext(os.path.basename(abs_archive_path))[0] file_path = os.path.join(abs_extract_path, file_name) infolist = [file_name] dir_name = os.path.dirname(file_path) if not os.path.exists(dir_name): os.makedirs(dir_name) extracted = open(file_path, 'wb') extracted.write(file_content) extracted.close() except Exception as e: raise e finally: self.extracted_files["done"] = True else: raise Exception("Archive file has unkown format") progress = { 'percent': round(float(self.extracted_files["count"]) / float(len(infolist)), 2), 'text': str(int(round(float(self.extracted_files["count"]) / float(len(infolist)), 2) * 100)) + '%' } result = {} time.sleep(REQUEST_DELAY) self.on_success(self.status_id, progress=progress, data=result, pid=self.pid, pname=self.name) except Exception as e: self.extracted_files["done"] = True result = { "error": True, "message": str(e), "traceback": traceback.format_exc() } self.on_error(self.status_id, result, pid=self.pid, pname=self.name) def progress(self, infolist, progress, extract_path): self.logger.debug("extract thread progress() start") next_tick = time.time() + REQUEST_DELAY # print pprint.pformat("Clock = %s , tick = %s" % (str(time.time()), str(next_tick))) progress["count"] = 0 class Identity(pyinotify.ProcessEvent): def process_default(self, event): progress["count"] += 1 # print("Has event %s progress %s" % (repr(event), pprint.pformat(progress))) wm1 = pyinotify.WatchManager() wm1.add_watch(extract_path, pyinotify.IN_CREATE, rec=True, auto_add=True) s1 = pyinotify.Stats() # Stats is a subclass of ProcessEvent notifier1 = pyinotify.ThreadedNotifier(wm1, default_proc_fun=Identity(s1)) notifier1.start() total = float(len(infolist)) while not progress["done"]: if time.time() > next_tick: # print("Tick progress %s / %s" % (pprint.pformat(progress), str(total))) count = float(progress["count"]) * 1.5 if count <= total: op_progress = { 'percent': round(count / total, 2), 'text': str(int(round(count / total, 2) * 100)) + '%' } else: op_progress = { 'percent': round(99, 2), 'text': '99%' } self.on_running(self.status_id, progress=op_progress, pid=self.pid, pname=self.name) next_tick = time.time() + REQUEST_DELAY time.sleep(REQUEST_DELAY) # иначе пользователям кажется что распаковалось не полностью op_progress = { 'percent': round(99, 2), 'text': '99%' } self.on_running(self.status_id, progress=op_progress, pid=self.pid, pname=self.name) time.sleep(REQUEST_DELAY) notifier1.stop()
gpl-3.0
-8,980,587,258,137,486,000
40.868966
119
0.480152
false
4.439488
false
false
false
gkc1000/pyscf
pyscf/nao/test/test_0044_h2_scf_gto_vs_nao_nao.py
1
1518
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division import unittest, numpy as np from pyscf import gto, scf from pyscf.nao import nao, scf as scf_nao #from pyscf.nao.hf import RHF mol = gto.M( verbose = 1, atom = ''' H 0 0 0 H 0 0.757 0.587''', basis = 'cc-pvdz',) class KnowValues(unittest.TestCase): def test_scf_gto_vs_nao(self): """ Test computation of overlaps between NAOs against overlaps computed between GTOs""" gto_hf = scf.RHF(mol) gto_hf.kernel() nao_hf = scf_nao(mf=gto_hf, gto=mol) nao_hf.dump_chkfile=False e_tot = nao_hf.kernel_scf() self.assertAlmostEqual(gto_hf.e_tot, e_tot, 4) for e1,e2 in zip(nao_hf.mo_energy[0,0],gto_hf.mo_energy): self.assertAlmostEqual(e1, e2, 3) for o1,o2 in zip(nao_hf.mo_occ[0,0],gto_hf.mo_occ): self.assertAlmostEqual(o1, o2) if __name__ == "__main__": unittest.main()
apache-2.0
1,189,539,529,152,935,200
36.95
95
0.685771
false
3.079108
true
false
false
wangheda/youtube-8m
youtube-8m-wangheda/all_frame_models/cnn_lstm_memory_model.py
1
3248
import sys import models import model_utils import math import numpy as np import video_level_models import tensorflow as tf import utils import tensorflow.contrib.slim as slim from tensorflow import flags FLAGS = flags.FLAGS class CnnLstmMemoryModel(models.BaseModel): def cnn(self, model_input, l2_penalty=1e-8, num_filters = [1024, 1024, 1024], filter_sizes = [1,2,3], **unused_params): max_frames = model_input.get_shape().as_list()[1] num_features = model_input.get_shape().as_list()[2] shift_inputs = [] for i in xrange(max(filter_sizes)): if i == 0: shift_inputs.append(model_input) else: shift_inputs.append(tf.pad(model_input, paddings=[[0,0],[i,0],[0,0]])[:,:max_frames,:]) cnn_outputs = [] for nf, fs in zip(num_filters, filter_sizes): sub_input = tf.concat(shift_inputs[:fs], axis=2) sub_filter = tf.get_variable("cnn-filter-len%d"%fs, shape=[num_features*fs, nf], dtype=tf.float32, initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1), regularizer=tf.contrib.layers.l2_regularizer(l2_penalty)) cnn_outputs.append(tf.einsum("ijk,kl->ijl", sub_input, sub_filter)) cnn_output = tf.concat(cnn_outputs, axis=2) return cnn_output def create_model(self, model_input, vocab_size, num_frames, **unused_params): """Creates a model which uses a stack of LSTMs to represent the video. Args: model_input: A 'batch_size' x 'max_frames' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. num_frames: A vector of length 'batch' which indicates the number of frames for each video (before padding). Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are 'batch_size' x 'num_classes'. """ lstm_size = int(FLAGS.lstm_cells) number_of_layers = FLAGS.lstm_layers cnn_output = self.cnn(model_input, num_filters=[1024,1024,1024], filter_sizes=[1,2,3]) normalized_cnn_output = tf.nn.l2_normalize(cnn_output, dim=2) ## Batch normalize the input stacked_lstm = tf.contrib.rnn.MultiRNNCell( [ tf.contrib.rnn.BasicLSTMCell( lstm_size, forget_bias=1.0, state_is_tuple=True) for _ in range(number_of_layers) ], state_is_tuple=True) loss = 0.0 with tf.variable_scope("RNN"): outputs, state = tf.nn.dynamic_rnn(stacked_lstm, normalized_cnn_output, sequence_length=num_frames, swap_memory=FLAGS.rnn_swap_memory, dtype=tf.float32) final_state = tf.concat(map(lambda x: x.c, state), axis = 1) aggregated_model = getattr(video_level_models, FLAGS.video_level_classifier_model) return aggregated_model().create_model( model_input=final_state, original_input=model_input, vocab_size=vocab_size, **unused_params)
apache-2.0
2,656,356,261,795,894,000
36.333333
105
0.607759
false
3.608889
false
false
false
edips/GeoEndaze
QT_DESIGNER/calculatorUi.py
1
2079
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'calculatorUi.ui' # # Created: Mon Jan 6 00:27:51 2014 # by: pyside-uic 0.2.14 running on PySide 1.1.2 # # WARNING! All changes made in this file will be lost! from PySide import QtCore, QtGui class Ui_hesap(object): def setupUi(self, hesap): hesap.setObjectName("hesap") hesap.resize(157, 135) self.label = QtGui.QLabel(hesap) self.label.setGeometry(QtCore.QRect(10, 10, 21, 16)) self.label.setObjectName("label") self.label_2 = QtGui.QLabel(hesap) self.label_2.setGeometry(QtCore.QRect(10, 40, 21, 16)) self.label_2.setObjectName("label_2") self.label_3 = QtGui.QLabel(hesap) self.label_3.setGeometry(QtCore.QRect(10, 100, 21, 16)) self.label_3.setObjectName("label_3") self.sum = QtGui.QPushButton(hesap) self.sum.setGeometry(QtCore.QRect(30, 70, 111, 24)) self.sum.setObjectName("sum") self.a = QtGui.QLineEdit(hesap) self.a.setGeometry(QtCore.QRect(30, 10, 113, 23)) self.a.setObjectName("a") self.b = QtGui.QLineEdit(hesap) self.b.setGeometry(QtCore.QRect(30, 40, 113, 23)) self.b.setObjectName("b") self.c = QtGui.QLineEdit(hesap) self.c.setGeometry(QtCore.QRect(30, 100, 113, 23)) self.c.setObjectName("c") self.retranslateUi(hesap) QtCore.QMetaObject.connectSlotsByName(hesap) def retranslateUi(self, hesap): hesap.setWindowTitle(QtGui.QApplication.translate("hesap", "addition", None, QtGui.QApplication.UnicodeUTF8)) self.label.setText(QtGui.QApplication.translate("hesap", "a", None, QtGui.QApplication.UnicodeUTF8)) self.label_2.setText(QtGui.QApplication.translate("hesap", "b", None, QtGui.QApplication.UnicodeUTF8)) self.label_3.setText(QtGui.QApplication.translate("hesap", "c", None, QtGui.QApplication.UnicodeUTF8)) self.sum.setText(QtGui.QApplication.translate("hesap", "calculate", None, QtGui.QApplication.UnicodeUTF8))
gpl-2.0
-3,659,458,863,494,783,000
43.234043
117
0.665705
false
3.315789
false
false
false
constantinius/YaaGame
engine/gui.py
1
1804
from engine.service import ( AbstractService, GraphicsService, ServiceManager ) import pyglet import kytten class GuiService(AbstractService): """ Service to manage GUI screens """ def __init__(self, window, group_index = 1): self.guis = {} self.window = window self.batch = ServiceManager.instance[GraphicsService].batch self.group = pyglet.graphics.OrderedGroup(group_index) def add_gui(self, gui): """Add a gui to the manager.""" assert(isinstance(gui, AbstractGui)) self.guis[gui.name] = gui def show_gui(self, name): self.guis[name].show(self.window, self.batch, self.group) def hide_gui(self, name): self.guis[name].hide() def on_draw(self): self.batch.draw() class AbstractGui(object): def __init__(self, name): self.name = name self.root = None import os.path pth = os.path.abspath(os.path.join('graphics', 'theme')) self.theme = kytten.Theme(pth, override={ "gui_color": [64, 128, 255, 255], "font_size": 14 }) self.visible = False def _build_gui(self, window, batch, group): return kytten.Dialog( kytten.TitleFrame("AbstractGui", width=200, height=150 ), window=window, batch=batch, group=group, theme=self.theme ) def show(self, window, batch, group): if not self.visible: self.root = self._build_gui(window, batch, group) self.visible = True def hide(self): if self.visible: self.root.teardown() self.visible = False self.root = None
mit
2,763,050,527,148,521,500
27.650794
67
0.547672
false
4.008889
false
false
false
justinchuby/cmu-courseapi-flask
common/search.py
1
20717
import re import copy import json import arrow import datetime # Elasticsearch libraries, certifi required by Elasticsearch import elasticsearch from elasticsearch_dsl import Search from elasticsearch_dsl.query import Q from elasticsearch_dsl.connections import connections import certifi from common import Message, utils import config from config.es_config import ES_COURSE_INDEX_PREFIX, ES_FCE_INDEX ## # @brief The Searcher object that parses input and generates queries. ## class Searcher(object): _doc_type = None _default_size = 5 # # @brief init # # @param self The object # @param raw_query The raw query # @param index The index # @param size The size # @param sort sort is either None or a list # def __init__(self, raw_query, index=None, size=_default_size, sort=None): self.raw_query = copy.deepcopy(raw_query) self.index = index self.size = size self.doc_type = self._doc_type self.sort = sort def __repr__(self): return "<Searcher Object: raw_query={}>".format(repr(self.raw_query)) @property def index(self): return self._index @index.setter def index(self, value): self._index = value def execute(self): response = self.fetch(self.generate_query(), self.index, size=self.size, doc_type=self.doc_type, sort=self.sort) # if config.settings.DEBUG: # print("[DEBUG] ES response:") # print(json.dumps(response.to_dict(), indent=2)) return response @staticmethod def fetch(query, index, size=5, doc_type=None, sort=None): s = Search(index=index, doc_type=doc_type).query(query).extra(size=size) if sort: s = s.sort(*sort) try: response = s.execute() except elasticsearch.exceptions.NotFoundError as e: # print(formatErrMsg(e, "ES")) response = e.info except elasticsearch.exceptions.RequestError as e: # print(formatErrMsg(e, "ES")) response = e.info except elasticsearch.exceptions.TransportError as e: # print(formatErrMsg(e, "ES")) response = e.info return response ## # @brief Generate the query for the database. ## # @return (dict) The query for querying the database. ## def generate_query(self): query = Q() return query class FCESearcher(Searcher): _doc_type = 'fce' _default_size = 5 def __init__(self, raw_query, index=None, size=_default_size, sort=None): super().__init__(raw_query, index=index, size=size, sort=sort) @property def index(self): return self._index @index.setter def index(self, value): self._index = value def generate_query(self): raw_query = self.raw_query query = Q() if 'courseid' in raw_query: courseid = raw_query['courseid'][0] query &= Q('term', courseid=courseid) if 'instructor' in raw_query: instructor = raw_query['instructor'][0] query &= Q('match', instructor={'query': instructor, 'operator': 'and'}) if config.settings.DEBUG: print(json.dumps(query.to_dict(), indent=2)) print("[DEBUG] max size: {}, index: {}".format(self.size, self.index)) return query class CourseSearcher(Searcher): _doc_type = 'course' _default_size = 5 def __init__(self, raw_query, index=None, size=_default_size): super().__init__(raw_query, index, size) @property def index(self): return self._index # @brief Sets the index from short representation of a term. e.g. f17 # To the ES index @index.setter def index(self, value): if value is None: # Everything self._index = ES_COURSE_INDEX_PREFIX + '*' elif value == 'current': # Current semester self._index = utils.get_current_course_index() elif re.match('^(f|s|m1|m2)\d{2}$', value): # Match a semester, e.g. f17 or m217 self._index = ES_COURSE_INDEX_PREFIX + value else: # Unknown index, use as is self._index = value def generate_query(self): raw_query = self.raw_query query = Q() # TODO: use the English analyser. # TODO BUG: text and courseid presented in the same time would cause # empty return value if 'text' in raw_query: text = raw_query['text'][0] text_query = Q('bool', should=[ Q('match', name=text), Q('match', desc=text) ] ) query &= text_query else: if 'name' in raw_query: name = raw_query['name'][0] name_query = Q('bool', must=Q('match', name=name) ) query &= name_query if 'desc' in raw_query: desc = raw_query['desc'][0] desc_query = Q('bool', must=Q('match', desc=desc) ) query &= desc_query if 'courseid' in raw_query: courseid = raw_query['courseid'][0] if self.index is None: current_semester = utils.get_semester_from_date( datetime.datetime.today()) id_query = Q('bool', must=Q('term', id=courseid), should=Q('match', semester=current_semester) ) else: id_query = Q('term', id=courseid) query &= id_query # Declare the variables to store the temporary nested queries lec_nested_queries = {} sec_nested_queries = {} lec_name_query = Q() sec_name_query = Q() if 'instructor' in raw_query: instructor = " ".join(raw_query['instructor']) _query_obj = {'query': instructor, 'operator': 'and'} if 'instructor_fuzzy' in raw_query: _query_obj['fuzziness'] = 'AUTO' lec_name_query = Q('match', lectures__instructors=_query_obj) sec_name_query = Q('match', sections__instructors=_query_obj) # TODO: check if DH 100 would give DH 2135 and PH 100 # see if multilevel nesting is needed if 'building' in raw_query: building = raw_query['building'][0].upper() lec_building_query = Q('match', lectures__times__building=building) sec_building_query = Q('match', sections__times__building=building) lec_nested_queries['lec_building_query'] = lec_building_query sec_nested_queries['sec_building_query'] = sec_building_query if 'room' in raw_query: room = raw_query['room'][0].upper() lec_room_query = Q('match', lectures__times__room=room) sec_room_query = Q('match', sections__times__room=room) lec_nested_queries['lec_room_query'] = lec_room_query sec_nested_queries['sec_room_query'] = sec_room_query if 'datetime' in raw_query: # Get day and time from the datetime object # raw_query['datetime'] is of type [arrow.arrow.Arrow] date_time = raw_query['datetime'][0].to('America/New_York') day = date_time.isoweekday() % 7 time = date_time.time().strftime("%I:%M%p") delta_time = datetime.timedelta(minutes=raw_query['timespan'][0]) shifted_time = (date_time + delta_time).time().strftime("%I:%M%p") # NOTE: Known bug: if the time spans across two days, it would # give a wrong result because day is calculated based # on the begin time # Construct the query based on day and time _times_begin_query = {'lte': shifted_time, 'format': 'hh:mma'} _times_end_query = {'gt': time, 'format': 'hh:mma'} lec_time_query = Q('bool', must=[Q('match', lectures__times__days=day), Q('range', lectures__times__begin=_times_begin_query), Q('range', lectures__times__end=_times_end_query)]) sec_time_query = Q('bool', must=[Q('match', sections__times__days=day), Q('range', sections__times__begin=_times_begin_query), Q('range', sections__times__end=_times_end_query)]) lec_nested_queries['lec_time_query'] = lec_time_query sec_nested_queries['sec_time_query'] = sec_time_query # Combine all the nested queries _lec_temp = Q() _sec_temp = Q() for key, value in lec_nested_queries.items(): if _lec_temp is None: _lec_temp = value else: _lec_temp &= value for key, value in sec_nested_queries.items(): if _sec_temp is None: _sec_temp = value else: _sec_temp &= value combined_lec_query = Q('nested', query=( Q('nested', query=(_lec_temp), path='lectures.times') & lec_name_query ), path='lectures', inner_hits={} ) combined_sec_query = Q('nested', query=( Q('nested', query=(_sec_temp), path='sections.times') & sec_name_query), path='sections', inner_hits={} ) # And finally combine the lecture query and section query with "or" query &= Q('bool', must=[combined_lec_query | combined_sec_query]) if config.settings.DEBUG: print(json.dumps(query.to_dict(), indent=2)) print("[DEBUG] max size: {}".format(self.size)) return query # @brief Initializes connection to the Elasticsearch server # The settings are in config/es_config.py def init_es_connection(): if config.es_config.SERVICE == 'AWS': from elasticsearch import RequestsHttpConnection from requests_aws4auth import AWS4Auth from config.es_config import AWS_ES_HOSTS, AWS_ACCESS_KEY,\ AWS_SECRET_KEY, AWS_REGION awsauth = AWS4Auth(AWS_ACCESS_KEY, AWS_SECRET_KEY, AWS_REGION, 'es') connections.create_connection( hosts=AWS_ES_HOSTS, http_auth=awsauth, use_ssl=True, verify_certs=True, connection_class=RequestsHttpConnection ) else: from config.es_config import ES_HOSTS, ES_HTTP_AUTH connections.create_connection( hosts=ES_HOSTS, timeout=20, use_ssl=True, verify_certs=True, http_auth=ES_HTTP_AUTH ) # @brief Initializes an output dictionary for "courses" endpoint def init_courses_output(): output = {'response': {}, 'courses': []} return output # @brief Formats the output for the courses endpoint def format_courses_output(response): output = init_courses_output() output['response'] = response_to_dict(response) if has_error(response): return output for hit in response: output['courses'].append(hit.to_dict()) return output def init_fces_output(): output = {'response': {}, 'fces': []} return output def format_fces_output(response): output = init_fces_output() output['response'] = response_to_dict(response) if has_error(response): return output for hit in response: output['fces'].append(hit.to_dict()) return output def has_error(response): if isinstance(response, dict) and response.get('status') is not None: return True return False def response_to_dict(response): if isinstance(response, dict): return response else: if config.settings.DEBUG: print("[DEBUG] hits count: {}".format(response.hits.total)) return response.to_dict() # # # @brief Get the course by courseid. # # @param courseid (str) The courseid # @param term (str) The elasticsearch index # # @return A dictionary {course: [<dictionary containing the course info>], # response: <response from the server> } # def get_course_by_id(courseid, term=None): output = {'response': {}, 'course': None} index = term if re.search("^\d\d-\d\d\d$", courseid): searcher = CourseSearcher({'courseid': [courseid]}, index=index) response = searcher.execute() output['response'] = response_to_dict(response) if has_error(response): return output if response.hits.total != 0: # Got some hits output['course'] = response[0].to_dict() return output def get_courses_by_id(courseid): output = init_courses_output() if re.search("^\d\d-\d\d\d$", courseid): searcher = CourseSearcher({'courseid': [courseid]}, index=None) response = searcher.execute() output = format_courses_output(response) if len(output['courses']) == 0: output['response']['status'] = 404 return output # # # @brief Get the course by instructor name. # # @param name (str) The instructor name # @param index (str) The elasticsearch index # # @return A dictionary {courses: [<dictionary containing the course info>], # response: <response from the server> } # def get_courses_by_instructor(name, fuzzy=False, index=None, size=100): raw_query = {'instructor': [name]} if fuzzy: raw_query['instructor_fuzzy'] = [name] searcher = CourseSearcher(raw_query, index=index, size=size) response = searcher.execute() output = format_courses_output(response) return output def get_courses_by_building_room(building, room, index=None, size=100): assert(building is not None or room is not None) raw_query = dict() if building is not None: raw_query['building'] = [building] if room is not None: raw_query['room'] = [room] searcher = CourseSearcher(raw_query, index=index, size=size) response = searcher.execute() output = format_courses_output(response) return output def get_courses_by_datetime(datetime_str, span_str=None, size=200): span_minutes = 0 if span_str is not None: try: span_minutes = int(span_str) if not (config.course.SPAN_LOWER_LIMIT <= span_minutes <= config.course.SPAN_UPPER_LIMIT): raise(Exception(Message.SPAN_PARSE_FAIL)) except: output = init_courses_output() output['response'] = { 'status': 400, 'error': { 'message': Message.SPAN_PARSE_FAIL } } return output try: # Try to convert the input string into arrow datetime format # if the string is 'now', then set time to current time if datetime_str == 'now': date_time = arrow.now() else: date_time = arrow.get(datetime_str) except: output = init_courses_output() output['response'] = { 'status': 400, 'error': { 'message': Message.DATETIME_PARSE_FAIL } } return output index = utils.get_course_index_from_date(date_time.datetime) searcher = CourseSearcher( {'datetime': [date_time], 'timespan': [span_minutes]}, index=index, size=size ) response = searcher.execute() output = format_courses_output(response) return output def get_courses_by_searching(args, size=100): # valid_args = ('text', 'name', 'desc', 'instructor', 'courseid', # 'building', 'room', 'datetime_str', 'span_str', 'term') if len(args) == 0: output = init_courses_output() output['response'] = { 'status': 400, 'error': { 'message': Message.EMPTY_SEARCH } } return output raw_query = {} if 'text' in args: raw_query['text'] = [args['text']] else: if 'name' in args: raw_query['name'] = [args['name']] # TODO: fix here if 'desc' in args: raw_query['desc'] = [args['desc']] if 'instructor' in args: raw_query['instructor'] = [args['instructor']] if 'courseid' in args: raw_query['courseid'] = [args['courseid']] if 'building' in args: raw_query['building'] = [args['building']] if 'room' in args: raw_query['room'] = [args['room']] # if 'datetime_str' in args: # # Duplicated from get_courses_by_datetime() # # TODO: combine code # span_minutes = 0 # datetime_str = args['datetime_str'] # span_str = args.get('span_str') # if span_str is not None: # try: # span_minutes = int(span_str) # if not (config.course.SPAN_LOWER_LIMIT <= span_minutes <= # config.course.SPAN_UPPER_LIMIT): # raise(Exception(Message.SPAN_PARSE_FAIL)) # raw_query['timespan'] = [span_minutes] # except: # output = init_courses_output() # output['response'] = { # 'status': 400, # 'error': { # 'message': Message.SPAN_PARSE_FAIL # } # } # return output # try: # date_time = arrow.get(datetime_str) # raw_query['datetime'] = [date_time] # except: # output = init_courses_output() # output['response'] = { # 'status': 400, # 'error': { # 'message': Message.DATETIME_PARSE_FAIL # } # } # return output # index = utils.get_course_index_from_date(date_time.datetime) # index = None if 'term' in args: # TODO: this is a quick hack to support the term arg index = 'current' searcher = CourseSearcher(raw_query, index=index, size=size) response = searcher.execute() output = format_courses_output(response) return output def get_fce_by_id(courseid, size=100): searcher = FCESearcher({'courseid': [courseid]}, index=ES_FCE_INDEX, size=size, sort=['-year']) response = searcher.execute() output = format_fces_output(response) return output def get_fce_by_instructor(instructor, size=100): searcher = FCESearcher({'instructor': [instructor]}, index=ES_FCE_INDEX, size=size, sort=['-year']) response = searcher.execute() output = format_fces_output(response) return output def list_all_courses(term): if term == 'current': index = utils.get_current_course_index() else: index = ES_COURSE_INDEX_PREFIX + term print(index) query = Q() # Use ES api to search s = Search(index=index).query(query).extra( size=7000).source(False) try: response = s.execute().to_dict() if "hits" in response: for elem in response['hits']['hits']: print(elem['_id']) courseids = [elem['_id'] for elem in response['hits']['hits']] return courseids except: pass return [] if __name__ == '__main__': config.settings.DEBUG = True init_es_connection()
mit
-2,254,356,826,381,168,400
32.041467
99
0.526572
false
4.052621
true
false
false
amrishparmar/mal_cl_interface
nl_interface/ui.py
1
1055
from time import sleep from multiprocessing.pool import ThreadPool import click def loading_animation(msg): """Print out one rotation of a spinning bar loading animation :param msg: A string, the message to display """ for c in "|/-\\": click.echo("\r{}...{}".format(msg, c), nl=False) sleep(0.07) def threaded_action(action, msg="Loading", *args, **kwds): """Perform a potentially long-running action while displaying a loading animation :param action: A function to perform :param msg: A string, the message to display while action is running :param args: A tuple, arguments to pass to the action function :param kwds: A dictionary, keyword arguments to pass to the action function :return: The return value of action function """ tp = ThreadPool(processes=1) action_result = tp.apply_async(action, args=args, kwds=kwds) while not action_result.ready(): loading_animation(msg) click.echo("\r{}...Finished".format(msg)) return action_result.get()
mit
-6,162,271,973,474,892,000
29.142857
85
0.675829
false
4.105058
false
false
false
xuru/restler
tests/test_modelstrategy.py
2
1362
import unittest from restler.serializers import ModelStrategy from tests.models import Model1 class ModelStrategyTest(unittest.TestCase): def test_empty_strategy(self): ms = ModelStrategy(Model1) self.assertEqual(len(ms._ModelStrategy__name_map()), 0) def test_all_strategy(self): ms = ModelStrategy(Model1, include_all_fields=True) self.assertEqual(len(ms.fields), 24) def test_one_field_strategy(self): ms = ModelStrategy(Model1) + ["string"] self.assertEqual(len(ms.fields), 1) def test_remove_noexistant_field(self): def non_existant_field(): ModelStrategy(Model1) - ["new_field"] self.assertRaises(ValueError, non_existant_field) def test_new_instance(self): m1 = ModelStrategy(Model1) self.assertNotEqual(m1 + ["string"], m1 + ["string"]) def test_remove_field(self): self.assertEqual( len(ModelStrategy(Model1, True).fields) - 1, len((ModelStrategy(Model1, True) - ["rating"]).fields)) def test_add_remove_property(self): self.assertEqual(len(((ModelStrategy(Model1) + [{"prop": lambda o: o.rating}]) - ["prop"]).fields), 0) def test_overridine_field(self): self.assertTrue(callable(((ModelStrategy(Model1) + ["rating"]) << [{"rating": lambda o: o.rating}]).fields[0][1]))
mit
1,966,132,408,643,636,200
34.842105
122
0.64464
false
3.651475
true
false
false
arcyfelix/Courses
18-05-05-Apache-Spark-with-Python-Big-Data-with-PySpark-and-Spark/6_Spark_SQL/3_UkMakerSpacesSparkSQL.py
1
1041
from pyspark.sql import SparkSession, functions as fs if __name__ == "__main__": session = SparkSession.builder.appName("UkMakerSpaces").master("local[*]").getOrCreate() makerSpace = session.read.option("header", "true") \ .csv("data/uk-makerspaces-identifiable-data.csv") # Using pyspark's functions class to pre-process the postcodes # fs.lit creates a column of literal value. # In this case it will be a white space. postCode = session.read.option("header", "true").csv("data/uk-postcode.csv") \ .withColumn("PostCode", fs.concat_ws("", fs.col("PostCode"), fs.lit(" "))) print("=== Print 20 records of makerspace table ===") makerSpace.select("Name of makerspace", "Postcode").show() print("=== Print 20 records of postcode table ===") postCode.select("PostCode", "Region").show() joined = makerSpace.join(postCode, makerSpace["Postcode"].startswith(postCode["Postcode"]), "left_outer") print("=== Group by Region ===") joined.groupBy("Region").count().show(200)
apache-2.0
8,371,738,106,421,133,000
42.416667
109
0.661864
false
3.589655
false
false
false
bowen0701/algorithms_data_structures
lc0204_count_primes.py
1
1610
"""Leetcode 204. Count Primes Easy URL: https://leetcode.com/problems/count-primes/ Count the number of prime numbers less than a non-negative number, n. Example: Input: 10 Output: 4 Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7. """ class SolutionSqrt(object): def _is_prime(self, i): if i <= 1: return 0 # Only check sqrt(i) for prime, since i = p*q <= p^2 for small p. for p in range(2, int(i ** 0.5) + 1): if i % p == 0: return False return True def countPrimes(self, n): """ :type n: int :rtype: int Time complexity: O(n^1.5). Space complexity: O(1). """ count = 0 for i in range(2, n): if self._is_prime(i): count += 1 return count class SolutionSieve(object): def countPrimes(self, n): """ :type n: int :rtype: int Time complexity: O(n*loglogn). Space complexity: O(n). """ primes = [0] * n # First set numbers, 2, ..., n - 1, as primes. for i in range(2, n): primes[i] = 1 # Sieve method: Flip i*i, i*i+i, ..., to non-primes, i <= sqrt(n). for i in range(2, int(n ** 0.5) + 1): if not primes[i]: continue for j in range(i * i, n, i): primes[j] = 0 return sum(primes) def main(): n = 10 print SolutionSqrt().countPrimes(n) print SolutionSieve().countPrimes(n) if __name__ == '__main__': main()
bsd-2-clause
859,565,256,147,556,600
21.054795
74
0.496273
false
3.292434
false
false
false
markushutzler/pygeda
pygeda/commands/stat.py
1
2610
#!/usr/bin/env python # -*- coding: utf-8 -*- # pygeda - Support tool for Electonic Design Automation # Copyright (C) 2017 Markus Hutzler # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function, absolute_import, division from cmdparse import Command import pygeda.lib.schem import pygeda.lib.pcb from pygeda.lib.log import message class Stat(Command): __cmd__ = "stat" __help__ = "display project statistics" def pcb_stat(self, path): message('File {}'.format(path)) pcb = pygeda.lib.pcb.PCBFile(path) pcb.open() pcb.parse() pcb.close() # TODO: Read statitics def sch_stat(self, path): message('File {}'.format(path)) sch = pygeda.lib.schem.Schematic(path) sch.open() sch.parse() sch.close() stat = {'unique': 0, 'rerdes':0} uids = [] for component in sch.components: if component.refdes.is_set: stat['refdes'] = stat.get('refdes', 0) + 1 uuid = component.uuid if uuid and uuid not in uids: stat['unique'] = stat.get('unique', 0) + 1 uids.append(uuid) elif uuid: stat['duplicate'] = stat.get('duplicate', 0) + 1 message(" Object Count : {}".format(len(sch.objects))) message(" Components : {}".format(len(sch.components))) message(" with refdes: {}".format(stat.get('refdes', 0))) message(" unique : {}".format(stat.get('unique', 0))) message(" duplicate : {}".format(stat.get('duplicate', 0))) message(" Net Fragments : {}".format(len(sch.get_by_type('N')))) def print_stat(self, env): message("Statistics:") message("===========\n") for path in env.schematic_files: self.sch_stat(path) self.pcb_stat(env.pcb_file) def run(self, env=None): """Run command.""" self.print_stat(env)
gpl-3.0
3,676,940,689,704,679,000
33.342105
76
0.598467
false
3.681241
false
false
false
mlperf/training_results_v0.6
Fujitsu/benchmarks/resnet/implementations/mxnet/3rdparty/tvm/tests/webgl/test_local_gemm.py
2
1217
import tvm import numpy as np def test_local_gemm(): if not tvm.module.enabled("opengl"): return if not tvm.module.enabled("llvm"): return nn = 1024 n = tvm.var('n') n = tvm.convert(nn) m = n l = n A = tvm.placeholder((n, l), name='A', dtype='int32') B = tvm.placeholder((m, l), name='B', dtype='int32') k = tvm.reduce_axis((0, l), name='k') C = tvm.compute((n, m), lambda ii, jj: tvm.sum(A[ii, k] * B[jj, k], axis=k), name='CC') s = tvm.create_schedule(C.op) s[C].opengl() print(tvm.lower(s, [A, B, C], simple_mode=True)) f = tvm.build(s, [A, B, C], "opengl", name="gemm") print("------opengl code------") print(f.imported_modules[0].get_source(fmt="gl")) ctx = tvm.opengl() n, m, l = nn, nn, nn a_np = np.random.uniform(low=0, high=10, size=(n, l)).astype(A.dtype) b_np = np.random.uniform(low=0, high=10, size=(m, l)).astype(B.dtype) a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(b_np, ctx) c = tvm.nd.array(np.zeros((n, m), dtype=C.dtype), ctx) f(a, b, c) np.testing.assert_allclose(c.asnumpy(), np.dot(a_np, b_np.T)) if __name__ == "__main__": test_local_gemm()
apache-2.0
-773,018,145,437,749,000
28.682927
80
0.539852
false
2.657205
false
false
false
prculley/gramps
gramps/gui/plug/report/_textreportdialog.py
11
3750
# # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2001-2006 Donald N. Allingham # Copyright (C) 2008-2009 Brian G. Matherly # Copyright (C) 2010 Jakim Friant # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # #------------------------------------------------------------------------- # # GTK modules # #------------------------------------------------------------------------- from gi.repository import Gtk from gi.repository import GObject #------------------------------------------------------------------------- # # Gramps modules # #------------------------------------------------------------------------- from ...pluginmanager import GuiPluginManager from gramps.gen.plug.report._constants import CATEGORY_TEXT from ._docreportdialog import DocReportDialog #------------------------------------------------------------------------- # # _TextFormatComboBox # #------------------------------------------------------------------------- class _TextFormatComboBox(Gtk.ComboBox): """ This class is a combo box that allows the selection of a docgen plugin from all textdoc plugins. """ def __init__(self, active): Gtk.ComboBox.__init__(self) pmgr = GuiPluginManager.get_instance() self.__textdoc_plugins = [] for plugin in pmgr.get_docgen_plugins(): if plugin.get_text_support(): self.__textdoc_plugins.append(plugin) self.store = Gtk.ListStore(GObject.TYPE_STRING) self.set_model(self.store) cell = Gtk.CellRendererText() self.pack_start(cell, True) self.add_attribute(cell, 'text', 0) index = 0 active_index = 0 for plugin in self.__textdoc_plugins: name = plugin.get_name() self.store.append(row=[name]) if plugin.get_extension() == active: active_index = index index += 1 self.set_active(active_index) def get_active_plugin(self): """ Get the plugin represented by the currently active selection. """ return self.__textdoc_plugins[self.get_active()] #----------------------------------------------------------------------- # # TextReportDialog # #----------------------------------------------------------------------- class TextReportDialog(DocReportDialog): """ A class of ReportDialog customized for text based reports. """ def __init__(self, dbstate, uistate, options, name, translated_name): """ Initialize a dialog to request that the user select options for a basic text report. See the ReportDialog class for more information. """ self.format_menu = None self.category = CATEGORY_TEXT DocReportDialog.__init__(self, dbstate, uistate, options, name, translated_name) def make_doc_menu(self, active=None): """ Build a menu of document types that are appropriate for this text report. """ self.format_menu = _TextFormatComboBox( active )
gpl-2.0
959,766,771,137,691,500
34.046729
79
0.549867
false
4.6875
false
false
false
yaukwankiu/armor
tests/colourbartest.py
1
5176
''' Make a colorbar as a separate figure. ''' from matplotlib import pyplot import matplotlib as mpl # Make a figure and axes with dimensions as desired. fig = pyplot.figure(figsize=(8,3)) ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15]) ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15]) ax3 = fig.add_axes([0.05, 0.15, 0.9, 0.15]) # Set the colormap and norm to correspond to the data for which # the colorbar will be used. cmap = mpl.cm.cool norm = mpl.colors.Normalize(vmin=5, vmax=10) # ColorbarBase derives from ScalarMappable and puts a colorbar # in a specified axes, so it has everything needed for a # standalone colorbar. There are many more kwargs, but the # following gives a basic continuous colorbar with ticks # and labels. cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=cmap, norm=norm, orientation='horizontal') cb1.set_label('Some Units') # The second example illustrates the use of a ListedColormap, a # BoundaryNorm, and extended ends to show the "over" and "under" # value colors. cmap = mpl.colors.ListedColormap(['r', 'g', 'b', 'c']) cmap.set_over('0.25') cmap.set_under('0.75') # If a ListedColormap is used, the length of the bounds array must be # one greater than the length of the color list. The bounds must be # monotonically increasing. bounds = [1, 2, 4, 7, 8] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) cb2 = mpl.colorbar.ColorbarBase(ax2, cmap=cmap, norm=norm, # to use 'extend', you must # specify two extra boundaries: boundaries=[0]+bounds+[13], extend='both', ticks=bounds, # optional spacing='proportional', orientation='horizontal') cb2.set_label('Discrete intervals, some other units') # The third example illustrates the use of custom length colorbar # extensions, used on a colorbar with discrete intervals. colourbar = {65 : [255 ,255,255], 60 : [159 , 49 , 206], 55 : [255 , 0 ,255], 50 : [206 , 0 , 0], 45 : [255 , 0 , 0], 40 : [255 , 99 , 99], 35 : [255 , 148 , 0], 30 : [231 , 198 , 0], 25 : [255 , 255, 0], 20 : [ 0 , 148, 0 ], 15 : [ 0 , 173 , 0 ], 10 : [ 0 , 206 , 0 ], 5 : [ 0, 0, 255], # VV i made these up: VV 0 : [ 0, 99, 255], -5 : [ 0, 198, 255], -10 : [156 ,156 , 156], } # http://stackoverflow.com/questions/3373256/set-colorbar-range-in-matplotlib # http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps # http://stackoverflow.com/questions/12073306/customize-colorbar-in-matplotlib # http://stackoverflow.com/questions/7875688/how-can-i-create-a-standard-colorbar-for-a-series-of-plots-in-python #* http://matplotlib.org/examples/api/colorbar_only.html # http://stackoverflow.com/questions/4801366/convert-rgb-values-into-integer-pixel """ cdict = { 'red' : ( (0.0, 0.25, .25), (0.02, .59, .59), (1., 1., 1.)), 'green': ( (0.0, 0.0, 0.0), (0.02, .45, .45), (1., .97, .97)), 'blue' : ( (0.0, 1.0, 1.0), (0.02, .75, .75), (1., 0.45, 0.45)) } """ colourbarlen = 70 - (-10) cdict = { 'red' : [], 'green': [], 'blue' : [], } ################################################################################## bounds = range(-10, 75, 5) lowers = sorted(colourbar.keys()) cmap = mpl.colors.ListedColormap([[1.*colourbar[v][0]/255, 1.*colourbar[v][1]/255, 1.*colourbar[v][2]/255 ] for v in lowers ]) # [[0., .4, 1.], [0., .8, 1.], [1., .8, 0.], [1., .4, 0.]] cmap.set_over((1.*colourbar[65][0]/255, 1.*colourbar[65][1]/255, 1.*colourbar[65][2]/255)) cmap.set_under((1.*colourbar[-10][0]/255, 1.*colourbar[-10][1]/255, 1.*colourbar[-10][2]/255)) norm = mpl.colors.BoundaryNorm(bounds, cmap.N) #fig = pyplot.figure() #ax3 = fig.add_axes() cb3 = mpl.colorbar.ColorbarBase(ax3, cmap=cmap, norm=norm, boundaries=[-10]+bounds+[10], extend='both', # Make the length of each extension # the same as the length of the # interior colors: #extendfrac='auto', ticks=bounds, spacing='uniform', orientation='horizontal' ) cb3.set_label('Custom extension lengths, some other units') pyplot.show()
cc0-1.0
-155,821,429,262,094,200
37.058824
113
0.482998
false
3.61958
false
false
false
wummel/wok
woklib/renderers.py
1
3367
# -*- coding: iso-8859-1 -*- from __future__ import print_function import logging from .util import has_module if not has_module('pygments'): logging.warn('Pygments not enabled.') # List of available renderers all = [] class Renderer(object): """Base renderer class.""" extensions = [] @classmethod def render(cls, plain): """Render text.""" return plain all.append(Renderer) class Plain(Renderer): """Plain text renderer. Replaces new lines with html </br>s""" extensions = ['txt'] @classmethod def render(cls, plain): """Render plain text.""" return plain.replace('\n', '<br>') all.append(Plain) # Include markdown, if it is available. if has_module('markdown'): from markdown import markdown class Markdown(Renderer): """Markdown renderer.""" extensions = ['markdown', 'mkd', 'md'] plugins = ['def_list', 'footnotes'] if has_module('pygments'): plugins.extend(['codehilite(css_class=codehilite)', 'fenced_code']) @classmethod def render(cls, plain): """Render markdown text.""" return markdown(plain, cls.plugins) all.append(Markdown) else: logging.warn("markdown isn't available, trying markdown2") # Try Markdown2 if has_module('markdown2'): import markdown2 class Markdown2(Renderer): """Markdown2 renderer.""" extensions = ['markdown', 'mkd', 'md'] extras = ['def_list', 'footnotes'] if has_module('pygments'): extras.append('fenced-code-blocks') @classmethod def render(cls, plain): """Render markdown text.""" return markdown2.markdown(plain, extras=cls.extras) all.append(Markdown2) else: logging.warn('Markdown not enabled.') # Include ReStructuredText Parser, if we have docutils if has_module('docutils'): import docutils.core from docutils.writers.html4css1 import Writer as rst_html_writer from docutils.parsers.rst import directives if has_module('pygments'): from .rst_pygments import Pygments as RST_Pygments directives.register_directive('Pygments', RST_Pygments) class ReStructuredText(Renderer): """reStructuredText renderer.""" extensions = ['rst'] @classmethod def render(cls, plain): """Render reStructuredText text.""" w = rst_html_writer() return docutils.core.publish_parts(plain, writer=w)['body'] all.append(ReStructuredText) else: logging.warn('reStructuredText not enabled.') # Try Textile if has_module('textile'): import textile class Textile(Renderer): """Textile renderer.""" extensions = ['textile'] @classmethod def render(cls, plain): """Render textile text.""" return textile.textile(plain) all.append(Textile) else: logging.warn('Textile not enabled.') if len(all) <= 2: logging.error("You probably want to install either a Markdown library (one of " "'Markdown', or 'markdown2'), 'docutils' (for reStructuredText), or " "'textile'. Otherwise only plain text input will be supported. You " "can install any of these with 'sudo pip install PACKAGE'.")
