Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    TypeError
Message:      Mask must be a pyarrow.Array of type boolean
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1625, in _prepare_split_single
                  writer.write(example, key)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 537, in write
                  self.write_examples_on_file()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 495, in write_examples_on_file
                  self.write_batch(batch_examples=batch_examples)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 609, in write_batch
                  self.write_table(pa_table, writer_batch_size)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 624, in write_table
                  pa_table = embed_table_storage(pa_table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2270, in embed_table_storage
                  arrays = [
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2271, in <listcomp>
                  embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2140, in embed_array_storage
                  return feature.embed_storage(array)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/image.py", line 283, in embed_storage
                  storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
                File "pyarrow/array.pxi", line 3257, in pyarrow.lib.StructArray.from_arrays
                File "pyarrow/array.pxi", line 3697, in pyarrow.lib.c_mask_inverted_from_obj
              TypeError: Mask must be a pyarrow.Array of type boolean
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1634, in _prepare_split_single
                  num_examples, num_bytes = writer.finalize()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 636, in finalize
                  self.write_examples_on_file()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 495, in write_examples_on_file
                  self.write_batch(batch_examples=batch_examples)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 609, in write_batch
                  self.write_table(pa_table, writer_batch_size)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 624, in write_table
                  pa_table = embed_table_storage(pa_table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2270, in embed_table_storage
                  arrays = [
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2271, in <listcomp>
                  embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2140, in embed_array_storage
                  return feature.embed_storage(array)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/image.py", line 283, in embed_storage
                  storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
                File "pyarrow/array.pxi", line 3257, in pyarrow.lib.StructArray.from_arrays
                File "pyarrow/array.pxi", line 3697, in pyarrow.lib.c_mask_inverted_from_obj
              TypeError: Mask must be a pyarrow.Array of type boolean
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1486, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1643, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
file_size
int64
camera_maker
string
camera_model
string
37,221,299
Canon
Canon EOS R5
33,533,883
Canon
Canon EOS R5
30,658,728
Canon
Canon EOS R5
28,067,778
Canon
Canon EOS R5
27,752,025
Canon
Canon EOS R5
27,743,218
Canon
Canon EOS R5
27,315,688
Canon
Canon EOS R5
27,003,321
Canon
Canon EOS R5
26,789,435
Canon
Canon EOS R5
26,808,973
Canon
Canon EOS R5
27,161,056
Canon
Canon EOS R5
26,717,211
Canon
Canon EOS R5
26,380,434
Canon
Canon EOS R5
28,197,255
Canon
Canon EOS R5
28,335,862
Canon
Canon EOS R5
28,602,376
Canon
Canon EOS R5
27,995,231
Canon
Canon EOS R5
28,072,912
Canon
Canon EOS R5
27,868,761
Canon
Canon EOS R5
27,118,311
Canon
Canon EOS R5
26,858,184
Canon
Canon EOS R5
26,914,905
Canon
Canon EOS R5
26,843,276
Canon
Canon EOS R5
25,668,921
Canon
Canon EOS R5
28,264,365
Canon
Canon EOS R5
25,087,012
Canon
Canon EOS R5
25,926,766
Canon
Canon EOS R5
25,791,567
Canon
Canon EOS R5
25,778,811
Canon
Canon EOS R5
25,719,801
Canon
Canon EOS R5
25,730,718
Canon
Canon EOS R5
25,695,224
Canon
Canon EOS R5
25,716,712
Canon
Canon EOS R5
25,785,863
Canon
Canon EOS R5
26,145,589
Canon
Canon EOS R5
31,042,423
Canon
Canon EOS R5
26,244,938
Canon
Canon EOS R5
26,238,007
Canon
Canon EOS R5
26,303,755
Canon
Canon EOS R5
26,436,976
Canon
Canon EOS R5
21,343,815
Canon
Canon EOS R5
26,326,479
Canon
Canon EOS R5
26,095,715
Canon
Canon EOS R5
26,183,712
Canon
Canon EOS R5
26,477,346
Canon
Canon EOS R5
26,361,818
Canon
Canon EOS R5
31,916,672
Canon
Canon EOS R5
26,447,243
Canon
Canon EOS R5
26,468,570
Canon
Canon EOS R5
26,091,545
Canon
Canon EOS R5
26,109,141
Canon
Canon EOS R5
26,121,239
Canon
Canon EOS R5
26,375,039
Canon
Canon EOS R5
26,366,216
Canon
Canon EOS R5
26,418,247
Canon
Canon EOS R5
26,236,545
Canon
Canon EOS R5
26,221,728
Canon
Canon EOS R5
32,097,684
Canon
Canon EOS R5
26,335,860
Canon
Canon EOS R5
26,537,813
Canon
Canon EOS R5
26,576,320
Canon
Canon EOS R5
26,563,861
Canon
Canon EOS R5
26,500,938
Canon
Canon EOS R5
26,473,772
Canon
Canon EOS R5
26,450,815
Canon
Canon EOS R5
26,466,545
Canon
Canon EOS R5
26,448,336
Canon
Canon EOS R5
26,180,028
Canon
Canon EOS R5
34,510,809
Canon
Canon EOS R5
26,588,445
Canon
Canon EOS R5
26,484,868
Canon
Canon EOS R5
26,435,732
Canon
Canon EOS R5
26,478,845
Canon
Canon EOS R5
26,462,392
Canon
Canon EOS R5
26,899,012
Canon
Canon EOS R5
26,833,389
Canon
Canon EOS R5
20,232,146
Canon
Canon EOS R5
21,871,450
Canon
Canon EOS R5
20,581,505
Canon
Canon EOS R5
34,211,094
Canon
Canon EOS R5
21,121,605
Canon
Canon EOS R5
21,336,712
Canon
Canon EOS R5
20,645,079
Canon
Canon EOS R5
20,445,262
Canon
Canon EOS R5
21,359,603
Canon
Canon EOS R5
25,980,735
Canon
Canon EOS R5
26,834,635
Canon
Canon EOS R5
26,497,935
Canon
Canon EOS R5
26,809,294
Canon
Canon EOS R5
27,046,518
Canon
Canon EOS R5
34,368,457
Canon
Canon EOS R5
27,625,177
Canon
Canon EOS R5
27,628,803
Canon
Canon EOS R5
27,723,877
Canon
Canon EOS R5
27,290,093
Canon
Canon EOS R5
27,471,623
Canon
Canon EOS R5
27,554,304
Canon
Canon EOS R5
27,684,117
Canon
Canon EOS R5
27,481,769
Canon
Canon EOS R5
27,849,849
Canon
Canon EOS R5
End of preview.

