id
stringlengths
17
29
nl_statement
stringlengths
43
377
lean4_src_header
stringclasses
14 values
lean4_formalization
stringlengths
50
426
Ireland-Rosen|exercise_4_5
Consider a prime $p$ of the form $4 t+3$. Show that $a$ is a primitive root modulo $p$ iff $-a$ has order $(p-1) / 2$.
import Mathlib open Real open scoped BigOperators
theorem exercise_4_5 {p t : β„•} (hp0 : p.Prime) (hp1 : p = 4*t + 3) (a : ZMod p) : IsPrimitiveRoot a p ↔ ((-a) ^ ((p-1)/2) = 1 ∧ βˆ€ (k : β„•), (0 < k ∧ k < (p-1)/2) β†’ (-a)^k β‰  1) :=
Ireland-Rosen|exercise_4_8
Let $p$ be an odd prime. Show that $a$ is a primitive root modulo $p$ iff $a^{(p-1) / q} \not \equiv 1(p)$ for all prime divisors $q$ of $p-1$.
import Mathlib open Real open scoped BigOperators
theorem exercise_4_8 {p : β„•} {a : ZMod p} (hp : Odd p) (hp' : p.Prime) : IsPrimitiveRoot a p ↔ (βˆ€ q : β„•, q ∣ (p-1) β†’ q.Prime β†’ Β¬ a^((p-1)/q) = 1) :=
Ireland-Rosen|exercise_5_13
Show that any prime divisor of $x^{4}-x^{2}+1$ is congruent to 1 modulo 12 .
import Mathlib open Real open scoped BigOperators
theorem exercise_5_13 {p x: β„€} (hp : Prime p) (hpx : p ∣ (x^4 - x^2 + 1)) : p ≑ 1 [ZMOD 12] :=
Ireland-Rosen|exercise_5_37
Show that if $a$ is negative then $p \equiv q(4 a)$ together with $p\not | a$ imply $(a / p)=(a / q)$.
import Mathlib open Real open scoped BigOperators
theorem exercise_5_37 {p q : β„•} [Fact (p.Prime)] [Fact (q.Prime)] {a : β„€} (ha : a < 0) (h0 : p ≑ q [ZMOD 4*a]) (h1 : Β¬ ((p : β„€) ∣ a)) : legendreSym p a = legendreSym q a :=
Ireland-Rosen|exercise_18_4
Show that 1729 is the smallest positive integer expressible as the sum of two different integral cubes in two ways.
import Mathlib open Real open scoped BigOperators
theorem exercise_18_4 : 1729 = sInf (fun (n : β„•) => βˆƒ x y z w : β„€, x^3 + y^3 = n ∧ z^3 + w^3 = n ∧ x β‰  z ∧ x β‰  w ∧ y β‰  z ∧ y β‰  w) :=
Munkres|exercise_13_1
Let $X$ be a topological space; let $A$ be a subset of $X$. Suppose that for each $x \in A$ there is an open set $U$ containing $x$ such that $U \subset A$. Show that $A$ is open in $X$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_13_1 (X : Type*) [TopologicalSpace X] (A : Set X) (h1 : βˆ€ x ∈ A, βˆƒ U : Set X, x ∈ U ∧ IsOpen U ∧ U βŠ† A) : IsOpen A :=
Munkres|exercise_13_4a1
If $\mathcal{T}_\alpha$ is a family of topologies on $X$, show that $\bigcap \mathcal{T}_\alpha$ is a topology on $X$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (βˆ€ s t, s ∈ T β†’ t ∈ T β†’ s ∩ t ∈ T) ∧ (βˆ€s, (βˆ€t ∈ s, t ∈ T) β†’ sUnion s ∈ T) theorem exercise_13_4a1 (X I : Type*) (T : I β†’ Set (Set X)) (h : βˆ€ i, is_topology X (T i)) : is_topology X (β‹‚ i : I, T i) :=
Munkres|exercise_13_4b1
Let $\mathcal{T}_\alpha$ be a family of topologies on $X$. Show that there is a unique smallest topology on $X$ containing all the collections $\mathcal{T}_\alpha$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (βˆ€ s t, s ∈ T β†’ t ∈ T β†’ s ∩ t ∈ T) ∧ (βˆ€s, (βˆ€t ∈ s, t ∈ T) β†’ sUnion s ∈ T) theorem exercise_13_4b1 (X I : Type*) (T : I β†’ Set (Set X)) (h : βˆ€ i, is_topology X (T i)) : βˆƒ! T', is_topology X T' ∧ (βˆ€ i, T i βŠ† T') ∧ βˆ€ T'', is_topology X T'' β†’ (βˆ€ i, T i βŠ† T'') β†’ T' βŠ† T'' :=
Munkres|exercise_13_5a
Show that if $\mathcal{A}$ is a basis for a topology on $X$, then the topology generated by $\mathcal{A}$ equals the intersection of all topologies on $X$ that contain $\mathcal{A}$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (βˆ€ s t, s ∈ T β†’ t ∈ T β†’ s ∩ t ∈ T) ∧ (βˆ€s, (βˆ€t ∈ s, t ∈ T) β†’ sUnion s ∈ T) theorem exercise_13_5a {X : Type*} [TopologicalSpace X] (A : Set (Set X)) (hA : IsTopologicalBasis A) : generateFrom A = generateFrom (sInter {T | is_topology X T ∧ A βŠ† T}) :=