mit
2,064,293,836,571,738,400
27.533898
83
0.6139
false
4.23522
false
false
false
brahle/fitmarket-python-api
fitmarket_api/models/status.py
1
5711
# coding: utf-8 """ Fitmarket Mali broj ljudi - donori - dijele dnevna mjerenja svoje težine. Iz dnevne težine jednog donora određujemo vrijednosti dviju dionica: - dionica X ima vrijednost koja odgovara težini donora na taj dan. - inverzna dionica ~X ima vrijednost (150 kg - X). Primjetimo da: - kako X raste, ~X pada. - X + ~X = 150 kg Svaki igrač počinje igru sa 10,000 kg raspoloživog novca. Igrač koristi taj novac za trgovanje dionicama. Ukupna vrijednost igrača je zbroj rapoloživog novca i aktualne vrijednosti svih dionica koje posjeduje. Cilj igre je maksimizirati ukupnu vrijednost dobrim predviđanjem kretanja vrijednosti dionica. Na primjer, u prvom danu igrac kupi 125 dionica \"X\" za 80 kg. U drugom danu, dionica naraste na 82 kg. Ako igrac proda sve dionice \"X\", zaradio je 2 kg * 125 = 250 kg! Igra ne dopušta donoru da trguje vlastitim dionicama. OpenAPI spec version: 1.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pprint import pformat from six import iteritems import re class Status(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, total_money=None, free_money=None, shares=None): """ Status - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'total_money': 'float', 'free_money': 'float', 'shares': 'list[StockWithCount]' } self.attribute_map = { 'total_money': 'total_money', 'free_money': 'free_money', 'shares': 'shares' } self._total_money = total_money self._free_money = free_money self._shares = shares @property def total_money(self): """ Gets the total_money of this Status. :return: The total_money of this Status. :rtype: float """ return self._total_money @total_money.setter def total_money(self, total_money): """ Sets the total_money of this Status. :param total_money: The total_money of this Status. :type: float """ if total_money is None: raise ValueError("Invalid value for `total_money`, must not be `None`") self._total_money = total_money @property def free_money(self): """ Gets the free_money of this Status. :return: The free_money of this Status. :rtype: float """ return self._free_money @free_money.setter def free_money(self, free_money): """ Sets the free_money of this Status. :param free_money: The free_money of this Status. :type: float """ if free_money is None: raise ValueError("Invalid value for `free_money`, must not be `None`") self._free_money = free_money @property def shares(self): """ Gets the shares of this Status. :return: The shares of this Status. :rtype: list[StockWithCount] """ return self._shares @shares.setter def shares(self, shares): """ Sets the shares of this Status. :param shares: The shares of this Status. :type: list[StockWithCount] """ if shares is None: raise ValueError("Invalid value for `shares`, must not be `None`") self._shares = shares def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
apache-2.0
-3,221,127,743,901,845,000
29.972826
850
0.578523
false
3.81204
false
false
false
slosar/april
py/MCMCAnalyzer.py
1
7508
# # This is the MCMC module. # it spits out chains that are compatible with CosmoMC # it calculates cov matrix during burn-in. # chain_num tells it to spit out multi-node chains. # optional temperature makes it sample at a higher temperature but note that # this guy, as opposed to cosmomc, reweights the weights on the fly. # from random import * from math import * from scipy import * import scipy.linalg as la import copy import random import sys import os.path as path class MCMCAnalyzer: def __init__(self, like, outfile, skip=5000, nsamp=100000, temp=1.0, cov=None, chain_num=None): self.like = like self.outfile = outfile self.nsamp = nsamp self.skip = skip self.temp = float(temp) # temperature self.chain_num = chain_num self.cpars = like.freeParameters() minvals, maxvals = [], [] for lb, hb in [p.bounds for p in self.cpars]: minvals.append(lb) maxvals.append(hb) self.minvals = array(minvals) self.maxvals = array(maxvals) print("Bounds:", self.minvals, self.maxvals) self.N = len(self.cpars) if (like.name() == "Composite"): self.sublikenames = like.compositeNames() self.composite = True else: self.composite = False if (cov == None): # make initial cov matrix from diagonal "errors" errs = [0.01*p.error**2 for p in self.cpars] self.init_pcov(diag(errs)) else: self.init_pcov(cov) self.RunChain() def RunChain(self): self.openFiles() self.cloglike, self.cloglikes = self. getLikes() # set up logofs based on the first log like which should be # the same for all chains. Better than nothing. # self.logofs=self.cloglike # Actually, above doesn't seem to work very well. Instead, use zero, as our likelihoods never became very large self.logofs = 0 # current weight self.cw = 0 # current counter self.co = 0 # mean for burin self.swx = 0 self.meanx = zeros(self.N) self.meanxx = zeros((self.N, self.N)) # max loglike self.maxloglike = -1e30 # are we done self.done = False print("Starting chain...") while not (self.done): ppars, numout = self.GetProposal() self.cw += numout ## things hitting outside the prior are formally rejected samples self.like.updateParams(ppars) ploglike, ploglikes = self.getLikes() if (isnan(ploglike)): print("Something bad has happened, nan in loglike, assuming zero log") ploglike = -1e50 # print cloglike, ploglike, [p.value for p in like.freeParameters()], [p.value for p in self.cpars] if (ploglike > self.cloglike): accept = True else: accept = (exp((ploglike-self.cloglike)/self.temp) > uniform(0., 1.)) # print [p.value for p in ppars], accept, ploglike # stop if (accept): self.ProcessAccepted(ppars, ploglike, ploglikes) else: self.cw += 1 self.closeFiles() def GetProposal(self): vec = zeros(self.N) numreject=0 while True: ppars = copy.deepcopy(self.cpars) step = self.draw_pcov() # print step# [p.value for p in step] for i, p in enumerate(ppars): p.value += step[i] vec[i] = p.value if all(vec > self.minvals) and all(vec < self.maxvals): return ppars, numreject numreject+=1 def init_pcov(self, mat): self.chol = la.cholesky(mat) def draw_pcov(self): a = array([random.gauss(0., 1,) for i in range(self.N)]) return dot(a, self.chol) def openFiles(self): outfile = self.outfile if self.chain_num in [None, 1]: fpar = open(outfile+".paramnames", 'w') for p in self.cpars: fpar.write(p.name+"\t\t\t"+p.Ltxname+"\n") if self.composite: for name in self.sublikenames: fpar.write(name+"_like \t\t\t"+name+"\n") fpar.write("theory_prior \t\t\t None \n") fpar.close() formstr = '%g '+'%g '*(self.N+1) if (self.composite): formstr += '%g '*(len(self.sublikenames)+1) formstr += '\n' if (self.chain_num == None): cfname = outfile+".txt" mlfname = outfile+".maxlike" else: cfname = outfile+"_%i.txt" % (self.chain_num) mlfname = outfile+"_%i.maxlike" % (self.chain_num) if (path.isfile(cfname)): print("Due to bad habits in the past, won't open existing file.", cfname) sys.exit(1) self.fout = open(cfname, 'w') self.mlfout = open(mlfname, 'w') self.formstr = formstr def closeFiles(self): self.fout.close() self.mlfout.close() def getLikes(self): if (self.composite): cloglikes = self.like.compositeLogLikes_wprior() cloglike = cloglikes.sum() else: cloglikes = [] cloglike = self.like.loglike_wprior() return cloglike, cloglikes def ProcessAccepted(self, ppars, ploglike, ploglikes): self.co += 1 if (self.co % 1000 == 0): print("Accepted samples", self.co, self.cw) vec = [p.value for p in self.cpars] if (self.co > self.skip): # weight rescaled wers = self.cw*exp((self.cloglike-self.logofs) * (self.temp-1.0)/self.temp) if (self.composite): outstr = self.formstr % tuple( [wers, -self.cloglike]+vec + self.cloglikes.tolist()) else: outstr = self.formstr % tuple([wers, -self.cloglike]+vec) self.fout.write(outstr) # Flush file on regular basis if (self.co % 1000 == 0): self.fout.flush() if (self.cloglike > self.maxloglike): self.maxloglike = self.cloglike print("New maxloglike", self.maxloglike) self.mlfout.seek(0) self.mlfout.write(outstr) self.mlfout.flush() if self.co > self.nsamp: self.done = True elif (self.co < self.skip): self.swx += self.cw v = array(vec) self.meanx += v*self.cw self.meanxx += outer(v, v)*self.cw if (self.cw > 30): print("Still burning in, weight too large") self.chol *= 0.9 print(self.cw) else: # co==skip self.meanx /= self.swx self.meanxx /= self.swx self.meanxx -= outer(self.meanx, self.meanx) print("Re-initializing covariance matrix after burn-in") print(self.meanxx) for i, p in enumerate(self.cpars): print(p.name, p.value, sqrt(self.meanxx[i, i])) self.init_pcov(self.meanxx) self.cw = 1 self.cpars = ppars self.cloglike = ploglike if self.composite: self.cloglikes = ploglikes
gpl-2.0
-819,347,348,433,912,800
32.368889
119
0.532898
false
3.635835
false
false
false
drJfunk/gbmgeometry
gbmgeometry/gbm_frame.py
1
4791
import astropy.coordinates as coord import astropy.units as u import numpy as np from astropy.coordinates import BaseCoordinateFrame, Attribute, RepresentationMapping from astropy.coordinates import frame_transform_graph class GBMFrame(BaseCoordinateFrame): """ Fermi GBM Frame Parameters ---------- representation : `BaseRepresentation` or None A representation object or None to have no data (or use the other keywords) """ default_representation = coord.SphericalRepresentation frame_specific_representation_info = { 'spherical': [ RepresentationMapping( reprname='lon', framename='lon', defaultunit=u.degree), RepresentationMapping( reprname='lat', framename='lat', defaultunit=u.degree), RepresentationMapping( reprname='distance', framename='DIST', defaultunit=None) ], 'unitspherical': [ RepresentationMapping( reprname='lon', framename='lon', defaultunit=u.degree), RepresentationMapping( reprname='lat', framename='lat', defaultunit=u.degree) ], 'cartesian': [ RepresentationMapping( reprname='x', framename='SCX'), RepresentationMapping( reprname='y', framename='SCY'), RepresentationMapping( reprname='z', framename='SCZ') ] } # Specify frame attributes required to fully specify the frame sc_pos_X = Attribute(default=None) sc_pos_Y = Attribute(default=None) sc_pos_Z = Attribute(default=None) quaternion_1 = Attribute(default=None) quaternion_2 = Attribute(default=None) quaternion_3 = Attribute(default=None) quaternion_4 = Attribute(default=None) # equinox = TimeFrameAttribute(default='J2000') @staticmethod def _set_quaternion(q1, q2, q3, q4): sc_matrix = np.zeros((3, 3)) sc_matrix[0, 0] = (q1 ** 2 - q2 ** 2 - q3 ** 2 + q4 ** 2) sc_matrix[0, 1] = 2.0 * ( q1 * q2 + q4 * q3) sc_matrix[0, 2] = 2.0 * ( q1 * q3 - q4 * q2) sc_matrix[1, 0] = 2.0 * ( q1 * q2 - q4 * q3) sc_matrix[1, 1] = (-q1 ** 2 + q2 ** 2 - q3 ** 2 + q4 ** 2) sc_matrix[1, 2] = 2.0 * ( q2 * q3 + q4 * q1) sc_matrix[2, 0] = 2.0 * ( q1 * q3 + q4 * q2) sc_matrix[2, 1] = 2.0 * ( q2 * q3 - q4 * q1) sc_matrix[2, 2] = (-q1 ** 2 - q2 ** 2 + q3 ** 2 + q4 ** 2) return sc_matrix @frame_transform_graph.transform(coord.FunctionTransform, GBMFrame, coord.ICRS) def gbm_to_j2000(gbm_coord, j2000_frame): """ Compute the transformation from heliocentric Sgr coordinates to spherical Galactic. """ sc_matrix = gbm_coord._set_quaternion(gbm_coord.quaternion_1, gbm_coord.quaternion_2, gbm_coord.quaternion_3, gbm_coord.quaternion_4) # X,Y,Z = gbm_coord.cartesian pos = gbm_coord.cartesian.xyz.value X0 = np.dot(sc_matrix[:, 0], pos) X1 = np.dot(sc_matrix[:, 1], pos) X2 = np.clip(np.dot(sc_matrix[:, 2], pos), -1., 1.) #dec = np.arcsin(X2) dec = np.pi/2. - np.arccos(X2) idx = np.logical_and(np.abs(X0) < 1E-6, np.abs(X1) < 1E-6) ra = np.zeros_like(dec) ra[~idx] = np.arctan2(X1, X0) % (2 * np.pi) return coord.ICRS(ra=ra * u.radian, dec=dec * u.radian) @frame_transform_graph.transform(coord.FunctionTransform, coord.ICRS, GBMFrame) def j2000_to_gbm(j2000_frame, gbm_coord): """ Compute the transformation from heliocentric Sgr coordinates to spherical Galactic. """ sc_matrix = gbm_coord._set_quaternion(gbm_coord.quaternion_1, gbm_coord.quaternion_2, gbm_coord.quaternion_3, gbm_coord.quaternion_4) pos = j2000_frame.cartesian.xyz.value X0 = np.dot(sc_matrix[0, :], pos) X1 = np.dot(sc_matrix[1, :], pos) X2 = np.clip(np.dot(sc_matrix[2, :], pos), -1., 1.) el = np.pi / 2. - np.arccos(X2) # convert to proper frame idx = np.logical_and(np.abs(X0) < 1E-6, np.abs(X1) < 1E-6) az = np.zeros_like(el) az[~idx] = np.arctan2(X1, X0) % (2 * np.pi) az[np.rad2deg(el) == 90.] = 0. return GBMFrame( lon=az * u.radian, lat=el * u.radian, quaternion_1=gbm_coord.quaternion_1, quaternion_2=gbm_coord.quaternion_2, quaternion_3=gbm_coord.quaternion_3, quaternion_4=gbm_coord.quaternion_4)
mit
2,118,053,221,106,580,000
31.371622
85
0.548111
false
3.265849
false
false
false
I-sektionen/i-portalen
wsgi/iportalen_django/exchange_portal/migrations/0008_auto_20180129_1747.py
1
3257
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.utils.timezone import utc import datetime class Migration(migrations.Migration): dependencies = [ ('exchange_portal', '0007_auto_20171121_2041'), ] operations = [ migrations.RemoveField( model_name='travel_story', name='body', ), migrations.AddField( model_name='travel_story', name='living_text', field=models.TextField(verbose_name='boende', default=1, help_text='Hur bodde du?\u2028 Hur hittade du ditt boende? Tips på eventuell mäklare eller liknande? Vilka alternativ finns?\u2028 Priser och standard?\u2028'), preserve_default=False, ), migrations.AddField( model_name='travel_story', name='location_text', field=models.TextField(verbose_name='landet och staden', default=1, help_text='Hur upplevdes landet? Staden? Kultur? Billigt eller dyrt?'), preserve_default=False, ), migrations.AddField( model_name='travel_story', name='other_text', field=models.TextField(verbose_name='övrigt', default=datetime.datetime(2018, 1, 29, 16, 47, 31, 204380, tzinfo=utc), help_text='Brödtext syns när en reseberättelse visas enskilt.'), preserve_default=False, ), migrations.AddField( model_name='travel_story', name='prep_text', field=models.TextField(verbose_name='förberedelser', default=datetime.datetime(2018, 1, 29, 16, 47, 43, 578495, tzinfo=utc), help_text='Var det några särskilda förberedelser som krävdes?\u2028 Har du några generella tips gällande ansökan? Visum?'), preserve_default=False, ), migrations.AddField( model_name='travel_story', name='school_text', field=models.TextField(verbose_name='skolan', default=datetime.datetime(2018, 1, 29, 16, 47, 49, 523930, tzinfo=utc), help_text='Geografisk placering i staden?\u2028 Hur var campus?\u2028 Var det lätt att träffa lokalbefolkning?\u2028 Hur var studentlivet? Kurser: var det lätt/svårt att få kurser? Var de lätta/svåra att få tillgodoräknade?'), preserve_default=False, ), migrations.AddField( model_name='travel_story', name='sparetime_text', field=models.TextField(verbose_name='fritid', default=datetime.datetime(2018, 1, 29, 16, 47, 54, 168192, tzinfo=utc), help_text='Vad gör man på fritiden?\u2028 Resor?\u2028 Tips på saker man inte får missa'), preserve_default=False, ), migrations.AddField( model_name='travel_story', name='studies_text', field=models.TextField(verbose_name='studier', default=datetime.datetime(2018, 1, 29, 16, 47, 58, 966304, tzinfo=utc), help_text='Hur var nivån på kurserna?\u2028 Råd angående att välja kurser på plats?\u2028 Svårt att hitta kurser på engelska?\u2028 Hur var språket? (framförallt för de som läser ii eller som inte läste på engelska)'), preserve_default=False, ), ]
mit
2,449,549,004,156,473,000
50.870968
356
0.64148
false
3.258359
false
false
false
Tiloon/Object-Recognition
src/desc.py
1
2184
import numpy import math class descriptor: def __init__(self): self.size_sub_squares = 8 self.eps = 0.00001 def create_descriptors(self, features, img): descriptors = {} floatImg = img.astype(numpy.float64) desNum = len(features) for i in range(desNum): x, y = features[i][0], features[i][1] w, h = img.shape[0], img.shape[1] if self.size_sub_squares < x < w - 2 * self.size_sub_squares \ and self.size_sub_squares < y < h - 2 * self.size_sub_squares: descriptors[(x, y)] = self.create_descriptor(x, y, floatImg) return descriptors def create_descriptor(self, x, y, img): hists = [self.gradHist(x - 8, y - 8, img), self.gradHist(x - 8, y, img), self.gradHist(x - 8, y + 8, img), self.gradHist(x - 8, y + 16, img), self.gradHist(x, y - 8, img), self.gradHist(x, y, img), self.gradHist(x, y + 8, img), self.gradHist(x, y + 16, img), self.gradHist(x + 8, y - 8, img), self.gradHist(x + 8, y, img), self.gradHist(x + 8, y + 8, img), self.gradHist(x + 8, y + 16, img), self.gradHist(x + 16, y - 8, img), self.gradHist(x + 16, y, img), self.gradHist(x + 16, y + 8, img), self.gradHist(x + 16, y + 16, img)] return [col for hist in hists for col in hist] # group hists by values def gradHist(self, x, y, img): P = math.pi localDir = [0] * 18 for b in range(x - 8, x): for c in range(y - 8, y): m, t = self.gradient_properties(b, c, img) localDir[int(round((18 * t) / P, 0)) + 8] += m return localDir def gradient_properties(self, x, y, img): norm = math.sqrt((img[x + 1, y] - img[x - 1, y]) ** 2 + (img[x, y + 1] - img[x, y - 1]) ** 2) orientation = math.atan((img[x, y + 1] - img[x, y - 1]) / (img[x + 1, y] - img[x - 1, y] + self.eps)) return norm, orientation
mit
7,932,203,387,093,352,000
38.017857
109
0.473443
false
3.230769
false
false
false
nish10z/CONCUSS
lib/coloring/basic/optimization_interval.py
3
3058
#!/usr/bin/python # # This file is part of CONCUSS, https://github.com/theoryinpractice/concuss/, # and is Copyright (C) North Carolina State University, 2015. It is licensed # under the three-clause BSD license; see LICENSE. # from lib.util.memorized import memorized import sys import copy import random # @memorized(['g', 'trans', 'frat', 'col', 'i']) def optimization_interval(orig, g, trans, frat, col, i, treeDepth, mobj): # print " remove transitive and fraternal edges" # remove all transitive and fraternal edges of the last step edges = {} optcols = copy.deepcopy(col) # avoid side effects col = copy.deepcopy(col) # avoid side effects for (s, t) in trans.keys(): step = trans[(s, t)] if (step == i): g.remove_arc(s, t) edges[(s, t)] = (True, trans[(s, t)]) del trans[(s, t)] for (s, t) in frat.keys(): step = frat[(s, t)] if (step == i): g.remove_arc(s, t) edges[(s, t)] = (False, frat[(s, t)]) del frat[(s, t)] numbAdded = 0 numbAdd = len(edges) / 2 attempts = 0 resColors = 0 MAX_ATTEMPTS = 2 while True: mod = len(edges) ra = numbAdd addedEdges = {} for (s, t) in edges.keys(): isTrans, value = edges[(s, t)] # add randomly 'numbAdd' edges from the list 'restEdges' rand = random.randint(0, mod-1) if (rand < ra): g.add_arc(s, t, 0) if isTrans: trans[(s, t)] = value else: frat[(s, t)] = value addedEdges[(s, t)] = isTrans del edges[(s, t)] ra -= 1 if (ra == 0): break mod -= 1 # end for # sys.stdout.write(" check with " + str(numbAdded+numbAdd) + " edges") newcol = mobj.col(orig, g, trans, frat, col) correct, nodes = mobj.ctd(orig, g, newcol, treeDepth) # sys.stdout.write(" -> " + str(correct)) if correct: if len(newcol) < len(optcols): optcols = copy.deepcopy(newcol) numColors = len(newcol) # sys.stdout.write(", colors: " + str(numColors) + '\n') # else: # sys.stdout.write('\n') attempts += 1 if (correct or (attempts < MAX_ATTEMPTS)): for ((s, t), isTrans) in addedEdges.iteritems(): if isTrans: edges[(s, t)] = (True, trans[(s, t)]) del trans[(s, t)] else: edges[(s, t)] = (False, frat[(s, t)]) del frat[(s, t)] g.remove_arc(s, t) # end for else: numbAdded += numbAdd if (correct or (attempts == MAX_ATTEMPTS)): attempts = 0 numbAdd = numbAdd / 2 if (numbAdd == 0): break # end while return optcols # end def
bsd-3-clause
-8,832,448,500,417,851,000
25.824561
79
0.478417
false
3.555814
false
false
false
pedroallenrevez/MemLinguo
memlingo/dictionary.py
1
4495
#!/usr/bin/env python # future # standard lib # third-party # memlingo import memlingo.yandex as yandex # local # try/except class WordDictionary: '''WordDictionary contains all your known words from a given language. It is a simple dictionary that maps <word, card>. Attributes ---------- lang: str Language of the current dictionary. String must include the target translation, due to Yandex API in form: "ru-en" "jp-en" ID: int This unique identifier is used by the genanki library. It is needed because Anki decks, have a unique identifier that can be referred to, and is important when updating the deck. words: dict <str, Card> Contains all the words and relevant information ''' class Card: '''Card holds the relevant information on a word. Cards hold the required information to build an AnkiCard.` Attributes ---------- word: str The word itself. How it is written. Equal to the dictionary key. word_class: str The class of the word. Can be noun, adjective, adverb, etc. translations: [str] A list of all possible translations of the word. examples: [(str,str)] A list of tuples, that contain pairs of translated sentences. dirty_bit: int (0,1) Used to discern if it's needed to export again. ''' def __init__(self, word, wclass, translations, examples, bit=0): self.word = word self.word_class = wclass self.translations = translations self.examples = examples self.dirty_bit = bit def __init__(self, language, uniqueID): self.lang = language self.ID = uniqueID self.words = {} # TODO add_card shouldn't receive an api key def add_card(self, api_key, word): '''Adds a new word to the dictionary. All information on a word is fetched - translations, examples, etc. In the future, IPA transcribing, and sound files will be available. Parameters ---------- api_key: str The Yandex Api Key required to lookup a word. word: str The word that the user wants to add to the collection. Returns ------- Nil Side-Effects ------------ Searches for word, gathers relevant information, and then adds the card to the WordDictionary. ''' # Word must be encoded to be stored in a valid format (e.g.: Russian, # Japanese) utf8word = word.encode('utf-8') if utf8word in self.words: # Panic print("That word as already been added, skipping...\n") return jsonie = yandex.lookup(api_key, self.lang, word) if jsonie is not None: word = yandex.get_word(jsonie) word_class = yandex.get_word_class(jsonie) translations = yandex.get_translations(jsonie) examples = yandex.get_examples(jsonie) new_card = self.Card(word, word_class, translations, examples) self.words[utf8word] = new_card return # TODO this shouldn't use api_key as well def update(self, api_key, words): '''Update the WordDictionary with given list of words. Parameters ---------- api_key: str The Yandex Api Key required to lookup a word. words: [str] A list of words that the user wants to add to the collection. Returns ------- Nil Side-Effects ------------ Adds every word that is on Yandex, to the user collection. ''' word_counter = 0 for word in words: self.add_card(api_key, word) word_counter += 1 print(str(word_counter) + " words added to collection\n") return def to_print(self): '''Prints the dictioanry in a pretty manner. Prints the queried word, wordclass, translations and example ''' for key in self.words: print(key.decode('utf-8')) print(self.words[key].word_class) print(self.words[key].translations) print(self.words[key].examples) print(self.words[key].dirty_bit) print('\n') if __name__ == "__main__": newDick = WordDictionary("ru", 12345)
mit
8,505,630,829,982,515,000
30
79
0.575083
false
4.240566
false
false
false
sebastien17/MAVlink_plug
example/Test_GroundControl.py
1
1814
#!/usr/bin/env python # -*- coding: utf-8 -*- #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # This file is part of MAVlinkplug. # MAVlinkplug is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # MAVlinkplug is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with MAVlinkplug. If not, see <http://www.gnu.org/licenses/>. # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(__name__ == '__main__'): from mavlinkplug import set_mavlink_dialect import mavlinkplug.Modules.MavConnection import mavlinkplug.Modules.FileWriter import mavlinkplug.Modules.TcpConnection import mavlinkplug.Plug set_mavlink_dialect('pixhawk') #Creating plug plug = mavlinkplug.Plug.Plug() plug.start() #Set a mavlink connection with MAVlink ready devices mav_con_01 = mavlinkplug.Modules.MavConnection.MavConnection(plug.plug_info(), 'COM3', baud=115200) #Set a output file #file_output = mavlinkplug.Modules.FileWriter.FileWriter(plug.plug_info(), 'Test_GroundControl.log') #Set a connection for GC gc_connection = mavlinkplug.Modules.TcpConnection.TcpConnection(plug.plug_info(), ('127.0.0.1', 17562), mav_con_01.ident()) #Start all modules #file_output.start() gc_connection.start() mav_con_01.start() #Server forever plug.server_forever()
bsd-3-clause
4,902,761,369,695,845,000
35.3
127
0.661521
false
3.35305
false
false
false
kovidgoyal/kitty
kittens/diff/options/types.py
1
6324
# generated by gen-config.py DO NOT edit # vim:fileencoding=utf-8 import typing from kitty.conf.utils import KeyAction, KittensKeyMap import kitty.conf.utils from kitty.rgb import Color import kitty.rgb from kitty.types import ParsedShortcut import kitty.types option_names = ( # {{{ 'added_bg', 'added_margin_bg', 'background', 'diff_cmd', 'filler_bg', 'foreground', 'highlight_added_bg', 'highlight_removed_bg', 'hunk_bg', 'hunk_margin_bg', 'map', 'margin_bg', 'margin_fg', 'margin_filler_bg', 'num_context_lines', 'pygments_style', 'removed_bg', 'removed_margin_bg', 'replace_tab_by', 'search_bg', 'search_fg', 'select_bg', 'select_fg', 'syntax_aliases', 'title_bg', 'title_fg') # }}} class Options: added_bg: Color = Color(red=230, green=255, blue=237) added_margin_bg: Color = Color(red=205, green=255, blue=216) background: Color = Color(red=255, green=255, blue=255) diff_cmd: str = 'auto' filler_bg: Color = Color(red=250, green=251, blue=252) foreground: Color = Color(red=0, green=0, blue=0) highlight_added_bg: Color = Color(red=172, green=242, blue=189) highlight_removed_bg: Color = Color(red=253, green=184, blue=192) hunk_bg: Color = Color(red=241, green=248, blue=255) hunk_margin_bg: Color = Color(red=219, green=237, blue=255) margin_bg: Color = Color(red=250, green=251, blue=252) margin_fg: Color = Color(red=170, green=170, blue=170) margin_filler_bg: typing.Optional[kitty.rgb.Color] = None num_context_lines: int = 3 pygments_style: str = 'default' removed_bg: Color = Color(red=255, green=238, blue=240) removed_margin_bg: Color = Color(red=255, green=220, blue=224) replace_tab_by: str = ' ' search_bg: Color = Color(red=68, green=68, blue=68) search_fg: Color = Color(red=255, green=255, blue=255) select_bg: Color = Color(red=180, green=213, blue=254) select_fg: typing.Optional[kitty.rgb.Color] = Color(red=0, green=0, blue=0) syntax_aliases: typing.Dict[str, str] = {'pyj': 'py', 'pyi': 'py', 'recipe': 'py'} title_bg: Color = Color(red=255, green=255, blue=255) title_fg: Color = Color(red=0, green=0, blue=0) map: typing.List[typing.Tuple[kitty.types.ParsedShortcut, kitty.conf.utils.KeyAction]] = [] key_definitions: KittensKeyMap = {} config_paths: typing.Tuple[str, ...] = () config_overrides: typing.Tuple[str, ...] = () def __init__(self, options_dict: typing.Optional[typing.Dict[str, typing.Any]] = None) -> None: if options_dict is not None: for key in option_names: setattr(self, key, options_dict[key]) @property def _fields(self) -> typing.Tuple[str, ...]: return option_names def __iter__(self) -> typing.Iterator[str]: return iter(self._fields) def __len__(self) -> int: return len(self._fields) def _copy_of_val(self, name: str) -> typing.Any: ans = getattr(self, name) if isinstance(ans, dict): ans = ans.copy() elif isinstance(ans, list): ans = ans[:] return ans def _asdict(self) -> typing.Dict[str, typing.Any]: return {k: self._copy_of_val(k) for k in self} def _replace(self, **kw: typing.Any) -> "Options": ans = Options() for name in self: setattr(ans, name, self._copy_of_val(name)) for name, val in kw.items(): setattr(ans, name, val) return ans def __getitem__(self, key: typing.Union[int, str]) -> typing.Any: k = option_names[key] if isinstance(key, int) else key try: return getattr(self, k) except AttributeError: pass raise KeyError(f"No option named: {k}") defaults = Options() defaults.map = [ # quit (ParsedShortcut(mods=0, key_name='q'), KeyAction('quit')), # quit (ParsedShortcut(mods=0, key_name='ESCAPE'), KeyAction('quit')), # scroll_down (ParsedShortcut(mods=0, key_name='j'), KeyAction('scroll_by', (1,))), # scroll_down (ParsedShortcut(mods=0, key_name='DOWN'), KeyAction('scroll_by', (1,))), # scroll_up (ParsedShortcut(mods=0, key_name='k'), KeyAction('scroll_by', (-1,))), # scroll_up (ParsedShortcut(mods=0, key_name='UP'), KeyAction('scroll_by', (-1,))), # scroll_top (ParsedShortcut(mods=0, key_name='HOME'), KeyAction('scroll_to', ('start',))), # scroll_bottom (ParsedShortcut(mods=0, key_name='END'), KeyAction('scroll_to', ('end',))), # scroll_page_down (ParsedShortcut(mods=0, key_name='PAGE_DOWN'), KeyAction('scroll_to', ('next-page',))), # scroll_page_down (ParsedShortcut(mods=0, key_name=' '), KeyAction('scroll_to', ('next-page',))), # scroll_page_up (ParsedShortcut(mods=0, key_name='PAGE_UP'), KeyAction('scroll_to', ('prev-page',))), # next_change (ParsedShortcut(mods=0, key_name='n'), KeyAction('scroll_to', ('next-change',))), # prev_change (ParsedShortcut(mods=0, key_name='p'), KeyAction('scroll_to', ('prev-change',))), # all_context (ParsedShortcut(mods=0, key_name='a'), KeyAction('change_context', ('all',))), # default_context (ParsedShortcut(mods=0, key_name='='), KeyAction('change_context', ('default',))), # increase_context (ParsedShortcut(mods=0, key_name='+'), KeyAction('change_context', (5,))), # decrease_context (ParsedShortcut(mods=0, key_name='-'), KeyAction('change_context', (-5,))), # search_forward (ParsedShortcut(mods=0, key_name='/'), KeyAction('start_search', (True, False))), # search_backward (ParsedShortcut(mods=0, key_name='?'), KeyAction('start_search', (True, True))), # next_match (ParsedShortcut(mods=0, key_name='.'), KeyAction('scroll_to', ('next-match',))), # next_match (ParsedShortcut(mods=0, key_name='>'), KeyAction('scroll_to', ('next-match',))), # prev_match (ParsedShortcut(mods=0, key_name=','), KeyAction('scroll_to', ('prev-match',))), # prev_match (ParsedShortcut(mods=0, key_name='<'), KeyAction('scroll_to', ('prev-match',))), # search_forward_simple (ParsedShortcut(mods=0, key_name='f'), KeyAction('start_search', (False, False))), # search_backward_simple (ParsedShortcut(mods=0, key_name='b'), KeyAction('start_search', (False, True))), ]
gpl-3.0
1,632,852,033,682,323,000
36.642857
99
0.618912
false
3.084878
false
false
false
KnoxMakers/KM-Laser
extensions/km_deps/libfuturize/fixes/fix_raise.py
3
3884
"""Fixer for 'raise E, V' From Armin Ronacher's ``python-modernize``. raise -> raise raise E -> raise E raise E, 5 -> raise E(5) raise E, 5, T -> raise E(5).with_traceback(T) raise E, None, T -> raise E.with_traceback(T) raise (((E, E'), E''), E'''), 5 -> raise E(5) raise "foo", V, T -> warns about string exceptions raise E, (V1, V2) -> raise E(V1, V2) raise E, (V1, V2), T -> raise E(V1, V2).with_traceback(T) CAVEATS: 1) "raise E, V, T" cannot be translated safely in general. If V is not a tuple or a (number, string, None) literal, then: raise E, V, T -> from future.utils import raise_ raise_(E, V, T) """ # Author: Collin Winter, Armin Ronacher, Mark Huang # Local imports from lib2to3 import pytree, fixer_base from lib2to3.pgen2 import token from lib2to3.fixer_util import Name, Call, is_tuple, Comma, Attr, ArgList from libfuturize.fixer_util import touch_import_top class FixRaise(fixer_base.BaseFix): BM_compatible = True PATTERN = """ raise_stmt< 'raise' exc=any [',' val=any [',' tb=any]] > """ def transform(self, node, results): syms = self.syms exc = results["exc"].clone() if exc.type == token.STRING: msg = "Python 3 does not support string exceptions" self.cannot_convert(node, msg) return # Python 2 supports # raise ((((E1, E2), E3), E4), E5), V # as a synonym for # raise E1, V # Since Python 3 will not support this, we recurse down any tuple # literals, always taking the first element. if is_tuple(exc): while is_tuple(exc): # exc.children[1:-1] is the unparenthesized tuple # exc.children[1].children[0] is the first element of the tuple exc = exc.children[1].children[0].clone() exc.prefix = u" " if "tb" in results: tb = results["tb"].clone() else: tb = None if "val" in results: val = results["val"].clone() if is_tuple(val): # Assume that exc is a subclass of Exception and call exc(*val). args = [c.clone() for c in val.children[1:-1]] exc = Call(exc, args) elif val.type in (token.NUMBER, token.STRING): # Handle numeric and string literals specially, e.g. # "raise Exception, 5" -> "raise Exception(5)". val.prefix = u"" exc = Call(exc, [val]) elif val.type == token.NAME and val.value == u"None": # Handle None specially, e.g. # "raise Exception, None" -> "raise Exception". pass else: # val is some other expression. If val evaluates to an instance # of exc, it should just be raised. If val evaluates to None, # a default instance of exc should be raised (as above). If val # evaluates to a tuple, exc(*val) should be called (as # above). Otherwise, exc(val) should be called. We can only # tell what to do at runtime, so defer to future.utils.raise_(), # which handles all of these cases. touch_import_top(u"future.utils", u"raise_", node) exc.prefix = u"" args = [exc, Comma(), val] if tb is not None: args += [Comma(), tb] return Call(Name(u"raise_"), args) if tb is not None: tb.prefix = "" exc_list = Attr(exc, Name('with_traceback')) + [ArgList([tb])] else: exc_list = [exc] return pytree.Node(syms.raise_stmt, [Name(u"raise")] + exc_list, prefix=node.prefix)