SubArcticPolarBear

Sub Arctic Polar Bear

"Sub Arctic Polar Bear" is a fine tuning text-to-image dataset consisting of dynamic photographs captured in 30MP+ resolution using Canon R5 and a Canon 600mm RF lens.

Key Features

  • 📷 Detail: Every photograph is captured at the proper exposure, full sharpness, delivering rich detail ideal for fine tuning polar bear datasets.
  • 🎞️ Variance: Includes close-up details, behavioural, low perspective ground level, all angles of the polar bears, medium and far shots in habitat, autumn and winter scenes.
  • ⚙️ Consistency: Re-thinking training data at the point of capture by "overshooting" a subject, enabling models to learn more nuanced relationships and views across scenes.
  • 🌅 Light: Shot during early morning, sunset light for optimal color contrast and dynamic range. Also, shot during bright overcast, maximizing visual quality for color and lighting-sensitive tasks.
  • 🔍 Curation: Curated specifically for machine learning, providing clean, high-quality data for next generation model training.

Dataset Details

  • Total photos: 1,801
  • Total size: 55.01 GB
  • Photo types: Close-ups, medium distance, habitat, portraits, side profile, all angles, awake, walking, sleeping, eating.

Technical Details

  • Cameras: Canon R5
  • Lenses: Canon 600mm RF, Canon 70-200mm EF
  • Resolution: 8192x5464
  • Colorspace: Adobe RGB 1998
  • Image Size: 35MP+

Content Credentials

Each video in the "Sub Arctic Polar Bear" dataset contains C2PA Content Credentials metadata and can be used with the Content Credentials Space by Truepic to begin testing model provenance.

What is Overlai.ai?

Overlai.ai specializes in 8K+ fine tuning datasets with the goal of improving photo & video models. Contact us for the complete dataset list or access to this dataset in full resolution.

Contact

hello@overlai.app

Downloads last month
232