Munkres|exercise_13_6
Show that the lower limit topology $\mathbb{R}_l$ and $K$-topology $\mathbb{R}_K$ are not comparable.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
def lower_limit_topology (X : Type) [Preorder X] := generateFrom {S : Set X | βˆƒ a b, a < b ∧ S = Ico a b} def Rl := lower_limit_topology ℝ def K : Set ℝ := {r | βˆƒ n : β„•, r = 1 / n} def K_topology := generateFrom ({S : Set ℝ | βˆƒ a b, a < b ∧ S = Ioo a b} βˆͺ {S : Set ℝ | βˆƒ a b, a < b ∧ S = Ioo a b \ K}) theorem exercise_13_6 : Β¬ (βˆ€ U, Rl.IsOpen U β†’ K_topology.IsOpen U) ∧ Β¬ (βˆ€ U, K_topology.IsOpen U β†’ Rl.IsOpen U) :=
Munkres|exercise_13_8b
Show that the collection $\{(a,b) \mid a < b, a \text{ and } b \text{ rational}\}$ is a basis that generates a topology different from the lower limit topology on $\mathbb{R}$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
def lower_limit_topology (X : Type) [Preorder X] := generateFrom {S : Set X | βˆƒ a b, a < b ∧ S = Ico a b} theorem exercise_13_8b (T : Set (Set ℝ)) (hT : T = {S : Set ℝ | βˆƒ a b : β„š, a < b ∧ S = Ioo ↑a ↑b}) : IsTopologicalBasis T ∧ generateFrom T β‰  lower_limit_topology ℝ :=
Munkres|exercise_16_4
A map $f: X \rightarrow Y$ is said to be an open map if for every open set $U$ of $X$, the set $f(U)$ is open in $Y$. Show that $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ are open maps.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_16_4 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] (π₁ : X Γ— Y β†’ X) (Ο€β‚‚ : X Γ— Y β†’ Y) (h₁ : π₁ = Prod.fst) (hβ‚‚ : Ο€β‚‚ = Prod.snd) : IsOpenMap π₁ ∧ IsOpenMap Ο€β‚‚ :=
Munkres|exercise_17_4
Show that if $U$ is open in $X$ and $A$ is closed in $X$, then $U-A$ is open in $X$, and $A-U$ is closed in $X$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_17_4 {X : Type*} [TopologicalSpace X] (U A : Set X) (hU : IsOpen U) (hA : IsClosed A) : IsOpen (U \ A) ∧ IsClosed (A \ U) :=
Munkres|exercise_18_8b
Let $Y$ be an ordered set in the order topology. Let $f, g: X \rightarrow Y$ be continuous. Let $h: X \rightarrow Y$ be the function $h(x)=\min \{f(x), g(x)\}.$ Show that $h$ is continuous.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_18_8b {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] [LinearOrder Y] [OrderTopology Y] {f g : X β†’ Y} (hf : Continuous f) (hg : Continuous g) : Continuous (Ξ» x => min (f x) (g x)) :=
Munkres|exercise_19_6a
Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$ be a sequence of the points of the product space $\prod X_\alpha$. Show that this sequence converges to the point $\mathbf{x}$ if and only if the sequence $\pi_\alpha(\mathbf{x}_i)$ converges to $\pi_\alpha(\mathbf{x})$ for each $\alpha$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_19_6a {ΞΉ : Type*} {f : ΞΉ β†’ Type*} {x : β„• β†’ Ξ a, f a} (y : Ξ i, f i) [Ξ a, TopologicalSpace (f a)] : Tendsto x atTop (𝓝 y) ↔ βˆ€ i, Tendsto (Ξ» j => (x j) i) atTop (𝓝 (y i)) :=
Munkres|exercise_21_6a
Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by the equation $f_{n}(x)=x^{n}$. Show that the sequence $\left(f_{n}(x)\right)$ converges for each $x \in[0,1]$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_21_6a (f : β„• β†’ Icc 0 1 β†’ ℝ) (h : βˆ€ x n, f n x = ↑x ^ n) : βˆ€ x, βˆƒ y, Tendsto (Ξ» n => f n x) atTop (𝓝 y) :=
Munkres|exercise_21_8