gpl-3.0
1,069,032,594,874,147,500
35.299065
80
0.530896
false
3.73821
false
false
false
Catrodigious/OctoPrint-TAM
src/octoprint/server/__init__.py
1
9654
# coding=utf-8 __author__ = "Gina Häußge <osd@foosel.net>" __license__ = 'GNU Affero General Public License http://www.gnu.org/licenses/agpl.html' import flask import tornado.wsgi from sockjs.tornado import SockJSRouter from flask import Flask, render_template, send_from_directory, make_response from flask.ext.login import LoginManager from flask.ext.principal import Principal, Permission, RoleNeed, identity_loaded, UserNeed import os import logging import logging.config SUCCESS = {} NO_CONTENT = ("", 204) app = Flask("octoprint") debug = False printer = None gcodeManager = None userManager = None eventManager = None loginManager = None wifiManager = None wifiInterface = "wlan0" principals = Principal(app) admin_permission = Permission(RoleNeed("admin")) user_permission = Permission(RoleNeed("user")) # only import the octoprint stuff down here, as it might depend on things defined above to be initialized already from octoprint.server.util import LargeResponseHandler, ReverseProxied, restricted_access, PrinterStateConnection, admin_validator from octoprint.printer import Printer, getConnectionOptions from octoprint.settings import settings import octoprint.gcodefiles as gcodefiles import octoprint.util as util import octoprint.users as users import octoprint.events as events import octoprint.timelapse import octoprint._version import octoprint.wifi as wifi versions = octoprint._version.get_versions() VERSION = versions['version'] BRANCH = versions['branch'] if 'branch' in versions else None DISPLAY_VERSION = "%s (%s branch)" % (VERSION, BRANCH) if BRANCH else VERSION del versions @app.route("/") def index(): return render_template( "index.jinja2", webcamStream=settings().get(["webcam", "stream"]), enableTimelapse=(settings().get(["webcam", "snapshot"]) is not None and settings().get(["webcam", "ffmpeg"]) is not None), enableGCodeVisualizer=settings().get(["gcodeViewer", "enabled"]), enableTemperatureGraph=settings().get(["feature", "temperatureGraph"]), enableSystemMenu=settings().get(["system"]) is not None and settings().get(["system", "actions"]) is not None and len(settings().get(["system", "actions"])) > 0, enableAccessControl=userManager is not None, enableSdSupport=settings().get(["feature", "sdSupport"]), enableNetworkSettings = settings().get(["feature", "networkSettings"]), firstRun=settings().getBoolean(["server", "firstRun"]) and (userManager is None or not userManager.hasBeenCustomized()), debug=debug, version=VERSION, display_version=DISPLAY_VERSION, stylesheet=settings().get(["devel", "stylesheet"]), gcodeMobileThreshold=settings().get(["gcodeViewer", "mobileSizeThreshold"]), gcodeThreshold=settings().get(["gcodeViewer", "sizeThreshold"]) ) @app.route("/robots.txt") def robotsTxt(): return send_from_directory(app.static_folder, "robots.txt") @identity_loaded.connect_via(app) def on_identity_loaded(sender, identity): user = load_user(identity.id) if user is None: return identity.provides.add(UserNeed(user.get_name())) if user.is_user(): identity.provides.add(RoleNeed("user")) if user.is_admin(): identity.provides.add(RoleNeed("admin")) def load_user(id): if userManager is not None: return userManager.findUser(id) return users.DummyUser() #~~ startup code class Server(): def __init__(self, configfile=None, basedir=None, host="0.0.0.0", port=5000, debug=False, allowRoot=False): self._configfile = configfile self._basedir = basedir self._host = host self._port = port self._debug = debug self._allowRoot = allowRoot def run(self): if not self._allowRoot: self._checkForRoot() global printer global gcodeManager global userManager global eventManager global loginManager global debug global wifiManager from tornado.wsgi import WSGIContainer from tornado.httpserver import HTTPServer from tornado.ioloop import IOLoop from tornado.web import Application, FallbackHandler debug = self._debug # first initialize the settings singleton and make sure it uses given configfile and basedir if available self._initSettings(self._configfile, self._basedir) # then initialize logging self._initLogging(self._debug) logger = logging.getLogger(__name__) logger.info("Starting OctoPrint %s" % DISPLAY_VERSION) eventManager = events.eventManager() gcodeManager = gcodefiles.GcodeManager() printer = Printer(gcodeManager) wifiManager = wifi.WifiManager(printer) # configure timelapse octoprint.timelapse.configureTimelapse() # setup command triggers events.CommandTrigger(printer) if self._debug: events.DebugEventListener() if settings().getBoolean(["accessControl", "enabled"]): userManagerName = settings().get(["accessControl", "userManager"]) try: clazz = util.getClass(userManagerName) userManager = clazz() except AttributeError, e: logger.exception("Could not instantiate user manager %s, will run with accessControl disabled!" % userManagerName) app.wsgi_app = ReverseProxied(app.wsgi_app) app.secret_key = "k3PuVYgtxNm8DXKKTw2nWmFQQun9qceV" loginManager = LoginManager() loginManager.session_protection = "strong" loginManager.user_callback = load_user if userManager is None: loginManager.anonymous_user = users.DummyUser principals.identity_loaders.appendleft(users.dummy_identity_loader) loginManager.init_app(app) if self._host is None: self._host = settings().get(["server", "host"]) if self._port is None: self._port = settings().getInt(["server", "port"]) logger.info("Listening on http://%s:%d" % (self._host, self._port)) app.debug = self._debug from octoprint.server.api import api app.register_blueprint(api, url_prefix="/api") self._router = SockJSRouter(self._createSocketConnection, "/sockjs") def admin_access_validation(request): """ Creates a custom wsgi and Flask request context in order to be able to process user information stored in the current session. :param request: The Tornado request for which to create the environment and context """ wsgi_environ = tornado.wsgi.WSGIContainer.environ(request) with app.request_context(wsgi_environ): app.session_interface.open_session(app, flask.request) loginManager.reload_user() admin_validator(flask.request) self._tornado_app = Application(self._router.urls + [ (r"/downloads/timelapse/([^/]*\.mpg)", LargeResponseHandler, {"path": settings().getBaseFolder("timelapse"), "as_attachment": True}), (r"/downloads/files/local/([^/]*\.(gco|gcode|g))", LargeResponseHandler, {"path": settings().getBaseFolder("uploads"), "as_attachment": True}), (r"/downloads/logs/([^/]*)", LargeResponseHandler, {"path": settings().getBaseFolder("logs"), "as_attachment": True, "access_validation": admin_access_validation}), (r".*", FallbackHandler, {"fallback": WSGIContainer(app.wsgi_app)}) ]) self._server = HTTPServer(self._tornado_app) self._server.listen(self._port, address=self._host) eventManager.fire(events.Events.STARTUP) if settings().getBoolean(["serial", "autoconnect"]): (port, baudrate) = settings().get(["serial", "port"]), settings().getInt(["serial", "baudrate"]) connectionOptions = getConnectionOptions() if port in connectionOptions["ports"]: printer.connect(port, baudrate) try: IOLoop.instance().start() except KeyboardInterrupt: logger.info("Goodbye!") except: logger.fatal("Now that is embarrassing... Something really really went wrong here. Please report this including the stacktrace below in OctoPrint's bugtracker. Thanks!") logger.exception("Stacktrace follows:") def _createSocketConnection(self, session): global printer, gcodeManager, userManager, eventManager return PrinterStateConnection(printer, gcodeManager, userManager, eventManager, session) def _checkForRoot(self): if "geteuid" in dir(os) and os.geteuid() == 0: exit("You should not run OctoPrint as root!") def _initSettings(self, configfile, basedir): settings(init=True, basedir=basedir, configfile=configfile) def _initLogging(self, debug): config = { "version": 1, "formatters": { "simple": { "format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s" } }, "handlers": { "console": { "class": "logging.StreamHandler", "level": "DEBUG", "formatter": "simple", "stream": "ext://sys.stdout" }, "file": { "class": "logging.handlers.TimedRotatingFileHandler", "level": "DEBUG", "formatter": "simple", "when": "D", "backupCount": "1", "filename": os.path.join(settings().getBaseFolder("logs"), "octoprint.log") }, "serialFile": { "class": "logging.handlers.RotatingFileHandler", "level": "DEBUG", "formatter": "simple", "maxBytes": 2 * 1024 * 1024, # let's limit the serial log to 2MB in size "filename": os.path.join(settings().getBaseFolder("logs"), "serial.log") } }, "loggers": { #"octoprint.timelapse": { # "level": "DEBUG" #}, #"octoprint.events": { # "level": "DEBUG" #}, "SERIAL": { "level": "CRITICAL", "handlers": ["serialFile"], "propagate": False } }, "root": { "level": "INFO", "handlers": ["console", "file"] } } if debug: config["root"]["level"] = "DEBUG" logging.config.dictConfig(config) if settings().getBoolean(["serial", "log"]): # enable debug logging to serial.log logging.getLogger("SERIAL").setLevel(logging.DEBUG) logging.getLogger("SERIAL").debug("Enabling serial logging") if __name__ == "__main__": octoprint = Server() octoprint.run()
agpl-3.0
-5,305,622,735,948,998,000
31.498316
172
0.708247
false
3.416637
true
false
false
cslarsen/dna-traits
py-dnatraits/dna_traits/health.py
1
12313
# -*- encoding: utf-8 -*- """ Used to infer some health related reports. Use with caution, this code may contain errors! Copyright (C) 2014, 2016 Christian Stigen Larsen Distributed under the GPL v3 or later. See COPYING. """ from dna_traits.match import unphased_match, assert_european from dna_traits.util import make_report import dna_traits.odds as odds def apoe_variants(genome): """APOE-variants (Alzheimer's).""" rs429358 = genome.rs429358 rs7412 = genome.rs7412 # If both SNPs are phased we can resolve all ambiguities, and finding # APOe-variants are straight-forward if rs429358.phased and rs7412.phased: assert(len(rs429358)==len(rs7412)==2) apoe = {"CT": "e1", "TT": "e2", "TC": "e3", "CC": "e4"} variant = [] for n in [0,1]: variant.append(apoe[str(rs429358)[n] + str(rs7412)[n]]) return "/".join(sorted(variant)) else: # At least one SNP is non-phased; we can guess the result in all but # one case genotypes = "".join(sorted(str(rs429358))) genotypes += "".join(sorted(str(rs7412))) variants = { "CCCC": "e4/e4", "CCCT": "e1/e4", "CCTT": "e1/e1", "CTCC": "e3/e4", "CTCT": "e1/e3 or e2/e4", # ambiguous "CTTT": "e1/e2", "TTCC": "e3/e3", "TTCT": "e2/e3", "TTTT": "e2/e2", } try: return variants[genotypes] except KeyError: return "<Unknown variant: %s>" % genotypes def rheumatoid_arthritis_risk(genome): """Rheumatoid arthritis.""" raise NotImplementedError() OR = 0 # FIXME: Fix the OR calculation, it's a complete mess right now # (attempt to use Mantel-Haenszel instead). # # We currently just give a score for each risk allele instead and give # an thumbs up / down rating. # These are not applicable for Asians if genome.ethnicity == "european": OR += genome.rs6457617.count("T") if genome.rs2476601 == "GG": OR -= 1 if genome.rs3890745 == "CC": OR += -1 if genome.rs2327832 == "AG": OR += -1 # Only Europeans # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2636867/ OR += genome.rs3761847.count("G") if genome.rs7574865 == "TT": OR += 1 if genome.rs1569723 == "AA": OR += 1 if genome.rs13031237 == "GT": OR += 1 # TODO: Implement rest, ignore scores, just give a "low/medium/high" # OR. if OR <= 2: return "low risk??" elif OR <= 4: return "medium risk??" else: return "high risk??" def chronic_kidney_disease(genome): """Chronic kidney disease (CKD). Citations: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=21082022 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=20686651 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=19430482 """ # List of (OR, CI, P-value, variance inflaction factor) ors = [] # Taken from the following GWAS: # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912386/#pgen.1001039-Gretarsdottir2 if genome.ethnicity is None or genome.ethnicity=="european": # TODO: Find out if the OR is per T-allele or just for the existence # of one. Here I just see if there is one or more. if genome.rs4293393.negative().count("T") > 0: if genome.year_of_birth is None: ors.append((1.25, 0.95, 4.1e-10, 1.15)) else: # Stratified OR. Honestly, I think the P-values seem WAY too # high for births later than 1940. if genome.year_of_birth < 1920: ors.append((1.19, 0.95, 0.045, 1.15)) elif genome.year_of_birth < 1930: ors.append((1.31, 0.95, 4.1e-7, 1.15)) elif genome.year_of_birth < 1940: ors.append((1.28, 0.95, 3.1e-5, 1.15)) elif genome.year_of_birth < 1950: ors.append((1.16, 0.95, 0.12, 1.15)) else: ors.append((1.09, 0.95, 0.57, 1.15)) # Taken from: # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997674/ if genome.ethnicity is None or genome.ethnicity=="european": # Table 3: if genome.rs7805747.count("A") > 0: ors.append((1.19, 0.95, 4.2e-12, None)) pass if len(ors) > 0: ORs = [d[0] for d in ors] pvals = [d[2] for d in ors] OR_mh, se, pp = odds.pooled_or(zip(ORs, pvals), 1.15) rr = odds.relative_risk(OR_mh, 0.034) return "%.2f relative risk, %.2f odds ratio (%d markers)" % (rr, OR_mh, len(ors)) else: return "<No data>" """ rs4293393 AA european OR 1.08 (adjusted) rs7805747 AG european OR 1.14 (adjusted) rs7805747 AG european OR 0.96 (adjusted) From: http://www.plosgenetics.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pgen.1001039&representation=PDF rs4293393-T associated with CKD, OR=1.25, P=4.1e-10. Association stronger with older age groups. CI=1.17-1.35 (95%), N=3203 (no of cases) Disregard year of birth (stronger association with old age). See Köttgen. Note sure if PER T-allele. Only think it's the existence of this allele. Also, is it minus orientation? SNPedia says, each G at this allele (actually A because snpedia uses minus orientation) decrease risk with 24%. From dbsnp, http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=4293393 it seems that the illumina hapmap300 used in the study uses minus orientation, because it can only have C/T alleles, while 23andme reports the A-allele. So this means that A(+) or T(-) is the risk allele. The reverse version (G+, C-) is protective of CKD actually. Says: Association analysis For case-control association analysis, e.g. for CKD and kidney stones, we utilized a standard likelihood ratio statistic, implemented in the NEMO software [32] to calculate two-sided P values and odds ratios (ORs) for each individual allele, assuming a multiplicative model for risk, i.e. that the risk of the two alleles carried by a person multiplies [36]. Allelic frequencies, rather than carrier frequencies, are presented for the markers and P values are given after adjustment for the relatedness of the subjects. When estimating genotype specific OR, genotype frequencies in the population were estimated assuming Hardy-Weinberg equilibrium. Results from multiple case-control groups were combined using a Mantel-Haenszel model [37] in which the groups were allowed to have different population frequencies for alleles, haplotypes and genotypes but were assumed to have common relative risks. For the quantitative trait association analysis, e.g. for SCr and cystatin C, we utilized a robust linear regression based on an M estimator [38] as implemented in the rlm function of the R software package [39]. An additive model for SNP effects was assumed in all instances. All associations with quantitative traits were performed adjusting for age and sex. """ def restless_leg_syndrome(genome): """Restless leg syndrome. Only for European ancestry. rs3923809 AA 1.26 AG 0.74 Citations: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=17634447 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=17637780 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=PubMed&term=11340155 """ if genome.rs3923809 == "GG": return "Normal risk" elif genome.rs3923809 == "AG" or genome.rs3923809 == "GA": return "Slightly increased risk" elif genome.rs3923809 == "AA": return "Twice as high risk for developing" else: return "<Unknown genotype for rs3923809 %s>" % genome.rs3923809 def scleroderma(genome): """Scleroderma (limited cutaneous type).""" # TODO: Implement odds ratios, find all alleles if genome.ethnicity is None or genome.ethnicity == "european": if genome.rs7574865 == "TT": return "Higher odds" if genome.rs7574865.count("T") > 0: return "Slight risk" return "<Unknown>" else: return "<Unknown for this ethnicity>" def hypothyroidism(genome): """Hypothyroidism. Studies: http://dx.doi.org/10.1371/journal.pone.0034442 """ if genome.ethnicity is not None and genome.ethnicity != "european": raise ValueError("Only applicable to Europeans") # TODO: Use a better score metric and use weighting and ORs. # TODO: Try to use interval arithmetic as well, for fun. scores = { "rs7850258": {"GG": 0.5, "AG": 0, "AA": -0.5, None: 0}, "rs2476601": {"GG": 1, "AG": 0.5, "AA": 0, None: 0}, "rs3184504": {"TT": 0.5, "CT": 0, "CC": -0.5, None: 0}, "rs4915077": {"CC": 1, "CT": 0.5, "TT": 0, None: 0}, "rs2517532": {"GG": 0.5, "AG": 0, "AA": -0.5, None: 0}, } hi = sum(map(lambda l: max(l.values()), scores.values())) lo = sum(map(lambda l: min(l.values()), scores.values())) score = 0.0 for rsid, genotypes in scores.items(): score += unphased_match(genome[rsid], genotypes) if score > 0: s = "About %.1f%% higher risk than baseline\n" % (100.0*score/hi) s += "(%.1f vs %.1f of %.1f points)\n" % (score, lo, hi) s += "Test is unweighted, see 23andMe for more info" return s elif score < 0: s = "About %.1f%% lower risk than baseline\n" % 100.0*score/lo s += "(%.1f vs %.1f of %.1f points)\n" % (score, lo, hi) s += "Test is unweighted, see 23andMe for more info" return s else: return "Typical risk" def stroke(genome): """Stroke.""" return unphased_match(genome.rs12425791, { "AA": "Moderately increased risk of having a stroke", "AG": "Slightly increased risk of having a stroke", "GG": "Typical risk of having a stroke", None: "Unable to determine"}) def exfoliation_glaucoma(genome): """Exfoliation glaucoma.""" assert_european(genome) OR = unphased_match(genome.rs2165241, { "CT": 0.79, }) raise NotImplementedError() def migraines(genome): """Migranes.""" assert_european(genome) s = [] s.append(unphased_match(genome.rs2651899, { "CC": "Slightly higher odds of migraines", "CT": "Typical odds of migraines", "TT": "Slightly lower odds of migraines", None: "Unable to determine"})) s.append(unphased_match(genome.rs10166942, { "TT": "Typical odds of migraines", "CT": "Slightly lower odds of migraines", "CC": "Slightly lower odds of migraines", None: "Unable to determine"})) s.append(unphased_match(genome.rs11172113, { "TT": "Slightly higher odds of migraines", "CT": "Typical odds of migraines", "CC": "Slightly lower odds of migraines", None: "Unable to determine"})) return "\n".join(s) def breast_cancer(genome): """Breast cancer.""" if not genome.female: raise ValueError("Only applicable for females") s = [] s.append(unphased_match(genome.rs1219648, { "AA": "Typical odds", "AG": "Slightly higher odds", "GG": "Moderately higher odds", None: "Unable to determine (see rs2420946 instead)"})) s.append(unphased_match(genome.rs3803662, { "AA": "Moderately increased odds", "AG": "?", "GG": "Typical odds", None: "Unable to determine"})) s.append("Note: There are MANY more SNPs to test here...") # TODO: Add remaining SNPs return "\n".join(s) def health_report(genome): """Infers some health results.""" return make_report(genome, [ apoe_variants, breast_cancer, chronic_kidney_disease, hypothyroidism, migraines, restless_leg_syndrome, rheumatoid_arthritis_risk, scleroderma, stroke, ])
gpl-3.0
-7,864,582,680,967,866,000
34.686957
125
0.608512
false
3.137615
false
false
false
mhance/physics
Snowmass/DelphesReader/scripts/make_limits.py
2
20360
#!/usr/bin/env python """ Author: Sourabh Dube Make XML files for one channel, with the right uncertainties """ import os,sys,commands,subprocess import argparse import ROOT from ROOT import TH1F,TFile def SetupWorkspace(backgrounds, sign, data, lumiuncer, discovery, uncertainty): if discovery: opprefix = "DP_onechan_discovery_" rootfile = "counting_exp_data_discovery_DP.root" chanfile = "DP_onechan_discovery.xml" else: opprefix = "DP_onechan_limit_" rootfile = "counting_exp_data_limit_DP.root" chanfile = "DP_onechan_limit.xml" # # Write Main Top XML file # mainXMLdata = """\ <!DOCTYPE Combination SYSTEM "../share/HistFactorySchema.dtd"> <Combination OutputFilePrefix="./tmp_limits_results/%s" > <Input>./tmp_limits/%s</Input> <Measurement Name="DPLSMM" Lumi="1." LumiRelErr="%f" BinLow="0" BinHigh="2" > <POI>mu</POI> </Measurement> </Combination> """ % (opprefix, chanfile, lumiuncer) if discovery: script = open('tmp_limits/top_discovery.xml','w') else: script = open('tmp_limits/top_limit.xml','w') script.write(mainXMLdata) script.close() # # Write Channel XML # chanXMLdata = """\ <!DOCTYPE Channel SYSTEM '../share/HistFactorySchema.dtd'> <Channel Name="channel1" InputFile="./tmp_limits_data/%s"> <Data HistoName="data" HistoPath="" /> <Sample Name="signal" HistoPath="" HistoName="signal"> <NormFactor Name="mu" High="20." Low="0." Val="1." Const="True" /> </Sample> """ % rootfile # <OverallSys Name="lumi" High="1.028" Low="0.972" /> # <OverallSys Name="PDFacc" High="1.05" Low="0.95" /> # <OverallSys Name="acc_truth" High="1.15" Low="0.85" /> setupWSfile = TFile("tmp_limits_data/%s" % rootfile,"RECREATE") doSingleBGModel=False if not doSingleBGModel: for key,value in backgrounds.iteritems(): chanXMLdata+="""\ <Sample Name="%s" HistoPath="" NormalizeByTheory="True" HistoName="%s"> <OverallSys Name="%s" Low="%f" High="%f"/> </Sample> """ % (key,key,key+"_norm",1.-float(uncertainty),1.+float(uncertainty)) hist = TH1F(key,key+" hist",1,0,1) hist.Fill(0.5,value) hist.Write(key) else: BGtotal=0 for key,value in backgrounds.iteritems(): BGtotal+=value key="BG" hist = TH1F(key,key+" hist",1,0,1) hist.Fill(0.5,BGtotal) hist.Write(key) chanXMLdata+="""\ <Sample Name="%s" HistoPath="" NormalizeByTheory="True" HistoName="%s"> <OverallSys Name="%s" Low="%f" High="%f"/> </Sample> """ % (key,key,key+"_norm",1.-float(uncertainty),1.+float(uncertainty)) chanXMLdata+="""\ </Channel> """ script = open('tmp_limits/'+chanfile,'w') script.write(chanXMLdata) script.close() hist = TH1F("signal", "signal hist", 1,0,1) hist.Fill(0.5,sign) hist.Write("signal") hist = TH1F("data", "data hist", 1,0,1) hist.Fill(0.5,data) hist.Write("data") setupWSfile.Close() if discovery: os.system("hist2workspace tmp_limits/top_discovery.xml > tmp_limits/setup_discovery.log 2>&1") else: os.system("hist2workspace tmp_limits/top_limit.xml > tmp_limits/setup_limit.log 2>&1") def run_limit(line, backgrounds, lumiuncer, toys, points, mulow, muhigh, uncertainty): cleanup = """\ mkdir -p tmp_limits mkdir -p tmp_limits_data mkdir -p tmp_limits_results rm -f tmp_limits/* rm -f tmp_limits_data/* rm -f tmp_limits_results/* """ os.system(cleanup) fullcls = 0 if toys>0: fullcls = 1 # figure out how much signal we have words_list = line.split() label=words_list[0] sign=float(words_list[1]) # and how much background totalbg=0 for key,value in backgrounds.iteritems(): totalbg = totalbg+value data=totalbg # quick check to see if we should even bother with limits. if sign <= 1.: if (fullcls==0): print "%s : -2sig = %1.4f, -1sig = %1.4f, Median Exp = %1.4f, +1sig = %1.4f, +2sig = %1.4f, p0 = %1.3e (%1.4f sigma)" % (label, 10, 10, 10, 10, 10, 10, 0); else: print data,sign,'==RESFRQ==',10,10,10,10,10,10 return scale=1. # This does nasty things in the WinoBino grid... found it necessary for # the GMSB signals, but not so much here. if False: if sign > 1000*totalbg: scale = 3000. elif sign > 100*totalbg: scale = 300. elif sign > 10*totalbg: scale = 30. elif sign > totalbg: scale = 3. sign = sign/scale print "setting up workspace with %f signal events %f background events." % (sign,totalbg) SetupWorkspace(backgrounds,sign,data,lumiuncer,False,uncertainty) SetupWorkspace(backgrounds,sign,data+sign,lumiuncer,True,uncertainty) cmd2 = """\ ./bin/runCEws -f %i -t %i -p %i -l %f -h %f >& tmp_limits/limit.log """ % (fullcls,toys,points,mulow,muhigh) #print cmd2 os.system(cmd2) cmd3 = """\ grep "==RESULT==" tmp_limits/limit.log """ cmd4 = """\ grep "computed upper limit" tmp_limits/limit.log | awk '{print $6}' """ cmd5 = """\ grep "expected limit (median) " tmp_limits/limit.log | awk '{print $4}' """ cmd6 = """\ grep "expected limit (+1 sig) " tmp_limits/limit.log | awk '{print $5}' """ cmd7 = """\ grep "expected limit (-1 sig) " tmp_limits/limit.log | awk '{print $5}' """ cmd8 = """\ grep "expected limit (+2 sig) " tmp_limits/limit.log | awk '{print $5}' """ cmd9 = """\ grep "expected limit (-2 sig) " tmp_limits/limit.log | awk '{print $5}' """ if (fullcls==0): # os.system(cmd3) p = os.popen(cmd3) res = p.readline() ressplit = res.split() p.close() printEventLimits=True if not printEventLimits: scale=(1/scale)*100. else: scale=(1/scale) p = os.popen("grep \"DISCOVERY\" tmp_limits/limit.log" ) res2 = p.readline() res2split = res2.split() p.close() if len(res2split) > 2: if float(res2split[1]) < 1e-20: res2split[2] = "10" if len(res2split) > 2 and len(ressplit) > 6: print "%s : -2sig = %1.4f, -1sig = %1.4f, Median Exp = %1.4f, +1sig = %1.4f, +2sig = %1.4f, p0 = %1.3e (%1.4f sigma)" % (label, scale*float(ressplit[6]), scale*float(ressplit[4]), scale*float(ressplit[2]), scale*float(ressplit[3]), scale*float(ressplit[5]), float(res2split[1]), float(res2split[2])); else: p = os.popen(cmd4) res1 = (p.readline()).rstrip() p.close() p = os.popen(cmd5) res2 = (p.readline()).rstrip() p.close() p = os.popen(cmd6) res3 = (p.readline()).rstrip() p.close() p = os.popen(cmd7) res4 = (p.readline()).rstrip() p.close() p = os.popen(cmd8) res5 = (p.readline()).rstrip() p.close() p = os.popen(cmd9) res6 = (p.readline()).rstrip() p.close() print data,sign,'==RESFRQ==',res1,res2,res3,res4,res5,res6 def SetupWorkspaceOpt(optresults, lumiuncer, discovery, uncertainty, flatBGUnc, useSingleBGModel): if discovery: opprefix = "susy_discovery_" else: opprefix = "susy_limit_" # # Write Main Top XML file # if discovery: script = open('tmp_limits/top_discovery.xml','w') else: script = open('tmp_limits/top_limit.xml','w') script.write("""\ <!DOCTYPE Combination SYSTEM "../share/HistFactorySchema.dtd"> <Combination OutputFilePrefix="./tmp_limits_results/%s" > """ % opprefix) # -------------------------------------------------------- # parse optresults goodchannels=0 forcetoys=False for line in open(optresults,"r"): l=line.split() if float(l[3])<0.5: continue else: goodchannels=goodchannels+1 rootfile=opprefix+"_chan_"+l[2]+".root" chanfile="chan_%s.xml" % l[2] script.write(""" <Input>./tmp_limits/%s</Input> """ % chanfile) # write the channel data chan=open("./tmp_limits/%s" % chanfile, 'w') chan.write("""\ <!DOCTYPE Channel SYSTEM '../share/HistFactorySchema.dtd'> <Channel Name="channel_%s" InputFile="./tmp_limits_data/%s"> <Data HistoName="data" HistoPath="" /> <Sample Name="signal" HistoPath="" HistoName="signal"> <NormFactor Name="mu" High="20." Low="0." Val="1." Const="True" /> </Sample> """ % (l[2],rootfile)) setupWSfile = TFile("tmp_limits_data/%s" % rootfile,"RECREATE") bglabels=["Bj", "tt", "tB", "tj", "ttB"] if "100TeV" in optresults: bglabels+=["QCD"] totalbg=0. for i in range(len(bglabels)): # only do this if the backgrounds are non-zero if float(l[i+7]) > 0.00: bgval=float(l[i+7]) totalbg+=bgval if useSingleBGModel: continue hist = TH1F(bglabels[i],bglabels[i]+" hist",1,0,1) if bgval<0.001: bgval=0.001 #hist.Fill(0.5,bgval) hist.SetBinContent(1,bgval) hist.Write(bglabels[i]) chan.write("""\ <Sample Name="%s" HistoPath="" NormalizeByTheory="True" HistoName="%s"> """ % (bglabels[i],bglabels[i])) if bglabels[i]!="Bj" or flatBGUnc: chan.write("""\ <OverallSys Name="%s" Low="%f" High="%f"/> """ % (bglabels[i]+"_norm",1.-float(uncertainty),1.+float(uncertainty))) else: reluncZll=((bgval*0.5)**0.5)/(bgval*0.5) if ((reluncZll**2.+(float(uncertainty)/2.)**2.)**0.5)<float(uncertainty): chan.write("""\ <OverallSys Name="%s_bin_%s" Low="%f" High="%f"/> <OverallSys Name="%s" Low="%f" High="%f"/> """ % (bglabels[i]+"_Zll",l[2],1.-reluncZll,1.+reluncZll, bglabels[i]+"_norm",1.-float(uncertainty)/2.,1.+float(uncertainty)/2.)) else: chan.write("""\ <OverallSys Name="%s" Low="%f" High="%f"/> """ % (bglabels[i]+"_norm",1.-float(uncertainty),1.+float(uncertainty))) chan.write("""\ </Sample> """) if useSingleBGModel: hist = TH1F("BG","BG"+" hist",1,0,1) hist.SetBinContent(1,totalbg) hist.Write("BG") chan.write("""\ <Sample Name="%s" HistoPath="" NormalizeByTheory="True" HistoName="%s"> """ % ("BG","BG")) chan.write("""\ <OverallSys Name="%s" Low="%f" High="%f"/> """ % ("BG"+"_norm",1.-float(uncertainty),1.+float(uncertainty))) chan.write("""\ </Sample> """) hist = TH1F("signal", "signal hist", 1,0,1) #hist.Fill(0.5,float(l[5])) hist.SetBinContent(1,float(l[5])) hist.Write("signal") hist = TH1F("data", "data hist", 1,0,1) if not discovery: #hist.Fill(0.5,totalbg) hist.SetBinContent(1,totalbg) hist.SetBinError(1,totalbg**0.5) else: #hist.Fill(0.5,totalbg+float(l[5])) hist.SetBinContent(1,(totalbg+float(l[5]))) hist.SetBinError(1,(totalbg+float(l[5]))**0.5) hist.Write("data") setupWSfile.Close() chan.write("""\ </Channel> """) chan.close() if float(l[3])>1.0 and (float(l[5])<5 or totalbg<5): forcetoys=True # -------------------------------------------------------- script.write(""" <Measurement Name="DPLSMM" Lumi="1." LumiRelErr="%f" BinLow="0" BinHigh="2" > <POI>mu</POI> </Measurement> </Combination> """ % (lumiuncer)) script.close() if discovery: os.system("hist2workspace tmp_limits/top_discovery.xml > tmp_limits/setup_discovery.log 2>&1") else: os.system("hist2workspace tmp_limits/top_limit.xml > tmp_limits/setup_limit.log 2>&1") return goodchannels,forcetoys def run_limit_opt(optresultsfile, lumiuncer, toys, points, mulow, muhigh, uncertainty, flatBGUnc, useSingleBGModel): cleanup = """\ mkdir -p tmp_limits mkdir -p tmp_limits_data mkdir -p tmp_limits_results rm -f tmp_limits/* rm -f tmp_limits_data/* rm -f tmp_limits_results/* """ os.system(cleanup) goodchannels,forcetoys=SetupWorkspaceOpt(optresultsfile,lumiuncer,False,uncertainty,flatBGUnc,useSingleBGModel) SetupWorkspaceOpt(optresultsfile,lumiuncer, True,uncertainty,flatBGUnc,useSingleBGModel) fullcls = 0 if forcetoys and toys<1000 and False: toys=1000 if points>20: points=20 if toys>0: fullcls = 1 if goodchannels>0: cmd2 = """\ ./bin/runCEws -f %i -t %i -p %i -l %f -h %f -L tmp_limits_results/susy_limit__combined_DPLSMM_model.root -D tmp_limits_results/susy_discovery__combined_DPLSMM_model.root -n combined >& tmp_limits/limit.log """ % (fullcls,toys,int(points),mulow,muhigh) print cmd2 os.system(cmd2) else: cmd2="echo \"==RESULT== 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\" > tmp_limits/limit.log" os.system(cmd2) cmd2="echo \"==DISCOVERY== 0.5 0.0\" >> tmp_limits/limit.log" os.system(cmd2) cmd3 = """\ grep "==RESULT==" tmp_limits/limit.log """ cmd4 = """\ grep "computed upper limit" tmp_limits/limit.log | awk '{print $6}' """ cmd5 = """\ grep "expected limit (median) " tmp_limits/limit.log | awk '{print $4}' """ cmd6 = """\ grep "expected limit (+1 sig) " tmp_limits/limit.log | awk '{print $5}' """ cmd7 = """\ grep "expected limit (-1 sig) " tmp_limits/limit.log | awk '{print $5}' """ cmd8 = """\ grep "expected limit (+2 sig) " tmp_limits/limit.log | awk '{print $5}' """ cmd9 = """\ grep "expected limit (-2 sig) " tmp_limits/limit.log | awk '{print $5}' """ # os.system(cmd3) p = os.popen(cmd3) res = p.readline() ressplit = res.split() p.close() scale=1. printEventLimits=True if not printEventLimits: scale=(1/scale)*100. else: scale=(1/scale) p = os.popen("grep \"DISCOVERY\" tmp_limits/limit.log" ) res2 = p.readline() res2split = res2.split() p.close() if len(res2split) > 2: if float(res2split[1]) < 1e-20: res2split[2] = "10" if len(res2split) > 2 and len(ressplit) > 6: print "%s : -2sig = %1.4f, -1sig = %1.4f, Median Exp = %1.4f, +1sig = %1.4f, +2sig = %1.4f, p0 = %1.3e (%1.4f sigma)" % ("dummy", scale*float(ressplit[6]), scale*float(ressplit[4]), scale*float(ressplit[2]), scale*float(ressplit[3]), scale*float(ressplit[5]), float(res2split[1]), float(res2split[2])); def main(argv): parser = argparse.ArgumentParser(description="Command line arguments") parser.add_argument("--background" , action='store', default="") parser.add_argument("--toys" , action='store', default=0) parser.add_argument("--signal" , action='store', default="") parser.add_argument("--mulow" , action='store', default=0) parser.add_argument("--muhigh" , action='store', default=5) parser.add_argument("--points" , action='store', default=100) parser.add_argument("--lumiUnc" , action='store', default=.028) parser.add_argument("--uncertainty" , action='store', default=0.20) parser.add_argument("--prefix" , action='store', default="test") parser.add_argument("--optresults" , action='store', default="") parser.add_argument("--flatBGUnc" , action='store_true') parser.add_argument("--singleBGModel", action='store_true') args=parser.parse_args() if args.optresults != "": run_limit_opt(args.optresults, args.lumiUnc, args.toys, args.points, args.mulow, args.muhigh, args.uncertainty, args.flatBGUnc, args.singleBGModel) else: backgrounds={} bgfile = open(args.background) for bg in bgfile.xreadlines(): bgsplit = bg.split() if len(bgsplit) < 2: continue backgrounds[bgsplit[0]] = float(bgsplit[1]) sigfile = open(args.signal) for line in sigfile.xreadlines(): run_limit(line, backgrounds, args.lumiUnc, args.toys, args.points, args.mulow, args.muhigh, args.uncertainty) if __name__ == '__main__': main(sys.argv[1:])
gpl-2.0
2,355,134,792,932,228,000
33.803419
207
0.460658
false
3.747469
false
false
false
pimoroni/python-sparkfun-zx
zx.py
1
1180
import smbus ADDR = 0x10 bus = smbus.SMBus(1) __debug = False SWIPE_RIGHT = 0x01 SWIPE_LEFT = 0x02 SWIPE_UP = 0x03 HOVER = 0x05 HOVER_LEFT = 0x06 HOVER_RIGHT = 0x07 HOVER_UP = 0x08 def gesture_name(gesture): if gesture is None or gesture > HOVER_UP: return None return [ None, 'Swipe Right', 'Swipe Left', 'Swipe Up', None, 'Hover', 'Hover Left', 'Hover Right', 'Hover Up' ][gesture] def gesture_available(): status = bus.read_byte_data(ADDR, 0x00) if __debug: print("Status: {:08b}".format(status)) return (status & 0b00011100) > 0 def position_available(): status = bus.read_byte_data(ADDR, 0x00) return (status & 0b00000001) > 0 def get_x(): return bus.read_byte_data(ADDR, 0x08) def get_z(): return bus.read_byte_data(ADDR, 0x0a) def get_position(): return get_z(), get_x() def get_gesture(): gesture = bus.read_byte_data(ADDR, 0x04) if gesture in [HOVER, HOVER_LEFT, HOVER_RIGHT, HOVER_UP, SWIPE_LEFT, SWIPE_RIGHT, SWIPE_UP]: return gesture return None def get_speed(): return bus.read_byte_data(ADDR, 0x05)
bsd-3-clause
194,380,839,664,205,600
17.4375
96
0.608475
false
2.712644
false
false
false
deepmind/deepmind-research
byol/utils/optimizers.py
1
6161
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of LARS Optimizer with optax.""" from typing import Any, Callable, List, NamedTuple, Optional, Tuple import jax import jax.numpy as jnp import optax import tree as nest # A filter function takes a path and a value as input and outputs True for # variable to apply update and False not to apply the update FilterFn = Callable[[Tuple[Any], jnp.ndarray], jnp.ndarray] def exclude_bias_and_norm(path: Tuple[Any], val: jnp.ndarray) -> jnp.ndarray: """Filter to exclude biaises and normalizations weights.""" del val if path[-1] == "b" or "norm" in path[-2]: return False return True def _partial_update(updates: optax.Updates, new_updates: optax.Updates, params: optax.Params, filter_fn: Optional[FilterFn] = None) -> optax.Updates: """Returns new_update for params which filter_fn is True else updates.""" if filter_fn is None: return new_updates wrapped_filter_fn = lambda x, y: jnp.array(filter_fn(x, y)) params_to_filter = nest.map_structure_with_path(wrapped_filter_fn, params) def _update_fn(g: jnp.ndarray, t: jnp.ndarray, m: jnp.ndarray) -> jnp.ndarray: m = m.astype(g.dtype) return g * (1. - m) + t * m return jax.tree_multimap(_update_fn, updates, new_updates, params_to_filter) class ScaleByLarsState(NamedTuple): mu: jnp.ndarray def scale_by_lars( momentum: float = 0.9, eta: float = 0.001, filter_fn: Optional[FilterFn] = None) -> optax.GradientTransformation: """Rescales updates according to the LARS algorithm. Does not include weight decay. References: [You et al, 2017](https://arxiv.org/abs/1708.03888) Args: momentum: momentum coeficient. eta: LARS coefficient. filter_fn: an optional filter function. Returns: An (init_fn, update_fn) tuple. """ def init_fn(params: optax.Params) -> ScaleByLarsState: mu = jax.tree_multimap(jnp.zeros_like, params) # momentum return ScaleByLarsState(mu=mu) def update_fn(updates: optax.Updates, state: ScaleByLarsState, params: optax.Params) -> Tuple[optax.Updates, ScaleByLarsState]: def lars_adaptation( update: jnp.ndarray, param: jnp.ndarray, ) -> jnp.ndarray: param_norm = jnp.linalg.norm(param) update_norm = jnp.linalg.norm(update) return update * jnp.where( param_norm > 0., jnp.where(update_norm > 0, (eta * param_norm / update_norm), 1.0), 1.0) adapted_updates = jax.tree_multimap(lars_adaptation, updates, params) adapted_updates = _partial_update(updates, adapted_updates, params, filter_fn) mu = jax.tree_multimap(lambda g, t: momentum * g + t, state.mu, adapted_updates) return mu, ScaleByLarsState(mu=mu) return optax.GradientTransformation(init_fn, update_fn) class AddWeightDecayState(NamedTuple): """Stateless transformation.""" def add_weight_decay( weight_decay: float, filter_fn: Optional[FilterFn] = None) -> optax.GradientTransformation: """Adds a weight decay to the update. Args: weight_decay: weight_decay coeficient. filter_fn: an optional filter function. Returns: An (init_fn, update_fn) tuple. """ def init_fn(_) -> AddWeightDecayState: return AddWeightDecayState() def update_fn( updates: optax.Updates, state: AddWeightDecayState, params: optax.Params, ) -> Tuple[optax.Updates, AddWeightDecayState]: new_updates = jax.tree_multimap(lambda g, p: g + weight_decay * p, updates, params) new_updates = _partial_update(updates, new_updates, params, filter_fn) return new_updates, state return optax.GradientTransformation(init_fn, update_fn) LarsState = List # Type for the lars optimizer def lars( learning_rate: float, weight_decay: float = 0., momentum: float = 0.9, eta: float = 0.001, weight_decay_filter: Optional[FilterFn] = None, lars_adaptation_filter: Optional[FilterFn] = None, ) -> optax.GradientTransformation: """Creates lars optimizer with weight decay. References: [You et al, 2017](https://arxiv.org/abs/1708.03888) Args: learning_rate: learning rate coefficient. weight_decay: weight decay coefficient. momentum: momentum coefficient. eta: LARS coefficient. weight_decay_filter: optional filter function to only apply the weight decay on a subset of parameters. The filter function takes as input the parameter path (as a tuple) and its associated update, and return a True for params to apply the weight decay and False for params to not apply the weight decay. When weight_decay_filter is set to None, the weight decay is not applied to the bias, i.e. when the variable name is 'b', and the weight decay is not applied to nornalization params, i.e. the panultimate path contains 'norm'. lars_adaptation_filter: similar to weight decay filter but for lars adaptation Returns: An optax.GradientTransformation, i.e. a (init_fn, update_fn) tuple. """ if weight_decay_filter is None: weight_decay_filter = lambda *_: True if lars_adaptation_filter is None: lars_adaptation_filter = lambda *_: True return optax.chain( add_weight_decay( weight_decay=weight_decay, filter_fn=weight_decay_filter), scale_by_lars( momentum=momentum, eta=eta, filter_fn=lars_adaptation_filter), optax.scale(-learning_rate), )
apache-2.0
7,526,814,321,664,008,000
31.771277
80
0.678624
false
3.57574
false
false
false
madscatt/zazzie_1.5
trunk/sassie/build/gui_mimic_pdbrx.py
1
1026
import sys, os import logging sys.path.append('./') import sassie.build.pdb_rx as pdb_rx import sassie.util.sasconfig as sasconfig import sassie.interface.input_filter as input_filter import multiprocessing svariables = {} #### user input #### #### user input #### #### user input #### runname = 'run_0' pdbfile = 'testing/data/5E3L.pdb' topfile = os.path.join(sasconfig.__bin_path__,'toppar','top_all27_prot_na.inp') use_defaults = False #### end user input #### #### end user input #### #### end user input #### logging.basicConfig() svariables['runname'] = (runname,'string') svariables['pdbfile'] = (pdbfile,'string') svariables['topfile'] = (topfile,'string') svariables['defaults'] = (use_defaults,'boolean') error,variables = input_filter.type_check_and_convert(svariables) if(len(error)>0): print 'error = ',error sys.exit() txtQueue = multiprocessing.JoinableQueue() scan = pdb_rx.PDBRx() scan.main(variables,txtQueue) this_text = txtQueue.get(True, timeout=0.1)
gpl-3.0
7,903,234,656,523,687,000
22.318182
79
0.669591
false
3.147239
false
true
false
spilgames/novacek
novacek/auth.py
1
2979
#!/usr/bin/env python # # vim: set expandtab:ts=4:sw=4 # # Authors: Jasper Capel # Robert van Leeuwen # # Funtion: Handles authentication to various OpenStack API's and # other authentication based (Keystone) functions # # This software is released under the terms of the Apache License. # from keystoneclient.v2_0.client import Client as keystonec from neutronclient.v2_0.client import Client as neutronc from novaclient.v3.client import Client as novac import ConfigParser import os ### AUTH FUNCTIONS ### def get_os_credentials(filename='/etc/nova/nova.conf'): '''Attempts to get credentials from an openstack config if it exists, otherwise from env''' if os.path.exists(filename): c = ConfigParser.RawConfigParser() s = 'DEFAULT' c.read(filename) creds = {'username': c.get(s, 'neutron_admin_username'), 'password': c.get(s, 'neutron_admin_password'), 'tenant_name': c.get(s, 'neutron_admin_tenant_name'), 'region_name': c.get(s, 'os_region_name'), 'auth_url': c.get(s, 'neutron_admin_auth_url')} else: creds = {'username': os.getenv('OS_USERNAME'), 'password': os.getenv('OS_PASSWORD'), 'tenant_name': os.getenv('OS_TENANT_NAME'), 'region_name': os.getenv('OS_REGION_NAME', 'ams1'), 'auth_url': os.getenv('OS_AUTH_URL')} return creds def get_keystonesession(credentials=None): if not credentials: credentials = get_os_credentials() from keystoneclient.auth.identity import v2 from keystoneclient import session auth = v2.Password(username=credentials['username'], password=credentials['password'], tenant_name=credentials['tenant_name'], auth_url=credentials['auth_url']) return session.Session(auth=auth) def get_keystoneclient(session): '''Returns keystoneclient instance''' return keystonec(session=session) def get_neutronclient(session): '''Returns neutronclient instance''' creds = get_os_credentials() return neutronc(username=creds['username'], password=creds['password'], tenant_name=creds['tenant_name'], auth_url=creds['auth_url']) def get_novaclient(session): # Version of novaclient we use doesn't support using existing session creds = get_os_credentials() return novac(creds['username'], creds['password'], creds['tenant_name'], creds['auth_url'], region_name=creds['region_name']) def get_tenants(session): keystone = get_keystoneclient(session) return keystone.tenants.list() def get_tenant_email(session, tid): keystone = get_keystoneclient(session) return keystone.tenants.get(tid) def show_creds(): credentials = get_os_credentials() for cred in credentials: print "export OS_" + cred.upper() + "=" + credentials[cred]
apache-2.0
-6,892,060,041,972,486,000
34.047059
129
0.642497
false
3.914586
false
false
false
eroicaleo/LearningPython
HandsOnML/ch09/house_gd.py
1
1695
#!/usr/bin/env python import numpy as np import tensorflow as tf from sklearn.datasets import fetch_california_housing from sklearn.preprocessing import StandardScaler learning_rate = 0.01 n_epochs = 10000 def scaler_norm(a): return StandardScaler().fit(a).transform(a) housing = fetch_california_housing() m, n = housing.data.shape housing_data_norm = scaler_norm(housing.data) housing_data_plus_bias = np.c_[np.ones((m, 1)), housing_data_norm] y_norm = scaler_norm(housing.target.reshape(-1, 1)) X = tf.constant(housing_data_plus_bias, dtype=tf.float32, name='X') y = tf.constant(y_norm, dtype=tf.float32, name='y') XT = tf.transpose(X) theta = tf.Variable(tf.random_uniform([n+1, 1], -1.0, 1.0), dtype=tf.float32, name='theta') y_pred = tf.matmul(X, theta) error = y_pred - y mse = tf.reduce_mean(tf.square(error), name='mse') gradients = 2 / m * tf.matmul(XT, error) training_op = tf.assign(theta, theta - learning_rate * gradients) init = tf.global_variables_initializer() print('#'*80) print('## Gradient descent') print('#'*80) with tf.Session() as sess: init.run() for epoch in range(n_epochs): if epoch % 100 == 0: print('Epoch', epoch, 'MSE = ', mse.eval()) sess.run(training_op) best_theta = theta.eval() print(best_theta) print('#'*80) print('## Verifying with equation') print('#'*80) theta_cal = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y) y_pred_cal = tf.matmul(X, theta_cal) error_cal = y_pred_cal - y mse_cal = tf.reduce_mean(tf.square(error_cal), name='mse') with tf.Session() as sess: init.run() theta_cal_val, mse_cal = sess.run([theta_cal, mse_cal]) print(theta_cal_val, mse_cal)
mit
2,936,218,098,030,359,600
28.224138
91
0.672566
false
2.76509
false
false
false
hoytak/lazyrunner
lazyrunner/pnstructures.py
1
34464
from treedict import TreeDict from parameters import applyPreset from collections import defaultdict from os.path import join, abspath, exists, split from os import makedirs import hashlib, base64, weakref, sys, gc, logging from itertools import chain from collections import namedtuple from pmodule import isPModule, getPModuleClass from diskio import saveResults, loadResults ################################################################################ # Stuff to manage the cache class PNodeModuleCacheContainer(object): def __init__(self, pn_name, name, local_key, dependency_key, specific_key = None, is_disk_writable = True, is_persistent = True): self.__pn_name = pn_name self.__name = name self.__specific_key = specific_key self.__local_key = local_key self.__dependency_key = dependency_key self.__is_disk_writable = is_disk_writable self.__is_non_persistent = not is_persistent self.__obj = None self.__obj_is_loaded = False self.__disk_save_hook = None self.__non_persistent_hook = None def getFilename(self): def v(t): return str(t) if t is not None else "null" return join(v(self.__pn_name), v(self.__name), "%s-%s-%s.dat" % (v(self.__local_key), v(self.__dependency_key), v(self.__specific_key)) ) def getKeyAsString(self): return '-'.join( (str(t) if t is not None else "N") for t in [self.__pn_name, self.__name, self.__local_key, self.__dependency_key, self.__specific_key]) def getCacheKey(self): # The specific cache return (self.__pn_name, self.__local_key, self.__dependency_key) def getObjectKey(self): return (self.__name, self.__specific_key) def isNonPersistent(self): return self.__is_non_persistent def getNonPersistentKey(self): assert self.__is_non_persistent return (self.__pn_name, self.__name) def setObject(self, obj): assert not self.__obj_is_loaded self.__obj_is_loaded = True self.__obj = obj if self.__disk_save_hook is not None: self.__disk_save_hook(self) self.__disk_save_hook = None if self.__non_persistent_hook is not None: self.__non_persistent_hook(self) self.__non_persistent_hook = None def isLocallyEqual(self, pnc): return self.__name == pnc.__name and self.__specific_key == pnc.__specific_key def setObjectSaveHook(self, hook): self.__disk_save_hook = hook def setNonPersistentObjectSaveHook(self, hook): assert self.__is_non_persistent self.__non_persistent_hook = hook def getObject(self): assert self.__obj_is_loaded return self.__obj def objectIsLoaded(self): return self.__obj_is_loaded def disableDiskWriting(self): self.__is_disk_writable = False self.__disk_save_hook = None def isDiskWritable(self): return self.__is_disk_writable def objRefCount(self): return sys.getrefcount(self.__obj) class PNodeModuleCache(object): __slots__ = ["reference_count", "cache"] def __init__(self): self.reference_count = 0 self.cache = {} class _PNodeNonPersistentDeleter(object): def __init__(self, common): self.common = common def __call__(self, container): np_key = container.getNonPersistentKey() try: old_container = self.common.non_persistant_pointer_lookup[np_key] except KeyError: old_container = None if old_container is not None: try: del self.common.cache_lookup[old_container.getCacheKey()].cache[old_container.getObjectKey()] except KeyError: pass self.common.non_persistant_pointer_lookup[np_key] = container # This class holds the runtime environment for the pnodes class PNodeCommon(object): def __init__(self, opttree): self.log = logging.getLogger("RunCTRL") # This is for node filtering, i.e. eliminating duplicates self.pnode_lookup = weakref.WeakValueDictionary() self.non_persistant_pointer_lookup = weakref.WeakValueDictionary() self.non_persistant_deleter = _PNodeNonPersistentDeleter(self) # This is for local cache lootup self.cache_lookup = defaultdict(PNodeModuleCache) self.cache_directory = opttree.cache_directory self.disk_read_enabled = opttree.disk_read_enabled self.disk_write_enabled = opttree.disk_write_enabled self.opttree = opttree def getResults(self, parameters, names): if type(names) is str: single = True names = [names] else: single = False def getPN(n): if type(n) is not str: raise TypeError("Module name not a string.") pn = PNode(self, parameters, n, 'results') pn.initialize() pn = self.registerPNode(pn) pn.increaseParameterReference() pn.increaseResultReference() return pn pn_list = [getPN(n) for n in names] assert len(set(id(pn) for pn in pn_list)) == len(set(names)) ret_list = [pn.pullUpToResults().result for pn in pn_list] if single: assert len(ret_list) == 1 return ret_list[0] else: return ret_list def registerPNode(self, pn): # see if it's a duplicate key = (pn.name, pn.key) if key in self.pnode_lookup: pnf = self.pnode_lookup[key] if not pn.is_only_parameter_dependency: pnf.is_only_parameter_dependency = False pn_ret = pnf else: self.pnode_lookup[key] = pn_ret = pn pn_ret.buildReferences() return pn_ret def deregisterPNode(self, pn): key = (pn.name, pn.key) assert self.pnode_lookup[key] is pn del self.pnode_lookup[key] def _getCache(self, pn, use_local, use_dependencies, should_exist): key = (pn.name if pn is not None else None, pn.local_key if use_local else None, pn.dependency_key if use_dependencies else None) if should_exist: assert key in self.cache_lookup return key, self.cache_lookup[key] def increaseCachingReference(self, pn): # print ("increasing reference, name = %s, key = %s, local_key = %s, dep_key = %s" # % (pn.name, pn.key, pn.local_key, pn.dependency_key)) for t in [(None, False, False), (pn, True, False), (pn, False, True), (pn, False, False), (pn, True, True)]: key, cache = self._getCache(*(t + (False,))) cache.reference_count += 1 def decreaseCachingReference(self, pn): # print ("decreasing reference, name = %s, key = %s, local_key = %s, dep_key = %s" # % (pn.name, pn.key, pn.local_key, pn.dependency_key)) for t in [(None, False, False), (pn, True, False), (pn, False, True), (pn, False, False), (pn, True, True)]: key, cache = self._getCache(*(t + (True,))) cache.reference_count -= 1 assert cache.reference_count >= 0 # Clear the cache if it's no longer needed if cache.reference_count == 0: # if len(cache.cache) != 0: # print "Clearing cache %s. objects in the cache are:" % str(key) # for v in cache.cache.itervalues(): # print "%s: ref_count = %d" % (v.getObjectKey(), v.objRefCount()) del self.cache_lookup[key] def loadContainer(self, container, no_local_caching = False): assert not container.objectIsLoaded() if not no_local_caching: cache = self.cache_lookup[container.getCacheKey()] c = cache.cache obj_key = container.getObjectKey() if obj_key in c: return c[obj_key] else: c[obj_key] = container if container.isNonPersistent(): container.setNonPersistentObjectSaveHook(self.non_persistant_deleter) # now see if it can be loaded from disk self._loadFromDisk(container) return container def _loadFromDisk(self, container): if not container.isDiskWritable(): return if self.disk_read_enabled: filename = abspath(join(self.cache_directory, container.getFilename())) self.log.debug("Trying to load %s from %s" % (container.getKeyAsString(), filename)) if exists(filename): error_loading = False try: pt = loadResults(self.opttree, filename) except Exception, e: self.log.error("Exception Raised while loading %s: \n%s" % (filename, str(e))) error_loading = True if not error_loading: self.log.debug("--> Object successfully loaded.") container.setObject(pt) return else: pass # go to the disk write enabled part else: self.log.debug("--> File does not exist.") if self.disk_write_enabled and container.isDiskWritable(): container.setObjectSaveHook(self._saveToDisk) def _saveToDisk(self, container): assert self.disk_write_enabled and container.isDiskWritable() filename = join(self.cache_directory, container.getFilename()) obj = container.getObject() self.log.debug("Saving object %s to %s." % (container.getKeyAsString(), filename)) try: saveResults(self.opttree, filename, obj) assert exists(filename) except Exception, e: self.log.error("Exception raised attempting to save object to cache: \n%s" % str(e)) try: remove(filename) except Exception: pass def _debug_referencesDone(self): import gc gc.collect() print "**************** running check*****************" for pn in self.pnode_lookup.values(): if pn.result_reference_count != 0 or pn.module_reference_count != 0 or pn.module_access_reference_count != 0: print (("Nonzero references, (%d, %d, %d), name = %s, key = %s, " "local_key = %s, dep_key = %s") % (pn.result_reference_count, pn.module_reference_count, pn.module_access_reference_count, pn.name, pn.key, pn.local_key, pn.dependency_key)) for t in [(None, False, False), (pn, True, False), (pn, False, True), (pn, False, False), (pn, True, True)]: key, cache = self._getCache(*(t + (False,))) if cache.reference_count != 0: print (("Nonzero (%d) cache reference, name = %s, key = %s, " "local_key = %s, dep_key = %s") % (cache.reference_count, "null" if t[0] is None else pn.name, pn.key, "null" if not t[1] else pn.local_key, "null" if not t[2] else pn.dependency_key)) if hasattr(pn, "module") and pn.module is not None: print (("Non-None module, (%d, %d, %d), name = %s, key = %s, " "local_key = %s, dep_key = %s") % (pn.result_reference_count, pn.module_reference_count, pn.module_access_reference_count, pn.name, pn.key, pn.local_key, pn.dependency_key)) if hasattr(pn, "results_container") and pn.results_container is not None: print (("Non-None results, (%d, %d, %d), name = %s, key = %s, " "local_key = %s, dep_key = %s") % (pn.result_reference_count, pn.module_reference_count, pn.module_access_reference_count, pn.name, pn.key, pn.local_key, pn.dependency_key)) if hasattr(pn, "child_pull_dict"): print (("Child pull dict bad!!!, (%d, %d, %d), name = %s, key = %s, " "local_key = %s, dep_key = %s") % (pn.result_reference_count, pn.module_reference_count, pn.module_access_reference_count, pn.name, pn.key, pn.local_key, pn.dependency_key)) _Null = "null" _PulledResult = namedtuple('PulledResult', ['parameters', 'result']) _PulledModule = namedtuple('PulledModule', ['parameters', 'result', 'module']) class PNode(object): def __init__(self, common, parameters, name, p_type): # print ">>>>>>>>>>>>>>>>>>>> INIT: %s <<<<<<<<<<<<<<<<<<<<" % name self.common = common self.parameters = parameters.copy() self.parameters.attach(recursive = True) self.name = name self.is_pmodule = isPModule(name) if p_type in ["module", "results"]: if not self.is_pmodule: raise ValueError("%s is not a recognized processing module." % name) else: if p_type != "parameters": raise ValueError( ("p_type must be either 'module', 'results', " "or 'parameters' (not '%s').") % p_type) # Parameters don't hold references to other objects self.is_only_parameter_dependency = (p_type == "parameters") ################################################## # Get the preprocessed parameters if name not in self.parameters: self.parameters.makeBranch(name) if self.is_pmodule: p_class = self.p_class = getPModuleClass(self.name) self.parameters[name] = pt = p_class._preprocessParameters(self.parameters) pt.attach(recursive = True) pt.freeze() self.parameter_key = self.parameters.hash(name) h = hashlib.md5() h.update(str(p_class._getVersion())) h.update(self.parameter_key) self.local_key = base64.b64encode(h.digest(), "az")[:8] self.results_reported = False self.full_key = self.parameters.hash() # Reference counting isn't used in the parameter classes self.parameter_reference_count = 0 self.result_reference_count = 0 self.module_reference_count = 0 self.module_access_reference_count = 0 self.dependent_modules_pulled = False self.children_have_reference = False else: self.parameter_key = self.parameters.hash(name) self.parameter_reference_count = 0 ######################################## # Setup def initialize(self): # This extra step is needed as the child pnodes must be # consolidated into the right levels first assert self.is_pmodule def _processDependencySet(p_type, dl): rs = {} def add(s, parameters, first_order, name_override): t = type(s) if t is str: if s != self.name: # delay the creation until we know we need it h = self.full_key if parameters is self.parameters else parameters.hash() rs[(s, h)] = (s if first_order else name_override, parameters, s, p_type) elif t is list or t is tuple or t is set: for se in s: add(se, parameters, first_order, name_override) elif getattr(s, "__parameter_container__", False): add(s.name, s._getParameters(parameters), False, s._getLoadName()) else: raise TypeError("Dependency type not recognized.") add(dl, self.parameters, True, None) return rs # Initializes the results above the dependencies # get the verbatim children specifications and lists of # dependencies m_dep, r_dep, p_dep = self.p_class._getDependencies(self.parameters) # these are (name, hash) : pnode dicts self.module_dependencies = _processDependencySet("module", m_dep) self.result_dependencies = _processDependencySet("results", r_dep) self.parameter_dependencies = _processDependencySet("parameters", p_dep) # print "init-3: %s-%s has ref count %d" % (self.name, self.key, sys.getrefcount(self)) # Now go through and push the dependencies down self.result_dependencies.update(self.module_dependencies) self.parameter_dependencies.update(self.result_dependencies) # And go through and instantiate all of the remaining ones for k, t in self.parameter_dependencies.items(): pn = PNode(self.common, *t[1:]) self.parameter_dependencies[k] = v = (t[0], pn) if k in self.result_dependencies: self.result_dependencies[k] = v if k in self.module_dependencies: self.module_dependencies[k] = v # Go through and instantiate all the children for n, pn in self.result_dependencies.itervalues(): pn.initialize() # Now go through and eliminate duplicates for k, (n, pn) in self.result_dependencies.items(): pnf = self.common.registerPNode(pn) if pnf is not pn: self.result_dependencies[k] = (n, pnf) self.parameter_dependencies[k] = (n, pnf) if k in self.module_dependencies: self.module_dependencies[k] = (n, pnf) ######################################## # don't need to propegate parameter dependencies to children, # computing the hash as well h = hashlib.md5() for (n, th), (ln, pn) in sorted(self.parameter_dependencies.iteritems()): h.update(n) h.update(pn.parameter_key) for (n, th), (ln, pn) in sorted(self.result_dependencies.iteritems()): h.update(n) h.update(pn.key) self.dependency_key = base64.b64encode(h.digest(), "az")[:8] h.update(self.local_key) self.key = base64.b64encode(h.digest(), "az")[:8] # Load the parameter tree self.dependency_parameter_tree = TreeDict() for (n, th), (ln, pn) in sorted(self.parameter_dependencies.iteritems()): if ln is not None: self.dependency_parameter_tree[ln] = pn.pullParameterPreReferenceCount() self.dependency_parameter_tree[self.name] = self.parameters[self.name] self.is_disk_writable = self.p_class._allowsCaching(self.dependency_parameter_tree) self.is_result_disk_writable = (False if not self.is_disk_writable else self.p_class._allowsResultCaching(self.dependency_parameter_tree)) def buildReferences(self): if not self.is_only_parameter_dependency and not self.children_have_reference: ######################################## # Do reference counting with all the children for k, (n, pn) in self.parameter_dependencies.items(): pn.increaseParameterReference() for k, (n, pn) in self.result_dependencies.items(): pn.increaseResultReference() for k, (n, pn) in self.module_dependencies.items(): pn.increaseModuleReference() self.children_have_reference = True def dropUnneededReferences(self): if self.children_have_reference: ######################################## # Do reference counting with all the children for k, (n, pn) in self.module_dependencies.items(): pn.decreaseModuleReference() for k, (n, pn) in self.result_dependencies.items(): pn.decreaseResultReference() for k, (n, pn) in self.parameter_dependencies.items(): pn.decreaseParameterReference() self.children_have_reference = False ################################################## # Instantiating things def _instantiate(self, need_module): if not hasattr(self, "results_container"): # Attempt to load the results from cache self.results_container = self.common.loadContainer( PNodeModuleCacheContainer( pn_name = self.name, name = "__results__", local_key = self.local_key, dependency_key = self.dependency_key, is_disk_writable = self.is_result_disk_writable), no_local_caching = True) have_loaded_results = self.results_container.objectIsLoaded() # we're done if the results are loaded and that's all we need if have_loaded_results: self._reportResults(self.results_container.getObject()) if self.module_reference_count == 0: assert not need_module self.dropUnneededReferences() return if not need_module: return else: have_loaded_results = self.results_container.objectIsLoaded() # Okay, not done yet ######################################## # This pulls all the dependency parts # Create the dependency parts self.child_pull_dict = {} global _Null modules = TreeDict() results = TreeDict() params = TreeDict() for k, (load_name, pn) in self.module_dependencies.iteritems(): self.child_pull_dict[k] = p,r,m = pn.pullUpToModule() if load_name is not None: params[load_name], results[load_name], modules[load_name] = p,r,m modules.freeze() for k, (load_name, pn) in self.result_dependencies.iteritems(): if k in self.child_pull_dict: if load_name is not None: params[load_name], results[load_name] = self.child_pull_dict[k][:2] else: p, r = pn.pullUpToResults() self.child_pull_dict[k] = (p, r, _Null) if load_name is not None: params[load_name], results[load_name] = p, r results.freeze() # parameters are easy for k, (load_name, pn) in self.parameter_dependencies.iteritems(): if k in self.child_pull_dict: if load_name is not None: params[load_name] = self.child_pull_dict[k][0] else: p = pn.pullParameters() self.child_pull_dict[k] = (p, _Null, _Null) if load_name is not None: params[load_name] = p params[self.name] = self.parameters[self.name] params.freeze() # Now we've pulled all we need! self.children_have_reference = False self.increaseModuleAccessCount() # Now instantiate the module self.module = self.p_class(self, params, results, modules) if not have_loaded_results: r = self.module.run() if type(r) is TreeDict: r.freeze() self.results_container.setObject(r) self._reportResults(r) else: r = self.results_container.getObject() self.module._setResults(r) self.dependent_modules_pulled = True self.decreaseModuleAccessCount() ################################################## # Interfacing stuff def _checkModuleDeletionAllowances(self): mac_zero = (self.module_access_reference_count == 0) mrc_zero = (self.module_reference_count == 0) rrc_zero = (self.result_reference_count == 0) if mrc_zero