Let $X$ be a topological space and let $Y$ be a metric space. Let $f_{n}: X \rightarrow Y$ be a sequence of continuous functions. Let $x_{n}$ be a sequence of points of $X$ converging to $x$. Show that if the sequence $\left(f_{n}\right)$ converges uniformly to $f$, then $\left(f_{n}\left(x_{n}\right)\right)$ converges to $f(x)$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_21_8 {X : Type*} [TopologicalSpace X] {Y : Type*} [MetricSpace Y] {f : β„• β†’ X β†’ Y} {x : β„• β†’ X} (hf : βˆ€ n, Continuous (f n)) (xβ‚€ : X) (hx : Tendsto x atTop (𝓝 xβ‚€)) (fβ‚€ : X β†’ Y) (hh : TendstoUniformly f fβ‚€ atTop) : Tendsto (Ξ» n => f n (x n)) atTop (𝓝 (fβ‚€ xβ‚€)) :=
Munkres|exercise_22_2b
If $A \subset X$, a retraction of $X$ onto $A$ is a continuous map $r: X \rightarrow A$ such that $r(a)=a$ for each $a \in A$. Show that a retraction is a quotient map.
import Mathlib open Filter Set TopologicalSpace Topology
theorem exercise_22_2b {X : Type*} [TopologicalSpace X] {A : Set X} (r : X β†’ A) (hr : Continuous r) (h : βˆ€ x : A, r x = x) : QuotientMap r :=
Munkres|exercise_23_2
Let $\left\{A_{n}\right\}$ be a sequence of connected subspaces of $X$, such that $A_{n} \cap A_{n+1} \neq \varnothing$ for all $n$. Show that $\bigcup A_{n}$ is connected.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_23_2 {X : Type*} [TopologicalSpace X] {A : β„• β†’ Set X} (hA : βˆ€ n, IsConnected (A n)) (hAn : βˆ€ n, A n ∩ A (n + 1) β‰  βˆ…) : IsConnected (⋃ n, A n) :=
Munkres|exercise_23_4
Show that if $X$ is an infinite set, it is connected in the finite complement topology.
import Mathlib open Filter Set TopologicalSpace open scoped Topology set_option checkBinderAnnotations false
theorem exercise_23_4 {X : Type*} [TopologicalSpace X] [CofiniteTopology X] (s : Set X) : Infinite s β†’ IsConnected s :=
Munkres|exercise_23_9
Let $A$ be a proper subset of $X$, and let $B$ be a proper subset of $Y$. If $X$ and $Y$ are connected, show that $(X \times Y)-(A \times B)$ is connected.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_23_9 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] (A₁ Aβ‚‚ : Set X) (B₁ Bβ‚‚ : Set Y) (hA : A₁ βŠ‚ Aβ‚‚) (hB : B₁ βŠ‚ Bβ‚‚) (hA : IsConnected Aβ‚‚) (hB : IsConnected Bβ‚‚) : IsConnected ({x | βˆƒ a b, x = (a, b) ∧ a ∈ Aβ‚‚ ∧ b ∈ Bβ‚‚} \ {x | βˆƒ a b, x = (a, b) ∧ a ∈ A₁ ∧ b ∈ B₁}) :=
Munkres|exercise_24_2
Let $f: S^{1} \rightarrow \mathbb{R}$ be a continuous map. Show there exists a point $x$ of $S^{1}$ such that $f(x)=f(-x)$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_24_2 {f : (Metric.sphere 0 1 : Set ℝ) β†’ ℝ} (hf : Continuous f) : βˆƒ x, f x = f (-x) :=
Munkres|exercise_25_4
Let $X$ be locally path connected. Show that every connected open set in $X$ is path connected.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_25_4 {X : Type*} [TopologicalSpace X] [LocPathConnectedSpace X] (U : Set X) (hU : IsOpen U) (hcU : IsConnected U) : IsPathConnected U :=
Munkres|exercise_26_11
Let $X$ be a compact Hausdorff space. Let $\mathcal{A}$ be a collection of closed connected subsets of $X$ that is simply ordered by proper inclusion. Then $Y=\bigcap_{A \in \mathcal{A}} A$ is connected.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_26_11 {X : Type*} [TopologicalSpace X] [CompactSpace X] [T2Space X] (A : Set (Set X)) (hA : βˆ€ (a b : Set X), a ∈ A β†’ b ∈ A β†’ a βŠ† b ∨ b βŠ† a) (hA' : βˆ€ a ∈ A, IsClosed a) (hA'' : βˆ€ a ∈ A, IsConnected a) : IsConnected (β‹‚β‚€ A) :=
Munkres|exercise_27_4
Show that a connected metric space having more than one point is uncountable.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_27_4 {X : Type*} [MetricSpace X] [ConnectedSpace X] (hX : βˆƒ x y : X, x β‰  y) : Β¬ Countable (univ : Set X) :=