and mac_zero and self.dependent_modules_pulled: # Get rid of everything but the results self.module._destroy() del self.module # propegate all the dependencies for k, (load_name, pn) in self.module_dependencies.iteritems(): pn.decreaseModuleAccessCount() if hasattr(self, "additional_module_nodes_accessed"): for pn in self.additional_module_nodes_accessed: pn.decreaseModuleAccessCount() del self.additional_module_nodes_accessed # This is gauranteed to exist if all the code is right del self.child_pull_dict self.dependent_modules_pulled = False def _checkDeletability(self): if not self.is_only_parameter_dependency: assert self.module_reference_count <= self.parameter_reference_count assert self.result_reference_count <= self.parameter_reference_count if self.parameter_reference_count == 0 and ( self.is_only_parameter_dependency or self.module_access_reference_count == 0): # Clean out the heavy parts in light of everything if not self.is_only_parameter_dependency: self.common.deregisterPNode(self) self.module_dependencies.clear() self.result_dependencies.clear() self.parameter_dependencies.clear() def increaseParameterReference(self): if not self.is_only_parameter_dependency: assert self.module_reference_count <= self.parameter_reference_count assert self.result_reference_count <= self.parameter_reference_count assert type(self.parameters) is TreeDict self.parameter_reference_count += 1 def decreaseParameterReference(self): assert self.parameter_reference_count >= 1 self.parameter_reference_count -= 1 if not self.is_only_parameter_dependency: assert self.module_reference_count <= self.parameter_reference_count assert self.result_reference_count <= self.parameter_reference_count if self.parameter_reference_count == 0: self._checkDeletability() def increaseResultReference(self): self.result_reference_count += 1 def decreaseResultReference(self): assert self.result_reference_count >= 1 self.result_reference_count -= 1 assert self.module_reference_count <= self.result_reference_count if self.result_reference_count == 0: try: del self.results_container except AttributeError: pass self.dropUnneededReferences() def increaseModuleAccessCount(self): self.module_access_reference_count += 1 self.common.increaseCachingReference(self) def decreaseModuleAccessCount(self): assert self.module_access_reference_count >= 1 self.module_access_reference_count -= 1 self.common.decreaseCachingReference(self) if self.module_access_reference_count == 0: self._checkModuleDeletionAllowances() self._checkDeletability() def increaseModuleReference(self): self.module_reference_count += 1 self.common.increaseCachingReference(self) def decreaseModuleReference(self): assert self.module_reference_count >= 1 self.module_reference_count -= 1 self.common.decreaseCachingReference(self) if self.module_reference_count == 0: self._checkModuleDeletionAllowances() def pullParameterPreReferenceCount(self): return self.parameters[self.name] def pullParameters(self): assert self.parameter_reference_count >= 1 p = self.parameters[self.name] self.decreaseParameterReference() return p def pullUpToResults(self): assert self.result_reference_count >= 1 if not hasattr(self, "results_container"): self._instantiate(False) r = self.results_container.getObject() ret = _PulledResult(self.parameters[self.name], r) rc = self.results_container self.decreaseResultReference() self.decreaseParameterReference() return ret def pullUpToModule(self): # print "Pulling module for module %s." % self.name assert self.module_reference_count >= 0 if not hasattr(self, "module") or not hasattr(self, "results_container"): self._instantiate(True) r = self.results_container.getObject() self._reportResults(r) ret = _PulledModule(self.parameters[self.name], r, self.module) self.increaseModuleAccessCount() self.decreaseModuleReference() self.decreaseResultReference() self.decreaseParameterReference() return ret ################################################################################ # Loading cache stuff def getCacheContainer(self, obj_name, key, ignore_module, ignore_local, ignore_dependencies, is_disk_writable, is_persistent): container = PNodeModuleCacheContainer( pn_name = None if ignore_module else self.name, name = obj_name, local_key = None if ignore_local else self.local_key, dependency_key = None if ignore_dependencies else self.dependency_key, specific_key = key, is_disk_writable = is_disk_writable and self.is_disk_writable, is_persistent = is_persistent) return self.common.loadContainer(container) def _resolveRequestInfo(self, r): # first get the key if type(r) is str: name = r ptree = self.parameters key = self.full_key elif getattr(r, "__parameter_container__", False): name = r.name ptree = r._getParameters(self.parameters) key = ptree.hash() else: raise TypeError("Requested %s must be specified as a string or " "a parameter container class like 'Delta'.") return name, ptree, key def getSpecific(self, r_type, r): name, ptree, key = self._resolveRequestInfo(r) lookup_key = (name, key) if lookup_key in self.child_pull_dict: params, results, module = self.child_pull_dict[lookup_key] global _Null if r_type == "results" and results is not _Null: return results elif r_type == "module" and module is not _Null: return module elif r_type == "parameters": return params else: assert False if r_type == "results": return self.common.getResults(ptree, name) elif r_type == "module": pn = PNode(self.common, ptree, name, 'module') pn.initialize() pn = self.common.registerPNode(pn) pn.increaseParameterReference() pn.increaseResultReference() pn.increaseModuleReference() if hasattr(self, "additional_module_nodes_accessed"): self.additional_module_nodes_accessed.append(pn) else: self.additional_module_nodes_accessed = [pn] return pn.pullUpToModule().module elif r_type == "parameters": pn = PNode(self.common, ptree, name, 'parameters') pn.initialize() pn = self.common.registerPNode(pn) pn.increaseParameterReference() return pn.pullParameters() else: assert False ################################################## # Result Reporting stuff def _reportResults(self, results): if not self.results_reported: try: self.p_class.reportResults(self.parameters, self.parameters[self.name], results) except TypeError, te: rrf = self.p_class.reportResults def raiseTypeError(): raise TypeError(("reportResults method in '%s' must be @classmethod " "and take global parameter tree, local parameter tree, " "and result tree as arguments.") % name) # See if it was due to incompatable signature from robust_inspect import getcallargs try: getcallargs(rrf, parameters, p, r) except TypeError: raiseTypeError() # Well, that wasn't the issue, so it's something internal; re-raise raise self.results_reported = True
bsd-3-clause
-8,434,984,872,523,774,000
33.292537
121
0.539084
false
4.394797
false
false
false
KlubJagiellonski/Politikon
events/models.py
1
30976
# -*- coding: utf-8 -*- import json import logging from collections import defaultdict from dateutil.relativedelta import relativedelta from math import exp from unidecode import unidecode from django.conf import settings from django.core.urlresolvers import reverse from django.core.validators import RegexValidator from django.db import models, transaction from django.template.defaultfilters import slugify from django.utils import timezone from django.utils.translation import ugettext as _ from django.utils.encoding import python_2_unicode_compatible from .elo import EloMatch from .exceptions import UnknownOutcome, EventNotInProgress from .managers import ( EventManager, BetManager, TeamResultManager, TransactionManager, ) from bladepolska.snapshots import SnapshotAddon from bladepolska.site import current_domain from django_elasticsearch.models import EsIndexable from constance import config from imagekit.models import ProcessedImageField from imagekit.processors import ResizeToFill from taggit_autosuggest.managers import TaggableManager logger = logging.getLogger(__name__) @python_2_unicode_compatible class EventCategory(models.Model): name = models.CharField(u'tytuł wydarzenia', max_length=255, unique=True) slug = models.SlugField(verbose_name=_('Slug url'), unique=True) class Meta: verbose_name = u'kategoria' verbose_name_plural = u'kategorie' def __str__(self): return self.name @python_2_unicode_compatible class Event(EsIndexable, models.Model): """ Event model represents exactly real question which you can answer YES or NO. """ IN_PROGRESS, CANCELLED, FINISHED_YES, FINISHED_NO = range(1, 5) EVENT_OUTCOME_CHOICES = ( (IN_PROGRESS, u'w trakcie'), (CANCELLED, u'anulowane'), (FINISHED_YES, u'rozstrzygnięte na TAK'), (FINISHED_NO, u'rozstrzygnięte na NIE'), ) EVENT_FINISHED_TYPES = (CANCELLED, FINISHED_YES, FINISHED_NO) BOOLEAN_OUTCOME_DICT = { FINISHED_YES: True, FINISHED_NO: False } BEGIN_PRICE = 50 FACTOR_B = 10 PRIZE_FOR_WINNING = 100 CHART_MARGIN = 3 EVENT_SMALL_CHART_DAYS = 14 EVENT_BIG_CHART_DAYS = 28 SMALL_IMAGE_WIDTH = 340 SMALL_IMAGE_HEIGHT = 250 BIG_IMAGE_WIDTH = 1250 BIG_IMAGE_HEIGHT = 510 snapshots = SnapshotAddon(fields=[ 'current_buy_for_price', 'current_buy_against_price', 'current_sell_for_price', 'current_sell_against_price', 'Q_for', 'Q_against', 'B' ]) title = models.CharField(u'tytuł wydarzenia', max_length=255) short_title = models.CharField( verbose_name=u'tytuł promocyjny wydarzenia', max_length=255, default='', blank=True ) description = models.TextField(u'pełny opis wydarzenia', default='') categories = models.ManyToManyField('events.EventCategory', verbose_name=u'kategorie', blank=True) is_featured = models.BooleanField(u'wyróżniony', default=False) is_published = models.BooleanField(u'opublikowano', default=True) twitter_tag = models.CharField( verbose_name=u'tag twittera', max_length=32, null=True, blank=True, default='', validators=[ RegexValidator( regex=r'^([^\s]+)$', message=u'Tag twittera nie może zawierać spacji', code='invalid_twitter_tag' ), ] ) title_fb_yes = models.CharField( u'tytuł na TAK obiektu FB', max_length=255, default='', blank=True, null=True ) title_fb_no = models.CharField( u'tytuł na NIE obiektu FB', max_length=255, default='', blank=True, null=True ) small_image = ProcessedImageField( help_text=u'mały obrazek {0}x{1}'.format(SMALL_IMAGE_WIDTH, SMALL_IMAGE_HEIGHT), upload_to='events_small', processors=[ResizeToFill(SMALL_IMAGE_WIDTH, SMALL_IMAGE_HEIGHT)], null=True, blank=False, ) big_image = ProcessedImageField( help_text=u'duży obrazek {0}x{1}'.format(BIG_IMAGE_WIDTH, BIG_IMAGE_HEIGHT), upload_to='events_big', processors=[ResizeToFill(BIG_IMAGE_WIDTH, BIG_IMAGE_HEIGHT)], null=True, blank=False, ) # głosowanie do rozstrzygania wydarzeń vote_yes_count = models.PositiveIntegerField(u'głosów na tak', default=0) vote_no_count = models.PositiveIntegerField(u'głosów na nie', default=0) vote_cancel_count = models.PositiveIntegerField(u'głosów na anuluj', default=0) outcome = models.PositiveIntegerField(u'rozstrzygnięcie', choices=EVENT_OUTCOME_CHOICES, default=1) outcome_reason = models.TextField(u'uzasadnienie wyniku', default='', blank=True) created_date = models.DateTimeField(auto_now_add=True, verbose_name=u'data utworzenia') created_by = models.ForeignKey( settings.AUTH_USER_MODEL, verbose_name=u'utworzone przez', null=True, related_name='created_by' ) estimated_end_date = models.DateTimeField(u'przewidywana data rozstrzygnięcia', null=True, blank=False) end_date = models.DateTimeField(u'data rozstrzygnięcia', null=True, blank=True) current_buy_for_price = models.IntegerField( u'cena nabycia akcji zdarzenia', default=BEGIN_PRICE ) current_buy_against_price = models.IntegerField( u'cena nabycia akcji zdarzenia przeciwnego', default=BEGIN_PRICE ) current_sell_for_price = models.IntegerField( u'cena sprzedaży akcji zdarzenia', default=BEGIN_PRICE ) current_sell_against_price = models.IntegerField( u'cena sprzedaży akcji zdarzenia przeciwnego', default=BEGIN_PRICE ) last_transaction_date = models.DateTimeField(u'data ostatniej transakcji', null=True) Q_for = models.IntegerField(u'zakładów na TAK', default=0) Q_against = models.IntegerField(u'zakładów na NIE', default=0) turnover = models.IntegerField(u'obrót', default=0, db_index=True) absolute_price_change = models.IntegerField( u'zmiana ceny (wartość absolutna)', db_index=True, default=0 ) price_change = models.IntegerField(u'zmiana ceny', default=0) # constant for calculating event change # probably: how you need to increment quantity, to change price B = models.FloatField(u'stała B', default=FACTOR_B) objects = EventManager() tags = TaggableManager(blank=True) class Meta: verbose_name = 'wydarzenie' verbose_name_plural = 'wydarzenia' def __str__(self): return self.title def save(self, *args, **kwargs): """ Recalculate prices for event :param kwargs: """ if not self.pk: self.recalculate_prices() super(Event, self).save(*args, **kwargs) def get_absolute_url(self): return 'http://%(domain)s%(url)s' % { 'domain': current_domain(), 'url': reverse('events:event_detail', kwargs={'pk': self.pk}) } def get_relative_url(self): return '/event/%(id)d-%(title)s' % {'id': self.id, 'title': slugify(unidecode(self.title))} def get_absolute_facebook_object_url(self): return 'http://%(domain)s%(url)s' % { 'domain': current_domain(), 'url': reverse('events:event_facebook_object_detail', kwargs={'event_id': self.id}) } def get_small_embed_url(self): return 'http://%(domain)s%(url)s' % { 'domain': current_domain(), 'url': reverse('events:event_embed_detail', kwargs={'pk': self.id}) } @staticmethod def autocomplete_search_fields(): return ("id__iexact", "title__icontains", "short_title__icontains") @property def is_in_progress(self): return self.outcome == Event.IN_PROGRESS @property def publish_channel(self): return 'event_%d' % self.id @property def event_dict(self): return { 'event_id': self.id, 'buy_for_price': self.current_buy_for_price, 'buy_against_price': self.current_buy_against_price, 'sell_for_price': self.current_sell_for_price, 'sell_against_price': self.current_sell_against_price, } @property def finish_date(self): """ If event is not finished then estimated_end_date, else end_date :return: finish date :rtype: datetime """ if self.is_in_progress: return self.estimated_end_date else: return self.end_date @property def to_be_resolved(self): """ Return True if event is waiting to be resolved. """ return timezone.now() >= self.finish_date def price_for_outcome(self, outcome, direction=True): if (direction, outcome) not in Bet.BET_OUTCOMES_TO_PRICE_ATTR: raise UnknownOutcome() attr = Bet.BET_OUTCOMES_TO_PRICE_ATTR[(direction, outcome)] return getattr(self, attr) def get_event_small_chart(self): """ Get last transactions price for every day from small event range :return: chart points of EVENT_SMALL_CHART_DAYS days :rtype: {int, [], []} """ return self.__get_chart_points(self.EVENT_SMALL_CHART_DAYS) def get_event_big_chart(self): """ Get last transactions price for every day from big event range :return: chart points of EVENT_BIG_CHART_DAYS days :rtype: {int, [], []} """ return self.__get_chart_points(self.EVENT_BIG_CHART_DAYS) def get_JSON_small_chart(self): return json.dumps(self.get_event_small_chart()) def get_JSON_big_chart(self): return json.dumps(self.get_event_big_chart()) @transaction.atomic def __get_chart_points(self, days): """ Get last transactions price for every day; :param days: number of days in past on chart :type days: int :return: chart points :rtype: {int, [], []} """ last_date = self.end_date if self.end_date else timezone.now() first_date = max(last_date - relativedelta(days=days), self.created_date) labels = [] points = [] snapshots = self.snapshots.filter( snapshot_of_id=self.id, created_at__gte=first_date, created_at__lte=last_date, created_at__hour=0 ).order_by('created_at') additional_points = min(days - len(snapshots), Event.CHART_MARGIN) step_date = first_date - relativedelta(days=additional_points) for point in range(additional_points): labels.append(u'{0} {1}'.format(step_date.day, _(step_date.strftime('%B')))) step_date += relativedelta(days=1) points.append(Event.BEGIN_PRICE) for snapshot in snapshots: labels.append(u'{0} {1}'.format(snapshot.created_at.day, _(snapshot.created_at.strftime('%B')))) last_price = snapshot.current_buy_for_price points.append(last_price) return { 'id': self.id, 'labels': labels, 'points': points } def get_user_bet_object(self, user): """ find not empty just only one bet object or None :param user: logged user :type user: User :return: normally it should returns one bet where bet.has > 0 :rtype: Bet or None """ bets = self.bets.filter(user=user, has__gt=0).order_by('-id') if bets.exists(): return bets[0] def get_user_bet(self, user): """ get bet summary for user; user maybe anonymous. :param user: logged user or anonymous :type user: User :return: data for one bet display :rtype: {} """ # Using 'true' and 'false' because some keys are designed for json bet_line = { 'is_user': False, 'has': 0, 'avgPrice': 0, 'outcome': None, # note: None is the same as False 'buyNO': 'true', # default option is buy bet 'buyYES': 'true', # default option is buy bet 'priceYES': self.current_buy_for_price, 'priceNO': self.current_buy_against_price, } if user.pk: bet_line['is_user'] = True bet = self.get_user_bet_object(user) if bet: bet_line['id'] = bet.pk # it is only for debugging purpose bet_line['has'] = bet.has bet_line['avgPrice'] = bet.bought_avg_price bet_line['outcome'] = bet.outcome # True - YES False - NO if bet.outcome: # you have bet for YES, you can sell them bet_line['buyNO'] = 'false' # that means you sell bet YES bet_line['priceYES'] = self.current_buy_for_price bet_line['priceNO'] = self.current_sell_for_price bet_line['outcome_str'] = 'true' else: # you have bet for NO, you can sell them bet_line['buyYES'] = 'false' # that means you sell bet NO bet_line['priceYES'] = self.current_sell_against_price bet_line['priceNO'] = self.current_buy_against_price bet_line['outcome_str'] = 'false' return bet_line def get_bet_social(self): """ Get users who bought this event :return: Dict with 4 keys: 2 QuerySet with YES users and NO users, 2 integers with counts :rtype: dict{} """ response = {} bet_social_yes = Bet.objects.filter( event=self, outcome=True, # bought YES has__gt=0, ) response['yes_count'] = bet_social_yes.count() response['yes_bets'] = bet_social_yes[:6] bet_social_no = Bet.objects.filter( event=self, outcome=False, # bought NO has__gt=0, ) response['no_count'] = bet_social_no.count() response['no_bets'] = bet_social_no[:6] return response def increment_quantity(self, outcome, by_amount): """ Used when operation buy or sell occurs :param outcome: event outcome - YES or NO; True for YES :type outcome: bool :param by_amount: operations count, usually 1 :type by_amount: int :return: """ if outcome not in Bet.BET_OUTCOMES_TO_QUANTITY_ATTR: raise UnknownOutcome() attr = Bet.BET_OUTCOMES_TO_QUANTITY_ATTR[outcome] setattr(self, attr, getattr(self, attr) + by_amount) self.recalculate_prices() def increment_turnover(self, by_amount): """ Turnover increases +1 when operation buy or sell occurs :param by_amount: operations count, usually 1 :type by_amount: int """ self.turnover += by_amount def recalculate_prices(self): """ Calculate 4 prices for event """ factor = 100. B = self.B Q_for = self.Q_for Q_against = self.Q_against Q_for_sell = max(0, Q_for - 1) Q_against_sell = max(0, Q_against - 1) e_for_buy = exp(Q_for / B) e_against_buy = exp(Q_against / B) e_for_sell = exp(Q_for_sell / B) e_against_sell = exp(Q_against_sell / B) buy_for_price = e_for_buy / float(e_for_buy + e_against_buy) buy_against_price = e_against_buy / float(e_for_buy + e_against_buy) sell_for_price = e_for_sell / float(e_for_sell + e_against_buy) sell_against_price = e_against_sell / float(e_for_buy + e_against_sell) self.current_buy_for_price = round(factor * buy_for_price, 0) self.current_buy_against_price = round(factor * buy_against_price, 0) self.current_sell_for_price = round(factor * sell_for_price, 0) self.current_sell_against_price = round(factor * sell_against_price, 0) def vote_yes(self): self.vote_yes_count += 1 if self.vote_yes_count >= config.VOICES_TO_RESOLVE: self.finish_yes() self.save() return self.vote_yes_count def vote_no(self): self.vote_no_count += 1 if self.vote_no_count >= config.VOICES_TO_RESOLVE: self.finish_no() self.save() return self.vote_no_count def vote_cancel(self): self.vote_cancel_count += 1 if self.vote_cancel_count >= config.VOICES_TO_RESOLVE: self.cancel() self.save() return self.vote_cancel_count @transaction.atomic def __finish(self, outcome): """ Set Event finish status :param outcome: outcome status; EVENT_OUTCOME_CHOICES :type outcome: Choices """ if self.outcome != self.IN_PROGRESS: raise EventNotInProgress("Wydarzenie zostało już rozwiązane.") self.outcome = outcome self.end_date = timezone.now() self.save() @transaction.atomic def __finish_teams_outcome(self, teams_with_bets): team_results = [] for team in teams_with_bets: bets = teams_with_bets[team] team_results.append(TeamResult( team=team, event=self, initial_elo=team.get_elo(), rewarded_total=sum(bet.rewarded_total for bet in bets), prev_result=team.get_last_result(), bets_count=len(bets), )) elo_match = EloMatch() team_results = sorted( team_results, key=lambda x: (x.rewarded_total, x.bets_count), reverse=True ) prev_result = None for result in team_results: place = team_results.index(result) + 1 # Set draws if ( prev_result and (prev_result.rewarded_total, prev_result.bets_count) == (result.rewarded_total, result.bets_count) ): place = next( player.place for player in elo_match.players if player.idx == prev_result.team.id ) elo_match.add_player( idx=result.team.id, place=place, elo=result.initial_elo, ) prev_result = result elo_match.calculate_elos() for team_result in team_results: team_result.elo = elo_match.get_elo(team_result.team.id) team_result.save() return team_results @transaction.atomic def __finish_with_outcome(self, outcome): """ main finish status :param outcome: outcome status; EVENT_OUTCOME_CHOICES :type outcome: Choices """ self.__finish(outcome) teams_with_bets = defaultdict(list) for bet in Bet.objects.filter(event=self): if bet.outcome == self.BOOLEAN_OUTCOME_DICT[outcome]: bet.rewarded_total = self.PRIZE_FOR_WINNING * bet.has bet.user.total_cash += bet.rewarded_total Transaction.objects.create( user=bet.user, event=self, type=Transaction.EVENT_WON_PRIZE, quantity=bet.has, price=self.PRIZE_FOR_WINNING ) if bet.user.team: teams_with_bets[bet.user.team].append(bet) # update portfolio value bet.user.portfolio_value -= bet.get_invested() bet.user.save() # This cause display event in "latest outcome" bet.is_new_resolved = True bet.save() if len(teams_with_bets) > 1: team_results = self.__finish_teams_outcome(teams_with_bets) for team_result in team_results: ( Bet.objects .get_team_bets_for_events(team_result.team, [self]) .update(team_result=team_result) ) @transaction.atomic def finish_yes(self): """ if event is finished on YES then prizes calculate """ self.__finish_with_outcome(self.FINISHED_YES) @transaction.atomic def finish_no(self): """ if event is finished on NO then prizes calculate """ self.__finish_with_outcome(self.FINISHED_NO) @transaction.atomic def cancel(self): """ refund for users on cancel event. """ self.__finish(self.CANCELLED) users = {} for t in Transaction.objects.filter(event=self).order_by('user'): if t.user not in users: users.update({ t.user: 0 }) if t.type in Transaction.BUY_SELL_TYPES: # for transaction type BUY the price is below 0 that means refund should be # other side. For BUY (buy is always -) refund should be (+) (EVENT_CANCELLED_REFUND) # but for BUY and SELL with profit refund should be (-) (EVENT_CANCELLED_DEBIT) users[t.user] -= t.quantity * t.price for user, refund in users.iteritems(): if refund == 0: continue user.total_cash += refund user.save() if refund > 0: transaction_type = Transaction.EVENT_CANCELLED_REFUND else: transaction_type = Transaction.EVENT_CANCELLED_DEBIT Transaction.objects.create( user=user, event=self, type=transaction_type, price=refund ) class TeamResult(models.Model): """ Result of team after event is resolved """ objects = TeamResultManager() team = models.ForeignKey( 'accounts.Team', related_name='results', related_query_name='result' ) prev_result = models.OneToOneField( 'self', on_delete=models.PROTECT, null=True ) elo = models.IntegerField(u'ranking', null=True, blank=True) initial_elo = models.IntegerField(u'początkowy ranking', default=1400) rewarded_total = models.IntegerField( u'nagroda za wynik', default=0, null=False ) event = models.ForeignKey( Event, related_query_name='team_result', related_name='team_results' ) bets_count = models.PositiveIntegerField(u'liczba zakładów') created = models.DateTimeField( auto_now_add=True, verbose_name=u'utworzono' ) class Meta: verbose_name = u'rezultat drużyny' verbose_name_plural = u'rezultaty drużyn' class SolutionVote(models.Model): """ Vote for event resolve """ class Meta: unique_together = ('user', 'event') YES, NO, CANCEL = range(1, 4) VOTE_OUTCOME_CHOICES = ( (YES, u'rozwiązanie na TAK'), (NO, u'rozwiązanie na NIE'), (CANCEL, u'anulowanie wydarzenia') ) user = models.ForeignKey(settings.AUTH_USER_MODEL) event = models.ForeignKey(Event) outcome = models.IntegerField(u'rozwiązanie wydarzenia', choices=VOTE_OUTCOME_CHOICES, null=True) @python_2_unicode_compatible class Bet(models.Model): """ Created when user choose YES or NO for event. """ class Meta: verbose_name = u'zakład' verbose_name_plural = u'zakłady' YES = True NO = False BET_OUTCOME_CHOICES = ( (YES, u'udziały na TAK'), (NO, u'udziały na NIE'), ) BUY = True SELL = False BET_OUTCOMES_TO_PRICE_ATTR = { (BUY, YES): 'current_buy_for_price', (BUY, NO): 'current_buy_against_price', (SELL, YES): 'current_sell_for_price', (SELL, NO): 'current_sell_against_price' } BET_OUTCOMES_TO_QUANTITY_ATTR = { True: 'Q_for', False: 'Q_against' } user = models.ForeignKey( settings.AUTH_USER_MODEL, null=False, related_name='bets', related_query_name='bet' ) event = models.ForeignKey(Event, null=False, related_name='bets', related_query_name='bet') outcome = models.BooleanField(u'zakład na TAK', choices=BET_OUTCOME_CHOICES) # most important param: how many bets user has. has = models.PositiveIntegerField(u'posiadane zakłady', default=0, null=False) bought = models.PositiveIntegerField(u'kupione zakłady', default=0, null=False) sold = models.PositiveIntegerField(u'sprzedane zakłady', default=0, null=False) bought_avg_price = models.FloatField(u'kupione po średniej cenie', default=0, null=False) sold_avg_price = models.FloatField(u'sprzedane po średniej cenie', default=0, null=False) # this field is probably for the biggest rewards rewarded_total = models.IntegerField(u'nagroda za wynik', default=0, null=False) # this is used to show event in my wallet. is_new_resolved = models.BooleanField(u'ostatnio rozstrzygnięte', default=False, null=False) team_result = models.ForeignKey( TeamResult, null=True, related_name='bets', related_query_name='bet' ) objects = BetManager() @property def bet_dict(self): """ Dictionary with bet values :return: bet vaules :rtype: {} """ return { 'bet_id': self.id, 'event_id': self.event.id, 'user_id': self.user.id, 'outcome': self.outcome, 'has': self.has, 'bought': self.bought, 'sold': self.sold, 'bought_avg_price': self.bought_avg_price, 'sold_avg_price': self.sold_avg_price, 'rewarded_total': self.rewarded_total, } def __str__(self): return u'zakłady %s na %s' % (self.user, self.event) def current_event_price(self): """ Get current price for event. Price depend on bet.outcome :return: current price :rtype: int """ if self.outcome: return self.event.current_buy_for_price else: return self.event.current_buy_against_price def is_won(self): """ winning bet when bet has outcome True and event.outcome is 3 (FINISHED_YES) or when bet has outcome False and event.outcome is 4 (FINISHED_NO) :return: True if won :rtype: bool """ if self.outcome and self.event.outcome == Event.FINISHED_YES: return True elif not self.outcome and self.event.outcome == Event.FINISHED_NO: return True return False def get_wallet_change(self): """ Get amount won or lose after event finished. For events in progress get amount possible to win. :return: more or less than zero :rtype: int """ # TODO: NAPRAWDE NIE WIEM if self.is_won() or self.event.outcome == Event.IN_PROGRESS: return self.get_won() - self.get_invested() else: return -self.get_invested() def get_invested(self): """ How many invested in this bet :return: price above zero :rtype: float """ # TODO: NO NIE WIEM if self.event.outcome == Event.CANCELLED: return 0 return round(self.has * self.bought_avg_price, 0) def get_won(self): """ Get amount won or possibility to win. :return: price :rtype: int """ if self.is_won() or self.event.outcome == Event.IN_PROGRESS: return self.has * Event.PRIZE_FOR_WINNING else: return 0 def is_finished_yes(self): """ Result for bet :return: True if event resolved for YES :rtype: bool """ return self.event.outcome == Event.FINISHED_YES def is_finished_no(self): """ Result for bet :return: True if event resolved for NO :rtype: bool """ return self.event.outcome == Event.FINISHED_NO def is_cancelled(self): """ Result for bet :return: True if canceled bet :rtype: bool """ return self.event.outcome == Event.CANCELLED @python_2_unicode_compatible class Transaction(models.Model): """ Operation buy or sell or other for user and event """ class Meta: ordering = ['-date'] verbose_name = 'transakcja' verbose_name_plural = 'transakcje' BUY_YES, SELL_YES, BUY_NO, SELL_NO, \ EVENT_CANCELLED_REFUND, EVENT_CANCELLED_DEBIT, \ EVENT_WON_PRIZE, TOPPED_UP, BONUS = range(1, 10) TRANSACTION_TYPE_CHOICES = ( (BUY_YES, u'zakup udziałów na TAK'), (SELL_YES, u'sprzedaż udziałów na TAK'), (BUY_NO, u'zakup udziałów na NIE'), (SELL_NO, u'sprzedaż udziałów na NIE'), (EVENT_CANCELLED_REFUND, u'zwrot po anulowaniu wydarzenia'), (EVENT_CANCELLED_DEBIT, u'obciążenie konta po anulowaniu wydarzenia'), (EVENT_WON_PRIZE, u'wygrana po rozstrzygnięciu wydarzenia'), (TOPPED_UP, u'doładowanie konta przez aplikację'), (BONUS, u'bonus') ) # Transactions changing event price: BUY_YES, SELL_YES, BUY_NO, SELL_NO BUY_SELL_TYPES = (BUY_YES, SELL_YES, BUY_NO, SELL_NO) EVENT_SOLVED_TYPES = (EVENT_CANCELLED_REFUND, EVENT_CANCELLED_DEBIT, EVENT_WON_PRIZE) BONUS_TYPES = (TOPPED_UP, BONUS) YES_OUTCOME = (BUY_YES, SELL_YES) NO_OUTCOME = (BUY_NO, SELL_NO) BUY_TYPES = (BUY_YES, BUY_NO) SELL_TYPES = (SELL_YES, SELL_NO) user = models.ForeignKey( settings.AUTH_USER_MODEL, null=False, related_name='transactions', related_query_name='transaction' ) event = models.ForeignKey( Event, null=True, related_name='transactions', related_query_name='transaction' ) type = models.PositiveIntegerField( "rodzaj transakcji", choices=TRANSACTION_TYPE_CHOICES, default=1 ) date = models.DateTimeField('data', auto_now_add=True) quantity = models.PositiveIntegerField(u'ilość', default=1) price = models.IntegerField(u'cena jednostkowa', default=0, null=False) objects = TransactionManager() def __str__(self): return u'{} przez {}'.format(self.get_type_display(), self.user) @property def total_cash(self): """ Get total price for all quantity in transaction: total won, total bought, total sold :return: total amount :rtype: int """ return self.quantity * self.price @property def total_wallet(self): """ Get total price for all quantity in transaction: total won, total bought, total sold :return: total amount :rtype: int """ return -1 * self.quantity * self.price
gpl-2.0
-519,453,585,463,597,000
32.918771
108
0.591942
false
3.552132
false
false
false
baverman/scribes-goodies
scribes_helpers/scribes/helpers/signals.py
1
2297
from gsignals import weak_connect, connect_all as gsignals_connect_all from gsignals.signals import attach_signal_connect_info from SCRIBES.TriggerManager import TriggerManager as CoreTriggerManager def connect_all(obj, *managers, **external_gobjects): for m in managers: if isinstance(m, TriggerManager): m.connect_triggers(obj) else: m.connect_signals(obj) gsignals_connect_all(obj, **external_gobjects) class Trigger(object): """ Unbounded trigger (special signal emited by keyboard shortcut) Can be used as decorator to mark methods for feature connecting. """ def __init__(self, name, accelerator="", description="", category="", error=True, removable=True): self.name = name self.accelerator = accelerator self.description = description self.category = category self.error = error self.removable = removable def __call__(self, func=None, after=False, idle=False): return attach_signal_connect_info('triggers_to_connect', self, func, after, idle) def create(self, manager): return manager.create_trigger(self.name, self.accelerator, self.description, self.category, self.error, self.removable) class TriggerManager(object): ''' Auto disconnected trigger manager Wraps SCRIBES.TriggerManager and calls remove_triggers on object deletion ''' def __init__(self, editor): self.manager = CoreTriggerManager(editor) self.triggers = {} def __del__(self): self.triggers.clear() self.manager.remove_triggers() def connect_triggers(self, obj): ''' Connects object methods marked by trigger decorator ''' for attr, value in obj.__class__.__dict__.iteritems(): for trigger, connect_params in getattr(value, 'triggers_to_connect', ()): self.connect(trigger, obj, attr, **connect_params) def connect(self, trigger, obj, attr, after, idle): if trigger.name not in self.triggers: self.triggers[trigger.name] = trigger.create(self.manager) weak_connect(self.triggers[trigger.name], 'activate', obj, attr, after=after, idle=idle)