Munkres|exercise_28_5
Show that X is countably compact if and only if every nested sequence $C_1 \supset C_2 \supset \cdots$ of closed nonempty sets of X has a nonempty intersection.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
def countably_compact (X : Type*) [TopologicalSpace X] := βˆ€ U : β„• β†’ Set X, (βˆ€ i, IsOpen (U i)) ∧ ((univ : Set X) βŠ† ⋃ i, U i) β†’ (βˆƒ t : Finset β„•, (univ : Set X) βŠ† ⋃ i ∈ t, U i) theorem exercise_28_5 (X : Type*) [TopologicalSpace X] : countably_compact X ↔ βˆ€ (C : β„• β†’ Set X), (βˆ€ n, IsClosed (C n)) ∧ (βˆ€ n, C n β‰  βˆ…) ∧ (βˆ€ n, C (n + 1) βŠ† C n) β†’ βˆƒ x, βˆ€ n, x ∈ C n :=
Munkres|exercise_29_1
Show that the rationals $\mathbb{Q}$ are not locally compact.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_29_1 : Β¬ LocallyCompactSpace β„š :=
Munkres|exercise_29_10
Show that if $X$ is a Hausdorff space that is locally compact at the point $x$, then for each neighborhood $U$ of $x$, there is a neighborhood $V$ of $x$ such that $\bar{V}$ is compact and $\bar{V} \subset U$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_29_10 {X : Type*} [TopologicalSpace X] [T2Space X] (x : X) (hx : βˆƒ U : Set X, x ∈ U ∧ IsOpen U ∧ (βˆƒ K : Set X, U βŠ† K ∧ IsCompact K)) (U : Set X) (hU : IsOpen U) (hxU : x ∈ U) : βˆƒ (V : Set X), IsOpen V ∧ x ∈ V ∧ IsCompact (closure V) ∧ closure V βŠ† U :=
Munkres|exercise_30_13
Show that if $X$ has a countable dense subset, every collection of disjoint open sets in $X$ is countable.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_30_13 {X : Type*} [TopologicalSpace X] (h : βˆƒ (s : Set X), Countable s ∧ Dense s) (U : Set (Set X)) (hU : βˆ€ (x y : Set X), x ∈ U β†’ y ∈ U β†’ x β‰  y β†’ x ∩ y = βˆ…) (hUopen : βˆ€ (u : Set X), u ∈ U β†’ IsOpen u) : Countable U :=
Munkres|exercise_31_2
Show that if $X$ is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_31_2 {X : Type*} [TopologicalSpace X] [NormalSpace X] {A B : Set X} (hA : IsClosed A) (hB : IsClosed B) (hAB : Disjoint A B) : βˆƒ (U V : Set X), IsOpen U ∧ IsOpen V ∧ A βŠ† U ∧ B βŠ† V ∧ closure U ∩ closure V = βˆ… :=
Munkres|exercise_32_1
Show that a closed subspace of a normal space is normal.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_32_1 {X : Type*} [TopologicalSpace X] (hX : NormalSpace X) (A : Set X) (hA : IsClosed A) : NormalSpace {x // x ∈ A} :=
Munkres|exercise_32_2b
Show that if $\prod X_\alpha$ is regular, then so is $X_\alpha$. Assume that each $X_\alpha$ is nonempty.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_32_2b {ΞΉ : Type*} {X : ΞΉ β†’ Type*} [βˆ€ i, TopologicalSpace (X i)] (h : βˆ€ i, Nonempty (X i)) (h2 : RegularSpace (Ξ  i, X i)) : βˆ€ i, RegularSpace (X i) :=
Munkres|exercise_32_3
Show that every locally compact Hausdorff space is regular.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_32_3 {X : Type*} [TopologicalSpace X] (hX : LocallyCompactSpace X) (hX' : T2Space X) : RegularSpace X :=
Munkres|exercise_33_8
Let $X$ be completely regular, let $A$ and $B$ be disjoint closed subsets of $X$. Show that if $A$ is compact, there is a continuous function $f \colon X \rightarrow [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_33_8 (X : Type*) [TopologicalSpace X] [CompletelyRegularSpace X] (A B : Set X) (hA : IsClosed A) (hB : IsClosed B) (hAB : Disjoint A B) (hAc : IsCompact A) : βˆƒ (f : X β†’ Icc 0 1), Continuous f ∧ f '' A = {0} ∧ f '' B = {1} :=
Munkres|exercise_38_6
Let $X$ be completely regular. Show that $X$ is connected if and only if the Stone-Čech compactification of $X$ is connected.