mit
3,299,106,395,166,423,600
34.338462
96
0.641707
false
4.238007
false
false
false
stephane-martin/salt-debian-packaging
salt-2016.3.2/salt/transport/ipc.py
1
25403
# -*- coding: utf-8 -*- ''' IPC transport classes ''' # Import Python libs from __future__ import absolute_import import logging import socket import msgpack import weakref import time # Import Tornado libs import tornado import tornado.gen import tornado.netutil import tornado.concurrent from tornado.ioloop import IOLoop from tornado.iostream import IOStream # Import Salt libs import salt.transport.client import salt.transport.frame log = logging.getLogger(__name__) # 'tornado.concurrent.Future' doesn't support # remove_done_callback() which we would have called # in the timeout case. Due to this, we have this # callback function outside of FutureWithTimeout. def future_with_timeout_callback(future): if future._future_with_timeout is not None: future._future_with_timeout._done_callback(future) class FutureWithTimeout(tornado.concurrent.Future): def __init__(self, io_loop, future, timeout): super(FutureWithTimeout, self).__init__() self.io_loop = io_loop self._future = future if timeout is not None: if timeout < 0.1: timeout = 0.1 self._timeout_handle = self.io_loop.add_timeout( self.io_loop.time() + timeout, self._timeout_callback) else: self._timeout_handle = None if hasattr(self._future, '_future_with_timeout'): # Reusing a future that has previously been used. # Due to this, no need to call add_done_callback() # because we did that before. self._future._future_with_timeout = self if self._future.done(): future_with_timeout_callback(self._future) else: self._future._future_with_timeout = self self._future.add_done_callback(future_with_timeout_callback) def _timeout_callback(self): self._timeout_handle = None # 'tornado.concurrent.Future' doesn't support # remove_done_callback(). So we set an attribute # inside the future itself to track what happens # when it completes. self._future._future_with_timeout = None self.set_exception(tornado.ioloop.TimeoutError()) def _done_callback(self, future): try: if self._timeout_handle is not None: self.io_loop.remove_timeout(self._timeout_handle) self._timeout_handle = None self.set_result(future.result()) except Exception as exc: self.set_exception(exc) class IPCServer(object): ''' A Tornado IPC server very similar to Tornado's TCPServer class but using either UNIX domain sockets or TCP sockets ''' def __init__(self, socket_path, io_loop=None, payload_handler=None): ''' Create a new Tornado IPC server :param str/int socket_path: Path on the filesystem for the socket to bind to. This socket does not need to exist prior to calling this method, but parent directories should. It may also be of type 'int', in which case it is used as the port for a tcp localhost connection. :param IOLoop io_loop: A Tornado ioloop to handle scheduling :param func payload_handler: A function to customize handling of incoming data. ''' self.socket_path = socket_path self._started = False self.payload_handler = payload_handler # Placeholders for attributes to be populated by method calls self.sock = None self.io_loop = io_loop or IOLoop.current() self._closing = False def start(self): ''' Perform the work necessary to start up a Tornado IPC server Blocks until socket is established ''' # Start up the ioloop log.trace('IPCServer: binding to socket: {0}'.format(self.socket_path)) if isinstance(self.socket_path, int): self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sock.setblocking(0) self.sock.bind(('127.0.0.1', self.socket_path)) # Based on default used in tornado.netutil.bind_sockets() self.sock.listen(128) else: self.sock = tornado.netutil.bind_unix_socket(self.socket_path) tornado.netutil.add_accept_handler( self.sock, self.handle_connection, io_loop=self.io_loop, ) self._started = True @tornado.gen.coroutine def handle_stream(self, stream): ''' Override this to handle the streams as they arrive :param IOStream stream: An IOStream for processing See http://tornado.readthedocs.org/en/latest/iostream.html#tornado.iostream.IOStream for additional details. ''' @tornado.gen.coroutine def _null(msg): raise tornado.gen.Return(None) def write_callback(stream, header): if header.get('mid'): @tornado.gen.coroutine def return_message(msg): pack = salt.transport.frame.frame_msg( msg, header={'mid': header['mid']}, raw_body=True, ) yield stream.write(pack) return return_message else: return _null unpacker = msgpack.Unpacker() while not stream.closed(): try: wire_bytes = yield stream.read_bytes(4096, partial=True) unpacker.feed(wire_bytes) for framed_msg in unpacker: body = framed_msg['body'] self.io_loop.spawn_callback(self.payload_handler, body, write_callback(stream, framed_msg['head'])) except tornado.iostream.StreamClosedError: log.trace('Client disconnected from IPC {0}'.format(self.socket_path)) break except Exception as exc: log.error('Exception occurred while handling stream: {0}'.format(exc)) def handle_connection(self, connection, address): log.trace('IPCServer: Handling connection to address: {0}'.format(address)) try: stream = IOStream( connection, io_loop=self.io_loop, ) self.io_loop.spawn_callback(self.handle_stream, stream) except Exception as exc: log.error('IPC streaming error: {0}'.format(exc)) def close(self): ''' Routines to handle any cleanup before the instance shuts down. Sockets and filehandles should be closed explicitly, to prevent leaks. ''' if self._closing: return self._closing = True if hasattr(self.sock, 'close'): self.sock.close() def __del__(self): self.close() class IPCClient(object): ''' A Tornado IPC client very similar to Tornado's TCPClient class but using either UNIX domain sockets or TCP sockets This was written because Tornado does not have its own IPC server/client implementation. :param IOLoop io_loop: A Tornado ioloop to handle scheduling :param str/int socket_path: A path on the filesystem where a socket belonging to a running IPCServer can be found. It may also be of type 'int', in which case it is used as the port for a tcp localhost connection. ''' # Create singleton map between two sockets instance_map = weakref.WeakKeyDictionary() def __new__(cls, socket_path, io_loop=None): io_loop = io_loop or tornado.ioloop.IOLoop.current() if io_loop not in IPCClient.instance_map: IPCClient.instance_map[io_loop] = weakref.WeakValueDictionary() loop_instance_map = IPCClient.instance_map[io_loop] # FIXME key = str(socket_path) if key not in loop_instance_map: log.debug('Initializing new IPCClient for path: {0}'.format(key)) new_client = object.__new__(cls) # FIXME new_client.__singleton_init__(io_loop=io_loop, socket_path=socket_path) loop_instance_map[key] = new_client else: log.debug('Re-using IPCClient for {0}'.format(key)) return loop_instance_map[key] def __singleton_init__(self, socket_path, io_loop=None): ''' Create a new IPC client IPC clients cannot bind to ports, but must connect to existing IPC servers. Clients can then send messages to the server. ''' self.io_loop = io_loop or tornado.ioloop.IOLoop.current() self.socket_path = socket_path self._closing = False self.stream = None self.unpacker = msgpack.Unpacker() def __init__(self, socket_path, io_loop=None): # Handled by singleton __new__ pass def connected(self): return self.stream is not None and not self.stream.closed() def connect(self, callback=None, timeout=None): ''' Connect to the IPC socket ''' if hasattr(self, '_connecting_future') and not self._connecting_future.done(): # pylint: disable=E0203 future = self._connecting_future # pylint: disable=E0203 else: future = tornado.concurrent.Future() self._connecting_future = future self.io_loop.add_callback(self._connect, timeout=timeout) if callback is not None: def handle_future(future): response = future.result() self.io_loop.add_callback(callback, response) future.add_done_callback(handle_future) return future @tornado.gen.coroutine def _connect(self, timeout=None): ''' Connect to a running IPCServer ''' if isinstance(self.socket_path, int): sock_type = socket.AF_INET sock_addr = ('127.0.0.1', self.socket_path) else: sock_type = socket.AF_UNIX sock_addr = self.socket_path self.stream = None if timeout is not None: timeout_at = time.time() + timeout while True: if self._closing: break if self.stream is None: self.stream = IOStream( socket.socket(sock_type, socket.SOCK_STREAM), io_loop=self.io_loop, ) try: log.trace('IPCClient: Connecting to socket: {0}'.format(self.socket_path)) yield self.stream.connect(sock_addr) self._connecting_future.set_result(True) break except Exception as e: if self.stream.closed(): self.stream = None if timeout is None or time.time() > timeout_at: if self.stream is not None: self.stream.close() self.stream = None self._connecting_future.set_exception(e) break yield tornado.gen.sleep(1) def __del__(self): self.close() def close(self): ''' Routines to handle any cleanup before the instance shuts down. Sockets and filehandles should be closed explicitly, to prevent leaks. ''' if self._closing: return self._closing = True if self.stream is not None and not self.stream.closed(): self.stream.close() class IPCMessageClient(IPCClient): ''' Salt IPC message client Create an IPC client to send messages to an IPC server An example of a very simple IPCMessageClient connecting to an IPCServer. This example assumes an already running IPCMessage server. IMPORTANT: The below example also assumes a running IOLoop process. # Import Tornado libs import tornado.ioloop # Import Salt libs import salt.config import salt.transport.ipc io_loop = tornado.ioloop.IOLoop.current() ipc_server_socket_path = '/var/run/ipc_server.ipc' ipc_client = salt.transport.ipc.IPCMessageClient(ipc_server_socket_path, io_loop=io_loop) # Connect to the server ipc_client.connect() # Send some data ipc_client.send('Hello world') ''' # FIXME timeout unimplemented # FIXME tries unimplemented @tornado.gen.coroutine def send(self, msg, timeout=None, tries=None): ''' Send a message to an IPC socket If the socket is not currently connected, a connection will be established. :param dict msg: The message to be sent :param int timeout: Timeout when sending message (Currently unimplemented) ''' if not self.connected(): yield self.connect() pack = salt.transport.frame.frame_msg(msg, raw_body=True) yield self.stream.write(pack) class IPCMessageServer(IPCServer): ''' Salt IPC message server Creates a message server which can create and bind to a socket on a given path and then respond to messages asynchronously. An example of a very simple IPCServer which prints received messages to a console: # Import Tornado libs import tornado.ioloop # Import Salt libs import salt.transport.ipc import salt.config opts = salt.config.master_opts() io_loop = tornado.ioloop.IOLoop.current() ipc_server_socket_path = '/var/run/ipc_server.ipc' ipc_server = salt.transport.ipc.IPCMessageServer(opts, io_loop=io_loop stream_handler=print_to_console) # Bind to the socket and prepare to run ipc_server.start(ipc_server_socket_path) # Start the server io_loop.start() # This callback is run whenever a message is received def print_to_console(payload): print(payload) See IPCMessageClient() for an example of sending messages to an IPCMessageServer instance ''' class IPCMessagePublisher(object): ''' A Tornado IPC Publisher similar to Tornado's TCPServer class but using either UNIX domain sockets or TCP sockets ''' def __init__(self, opts, socket_path, io_loop=None): ''' Create a new Tornado IPC server :param dict opts: Salt options :param str/int socket_path: Path on the filesystem for the socket to bind to. This socket does not need to exist prior to calling this method, but parent directories should. It may also be of type 'int', in which case it is used as the port for a tcp localhost connection. :param IOLoop io_loop: A Tornado ioloop to handle scheduling ''' self.opts = opts self.socket_path = socket_path self._started = False # Placeholders for attributes to be populated by method calls self.sock = None self.io_loop = io_loop or IOLoop.current() self._closing = False self.streams = set() def start(self): ''' Perform the work necessary to start up a Tornado IPC server Blocks until socket is established ''' # Start up the ioloop log.trace('IPCMessagePublisher: binding to socket: {0}'.format(self.socket_path)) if isinstance(self.socket_path, int): self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sock.setblocking(0) self.sock.bind(('127.0.0.1', self.socket_path)) # Based on default used in tornado.netutil.bind_sockets() self.sock.listen(128) else: self.sock = tornado.netutil.bind_unix_socket(self.socket_path) tornado.netutil.add_accept_handler( self.sock, self.handle_connection, io_loop=self.io_loop, ) self._started = True @tornado.gen.coroutine def _write(self, stream, pack): try: yield stream.write(pack) except tornado.iostream.StreamClosedError: log.trace('Client disconnected from IPC {0}'.format(self.socket_path)) self.streams.discard(stream) except Exception as exc: log.error('Exception occurred while handling stream: {0}'.format(exc)) if not stream.closed(): stream.close() self.streams.discard(stream) def publish(self, msg): ''' Send message to all connected sockets ''' if not len(self.streams): return pack = salt.transport.frame.frame_msg(msg, raw_body=True) for stream in self.streams: self.io_loop.spawn_callback(self._write, stream, pack) def handle_connection(self, connection, address): log.trace('IPCServer: Handling connection to address: {0}'.format(address)) try: if self.opts['ipc_write_buffer'] > 0: log.trace('Setting IPC connection write buffer: {0}'.format((self.opts['ipc_write_buffer']))) stream = IOStream( connection, io_loop=self.io_loop, max_write_buffer_size=self.opts['ipc_write_buffer'] ) else: stream = IOStream( connection, io_loop=self.io_loop ) self.streams.add(stream) except Exception as exc: log.error('IPC streaming error: {0}'.format(exc)) def close(self): ''' Routines to handle any cleanup before the instance shuts down. Sockets and filehandles should be closed explicitly, to prevent leaks. ''' if self._closing: return self._closing = True for stream in self.streams: stream.close() self.streams.clear() if hasattr(self.sock, 'close'): self.sock.close() def __del__(self): self.close() class IPCMessageSubscriber(IPCClient): ''' Salt IPC message subscriber Create an IPC client to receive messages from IPC publisher An example of a very simple IPCMessageSubscriber connecting to an IPCMessagePublisher. This example assumes an already running IPCMessagePublisher. IMPORTANT: The below example also assumes the IOLoop is NOT running. # Import Tornado libs import tornado.ioloop # Import Salt libs import salt.config import salt.transport.ipc # Create a new IO Loop. # We know that this new IO Loop is not currently running. io_loop = tornado.ioloop.IOLoop() ipc_publisher_socket_path = '/var/run/ipc_publisher.ipc' ipc_subscriber = salt.transport.ipc.IPCMessageSubscriber(ipc_server_socket_path, io_loop=io_loop) # Connect to the server # Use the associated IO Loop that isn't running. io_loop.run_sync(ipc_subscriber.connect) # Wait for some data package = ipc_subscriber.read_sync() ''' def __singleton_init__(self, socket_path, io_loop=None): super(IPCMessageSubscriber, self).__singleton_init__( socket_path, io_loop=io_loop) self._read_sync_future = None self._read_stream_future = None self._sync_ioloop_running = False self.saved_data = [] @tornado.gen.coroutine def _read_sync(self, timeout): exc_to_raise = None ret = None try: while True: if self._read_stream_future is None: self._read_stream_future = self.stream.read_bytes(4096, partial=True) if timeout is None: wire_bytes = yield self._read_stream_future else: future_with_timeout = FutureWithTimeout( self.io_loop, self._read_stream_future, timeout) wire_bytes = yield future_with_timeout self._read_stream_future = None # Remove the timeout once we get some data or an exception # occurs. We will assume that the rest of the data is already # there or is coming soon if an exception doesn't occur. timeout = None self.unpacker.feed(wire_bytes) first = True for framed_msg in self.unpacker: if first: ret = framed_msg['body'] first = False else: self.saved_data.append(framed_msg['body']) if not first: # We read at least one piece of data break except tornado.ioloop.TimeoutError: # In the timeout case, just return None. # Keep 'self._read_stream_future' alive. ret = None except tornado.iostream.StreamClosedError as exc: log.trace('Subscriber disconnected from IPC {0}'.format(self.socket_path)) self._read_stream_future = None exc_to_raise = exc except Exception as exc: log.error('Exception occurred in Subscriber while handling stream: {0}'.format(exc)) self._read_stream_future = None exc_to_raise = exc if self._sync_ioloop_running: # Stop the IO Loop so that self.io_loop.start() will return in # read_sync(). self.io_loop.spawn_callback(self.io_loop.stop) if exc_to_raise is not None: raise exc_to_raise # pylint: disable=E0702 raise tornado.gen.Return(ret) def read_sync(self, timeout=None): ''' Read a message from an IPC socket The socket must already be connected. The associated IO Loop must NOT be running. :param int timeout: Timeout when receiving message :return: message data if successful. None if timed out. Will raise an exception for all other error conditions. ''' if self.saved_data: return self.saved_data.pop(0) self._sync_ioloop_running = True self._read_sync_future = self._read_sync(timeout) self.io_loop.start() self._sync_ioloop_running = False ret_future = self._read_sync_future self._read_sync_future = None return ret_future.result() @tornado.gen.coroutine def _read_async(self, callback): while not self.connected(): try: yield self.connect() except tornado.iostream.StreamClosedError: log.trace('Subscriber closed stream on IPC {0} before connect'.format(self.socket_path)) except Exception as exc: log.error('Exception occurred while Subscriber connecting: {0}'.format(exc)) while not self.stream.closed(): try: self._read_stream_future = self.stream.read_bytes(4096, partial=True) wire_bytes = yield self._read_stream_future self._read_stream_future = None self.unpacker.feed(wire_bytes) for framed_msg in self.unpacker: body = framed_msg['body'] self.io_loop.spawn_callback(callback, body) except tornado.iostream.StreamClosedError: log.trace('Subscriber disconnected from IPC {0}'.format(self.socket_path)) break except Exception as exc: log.error('Exception occurred while Subscriber handling stream: {0}'.format(exc)) def read_async(self, callback): ''' Asynchronously read messages and invoke a callback when they are ready. :param callback: A callback with the received data ''' self.io_loop.spawn_callback(self._read_async, callback) def close(self): ''' Routines to handle any cleanup before the instance shuts down. Sockets and filehandles should be closed explicitly, to prevent leaks. ''' if not self._closing: IPCClient.close(self) # This will prevent this message from showing up: # '[ERROR ] Future exception was never retrieved: # StreamClosedError' if self._read_sync_future is not None: self._read_sync_future.exc_info() if self._read_stream_future is not None: self._read_stream_future.exc_info() def __del__(self): self.close()
apache-2.0
184,623,737,381,527,700
34.47905
119
0.578829
false
4.420219
false
false
false
Alex-Ian-Hamilton/sunpy
sunpy/tests/setup_command.py
1
4158
# -*- coding: utf-8 -*- """ Created on Sat Jun 7 19:36:08 2014 @author: Stuart Mumford This file is designed to be imported and ran only via setup.py, hence it's dependency on astropy_helpers which will be available in that context. """ from __future__ import absolute_import, division, print_function import os from astropy_helpers.commands.test import AstropyTest from astropy_helpers.compat import _fix_user_options class SunPyTest(AstropyTest): description = 'Run the tests for this package' user_options = [ # Package to test ('package=', 'P', "The name of a specific package to test, e.g. 'io' or 'utils'. " "If nothing is specified, all default tests are run."), # Print all the things ('verbose-results', 'V', 'Turn on verbose output from pytest.'), # plugins to enable ('plugins=', 'p', 'Plugins to enable when running pytest.'), # Run online tests? ('online', 'R', 'Also run tests that do require a internet connection.'), # Run only online tests? ('online-only', None, 'Only run test that do require a internet connection.'), # Run tests that check figure generation ('figure', None, 'Run tests that compare figures against stored hashes.'), # Calculate test coverage ('coverage', 'c', 'Create a coverage report. Requires the coverage package.'), ('cov-report=', None, 'Specify the type of coverage report to generate. (Default terminal)'), # Run tests in parallel ('parallel=', 'j', 'Run the tests in parallel on the specified number of ' 'CPUs. If negative, all the cores on the machine will be ' 'used. Requires the pytest-xdist plugin.'), # Pass additional cli args to pytest ('args=', 'a', 'Additional arguments to be passed to pytest.') ] user_options = _fix_user_options(user_options) package_name = '' def initialize_options(self): self.package = '' #self.test_path = None self.verbose_results = False self.plugins = None self.args = None self.online = False self.online_only = False self.figure = False self.coverage = False self.cov_report = 'term' if self.coverage else None self.docs_path = os.path.abspath('doc') self.parallel = 0 self.temp_root = None def _validate_required_deps(self): """ This method checks that any required modules are installed before running the tests. """ try: import sunpy except ImportError: raise ImportError( "The 'test' command requires the sunpy package to be " "installed and importable.") def generate_testing_command(self): """ Build a Python script to run the tests. """ cmd_pre = '' # Commands to run before the test function cmd_post = '' # Commands to run after the test function if self.coverage: pre, post = self._generate_coverage_commands() cmd_pre += pre cmd_post += post online = self.online offline = not self.online_only cmd = ('{cmd_pre}{0}; import {1.package_name}, sys; result = (' '{1.package_name}.self_test(' 'modulename={1.package!r}, ' 'args={1.args!r}, ' 'verbose={1.verbose_results!r}, ' 'parallel={1.parallel!r}, ' 'online={online!r}, ' 'offline={offline!r}, ' 'figure={figure!r}, ' 'coverage={1.coverage!r}, ' 'cov_report={1.cov_report!r})); ' '{cmd_post}' 'sys.exit(result)') x = cmd.format('pass', self, online=online, offline=offline, figure=self.figure, cmd_pre=cmd_pre, cmd_post=cmd_post) return x
bsd-2-clause
7,418,370,620,876,246,000
32.804878
80
0.550505
false
4.340292
true
false
false
johnlinp/telegram-good-timing-bot
goodtiming/core/bot.py
1
1942
import goodtiming.core.i18n from goodtiming.core.parser import CompositeParser from goodtiming.core.processor import CompositeProcessor from goodtiming.core.renderer import CompositeRenderer import goodtiming.core.database import goodtiming.modules.addtodo import goodtiming.modules.reporttiming import goodtiming.modules.done import goodtiming.modules.show import goodtiming.modules.huh class Bot: def __init__(self, language): self.database = goodtiming.core.database.Database() modules = [ goodtiming.modules.addtodo.AddTodoModule(), goodtiming.modules.reporttiming.ReportTimingModule(), goodtiming.modules.done.DoneModule(), goodtiming.modules.show.ShowModule(), goodtiming.modules.huh.HuhModule(), ] sub_parsers = [] sub_processors = [] sub_renderers = [] for module in modules: sub_parsers.extend(module.parsers()) sub_processors.extend(module.processors()) sub_renderers.extend(module.renderers()) self.parser = CompositeParser(sub_parsers) self.processor = CompositeProcessor(sub_processors) self.renderer = CompositeRenderer(sub_renderers) def start(self, doer_id): try: self.database.execute('INSERT INTO doer (doer_id) VALUES (%s)', (doer_id,)) except goodtiming.core.database.DatabaseUniqueViolation: pass return _('Welcome!\nType \"buy some socks when I am at grocery store\" or type /help to see the usage.') def help(self): return _('I can understand the following patterns:\n\n1. <do something> when I am <some timing>\n2. I am <some timing>\n3. The one about <something> is done') def chat(self, message, doer_id): request = self.parser.parse(message) response = self.processor.process(request, doer_id) return self.renderer.render(response)
bsd-3-clause
-7,889,959,222,115,885,000
35.641509
166
0.677652
false
3.995885
false
false
false
pjdelport/django
django/contrib/auth/tests/context_processors.py
5
6705
import os from django.conf import global_settings from django.contrib.auth import authenticate from django.contrib.auth.tests.utils import skipIfCustomUser from django.contrib.auth.models import User, Permission from django.contrib.contenttypes.models import ContentType from django.contrib.auth.context_processors import PermWrapper, PermLookupDict from django.db.models import Q from django.test import TestCase from django.test.utils import override_settings class MockUser(object): def has_module_perms(self, perm): if perm == 'mockapp': return True return False def has_perm(self, perm): if perm == 'mockapp.someperm': return True return False class PermWrapperTests(TestCase): """ Test some details of the PermWrapper implementation. """ class EQLimiterObject(object): """ This object makes sure __eq__ will not be called endlessly. """ def __init__(self): self.eq_calls = 0 def __eq__(self, other): if self.eq_calls > 0: return True self.eq_calls += 1 return False def test_permwrapper_in(self): """ Test that 'something' in PermWrapper works as expected. """ perms = PermWrapper(MockUser()) # Works for modules and full permissions. self.assertTrue('mockapp' in perms) self.assertFalse('nonexisting' in perms) self.assertTrue('mockapp.someperm' in perms) self.assertFalse('mockapp.nonexisting' in perms) def test_permlookupdict_in(self): """ No endless loops if accessed with 'in' - refs #18979. """ pldict = PermLookupDict(MockUser(), 'mockapp') with self.assertRaises(TypeError): self.EQLimiterObject() in pldict @skipIfCustomUser @override_settings( TEMPLATE_DIRS=( os.path.join(os.path.dirname(__file__), 'templates'), ), USE_TZ=False, # required for loading the fixture PASSWORD_HASHERS=('django.contrib.auth.hashers.SHA1PasswordHasher',), ) class AuthContextProcessorTests(TestCase): """ Tests for the ``django.contrib.auth.context_processors.auth`` processor """ urls = 'django.contrib.auth.tests.urls' fixtures = ['context-processors-users.xml'] @override_settings( MIDDLEWARE_CLASSES=global_settings.MIDDLEWARE_CLASSES, TEMPLATE_CONTEXT_PROCESSORS=global_settings.TEMPLATE_CONTEXT_PROCESSORS, ) def test_session_not_accessed(self): """ Tests that the session is not accessed simply by including the auth context processor """ response = self.client.get('/auth_processor_no_attr_access/') self.assertContains(response, "Session not accessed") @override_settings( MIDDLEWARE_CLASSES=global_settings.MIDDLEWARE_CLASSES, TEMPLATE_CONTEXT_PROCESSORS=global_settings.TEMPLATE_CONTEXT_PROCESSORS, ) def test_session_is_accessed(self): """ Tests that the session is accessed if the auth context processor is used and relevant attributes accessed. """ response = self.client.get('/auth_processor_attr_access/') self.assertContains(response, "Session accessed") def test_perms_attrs(self): u = User.objects.create_user(username='normal', password='secret') u.user_permissions.add( Permission.objects.get( content_type=ContentType.objects.get_for_model(Permission), codename='add_permission')) self.client.login(username='normal', password='secret') response = self.client.get('/auth_processor_perms/') self.assertContains(response, "Has auth permissions") self.assertContains(response, "Has auth.add_permission permissions") self.assertNotContains(response, "nonexisting") def test_perm_in_perms_attrs(self): u = User.objects.create_user(username='normal', password='secret') u.user_permissions.add( Permission.objects.get( content_type=ContentType.objects.get_for_model(Permission), codename='add_permission')) self.client.login(username='normal', password='secret') response = self.client.get('/auth_processor_perm_in_perms/') self.assertContains(response, "Has auth permissions") self.assertContains(response, "Has auth.add_permission permissions") self.assertNotContains(response, "nonexisting") def test_message_attrs(self): self.client.login(username='super', password='secret') response = self.client.get('/auth_processor_messages/') self.assertContains(response, "Message 1") def test_user_attrs(self): """ Test that the lazy objects returned behave just like the wrapped objects. """ # These are 'functional' level tests for common use cases. Direct # testing of the implementation (SimpleLazyObject) is in the 'utils' # tests. self.client.login(username='super', password='secret') user = authenticate(username='super', password='secret') response = self.client.get('/auth_processor_user/') self.assertContains(response, "unicode: super") self.assertContains(response, "id: 100") self.assertContains(response, "username: super") # bug #12037 is tested by the {% url %} in the template: self.assertContains(response, "url: /userpage/super/") # See if this object can be used for queries where a Q() comparing # a user can be used with another Q() (in an AND or OR fashion). # This simulates what a template tag might do with the user from the # context. Note that we don't need to execute a query, just build it. # # The failure case (bug #12049) on Python 2.4 with a LazyObject-wrapped # User is a fatal TypeError: "function() takes at least 2 arguments # (0 given)" deep inside deepcopy(). # # Python 2.5 and 2.6 succeeded, but logged internally caught exception # spew: # # Exception RuntimeError: 'maximum recursion depth exceeded while # calling a Python object' in <type 'exceptions.AttributeError'> # ignored" query = Q(user=response.context['user']) & Q(someflag=True) # Tests for user equality. This is hard because User defines # equality in a non-duck-typing way # See bug #12060 self.assertEqual(response.context['user'], user) self.assertEqual(user, response.context['user'])
bsd-3-clause
-3,832,255,872,866,182,000
38.910714
81
0.646085
false
4.328599
true
false
false
mcouthon/benes
core/matrix.py
1
9583
import math import numpy from numpy import linalg as LA import sympy from sympy.core.symbol import Dummy from sympy.simplify.simplify import nsimplify import calculations import itertools import q_vec #import scipy #import scipy.linalg class matrix_factory(object): @staticmethod def get_probability_matrix(n, q, isSymbolic): """ :param n: vector size :param q: tuple size :param isSymbolic: determines wether caclulcation will be Symbolic or float128 precision :return: returns a matrix instace of size (n)_q with benesh probabilities """ matrix_instance = matrix() matrix_instance.n = n matrix_instance.q = q size = int(math.floor(math.factorial(n) / math.factorial(n-q))) # (n)_q matrix_instance.r = size # rows matrix_instance.c = size # cols matrix_instance.isSymbolic = isSymbolic matrix_instance.matrix_type = 'BENESH' if (isSymbolic == True): # choose matrix type matrix_instance.m=sympy.Matrix(numpy.zeros([matrix_instance.r,matrix_instance.c])) else: matrix_instance.m=numpy.zeros([matrix_instance.r,matrix_instance.c],dtype=numpy.float64) matrix_instance.indicesToVectors = [] matrix_instance.vectorsToIndices = {} i = 0 # build map vector <-> matrix index for v in itertools.permutations(range(n), q): matrix_instance.indicesToVectors.append(v) matrix_instance.vectorsToIndices[v] = i i = i + 1 for i in range(0, matrix_instance.r): # init matrix with base values alpha = matrix_instance.indicesToVectors[i] for j in range(0, matrix_instance.c): beta = matrix_instance.indicesToVectors[j] matrix_instance.m[i, j] = calculations.calculate_benes(alpha, beta, n) return matrix_instance @staticmethod def get_probability_disk_matrix(n, q, isSymbolic): """ using disk memory and not RAM memory. :param n: vector size :param q: tuple size :param isSymbolic: determines wether caclulcation will be Symbolic or float128 precision :return: returns a matrix instace of size (n)_q with benesh probabilities """ import h5py matrix_instance = matrix() matrix_instance.n = n matrix_instance.q = q size = int(math.floor(math.factorial(n) / math.factorial(n-q))) # (n)_q matrix_instance.r = size # rows matrix_instance.c = size # cols matrix_instance.isSymbolic = isSymbolic matrix_instance.matrix_type = 'BENESH' if (isSymbolic == True): # choose matrix type matrix_instance.m=sympy.Matrix(numpy.zeros([matrix_instance.r,matrix_instance.c])) else: f = h5py.File("/tmp/mytestfile.hdf5", "w") matrix_instance.f = f matrix_instance.m = f.create_dataset("mydataset", (matrix_instance.r,matrix_instance.c), dtype=numpy.float64) # numpy.zeros([matrix_instance.r,matrix_instance.c],dtype=numpy.float64) matrix_instance.indicesToVectors = [] matrix_instance.vectorsToIndices = {} i = 0 # build map vector <-> matrix index for v in itertools.permutations(range(n), q): matrix_instance.indicesToVectors.append(v) matrix_instance.vectorsToIndices[v] = i i = i + 1 for i in range(0, matrix_instance.r): # init matrix with base values alpha = matrix_instance.indicesToVectors[i] for j in range(0, matrix_instance.c): beta = matrix_instance.indicesToVectors[j] matrix_instance.m[i, j] = calculations.calculate_benes(alpha, beta, n) return matrix_instance @staticmethod def get_reduced_matrix(n, q, isSymbolic): qv = q_vec.q_vec(n, q) columns = qv.build_reduced_matrix() matrix_instance = matrix() matrix_instance.n = n matrix_instance.q = q if (isSymbolic == True): # choose matrix type matrix_instance.m=sympy.Matrix(numpy.matrix(columns)) else: matrix_instance.m=numpy.matrix(columns) #matrix_instance.m = numpy.matrix(columns) size = int(math.floor(math.factorial(n) / math.factorial(n-q))) # (n)_q matrix_instance.r = len(columns) # rows matrix_instance.c = len(columns) # cols matrix_instance.isSymbolic = isSymbolic matrix_instance.matrix_type = 'REDUCED' return matrix_instance class matrix(object): """ matrix class, wrapper for linear algebra calculations in the project """ def __init__(self): return def get_size(self): return self.r def get_symbol_by_index(self,i): return self.indicesToVectors[i] def get_probability_for_symbols(self, t1, t2): """ return the probability to move from symbol (q-tuple or type) , from the matrix :param t1: symbolic tuple (q-tuple or type) :param t2: :return: """ if (self.matrix_type == 'BENESH'): i = self.vectorsToIndices[t1] j = self.vectorsToIndices[t2] elif (self.matrix_type == 'REDUCED'): i = 0; j = 0; return self.m[i,j] def get_eigenvalues(self): """ returns the eigenvalues of the matrix, using the appropriate libraries, based on the symbolism :return: """ if (self.isSymbolic == True): w = self.m.eigenvals() else: w,v = LA.eigh(self.m) #w,v = scipy.linalg.eig(self.m) return w; def get_diagonal(self): """ returns the diagonal form of the matrix :return: """ if (self.isSymbolic == True): P, D = self.m.diagonalize(); return D else: w, v = LA.eigh(self.m) P = numpy.matrix(v) D = numpy.transpose(P) * self.m * P return D def getMatrixPower(self, p, compute_diagonal=True): """ Diagonlizes the matrix, and exponentiates it efficiently. returns the matrix p-th power. :param p: :return: """ if compute_diagonal: if (self.isSymbolic == False): w, v = LA.eigh(self.m) P = numpy.matrix(v) D = numpy.transpose(P) * self.m * P for i in range (0,self.r): D[i,i]=pow(D[i,i],p) D = P * D * numpy.transpose(P) return D else: P, D = self.m.diagonalize(); for i in range (0,self.r): D[i,i]=pow(D[i,i],p) D = P * D * P^(-1) return D else: return self.m^p def get_eigenvalue_set(self): """ returns a set of eigenvalues for the matrix :return: """ return set(self.get_eigenvalues()) def get_round_eigevalue_set(self): """ returns a set of rounded (decimal precsion) eigenvalues :return: :return: """ if (self.isSymbolic == True): return self.get_eigenvalues() else: return set(numpy.round(self.get_eigenvalues(), 4)) """ Benesh probabilities utils """ @staticmethod def fromBaseN(n,t): """ :param n: - the base :param t: - tuple representin coordinates in base n :return: - decimal number """ sum = 0 p = len(t) - 1 for i in t: sum += i*(pow(n,p)) p = p - 1 return sum @staticmethod def toBaseN(n,q,d): """ :param n: base we work in :param q: number of digits in the vector :param d: decimal number to move to new base as tuple :return: """ l = [0]*(q) for i in range(0,q): l[i] = int(d%n) d=math.floor(d/n) l.reverse() return tuple(l) def custom_charpoly(self, **flags): """ custom charpoly """ if (self.isSymbolic == True): self.m = self.m._new(self.m.rows, self.m.cols,[nsimplify(v, rational=True) for v in self.m]) max_denom = 0; for i in range (0,self.m.rows): for j in range (0,self.m.cols): if self.m[i,j] > max_denom: max_denom = self.m[i,j].q print max_denom self.m *= max_denom flags.pop('simplify', None) # pop unsupported flag return self.m.berkowitz_charpoly(Dummy('x')) else: numpy.rint(self.m) return numpy.rint(numpy.poly(self.m))
gpl-3.0
-6,711,100,729,631,826,000
33.471223
110
0.514244
false
4.033249
false
false
false
sidnarayanan/BAdNet
train/images/utils.py
1
3654
import numpy as np # import seaborn from collections import namedtuple from keras import backend as K from keras.engine.topology import Layer from scipy.interpolate import interp1d ## Loss functions dice_smooth = 1. def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + dice_smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + dice_smooth) def dice_coef_loss(y_true, y_pred): return -dice_coef(y_true, y_pred) ## Layers and ops ## plotting tools # class H1: # '''Wrapper around numpy histogram # ''' # def __init__(self,hist): # self.bin_edges = hist[1] # self.n_bins = self.bin_edges.shape[0]-1 # self.content = hist[0] # def find_bin(self,x): # if x < self.bin_edges[0]: # return -1 # for ib in self.xrange(self.n_bins): # if x>= self.bin_edges[ib]: # return ib # return self.n_bins # def get_bin(self,ib): # if ib<0 or ib>=self.n_bins: # return 0 # return self.content[ib] # def integral(self,lo=None,hi=None): # if not lo: # lo = 0 # if not hi: # hi = self.n_bins # widths = np.diff(self.bin_edges[lo:hi+1]) # return np.sum(self.content[lo:hi] * widths) # # # def plot_hists(props, hists): # plt.clf() # bins = props['bins'] # for h in hists: # plt.hist(h['vals'], bins=bins, weights=h['weights']/np.sum(h['weights']), # histtype='step', # fill=False, # color=h['color'], label=h['label']) # if 'xlabel' in props: # plt.xlabel(props['xlabel']) # if 'ylabel' in props: # plt.ylabel(props['ylabel']) # plt.legend(loc=0) # plt.savefig(props['output']+'.png',bbox_inches='tight',dpi=300) # plt.savefig(props['output']+'.pdf',bbox_inches='tight') # # # # Tagger = namedtuple('Tagger',['response','name','lo','hi','flip']) # # def create_roc(taggers, labels, weights, output, nbins=50): # colors = ['k','r','g','b'] # plt.clf() # wps = [] # for t in taggers: # color = colors[0] # del colors[0] # h_sig = H1(np.histogram(t.response[labels==1], # weights=weights[labels==1], # bins=nbins,range=(t.lo,t.hi), # density=True)) # h_bkg = H1(np.histogram(t.response[labels==0], # weights=weights[labels==0], # bins=nbins,range=(t.lo,t.hi), # density=True)) # # epsilons_sig = [] # epsilons_bkg = [] # for ib in xrange(nbins): # if t.flip: # esig = h_sig.integral(hi=ib) # ebkg = h_bkg.integral(hi=ib) # else: # esig = h_sig.integral(lo=ib) # ebkg = h_bkg.integral(lo=ib) # epsilons_sig.append(esig) # epsilons_bkg.append(ebkg) # # interp = interp1d(epsilons_bkg, # np.arange(t.lo,t.hi,float(t.hi-t.lo)/nbins)) # wps.append(interp(0.05)) # # plt.plot(epsilons_sig, epsilons_bkg, color+'-',label=t.name) # plt.axis([0,1,0.001,1]) # plt.yscale('log') # plt.legend(loc=0) # plt.ylabel('Background fake rate') # plt.xlabel('Signal efficiency') # plt.savefig(output+'.png',bbox_inches='tight',dpi=300) # plt.savefig(output+'.pdf',bbox_inches='tight') # # return wps
mit
6,423,772,911,152,429,000
31.336283
96
0.511768
false
2.886256
false
false
false
nicolashainaux/mathmaker
mathmaker/lib/document/content/geometry/intercept_theorem_butterfly.py
1
10506
# -*- coding: utf-8 -*- # Mathmaker creates automatically maths exercises sheets # with their answers # Copyright 2006-2017 Nicolas Hainaux <nh.techn@gmail.com> # This file is part of Mathmaker. # Mathmaker is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # any later version. # Mathmaker is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Mathmaker; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import random from mathmaker.lib import shared from mathmaker.lib.tools.wording import setup_wording_format_of from mathmaker.lib.core.root_calculus import Value from mathmaker.lib.core.base_calculus import Item from mathmaker.lib.document.content import component ALL_LENGTHS_TO_CALCULATE = ['oneside', 'twosides'] class sub_object(component.structure): def __init__(self, build_data, picture='true', **options): super().setup("minimal", **options) if build_data[0] < 11: raise ValueError('build_data[0] == {} whereas it should be ' '>= 11'.format(str(build_data[0]))) build_data = (build_data[0] / 10, ) + build_data[1:] super().setup("numbers", nb=build_data, shuffle_nbs=False, **options) super().setup("length_units", **options) super().setup("intercept_theorem_figure", butterfly=True, **options) if self.variant == 'default': variant = ['random', 'random'] else: if self.variant.count('_') != 1: raise ValueError('XMLFileFormatError: the variant for ' 'intercept_theorem_butterfly ' 'shoud contain one _') variant = self.variant.split(sep='_') valid_variant = [['random', 'oneside', 'twosides'], ['random', 'all', 'twocouples']] for v, valid, n in zip(variant, valid_variant, ['first', 'second', 'third']): if v not in valid: raise ValueError('XMLFileFormatError: Invalid {} part of the ' 'variant. It should be in: {}' .format(n, str(valid))) if variant[0] == 'random': if variant[1] == 'twocouples': variant[0] = 'oneside' else: variant[0] = random.choice(['oneside', 'twosides']) if variant[1] == 'random': if variant[0] == 'twosides': variant[1] = 'twocouples' else: variant[1] == random.choice(['all', 'twocouples']) if variant == ['twosides', 'twocouples']: raise ValueError('XMLFileFormatError: The twosides_twocouples ' 'variant is impossible.') # The order is: # small[0] small[1] small[2] side[0] side[1] side[2] labels_configurations = { 'oneside_all': [ ['?', True, True, True, True, True], [True, '?', True, True, True, True], [True, True, '?', True, True, True], [True, True, True, '?', True, True], [True, True, True, True, '?', True], [True, True, True, True, True, '?'] ], 'oneside_twocouples': [ ['?', True, False, True, True, False], [False, True, '?', False, True, True], [True, True, False, True, '?', False], [False, True, True, False, '?', True], ['?', False, True, True, False, True], [True, False, '?', True, False, True], [True, '?', False, True, True, False], [False, '?', True, False, True, True], [False, True, True, False, True, '?'], [True, True, False, '?', True, False], [True, False, True, True, False, '?'], [True, False, True, '?', False, True], ], 'twosides_all': [ ['?', '?', True, True, True, True], ['?', True, '?', True, True, True], [True, '?', '?', True, True, True], ['?', True, True, True, '?', True], ['?', True, True, True, True, '?'], [True, '?', True, '?', True, True], [True, '?', True, True, True, '?'], [True, True, '?', True, '?', True], [True, True, '?', '?', True, True], [True, True, True, '?', '?', True], [True, True, True, '?', True, '?'], [True, True, True, True, '?', '?'], ] } variant_key = '_'.join(variant) labels_conf = random.choice(labels_configurations[variant_key]) self.figure.setup_labels(labels_conf, segments_list=self.figure.small + self.figure.side) lengths_to_calculate = [s.length_name for s in self.figure.small + self.figure.side if s.label == Value('?')] self.line1 = self.figure.small[1].length_name self.line2 = self.figure.side[1].length_name self.length1_name = lengths_to_calculate[0] if len(lengths_to_calculate) == 2: self.length2_name = lengths_to_calculate[1] if len(lengths_to_calculate) == 1: self.wording = _('The drawn figure is out of shape. {newline} ' 'The lengths are given in {length_unit}. ' '{newline} ' 'The {line1} is parallel to {line2}. {newline} ' '{newline} ' 'Determine the length of {length1_name}.') else: self.wording = _('The drawn figure is out of shape. {newline} ' 'The lengths are given in {length_unit}. ' '{newline} ' 'The {line1} is parallel to {line2}. {newline} ' '{newline} ' 'Determine the lengths of {length1_name} ' 'and {length2_name}.') setup_wording_format_of(self) self.ratios = shared.machine.write_math_style1( self.figure.ratios_equalities().into_str()) self.ratios_substituted = shared.machine.write_math_style1( self.figure.ratios_equalities_substituted().into_str()) self.resolution0 = self.figure.ratios_equalities_substituted()\ .into_crossproduct_equation(Item(lengths_to_calculate[0]))\ .auto_resolution(dont_display_equations_name=True, skip_first_step=True, skip_fraction_simplification=True, decimal_result=2, unit=self.length_unit, underline_result=True) lengths_resolutions_part = _('hence: {resolution0} ') if len(lengths_to_calculate) == 2: self.resolution1 = self.figure.ratios_equalities_substituted()\ .into_crossproduct_equation(Item(lengths_to_calculate[1]))\ .auto_resolution(dont_display_equations_name=True, skip_first_step=True, skip_fraction_simplification=True, decimal_result=2, unit=self.length_unit, underline_result=True) lengths_resolutions_part = shared.machine.write( lengths_resolutions_part + _('and: {resolution1} '), multicolumns=2) ans_variant = options.get('ans_variant', 'default') ans_texts = { 'default': _('As: {line1} {parallel_to} {line2}, ' '{main_vertex_name} {belongs_to} {chunk0_length_name}' ' and ' '{main_vertex_name} {belongs_to} {chunk1_length_name}' ', then by the intercept theorem: {newline} ' '{ratios} ' 'thus: {ratios_substituted} '), 'alternative1': _('As {line1} is parallel to {line2}, ' 'and as the line {chunk0_length_name} cuts ' 'the line {chunk1_length_name} at point ' '{main_vertex_name}, ' 'then by the intercept theorem: {newline} ' '{ratios} ' 'thus: {ratios_substituted} '), 'alternative2': _('As: {line1} is parallel to {line2}, ' 'and as {point0_name}, {main_vertex_name} and ' '{vertex1_name} on one hand, ' '{point1_name}, {main_vertex_name} and ' '{vertex2_name} on the other hand,' 'are aligned in the same order, ' 'then by the intercept theorem: {newline} ' '{ratios} ' 'thus: {ratios_substituted} ') } self.answer_wording = ans_texts[ans_variant] + lengths_resolutions_part setup_wording_format_of(self, w_prefix='answer_') def q(self, **options): return shared.machine.write_layout( (1, 2), [10, 10], [self.wording.format(**self.wording_format), shared.machine.insert_picture(self.figure, scale=0.7, top_aligned_in_a_tabular=True)]) def a(self, **options): return self.answer_wording.format(**self.answer_wording_format) # TODO: create the "js" answer (for interactive pdf) # def js_a(self, **kwargs): # return [self......jsprinted]
gpl-3.0
337,846,521,828,428,540
45.078947
79
0.488007
false
4.199041
false
false
false
ireapps/coding-for-journalists
6_from_apis/completed/fun_with_sqlite_done.py
1
1985
# SQLite is a lightweight database manager that's part of Python's standard # library, so it's a good example of how to hook a script up to a database. # If you work in MySQL or Postgres, there are libraries you can use to make # a connection and gain similar functionality. import sqlite3 # Connect to a test database; if one doesn't exist, it will be created on # the fly. We also fire up a cursor to poke, prod and manipulate our # database. conn = sqlite3.connect('my_test.sqlite') c = conn.cursor() # Right now it's an empty database with no tables and no data. Let's create # basic one that holds some CEO information. c.execute( 'CREATE TABLE ceos ' '(ceo_name text, company text, salary int)') # NOTE: with scripts, somestimes it's a good idea to preface a CREATE # TABLE query with IF NOT EXISTS, that way you won't get an operational # error. # Let's insert three CEO names, companies and salaries into our ceos table. c.execute( "INSERT INTO ceos " "VALUES ('John Smith', 'Acme, Inc.', '275000'), " "('Libby Rogers', 'AstroTech', '1200000'), " "('Darla Jones', 'Ballard Partners', '942000')") # When we alter a table, we have to commit those changes. conn.commit() # Let's run a quick query that gives us everything in the table. c.execute( "SELECT * FROM ceos") # The database has run the query and gives it back to use as a list of tuples # for each row. We have to fetch this information. result = c.fetchall() print result # Try fetchall() again; it should be empty and will be until we run another # query. c.fetchall() # Let's try another basic query: a sum of the salaries. c.execute( "SELECT SUM(salary) FROM ceos") result2 = c.fetchall() print result2 # One more: companies that start with 'A,' sorted in descending order by # salary c.execute( "SELECT * FROM ceos " "WHERE company LIKE 'A%' " "ORDER BY salary DESC") result3 = c.fetchall() print result3
mit
9,214,594,952,591,105,000
32.083333
77
0.689673
false
3.550984
false
false
false
bearing/dosenet-analysis
D3S_analysis/radon_variation_analysis.py
1
19367
import importlib import io import os import csv import math import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path import matplotlib.dates as mdates from dateutil.parser import parse from datetime import datetime from datetime import timedelta # Python 2 and 3: easiest option from future.standard_library import install_aliases install_aliases() from urllib.parse import urlparse, urlencode from urllib.request import urlopen, Request from urllib.error import HTTPError import pytz from matplotlib.backends.backend_pdf import PdfPages import weather_data_tools as weather importlib.reload(weather) import spectra_fitting_tools as fitter importlib.reload(fitter) #--------------------------------------------------------------------------# # Process input data #--------------------------------------------------------------------------# def make_int(lst): ''' Makes all entries of a list an integer ''' y = [] for i in lst: y.append(int(i)) return y def make_array(lst): ''' Makes list into an array. Also splices out the irrelevant stuff for a spectra ''' y = np.asarray(make_int(lst[12:])) return y def get_times(rows, n, tstart, tstop): ''' Get list of times for data: determines time as the midpoint between the upper and lower bounds in the integration window Arguments: - full list of inputs from data csv - number of hours to integrate for each data point - start/stop dates Returns: - list of times ''' ndays = (tstop - tstart).days entries = 12*n nintervals = (24/n) i = 0 counter = 0 times = [] while counter < ndays*nintervals: integration = rows[(i*entries)+1:((i+1)*entries)+1] i+=1 time_range = [] datatz = parse(integration[-1][1]).tzinfo if (parse(integration[-1][1])<tstop.replace(tzinfo=datatz)) and \ (parse(integration[0][1])>tstart.replace(tzinfo=datatz)): for j in integration: time_range.append(parse(j[1])) times.append(time_range[int(len(time_range)/2)]) counter+=1 return times def get_arrays(values_w_errs): vals = np.asarray([i[0] for i in values_w_errs]) errs = np.asarray([i[1] for i in values_w_errs]) return vals,errs def varify_data(means,sigmas,amps): # check for bad fits and use average of surrounding good fits for i in range(len(means)): if means[i][1] > 100 or math.isnan(means[i][0]): print('Fit {} is bad!'.format(i)) j = 1 k = 1 if i<(len(means)-j): while means[i+j][1] > 100: j += 1 print('Trying {}+{} out of {}'.format(i,j,len(means))) if i >= (len(means)-j): print('Abort!') break if i>k: while means[i-k][1] > 100 or math.isnan(means[i-k][0]): k += 1 if i<k: break if i>k and i<(len(means)-j): print('Averaging over {} and {}'.format(i-k,i+j)) means[i][0] = (means[i+j][0]+means[i-k][0])/2.0 means[i][1] = (means[i+j][1]+means[i-k][1])/2.0 sigmas[i][0] = (sigmas[i+j][0]+sigmas[i-k][0])/2.0 sigmas[i][1] = (sigmas[i+j][1]+sigmas[i-k][1])/2.0 amps[i][0] = (amps[i+j][0]+amps[i-k][0])/2.0 amps[i][1] = (amps[i+j][1]+amps[i-k][1])/2.0 elif i<k and i<(len(means)-j): print('Using {}'.format(i+j)) means[i][0] = means[i+j][0] means[i][1] = means[i+j][1] sigmas[i][0] = sigmas[i+j][0] sigmas[i][1] = sigmas[i+j][1] amps[i][0] = amps[i+j][0] amps[i][1] = amps[i+j][1] elif i>k and i>=(len(means)-j): print('Using {}'.format(i-k)) means[i][0] = means[i-k][0] means[i][1] = means[i-k][1] sigmas[i][0] = sigmas[i-k][0] sigmas[i][1] = sigmas[i-k][1] amps[i][0] = amps[i-k][0] amps[i][1] = amps[i-k][1] else: print('Nothing makes sense') return means,sigmas,amps def find_time_match(times,time,delta): first = 0 last = len(times)-1 found = False index = -1 if not time.tzinfo: time = time.replace(tzinfo=times[0].tzinfo) while first<=last and not found: midpoint = int((first + last)/2) list_time = times[midpoint] if not list_time.tzinfo: list_time = list_time.replace(tzinfo=time.tzinfo) if abs(list_time-time) < delta : index = midpoint found = True else: if time < list_time: last = midpoint-1 else: first = midpoint+1 return index def SelectDataTimeRange(start_time,stop_time,data,times): dataarray = np.array(data) timesarray = np.array(times) indices = np.where((timesarray>=start_time)&(timesarray<=stop_times)) subdata = dataarray[indices] subdatatimes = timesarray[indices] return subdata, subdatatimes def merge_data(times1,data1,times2,data2): merged_data1 = [] merged_data2 = [] merged_times = [] for i in range(len(times1)): time_index = find_time_match(times2,times1[i],timedelta(minutes=30)) if time_index >= 0: merged_data1.append(data1[i]) merged_data2.append(data2[time_index]) merged_times.append(times1[i]) return merged_times,merged_data1,merged_data2 def inTimeRange(time_string,tstart,tstop): time = tstart - timedelta(minutes=1) if isinstance(time_string, str): try: time = parse(time_string) except: print('{} Not a time!'.format(time_string)) return False elif isinstance(time_string, datetime): time = time_string # check that tzinfo is set for tz aware comparisons if tstart.tzinfo==None: tstart = tstart.replace(tzinfo=time.tzinfo) if tstop.tzinfo==None: tstop = tstop.replace(tzinfo=time.tzinfo) #print('Checking {} > {} and < {} = {}'.format(time,tstart,tstop,(time > tstart and time < tstop))) return (time > tstart and time < tstop) def get_spectra(rows, nhours, tstart, tstop): datatz = rows[-1][1].tzinfo date_itr = tstart times = [] spectra = [] counter = 0 # break data up into days to speed up range selection while date_itr < tstop: next_day = date_itr+timedelta(days=1) daily_row = [row for row in rows if \ inTimeRange(row[1],date_itr,next_day)] time_itr = date_itr date_itr = next_day while time_itr < date_itr: time_next = time_itr+timedelta(hours=nhours) integration = [row for row in rows if \ inTimeRange(row[1],time_itr,time_next)] time_itr = time_next if len(integration)==0: continue array_lst = [] for j in integration: array_lst.append(make_array(j)) integrated = sum(array_lst) spectra.append(integrated) times.append(integration[int(len(integration)/2)][1]) return times, spectra def get_calibrations(spectra, fit_function, fit_args): counter = 0 calibrations = [] calibration_errs = [] energy_spectra = [] last_calib = 2.5 # default calibration last_err = 0 for spectrum in spectra: mean,simga,amp = fit_function(spectrum,counter,*fit_args) calib = (1460)/(mean[0]) calib_err = (1460)/(mean[0])**2*np.sqrt(mean[1]**2) if calib < 0 or calib > 10 or math.isnan(calib): print('invalid calibration {}, using {}'.format(calib,last_calib)) calib = last_calib calib_err = last_err else: last_calib = calib last_err = calib_err calibrations.append(calib) calibration_errs.append(calib_err) energy_spectrum = np.array(spectrum)*calib energy_spectra.append(energy_spectrum) counter += 1 return calibrations, calibration_errs def calibrate_spectra(spectra, calibrations, times, nsum): E_spectra = [] bin_times = [] spectra_sum = [] itimes = [] isum = 0 for i in range(len(spectra)): # list of energies = channel number * calibration (assume linear) energies = np.array(range(len(spectra[i])))*calibrations[i] print(energies) spectrum = np.zeros(600) for j in range(len(spectra[i])): count = spectra[i][j] # energy bin width = 5keV index = int(energies[j]/5) spectrum[index] += count if isum < nsum: spectra_sum.append(spectrum) itimes.append(times[i]) isum += 1 else: E_spectra.append(sum(spectra_sum)) bin_times.append(itimes[int(len(itimes)/2)]) itimes = [] spectra_sum = [] isum = 0 return E_spectra, bin_times def get_peak_fits(spectra, fit_function, fit_args): means = [] sigmas = [] amps = [] counter = 0 for spectrum in spectra: mean,sigma,amp = fit_function(spectrum,counter,*fit_args) means.append(mean) sigmas.append(sigma) amps.append(amp) counter += 1 means,sigmas,amps = varify_data(means,sigmas,amps) return means,sigmas,amps def get_peaks(rows, nhours, tstart, tstop, fit_function, fit_args): ''' Applies double gaussian + expo fits to all data over some range of time Arguments: - full list of csv data input rows - number of hours to integrate each calculation over - start/stop times to run over - peak fitting method - arguments to be fed to the peak fitting method Returns: - lists of means,sigmas,amps from all gaussian fits - each entry in list includes the value and uncertainty ''' datatz = rows[-1][1].tzinfo date_itr = tstart times = [] means = [] sigmas = [] amps = [] counter = 0 # break data up into days to speed up range selection while date_itr < tstop: next_day = date_itr+timedelta(days=1) daily_row = [row for row in rows if \ inTimeRange(row[1],date_itr,next_day)] time_itr = date_itr date_itr = next_day while time_itr < date_itr: time_next = time_itr+timedelta(hours=nhours) integration = [row for row in rows if \ inTimeRange(row[1],time_itr,time_next)] time_itr = time_next if len(integration)==0: continue array_lst = [] for j in integration: array_lst.append(make_array(j)) integrated = sum(array_lst) mean,sigma,amp = fit_function(integrated,counter,*fit_args) counter += 1 means.append(mean) sigmas.append(sigma) amps.append(amp) times.append(integration[int(len(integration)/2)][1]) means,sigmas,amps = varify_data(means,sigmas,amps) return times,means,sigmas,amps def get_weather_data(location,nhours,start_day,stop_day): tstart = parse(start_day) tstop = parse(stop_day) date_itr = tstart times = [] temps = [] while date_itr < tstop: data = weather.weather_station_data_scrape(location, date_itr) time_itr = date_itr date_itr = date_itr+timedelta(days=1) if not data: print('No weather data for {}'.format(date_itr)) while time_itr < date_itr: time_next = time_itr+timedelta(hours=nhours) integration = [row for row in data if \ inTimeRange(row[0],time_itr,time_next)] time_itr = time_next if len(integration)==0: continue times.append(integration[int(len(integration)/2)][0]) temps.append(np.mean(np.asarray([x[1] for x in integration]))) return times,temps def cut_outliers(array): mean, sigma = get_stats(array) for i in range(len(array)): if (array[i]>mean+5*sigma) or (array[i]<mean-5*sigma): if i > 0 and i < len(array)-1: array[i] = (array[i-1] + array[i+1])/2 elif i==0: if (array[i+1]<mean+5*simga) and (array[i+1]>mean-5*simga): array[i] = array[i+1] else: array[i] = mean elif i==len(array)-1: array[i] = array[i-1] return array def get_stats(array): return np.mean(array), np.sqrt(np.var(array)) def make_plot(points,data,errs,xlbl,ylbl,tstr,style,clr,ymin=0,ymax=0): fig, ax = plt.subplots() fig.patch.set_facecolor('white') plt.title(tstr) plt.xlabel(xlbl) plt.ylabel(ylbl) if ymin and ymax: plt.ylim(ymin,ymax) ax.plot(points,data,style) ax.errorbar(points,data,yerr=errs,fmt=style,ecolor=clr) fig.autofmt_xdate() def import_csv(url,start,stop): print(url) response = urlopen(url) reader = csv.reader(io.TextIOWrapper(response)) rows = [row for row in reader if \ inTimeRange(row[1],parse(start),parse(stop))] print('extracted {} entries from data url'.format(len(rows))) # remove meta data return rows def select_data(rows,start_day,stop_day): tstart = parse(start_day) tstop = parse(stop_day) for row in rows: if isinstance(row[1], str): row[1] = parse(row[1]) rows = [row for row in rows if \ inTimeRange(row[1],tstart,tstop)] times, spectra = get_spectra(rows,1,tstart,tstop) return times,spectra def main(times,spectra,nhours,stationID=0,wtimes=[],temps=[]): #---------------------------------------------------------------------# # Get fit results for ndays integrating over nhours for Potassium #---------------------------------------------------------------------# # single_peak_fit args: channel lims, expo offset, plot flag #args = [210,310,100,False] #args = [180,280,100,True] args = [360,780,7.0,100,False,'K'] calibs,calib_err = get_calibrations(spectra, fitter.single_peak_fit,args) E_spectra, bin_times = calibrate_spectra(spectra,calibs,times,nhours) args = [180,390,7.0,100,False,'K'] K_peaks, K_sigmas, K_amps = get_peak_fits(E_spectra, \ fitter.single_peak_fit,args) #-------------------------------------------------------------------------# # Varify and break apart mean,sigma,amp values and uncertainties #-------------------------------------------------------------------------# K_ch, K_ch_errs = get_arrays(K_peaks) K_sig = [i[0] for i in K_sigmas] K_A = [i[0] for i in K_amps] K_ch_ave, K_ch_var = get_stats(K_ch) K_counts = fitter.get_peak_counts(K_ch,K_sig,K_A) K_count = cut_outliers(K_counts) K_mean, K_var = get_stats(np.asarray(K_counts)) for i in range(len(K_ch)): if abs(K_ch[i]-K_ch_ave) > 3*K_ch_var: print('Bad K-40 fit: peak channel = {}'.format(K_ch[i])) #---------------------------------------------------------------------# # Do the same for Bizmuth-214 #---------------------------------------------------------------------# # double_peak_fit args: channel lims, gaus index, expo offset, plot flag #args = [50,130,1,1,True] if stationID==0: args = [50,130,1,1,False,'Bi'] Bi_peaks,Bi_sigmas,Bi_amps = get_peak_fits(E_spectra, \ fitter.double_peak_fit,args) if stationID==1: args = [90,150,5.0,1,False,'Bi'] Bi_peaks,Bi_sigmas,Bi_amps = get_peak_fits(E_spectra, \ fitter.single_peak_fit,args) Bi_ch, Bi_ch_errs = get_arrays(Bi_peaks) Bi_sig = [i[0] for i in Bi_sigmas] Bi_A = [i[0] for i in Bi_amps] B_ch_ave,B_ch_var = get_stats(Bi_ch) #-------------------------------------------------------------------------# # Process channel data using fit results #-------------------------------------------------------------------------# Bi_counts = fitter.get_peak_counts(Bi_ch,Bi_sig,Bi_A) Bi_counts = cut_outliers(Bi_counts) Bi_mean, Bi_var = get_stats(np.asarray(Bi_counts)) print('K-40 <channel> = {} +/- {}'.format(K_ch_ave,K_ch_var)) print('K-40 <N> = {} +/- {}'.format(K_mean,K_var)) print('Bi-214 <channel> = {} +/- {}'.format(B_ch_ave,B_ch_var)) print('Bi-214 <N> = {} +/- {}'.format(Bi_mean,Bi_var)) #-------------------------------------------------------------------------# # Process weather data #-------------------------------------------------------------------------# # LBL weather station #location = 'KCABERKE89' #location = 'KCABERKE86' #wtimes,temps = get_weather_data(location,nhours,tstart,tstop) times_both,counts,temps = merge_data(bin_times,Bi_counts,wtimes,temps) #-------------------------------------------------------------------------# # Plots of everything we are interested in! #-------------------------------------------------------------------------# make_plot(bin_times,K_counts,np.sqrt(K_counts), \ 'Time','counts','K-40 counts vs Time','go','g') fig_name = '/Users/alihanks/Google Drive/NQUAKE_analysis/D3S/K_counts_{}_5-8.png'.format(stationID) plt.savefig(fig_name) make_plot(times,calibs,calib_err, \ 'Time','keV/channel','keV/channel vs Time','bo','b', \ 2.4,2.6) fig_name = '/Users/alihanks/Google Drive/NQUAKE_analysis/D3S/calibs_{}_5-8.png'.format(stationID) plt.savefig(fig_name) make_plot(bin_times,Bi_counts,np.sqrt(Bi_counts), \ 'Time','counts','Bi-214 counts vs Time','go','g') fig_name = '/Users/alihanks/Google Drive/NQUAKE_analysis/D3S/Bi_counts_{}_5-8.png'.format(stationID) plt.savefig(fig_name) #make_plot(Ktimes,K_ch,K_ch_errs, \ # 'Time','1460 center channel','1460 channel vs Time','ro','r') #make_plot(times,Bi_ch,Bi_ch_errs, \ # 'Time','609 center channel','609 channel vs Time','ro','r', \ # B_ch_ave-10*B_ch_var,B_ch_ave+10*B_ch_var) make_plot(temps,counts,np.sqrt(counts), \ 'Temp (F)','Bi-214 counts','Bi-214 counts vs Temp (F)','ro','r') fig_name = '/Users/alihanks/Google Drive/NQUAKE_analysis/D3S/Bi_counts_vs_T_{}_5-8.png'.format(stationID) plt.savefig(fig_name) plt.show() if __name__ == '__main__': url = 'https://radwatch.berkeley.edu/sites/default/files/dosenet/lbl_outside_d3s.csv' #url = 'https://radwatch.berkeley.edu/sites/default/files/dosenet/etch_roof_d3s.csv' start = '2017-6-6' stop = '2017-5-31' rows = import_csv(url,start,stop) # number of days to look at and hours to integrate for each data point nhours = 1 main(rows,nhours,start,stop)