import Mathlib open Filter Set TopologicalSpace open scoped Topology
theorem exercise_38_6 {X : Type*} [TopologicalSpace X] [CompletelyRegularSpace X] : IsConnected (univ : Set X) ↔ IsConnected (univ : Set (StoneCech X)) :=
Pugh|exercise_2_12a
Let $(p_n)$ be a sequence and $f:\mathbb{N}\to\mathbb{N}$. The sequence $(q_k)_{k\in\mathbb{N}}$ with $q_k=p_{f(k)}$ is called a rearrangement of $(p_n)$. Show that if $f$ is an injection, the limit of a sequence is unaffected by rearrangement.
import Mathlib open Filter Real Function open scoped Topology
theorem exercise_2_12a {Ξ± : Type*} [TopologicalSpace Ξ±] (f : β„• β†’ β„•) (p : β„• β†’ Ξ±) (a : Ξ±) (hf : Injective f) (hp : Tendsto p atTop (𝓝 a)) : Tendsto (Ξ» n => p (f n)) atTop (𝓝 a) :=
Pugh|exercise_2_29
Let $\mathcal{T}$ be the collection of open subsets of a metric space $\mathrm{M}$, and $\mathcal{K}$ the collection of closed subsets. Show that there is a bijection from $\mathcal{T}$ onto $\mathcal{K}$.
import Mathlib open Filter Real Function open scoped Topology
theorem exercise_2_29 (M : Type*) [MetricSpace M] (O C : Set (Set M)) (hO : O = {s | IsOpen s}) (hC : C = {s | IsClosed s}) : βˆƒ f : O β†’ C, Bijective f :=
Pugh|exercise_2_41
Let $\|\cdot\|$ be any norm on $\mathbb{R}^{m}$ and let $B=\left\{x \in \mathbb{R}^{m}:\|x\| \leq 1\right\}$. Prove that $B$ is compact.
import Mathlib open Filter Real Function open scoped Topology
theorem exercise_2_41 (m : β„•) [NormedSpace ℝ ((Fin m) β†’ ℝ)] : IsCompact (Metric.closedBall (0 : EuclideanSpace ℝ (Fin m)) 1) :=
Pugh|exercise_2_57
Show that if $S$ is connected, it is not true in general that its interior is connected.
import Mathlib open Filter Real Function open scoped Topology
theorem exercise_2_57 {X : Type*} [TopologicalSpace X] : βˆƒ (S : Set X), IsConnected S ∧ Β¬ IsConnected (interior S) :=
Pugh|exercise_2_126
Suppose that $E$ is an uncountable subset of $\mathbb{R}$. Prove that there exists a point $p \in \mathbb{R}$ at which $E$ condenses.
import Mathlib open Filter Real Function open scoped Topology
theorem exercise_2_126 {E : Set ℝ} (hE : Β¬ Set.Countable E) : βˆƒ (p : ℝ), ClusterPt p (π“Ÿ E) :=
Pugh|exercise_3_4
Prove that $\sqrt{n+1}-\sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$.
import Mathlib open Filter Real Function open scoped Topology
theorem exercise_3_4 (n : β„•) : Tendsto (Ξ» n => (sqrt (n + 1) - sqrt n)) atTop (𝓝 0) :=
Pugh|exercise_3_63b
Prove that $\sum 1/k(\log(k))^p$ diverges when $p \leq 1$.
import Mathlib open Filter Real Function open scoped Topology
theorem exercise_3_63b (p : ℝ) (f : β„• β†’ ℝ) (hp : p ≀ 1) (h : f = Ξ» (k : β„•) => (1 : ℝ) / (k * (log k) ^ p)) : Β¬ βˆƒ l, Tendsto f atTop (𝓝 l) :=
Putnam|exercise_1998_a3
Let $f$ be a real function on the real line with continuous third derivative. Prove that there exists a point $a$ such that $f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0$.