mit
2,582,159,175,080,987,600
35.132463
124
0.539887
false
3.404887
false
false
false
chienlieu2017/it_management
odoo/addons/mrp/models/stock_picking.py
5
1241
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import fields, models class StockPickingType(models.Model): _inherit = 'stock.picking.type' code = fields.Selection(selection_add=[('mrp_operation', 'Manufacturing Operation')]) count_mo_todo = fields.Integer(compute='_get_mo_count') count_mo_waiting = fields.Integer(compute='_get_mo_count') count_mo_late = fields.Integer(compute='_get_mo_count') def _get_mo_count(self): mrp_picking_types = self.filtered(lambda picking: picking.code == 'mrp_operation') if not mrp_picking_types: return MrpProduction = self.env['mrp.production'] count_mo_waiting = MrpProduction.search_count([('availability', '=', 'waiting')]) count_mo_todo = MrpProduction.search_count([('state', 'in', ('confirmed', 'planned', 'progress'))]) count_mo_late = MrpProduction.search_count(['&', ('date_planned_start', '<', fields.Date.today()), ('state', '=', 'confirmed')]) for picking in mrp_picking_types: picking.count_mo_waiting = count_mo_waiting picking.count_mo_todo = count_mo_todo picking.count_mo_late = count_mo_late
gpl-3.0
8,673,702,273,649,559,000
44.962963
136
0.647059
false
3.693452
false
false
false
orgito/ansible
lib/ansible/modules/remote_management/oneview/oneview_san_manager_facts.py
120
3321
#!/usr/bin/python # Copyright (c) 2016-2017 Hewlett Packard Enterprise Development LP # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: oneview_san_manager_facts short_description: Retrieve facts about one or more of the OneView SAN Managers description: - Retrieve facts about one or more of the SAN Managers from OneView version_added: "2.5" requirements: - hpOneView >= 2.0.1 author: - Felipe Bulsoni (@fgbulsoni) - Thiago Miotto (@tmiotto) - Adriane Cardozo (@adriane-cardozo) options: provider_display_name: description: - Provider Display Name. params: description: - List of params to delimit, filter and sort the list of resources. - "params allowed: - C(start): The first item to return, using 0-based indexing. - C(count): The number of resources to return. - C(query): A general query string to narrow the list of resources returned. - C(sort): The sort order of the returned data set." extends_documentation_fragment: - oneview ''' EXAMPLES = ''' - name: Gather facts about all SAN Managers oneview_san_manager_facts: config: /etc/oneview/oneview_config.json delegate_to: localhost - debug: var=san_managers - name: Gather paginated, filtered and sorted facts about SAN Managers oneview_san_manager_facts: config: /etc/oneview/oneview_config.json params: start: 0 count: 3 sort: name:ascending query: isInternal eq false delegate_to: localhost - debug: var=san_managers - name: Gather facts about a SAN Manager by provider display name oneview_san_manager_facts: config: /etc/oneview/oneview_config.json provider_display_name: Brocade Network Advisor delegate_to: localhost - debug: var=san_managers ''' RETURN = ''' san_managers: description: Has all the OneView facts about the SAN Managers. returned: Always, but can be null. type: dict ''' from ansible.module_utils.oneview import OneViewModuleBase class SanManagerFactsModule(OneViewModuleBase): argument_spec = dict( provider_display_name=dict(type='str'), params=dict(type='dict') ) def __init__(self): super(SanManagerFactsModule, self).__init__(additional_arg_spec=self.argument_spec) self.resource_client = self.oneview_client.san_managers def execute_module(self): if self.module.params.get('provider_display_name'): provider_display_name = self.module.params['provider_display_name'] san_manager = self.oneview_client.san_managers.get_by_provider_display_name(provider_display_name) if san_manager: resources = [san_manager] else: resources = [] else: resources = self.oneview_client.san_managers.get_all(**self.facts_params) return dict(changed=False, ansible_facts=dict(san_managers=resources)) def main(): SanManagerFactsModule().run() if __name__ == '__main__': main()
gpl-3.0
-1,306,415,450,797,404,700
29.46789
110
0.666366
false
3.681818
true
false
false
mendax-grip/cfdemUtilities
foam/getVelocitiesFoam.py
2
3743
# This program converts OpenFOAM raw data for the velocity field to a text file with # both position and velocity vector # # Output format : # position (x y z) and velocity vector # THIS PROGRAM REQUIRES A DIRECTORY U in the main folder # # # Author : Bruno Blais #Python imports #---------------- import os import sys import numpy #---------------- #******************************** # OPTIONS AND USER PARAMETERS #******************************** # readZ=False readShear=True readPseudo=True #Initial time of simulation, final time and time increment must be specified by user t0=0.4 tf=0.4 dT=0.4 #==================== # READERS #==================== #This function reads an OpenFOAM raw for a scalar and extract a table of the data def readfScalar(fname): infile = open(fname,'r') if (infile!=0): #Clear garbage lines for i in range(0,20,1): infile.readline() #Read number of cell centers n=int(infile.readline()) #Pre-allocate memory xu=numpy.zeros([n]) #Clear garbage line "(" infile.readline() #read current property "xu" for i in range(0,n,1): number_str=infile.readline() xu[i]=float(number_str) else: print "File %s could not be opened" %fname infile.close(); return n,xu #This function reads an OpenFOAM raw file for a vector and extracts a table of the data def readfVector(fname): infile = open(fname,'r') if (infile!=0): #Clear garbage lines for i in range(0,20): infile.readline() #Read number of cell centers n=int(infile.readline()) #Pre-allocate memory x=numpy.zeros([n]) y=numpy.zeros([n]) z=numpy.zeros([n]) #Clear garbage line "(" infile.readline() #read current property "xu" for i in range(0,n,1): number_str=infile.readline() number2_str=number_str.split("(") number3_str=number2_str[1].split(")") number4_str=number3_str[0].split() x[i]=float(number4_str[0]) y[i]=float(number4_str[1]) z[i]=float(number4_str[2]) else: print "File %s could not be opened" %fname infile.close(); return n,x,y,z #====================== # MAIN #====================== # Check if the destination folder exists if not os.path.isdir("./U"): print "********** Abort **********" print "The folder particlesInfo does not exist, you must create it manually in the working folder" #Name of the files to be considered inname= ['ccx', 'ccy','ccz','p','U','cellVolumes'] if readPseudo: inname.append('pseudoEq') elif readShear: inname.append('shearRate') os.chdir(sys.argv[1]) # go to directory nt=int((tf-t0)/dT)+1 t=t0 for i in range(0,nt): #Current case print "Post-processing time ", t #Go to the directory corresponding to the timestep if (t==0) : os.chdir("0") elif ((numpy.abs(numpy.mod(t+0.00001,1)))<0.01): os.chdir(str(int(t))) else :os.chdir(str(t)) [n,x] = readfScalar(inname[0]) [n,y] = readfScalar(inname[1]) if readZ :[n,z] = readfScalar(inname[2]) else : z=numpy.zeros([numpy.size(x)]) [n, p] = readfScalar(inname[3]) [n,u,v, w] = readfVector(inname[4]) [n, V] = readfScalar(inname[5]) if (readShear): [n, shear] = readfScalar(inname[6]) #Create output file back in main folder outname="../../U/U_%s" %str(i) outfile=open(outname,'w') for j in range(0,n): if readShear: outfile.write("%5.5e %5.5e %5.5e %5.5e %5.5e %5.5e %5.5e %5.5e %5.5e \n" %(x[j],y[j],z[j],u[j],v[j],w[j],p[j],V[j],shear[j])) else: outfile.write("%5.5e %5.5e %5.5e %5.5e %5.5e %5.5e %5.5e %5.5e\n" %(x[j],y[j],z[j],u[j],v[j],w[j],p[j],V[j])) outfile.close() t += dT #Go back to CFD directory os.chdir("..") # print "Post-processing over"
lgpl-3.0
1,780,018,183,711,861,800
23.148387
137
0.597115
false
2.850724
false
false
false
h01ger/voctomix
voctogui/lib/studioclock.py
1
3272
import math import time import cairo from gi.repository import Gtk, GLib # studio clock that displays a clock like mentioned in: # https://masterbase.at/studioclock/#C3CD2D class StudioClock(Gtk.ToolItem): __gtype_name__ = 'StudioClock' # set resolution of the update timer in seconds timer_resolution = 0.1 # init widget def __init__(self): super().__init__() # suggest size of widget self.set_size_request(130, 50) # remember last drwn time self.time = time.localtime(0) # set up timeout for periodic redraw GLib.timeout_add_seconds(self.timer_resolution, self.do_timeout) def do_timeout(self): # get current time t = time.localtime(time.time()) # if time did not change since last redraw if self.time != t: self.time = t self.queue_draw() # just come back GLib.timeout_add_seconds(self.timer_resolution, self.do_timeout) # override drawing of the widget def do_draw(self, cr): # get actual widget size width = self.get_allocated_width() height = self.get_allocated_height() # calculate center and radius of the clock center = (width / 2, height / 2) radius = min(center) # setup gradients for clock background to get a smooth border bg_lg = cairo.RadialGradient( center[0], center[1], 0, center[0], center[1], radius) bg_lg.add_color_stop_rgba(0.0, 0, 0, 0, 1.0) bg_lg.add_color_stop_rgba(0.9, 0, 0, 0, 1.0) bg_lg.add_color_stop_rgba(1.0, 0, 0, 0, 0.0) # paint background cr.set_source(bg_lg) cr.arc(center[0], center[1], radius, 0, 2 * math.pi) cr.fill() # draw ticks for every second for tick in range(0, 60): # fade out seconds in future and highlight past seconds if tick > self.time.tm_sec: cr.set_source_rgb(0.2, 0.3, 0.01) else: cr.set_source_rgb(0.764, 0.804, 0.176) # calculate tick position angle = tick * math.pi / 30 pos = (center[0] + math.sin(angle) * radius * 0.8, center[1] - math.cos(angle) * radius * 0.8) # draw tick cr.arc(pos[0], pos[1], radius / 40, 0, 2 * math.pi) cr.fill() # draw persistant ticks every five seconds cr.set_source_rgb(0.764, 0.804, 0.176) for tick in range(0, 12): # calculate tick position angle = tick * math.pi / 6 pos = (center[0] + math.sin(angle) * radius * 0.9, center[1] - math.cos(angle) * radius * 0.9) # draw tick cr.arc(pos[0], pos[1], radius / 40, 0, 2 * math.pi) cr.fill() # set a reasonable font size cr.set_font_size(cr.user_to_device_distance(0, height / 5)[1]) # format time into a string text = time.strftime("%H:%M") # get text drawing extents (xbearing, ybearing, textwidth, textheight, xadvance, yadvance) = cr.text_extents(text) # draw time cr.move_to(center[0] - textwidth / 2, center[1] + textheight / 2) cr.show_text(text)
mit
-424,392,922,117,431,940
36.181818
73
0.558068
false
3.469777
false
false
false
pbanaszkiewicz/amy
amy/workshops/tests/test_diff.py
1
4086
from django.urls import reverse from reversion import revisions as reversion from reversion.models import Version from reversion.revisions import create_revision from workshops.models import Event, Person, Tag from workshops.tests.base import TestBase class TestRevisions(TestBase): def setUp(self): self._setUpUsersAndLogin() self._setUpOrganizations() self.tag1, _ = Tag.objects.get_or_create(pk=1) self.tag2, _ = Tag.objects.get_or_create(pk=2) with create_revision(): self.event = Event.objects.create(host=self.org_alpha, slug="event") self.event.tags.add(self.tag1) self.event.save() with create_revision(): self.event.slug = "better-event" self.event.host = self.org_beta self.event.tags.add(self.tag2) self.event.save() # load versions versions = Version.objects.get_for_object(self.event) assert len(versions) == 2 self.newer, self.older = versions def test_showing_diff_event(self): # get newer revision page rv = self.client.get(reverse("object_changes", args=[self.newer.pk])) self.assertEqual(rv.status_code, 200) assert rv.context["version1"] == self.older assert rv.context["version2"] == self.newer assert rv.context["revision"] == self.newer.revision assert rv.context["object"] == self.event def test_diff_shows_coloured_labels(self): # get newer revision page rv = self.client.get(reverse("object_changes", args=[self.newer.pk])) # Red label for removed host self.assertContains( rv, '<a class="label label-danger" href="{}">-{}</a>'.format( self.org_alpha.get_absolute_url(), self.org_alpha ), html=True, ) # Green label for assigned host self.assertContains( rv, '<a class="label label-success" href="{}">+{}</a>'.format( self.org_beta.get_absolute_url(), self.org_beta ), html=True, ) # Grey label for pre-assigned tag self.assertContains( rv, '<a class="label label-default" href="#">{}</a>'.format(self.tag1), html=True, ) # Green label for additionally assigned tag self.assertContains( rv, '<a class="label label-success" href="#">+{}</a>'.format(self.tag2), html=True, ) def test_diff_shows_PK_for_deleted_relationships(self): # Delete the tag self.tag1.delete() self.tag2.delete() # get newer revision page rv = self.client.get(reverse("object_changes", args=[self.newer.pk])) self.assertContains( rv, '<a class="label label-default" href="#">1</a>', html=True ) self.assertContains( rv, '<a class="label label-success" href="#">+2</a>', html=True ) class TestRegression1083(TestBase): def setUp(self): self._setUpUsersAndLogin() def test_regression_1083(self): with reversion.create_revision(): alice = Person.objects.create_user( username="alice", personal="Alice", family="Jones", email="alice@jones.pl", ) with reversion.create_revision(): bob = Person.objects.create_user( username="bob", personal="Bob", family="Smith", email="bob@smith.pl" ) with reversion.create_revision(): alice.family = "Williams" alice.save() bob.family = "Brown" bob.save() res = self.app.get(reverse("person_details", args=[bob.pk]), user="admin") revision = res.click("Last modified on") self.assertIn("Smith", revision) self.assertIn("Brown", revision) back_to_person_view = revision.click("View newest") self.assertIn("Brown", back_to_person_view)
mit
-2,616,457,965,333,948,000
33.05
84
0.569995
false
3.925072
true
false
false
ieguiguren/menu
scripts/get_menu.py
1
2134
#!/usr/bin/env python # -*- encoding: utf-8 -*- import os hostname = os.uname()[1] if hostname == "server1": prepath = "/opt" elif hostname == "octopussy": prepath = "/home/xir/dev" import sys, urllib, os,cStringIO try: import pycurl except: print "Intentando instalar pycurl" try: os.system('sudo apt-get install -y python-pycurl') import pycurl except: print "No ha sido posible instalar la libreria necesaria *pycurl*" print "Intentalo a mano" sys.exit(254) try: from BeautifulSoup import BeautifulSoup except: print "Intentando instalar BeautifulSoap" try: os.system('sudo apt-get install -y python-beautifulsoup') from BeautifulSoup import BeautifulSoup except: print "No ha sido posible instalar la libreria necesaria *BeautifulSoap*" print "Intentalo a mano" sys.exit(254) sys.path.append(os.path.abspath(prepath + "/menu/conf/")) from menuconf import * sys.path.append(os.path.abspath(prepath + "/menu/lib/")) from images import * mes = [ 'zero','enero', 'febrero', 'marzo', 'abril', 'mayo', 'junio', 'julio', 'agosto', 'septiembre', 'octubre', 'noviembre','diciembre' ] if int(today) > 27: mesADescargar = mes[int(month) + 1] else: mesADescargar = mes[int(month)] def get_image_url( url ): buf = cStringIO.StringIO() d = pycurl.Curl() d.setopt(d.URL, url) d.setopt(d.WRITEFUNCTION, buf.write) d.perform() menu = False encontrado = False for p in buf.getvalue().split('>'): if "Men" in p: if mesADescargar in p.lower(): menu = True if menu and not encontrado: if "imageanchor" in p: encontrado = True img = p.split(' ')[1][6:-1] buf.close() try: return img except: return "" # if dir exists, don't download again if os.path.isfile(datapath + str(descargado)): sys.exit() else: url = get_image_url(rss) if url != "": urllib.urlretrieve(url, tpath + filename) create_images() f = open (datapath + str(descargado), 'w') f.close()
gpl-3.0
-8,420,493,370,423,797,000
26.358974
139
0.614339
false
3.175595
false
false
false
machinalis/eff
eff_site/urls.py
1
7722
# Copyright 2009 - 2011 Machinalis: http://www.machinalis.com/ # # This file is part of Eff. # # Eff is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Eff is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Eff. If not, see <http://www.gnu.org/licenses/>. from django.conf.urls.defaults import * from django.contrib.auth.views import login, logout from django.views.generic.simple import redirect_to from django.conf import settings from django.contrib import admin admin.autodiscover() from eff_site.settings import CURRENT_ABS_DIR from eff_site.eff.views import (update_hours, eff, eff_check_perms, eff_previous_week, eff_current_week, eff_current_month, eff_horas_extras, eff_chart, eff_next, eff_prev, eff_charts, eff_report, eff_update_db, eff_administration, eff_client_report, eff_client_reports_admin, UserProfileForm, eff_last_month, eff_admin_add_user, eff_admin_change_profile, profile_detail, eff_dump_csv_upload, eff_fixed_price_client_reports, eff_admin_users_association, eff_home, eff_client_home, index, eff_client_projects, eff_client_summary, eff_client_summary_period, add_attachment_custom, delete_attachment_custom) from os.path import join jscalendar_dir = join(CURRENT_ABS_DIR, 'addons/jscalendar-1.0/') js_dir = join(CURRENT_ABS_DIR, 'addons/js/') jscalendar_lang_dir = join(CURRENT_ABS_DIR, 'addons/jscalendar-1.0/lang/') calendar_dir = join(CURRENT_ABS_DIR, 'addons/simple-calendar/') sortable_dir = join(CURRENT_ABS_DIR, 'addons/sortable-table/') templates_dir = join(CURRENT_ABS_DIR, 'templates/') images_dir = join(CURRENT_ABS_DIR, 'templates/images/') urlpatterns = patterns('', url(r'^$', index, name='root'), url(r'^clients/home/$', eff_client_home, name='client_home'), url(r'^clients/projects/$', eff_client_projects, name='client_projects'), url(r'^clients/summary/period/$', eff_client_summary_period, name='client_summary_period'), url(r'^clients/summary/$', eff_client_summary, name='client_summary'), # django-profiles url(r'^accounts/login/$', login, {'template_name': 'login.html'}, name='login'), url(r'^accounts/logout/$', logout, {'template_name': 'logout.html'}, name='logout'), url(r'^accounts/profile/$', eff_home, name='eff_home'), url(r'^login/$', redirect_to, {'url': '/accounts/login/'}, name='redir_login'), url(r'^logout/$', redirect_to, {'url': '/accounts/logout/'}, name='redir_logout'), url(r'^checkperms/([A-Za-z_0-9]*)/$', eff_check_perms, name='checkperms'), url(r'^profiles/edit', 'eff.views.edit_profile', {'form_class': UserProfileForm, }, name='profiles_edit'), url(r'^profiles/(?P<username>[\w\._-]+)/$', profile_detail, name='profiles_detail'), url(r'^profiles/', include('profiles.urls'), name='profiles'), # password reset url(r'^accounts/password_reset/$', 'django.contrib.auth.views.password_reset', {'template_name': 'password_reset.html', 'email_template_name': 'password_reset_email.html'}, name='password_reset'), url(r'^password_reset/$', redirect_to, {'url': '/accounts/password_reset/'}, name='redir_password_reset'), url(r'^accounts/password_reset/done/$', 'django.contrib.auth.views.password_reset_done', {'template_name': 'password_reset_done.html'}, name='password_reset_done'), url(r'^accounts/reset/(?P<uidb36>[0-9A-Za-z]+)-(?P<token>.+)/$', 'django.contrib.auth.views.password_reset_confirm', {'template_name': 'password_reset_confirm.html'}, name='password_reset_confirm'), url(r'^reset/(?P<uidb36>[0-9A-Za-z]+)-(?P<token>.+)/$', redirect_to, {'url': '/accounts/reset/(?P<uidb36>[0-9A-Za-z]+)-(?P<token>.+)/'}, name='redir_password_reset_confirm'), url(r'^accounts/reset/done/$', 'django.contrib.auth.views.password_reset_complete', {'template_name': 'password_reset_complete.html'}, name='password_reset_complete'), # password change url(r'^accounts/change_password/$', 'django.contrib.auth.views.password_change', {'template_name': 'password_change.html', 'post_change_redirect': '/accounts/change_password/done/'}, name='password_change'), url(r'^accounts/change_password/done/$', 'django.contrib.auth.views.password_change_done', {'template_name': 'password_change_done.html'}, name='password_change_done'), url(r'^password_change/$', redirect_to, {'url': '/accounts/password_change/'}, name='redir_password_change'), url(r'^updatehours/([A-Za-z_0-9]*)/$', update_hours, name='update_hours'), url(r'^efi/$', eff, name='eff'), url(r'^efi/semanaanterior/$', eff_previous_week, name='eff_previous_week'), url(r'^efi/semanaactual/$', eff_current_week, name='eff_current_week'), url(r'^efi/mesactual/$', eff_current_month, name='eff_current_month'), url(r'^efi/mespasado/$', eff_last_month, name='eff_last_month'), url(r'^efi/horasextras/$', eff_horas_extras, name='eff_extra_hours'), url(r'^efi/next/$', eff_next, name='eff_next'), url(r'^efi/prev/$', eff_prev, name='eff_prev'), url(r'^efi/chart/([A-Za-z_0-9]*)/$', eff_chart, name='eff_chart'), url(r'^efi/charts/$', eff_charts, name='eff_charts'), url(r'^efi/reporte/([A-Za-z_0-9]*)/$', eff_report, name='eff_report'), url(r'^efi/update-db/$', eff_update_db, name='eff_update_db'), url(r'^efi/administration/users_password/$', eff_administration, name='eff_administration'), url(r'^efi/administration/users_profile/$', eff_admin_change_profile, name='eff_admin_change_profile'), url(r'^efi/administration/add_user/$', eff_admin_add_user, name='eff_admin_add_user'), url(r'^efi/administration/client_reports/$', eff_client_reports_admin, name='eff_client_reports_admin'), url(r'^efi/administration/fixed_price_client_reports/$', eff_fixed_price_client_reports, name='eff_fixed_price_client_reports'), url(r'^efi/administration/dump-csv-upload/$', eff_dump_csv_upload, name='eff_dump_csv_upload'), url(r'^efi/reporte_cliente/([-\w]+)/$', eff_client_report, name='eff_client_report'), url(r'^efi/administration/users_association/$', eff_admin_users_association, name='eff_admin_users_association'), url(r'^efi/administration/client_summary/$', eff_client_summary_period, name='eff_client_summary_period'), url(r'^efi/administration/client_summary/([-\w]+)/$', eff_client_summary, name='eff_client_summary'), url(r'^admin/', include(admin.site.urls)), url(r'^comments/', include('django.contrib.comments.urls')), url(r'^attachments/add-for/(?P<app_label>[\w\-]+)/(?P<module_name>[\w\-]+)/(?P<pk>\d+)/$', add_attachment_custom, name="add_attachment_custom"), url(r'^attachments/delete/(?P<attachment_pk>\d+)/$', delete_attachment_custom, name="delete_attachment_custom"), url(r'^attachments/', include('attachments.urls')), ) if settings.DEBUG: urlpatterns += patterns('', url(r'^media/(?P<path>.*)$', 'django.views.static.serve', { 'document_root': settings.MEDIA_ROOT}), )
gpl-3.0
3,161,027,209,666,449,400
48.5
94
0.654105
false
3.295775
false
false
false
ngr/sm_00
slave/views.py
1
4072
### Slave API Views ### from django.db.models import F, Count from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from rest_framework import generics from rest_framework import permissions from rest_framework import pagination from slave.models import Slave from slave.serializers import SlaveSerializer, SlaveDetailSerializer from slave.helpers import filter_by_attribute, filter_by_location_region class API_SlaveList(generics.ListAPIView): """ List Slaves. """ permission_classes = (permissions.IsAuthenticated,) serializer_class = SlaveSerializer def get_queryset(self): """ Return Slaves of the current user. """ # Authorization check. # We assume later that slave_list is already # filtered with authorized slaves only so we may # simply add some more filters. slave_list = Slave.objects.filter(owner=self.request.user) # Default filter alive slave only. # Reversed order because alive are much more frequent requests. if not 'dead' in self.request.query_params: slave_list = slave_list.filter(date_death__isnull=True) else: slave_list = slave_list.filter(date_death__isnull=False) # Filter by valid attributes valid_params = ['location', 'sex'] for attr in valid_params: if attr in self.request.query_params: slave_list = filter_by_attribute(slave_list,\ attribute_name=attr,\ attribute=self.request.query_params.get(attr)) # Filter by Region if 'region' in self.request.query_params: slave_list = filter_by_location_region(slave_list, self.request.query_params.get('region')) # Filter free Slaves if 'free' in self.request.query_params: # FIXME! This looks quite shitty. # We compare the number of assignments to number of released ones. # If the numbers are equal - then nothing is currently running. # Unfortunately I couldn't yet filter by annotation of NON-released ones. slave_list = slave_list.annotate(assgns=Count('assignments')).\ annotate(rel_assgns=Count('assignments__date_released')).\ filter(assgns=F('rel_assgns')) # Order By # Should one day get the ordering from request. slave_list = slave_list.order_by('location__region', 'date_birth') # Paginate # FIXME The build in "LimitOffsetPagination" didn't work # Had to write directly in the view. if any(q for q in self.request.query_params if q in ['limit', 'offset']): if 'limit' in self.request.query_params: limit = int(self.request.query_params.get('limit')) offset = int(self.request.query_params.get('offset'))\ if 'offset' in self.request.query_params else 0 if 'limit' in locals(): slave_list = slave_list[offset:limit+offset] else: slave_list = slave_list[offset:] return slave_list class API_SlaveDetail(APIView): """ Slave Details. """ permission_classes = (permissions.IsAuthenticated,) serializer_class = SlaveDetailSerializer def get_object(self, pk): """ Get already authorized Item.""" s = Slave.objects.get(pk=pk, owner=self.request.user) # This updates available skills for the next time s.get_available_skills() return s def get(self, request, pk, format=None): # Get authorized Slave try: slave = self.get_object(pk) except Slave.DoesNotExist: return Response("Authorization error or wrong Slave id.", status=status.HTTP_404_NOT_FOUND) print(slave); return Response(self.serializer_class(slave).data)
mit
1,533,044,917,512,156,700
40.4375
103
0.618124
false
4.299894
false
false
false
mistergone/college-costs
paying_for_college/tests/test_models.py
1
6953
#!/usr/bin/env python # -*- coding: utf8 -*- import json import dateutil.parser import mock from django.test import TestCase from paying_for_college.models import School, Contact, Program, Alias, Nickname from paying_for_college.models import ConstantCap, ConstantRate, Disclosure from paying_for_college.models import Notification, print_vals from paying_for_college.models import get_region class SchoolRegionTest(TestCase): def test_get_region(self): school = School(school_id='123456', state='NE') self.assertTrue(get_region(school) == 'MW') def test_get_region_failure(self): school = School(school_id='123456', state='') self.assertTrue(get_region(school) == '') class SchoolModelsTest(TestCase): def create_school(self, ID=999999, data_json='', accreditor="Almighty Wizard", city="Emerald City", degrees_highest="3", state="OZ", ope6=5555, ope8=555500): return School.objects.create(school_id=ID, data_json=data_json, accreditor=accreditor, degrees_highest=degrees_highest, degrees_predominant=degrees_highest, city=city, state=state, ope6_id=ope6, ope8_id=ope8) def create_alias(self, alias, school): return Alias.objects.create(alias=alias, is_primary=True, institution=school) def create_contact(self): return Contact.objects.create(contact='hackey@school.edu', name='Hackey Sack') def create_nickname(self, school): return Nickname.objects.create(institution=school, nickname='Hackers') def create_program(self, school): return Program.objects.create(institution=school, program_name='Hacking', level='3') def create_disclosure(self, school): return Disclosure.objects.create(institution=school, name='Regional transferability', text="Your credits won't transfer") def create_notification(self, school, oid='f38283b5b7c939a058889f997949efa566c616c5', time='2016-01-13T20:06:18.913112+00:00'): return Notification.objects.create(institution=school, oid=oid, timestamp=dateutil.parser.parse(time), errors='none') def test_school_related_models(self): s = self.create_school() self.assertTrue(isinstance(s, School)) self.assertEqual(s.primary_alias, "Not Available") d = self.create_disclosure(s) self.assertTrue(isinstance(d, Disclosure)) self.assertTrue(d.name in d.__unicode__()) a = self.create_alias('Wizard U', s) self.assertTrue(isinstance(a, Alias)) self.assertTrue(a.alias in a.__unicode__()) self.assertEqual(s.primary_alias, a.alias) self.assertEqual(s.__unicode__(), a.alias + u" (%s)" % s.school_id) c = self.create_contact() self.assertTrue(isinstance(c, Contact)) self.assertTrue(c.contact in c.__unicode__()) n = self.create_nickname(s) self.assertTrue(isinstance(n, Nickname)) self.assertTrue(n.nickname in n.__unicode__()) p = self.create_program(s) self.assertTrue(isinstance(p, Program)) self.assertTrue(p.program_name in p.__unicode__()) self.assertTrue(p.program_name in p.as_json()) self.assertTrue('Bachelor' in p.get_level()) noti = self.create_notification(s) self.assertTrue(isinstance(noti, Notification)) self.assertTrue(noti.oid in noti.__unicode__()) self.assertTrue(print_vals(s) is None) self.assertTrue("Emerald City" in print_vals(s, val_list=True)) self.assertTrue("Emerald City" in print_vals(s, val_dict=True)['city']) self.assertTrue("Emerald City" in print_vals(s, noprint=True)) self.assertTrue(s.convert_ope6() == '005555') self.assertTrue(s.convert_ope8() == '00555500') self.assertTrue('Bachelor' in s.get_highest_degree()) s.ope6_id = 555555 s.ope8_id = 55555500 self.assertTrue(s.convert_ope6() == '555555') self.assertTrue(s.convert_ope8() == '55555500') s.ope6_id = None s.ope8_id = None self.assertTrue(s.convert_ope6() == '') self.assertTrue(s.convert_ope8() == '') def test_constant_models(self): cr = ConstantRate(name='cr test', slug='crTest', value='0.1') self.assertTrue(cr.__unicode__() == u'cr test (crTest), updated None') cc = ConstantCap(name='cc test', slug='ccTest', value='0') self.assertTrue(cc.__unicode__() == u'cc test (ccTest), updated None') @mock.patch('paying_for_college.models.send_mail') def test_email_notification(self, mock_mail): skul = self.create_school() noti = self.create_notification(skul) msg = noti.notify_school() self.assertTrue('failed' in msg) contact = self.create_contact() skul.contact = contact skul.save() noti2 = self.create_notification(skul) msg1 = noti2.notify_school() self.assertTrue(mock_mail.call_count == 1) self.assertTrue('email' in msg1) @mock.patch('paying_for_college.models.requests.post') def test_endpoint_notification(self, mock_post): skul = self.create_school() contact = self.create_contact() contact.endpoint = 'fake-api.fakeschool.edu' contact.save() skul.contact = contact skul.save() noti = self.create_notification(skul) msg = noti.notify_school() # print("notification mock_post.call_count is {0}".format(mock_post.call_count)) # print("endpoint notification msg is {0}".format(msg)) self.assertTrue(mock_post.call_count == 1) self.assertTrue('endpoint' in msg) def test_endpoint_notification_blank_contact(self): skul = self.create_school() contact = self.create_contact() contact.contact = '' contact.endpoint = '' contact.save() skul.contact = contact skul.save() noti = self.create_notification(skul) msg = noti.notify_school() self.assertTrue('failed' in msg)
cc0-1.0
5,558,168,240,107,250,000
41.139394
88
0.562347
false
3.961823
true
false
false
rxcomm/qtile
libqtile/widget/memory.py
6
1883
# -*- coding: utf-8 -*- # Copyright (c) 2015 Jörg Thalheim (Mic92) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import division from libqtile.widget import base def get_meminfo(): val = {} with open('/proc/meminfo') as file: for line in file: key, tail = line.split(':') uv = tail.split() val[key] = int(uv[0]) // 1000 val['MemUsed'] = val['MemTotal'] - val['MemFree'] return val class Memory(base.InLoopPollText): """Displays memory usage""" orientations = base.ORIENTATION_HORIZONTAL defaults = [ ("fmt", "{MemUsed}M/{MemTotal}M", "see /proc/meminfo for field names") ] def __init__(self, **config): super(Memory, self).__init__(**config) self.add_defaults(Memory.defaults) def poll(self): return self.fmt.format(**get_meminfo())
mit
-5,031,802,817,300,626,000
38.208333
79
0.694474
false
4.029979
false
false
false