import Mathlib open scoped BigOperators
theorem exercise_1998_a3 (f : ℝ β†’ ℝ) (hf : ContDiff ℝ 3 f) : βˆƒ a : ℝ, (f a) * (deriv f a) * (iteratedDeriv 2 f a) * (iteratedDeriv 3 f a) β‰₯ 0 :=
Putnam|exercise_2000_a2
Prove that there exist infinitely many integers $n$ such that $n, n+1, n+2$ are each the sum of the squares of two integers.
import Mathlib open scoped BigOperators
theorem exercise_2000_a2 : βˆ€ N : β„•, βˆƒ n : β„•, n > N ∧ βˆƒ i : Fin 6 β†’ β„•, n = (i 0)^2 + (i 1)^2 ∧ n + 1 = (i 2)^2 + (i 3)^2 ∧ n + 2 = (i 4)^2 + (i 5)^2 :=
Putnam|exercise_2010_a4
Prove that for each positive integer $n$, the number $10^{10^{10^n}}+10^{10^n}+10^n-1$ is not prime.
import Mathlib open scoped BigOperators
theorem exercise_2010_a4 (n : β„•) (hn : n > 0) : Β¬ Nat.Prime (10^10^10^n + 10^10^n + 10^n - 1) :=
Putnam|exercise_2017_b3
Suppose that $f(x)=\sum_{i=0}^{\infty} c_{i} x^{i}$ is a power series for which each coefficient $c_{i}$ is 0 or 1 . Show that if $f(2 / 3)=3 / 2$, then $f(1 / 2)$ must be irrational.
import Mathlib open scoped BigOperators
theorem exercise_2017_b3 (f : ℝ β†’ ℝ) (c : β„• β†’ ℝ) (hf : f = Ξ» x => (βˆ‘' (i : β„•), (c i) * x^i)) (hc : βˆ€ n, c n = 0 ∨ c n = 1) (hf1 : f (2/3) = 3/2) : Irrational (f (1/2)) :=
Putnam|exercise_2018_b2
Let $n$ be a positive integer, and let $f_{n}(z)=n+(n-1) z+$ $(n-2) z^{2}+\cdots+z^{n-1}$. Prove that $f_{n}$ has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.
import Mathlib open scoped BigOperators
theorem exercise_2018_b2 (n : β„•) (hn : n > 0) (f : β„• β†’ β„‚ β†’ β„‚) (hf : βˆ€ n : β„•, f n = Ξ» (z : β„‚) => (βˆ‘ i : Fin n, (n-i)* z^(i : β„•))) : Β¬ (βˆƒ z : β„‚, β€–zβ€– ≀ 1 ∧ f n z = 0) :=
Putnam|exercise_2020_b5
For $j \in\{1,2,3,4\}$, let $z_{j}$ be a complex number with $\left|z_{j}\right|=1$ and $z_{j} \neq 1$. Prove that $3-z_{1}-z_{2}-z_{3}-z_{4}+z_{1} z_{2} z_{3} z_{4} \neq 0 .$
import Mathlib open scoped BigOperators
theorem exercise_2020_b5 (z : Fin 4 β†’ β„‚) (hz0 : βˆ€ n, β€–z nβ€– = 1) (hz1 : βˆ€ n, z n β‰  1) : 3 - z 0 - z 1 - z 2 - z 3 + (z 0) * (z 1) * (z 2) * (z 3) β‰  0 :=
Rudin|exercise_1_1a
If $r$ is rational $(r \neq 0)$ and $x$ is irrational, prove that $r+x$ is irrational.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_1_1a (x : ℝ) (y : β„š) (hy : y β‰  0) : ( Irrational x ) -> Irrational ( x + y ) :=
Rudin|exercise_1_2
Prove that there is no rational number whose square is $12$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_1_2 : Β¬ βˆƒ (x : β„š), ( x ^ 2 = 12 ) :=
Rudin|exercise_1_5
Let $A$ be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that $\inf A=-\sup (-A)$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_1_5 (A minus_A : Set ℝ) (hA : A.Nonempty) (hA_bdd_below : BddBelow A) (hminus_A : minus_A = {x | -x ∈ A}) : sInf A = - sSup minus_A :=
Rudin|exercise_1_11a
If $z$ is a complex number, prove that there exists an $r\geq 0$ and a complex number $w$ with $| w | = 1$ such that $z = rw$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_1_11a (z : β„‚) : βˆƒ (r : ℝ) (w : β„‚), r β‰₯ 0 ∧ abs w = 1 ∧ z = r * w :=
Rudin|exercise_1_13
If $x, y$ are complex, prove that $||x|-|y|| \leq |x-y|$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_1_13 (x y : β„‚) : |(abs x) - (abs y)| ≀ abs (x - y) :=
Rudin|exercise_1_16a
Suppose $k \geq 3, x, y \in \mathbb{R}^k, |x - y| = d > 0$, and $r > 0$. Prove that if $2r > d$, there are infinitely many $z \in \mathbb{R}^k$ such that $|z-x|=|z-y|=r$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_1_16a (n : β„•) (d r : ℝ) (x y z : EuclideanSpace ℝ (Fin n)) -- R^n (h₁ : n β‰₯ 3) (hβ‚‚ : β€–x - yβ€– = d) (h₃ : d > 0) (hβ‚„ : r > 0) (hβ‚… : 2 * r > d) : Set.Infinite {z : EuclideanSpace ℝ (Fin n) | β€–z - xβ€– = r ∧ β€–z - yβ€– = r} :=
Rudin|exercise_1_18a
If $k \geq 2$ and $\mathbf{x} \in R^{k}$, prove that there exists $\mathbf{y} \in R^{k}$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y}=0$
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_1_18a (n : β„•) (h : n > 1) (x : EuclideanSpace ℝ (Fin n)) -- R^n : βˆƒ (y : EuclideanSpace ℝ (Fin n)), y β‰  0 ∧ (inner x y) = (0 : ℝ) :=
Rudin|exercise_1_19
Suppose $a, b \in R^k$. Find $c \in R^k$ and $r > 0$ such that $|x-a|=2|x-b|$ if and only if $| x - c | = r$. Prove that $3c = 4b - a$ and $3r = 2 |b - a|$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_1_19 (n : β„•) (a b : EuclideanSpace ℝ (Fin n)) : (βˆƒ c r, r > 0 ∧ (βˆ€ x, β€–x - aβ€– = 2 * β€–x - bβ€– ↔ β€–x - cβ€– = r)) ∧ (βˆ€ c r, (r > 0 ∧ (βˆ€ x, β€–x - aβ€– = 2 * β€–x - bβ€– ↔ β€–x - cβ€– = r)) β†’ (3 β€’ c = 4 β€’ b - a ∧ 3 * r = 2 * β€–b - aβ€–)) :=
Rudin|exercise_2_24
Let $X$ be a metric space in which every infinite subset has a limit point. Prove that $X$ is separable.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_2_24 {X : Type*} [MetricSpace X] (hX : βˆ€ (A : Set X), Infinite A β†’ βˆƒ (x : X), x ∈ closure A) : SeparableSpace X :=
Rudin|exercise_2_27a
Suppose $E\subset\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that $P$ is perfect.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_2_27a (k : β„•) (E P : Set (EuclideanSpace ℝ (Fin k))) (hE : Β¬ Set.Countable E) (hP : P = {x | βˆ€ U ∈ 𝓝 x, Β¬ Set.Countable (U ∩ E)}) : Perfect P :=
Rudin|exercise_2_28
Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_2_28 (X : Type*) [MetricSpace X] [SeparableSpace X] (A : Set X) (hA : IsClosed A) : βˆƒ P₁ Pβ‚‚ : Set X, A = P₁ βˆͺ Pβ‚‚ ∧ Perfect P₁ ∧ Set.Countable Pβ‚‚ :=
Rudin|exercise_3_1a
Prove that convergence of $\left\{s_{n}\right\}$ implies convergence of $\left\{\left|s_{n}\right|\right\}$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_3_1a (f : β„• β†’ ℝ) (h : βˆƒ (a : ℝ), Tendsto (Ξ» (n : β„•) => f n) atTop (𝓝 a)) : βˆƒ (a : ℝ), Tendsto (Ξ» (n : β„•) => |f n|) atTop (𝓝 a) :=
Rudin|exercise_3_3
If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}} \quad(n=1,2,3, \ldots),$ prove that $\left\{s_{n}\right\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
noncomputable def f : β„• β†’ ℝ | 0 => sqrt 2 | (n + 1) => sqrt (2 + sqrt (f n)) theorem exercise_3_3 : βˆƒ (x : ℝ), Tendsto f atTop (𝓝 x) ∧ βˆ€ n, f n < 2 :=
Rudin|exercise_3_6a
Prove that $\lim_{n \rightarrow \infty} \sum_{i<n} a_i = \infty$, where $a_i = \sqrt{i + 1} -\sqrt{i}$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
noncomputable def g (n : β„•) : ℝ := sqrt (n + 1) - sqrt n theorem exercise_3_6a : Tendsto (Ξ» (n : β„•) => (βˆ‘ i in range n, g i)) atTop atTop :=
Rudin|exercise_3_8
If $\Sigma a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\Sigma a_{n} b_{n}$ converges.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_3_8 (a b : β„• β†’ ℝ) (h1 : βˆƒ y, (Tendsto (Ξ» n => (βˆ‘ i in (range n), a i)) atTop (𝓝 y))) (h2 : Monotone b) (h3 : Bornology.IsBounded (Set.range b)) : βˆƒ y, Tendsto (Ξ» n => (βˆ‘ i in (range n), (a i) * (b i))) atTop (𝓝 y) :=
Rudin|exercise_3_20
Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space $X$, and some sequence $\left\{p_{n l}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to $p$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_3_20 {X : Type*} [MetricSpace X] (p : β„• β†’ X) (l : β„•+) (r : X) (hp : CauchySeq p) (hpl : Tendsto (Ξ» n => p (l * n)) atTop (𝓝 r)) : Tendsto p atTop (𝓝 r) :=
Rudin|exercise_3_22
Suppose $X$ is a nonempty complete metric space, and $\left\{G_{n}\right\}$ is a sequence of dense open sets of $X$. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_{n}$ is not empty.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_3_22 (X : Type*) [MetricSpace X] [CompleteSpace X] [Nonempty X] (G : β„• β†’ Set X) (hG : βˆ€ n, IsOpen (G n) ∧ Dense (G n)) : βˆƒ x, βˆ€ n, x ∈ G n :=
Rudin|exercise_4_2a
If $f$ is a continuous mapping of a metric space $X$ into a metric space $Y$, prove that $f(\overline{E}) \subset \overline{f(E)}$ for every set $E \subset X$. ($\overline{E}$ denotes the closure of $E$).
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_4_2a {Ξ± : Type} [MetricSpace Ξ±] {Ξ² : Type} [MetricSpace Ξ²] (f : Ξ± β†’ Ξ²) (h₁ : Continuous f) : βˆ€ (x : Set Ξ±), f '' (closure x) βŠ† closure (f '' x) :=
Rudin|exercise_4_4a
Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that $f(E)$ is dense in $f(X)$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_4_4a {Ξ± : Type} [MetricSpace Ξ±] {Ξ² : Type} [MetricSpace Ξ²] (f : Ξ± β†’ Ξ²) (s : Set Ξ±) (h₁ : Continuous f) (hβ‚‚ : Dense s) : f '' Set.univ βŠ† closure (f '' s) :=
Rudin|exercise_4_5a
If $f$ is a real continuous function defined on a closed set $E \subset \mathbb{R}$, prove that there exist continuous real functions $g$ on $\mathbb{R}$ such that $g(x)=f(x)$ for all $x \in E$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_4_5a (f : ℝ β†’ ℝ) (E : Set ℝ) (h₁ : IsClosed E) (hβ‚‚ : ContinuousOn f E) : βˆƒ (g : ℝ β†’ ℝ), Continuous g ∧ βˆ€ x ∈ E, f x = g x :=
Rudin|exercise_4_6
If $f$ is defined on $E$, the graph of $f$ is the set of points $(x, f(x))$, for $x \in E$. In particular, if $E$ is a set of real numbers, and $f$ is real-valued, the graph of $f$ is a subset of the plane. Suppose $E$ is compact, and prove that $f$ is continuous on $E$ if and only if its graph is compact.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_4_6 (f : ℝ β†’ ℝ) (E : Set ℝ) (G : Set (ℝ Γ— ℝ)) (h₁ : IsCompact E) (hβ‚‚ : G = {(x, f x) | x ∈ E}) : ContinuousOn f E ↔ IsCompact G :=
Rudin|exercise_4_8b
Let $E$ be a bounded set in $R^{1}$. Prove that there exists a real function $f$ such that $f$ is uniformly continuous and is not bounded on $E$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_4_8b (E : Set ℝ) (h : Bornology.IsBounded E) : βˆƒ f : ℝ β†’ ℝ, UniformContinuousOn f E ∧ Β¬ Bornology.IsBounded (Set.image f E) :=
Rudin|exercise_4_12
A uniformly continuous function of a uniformly continuous function is uniformly continuous.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_4_12 {Ξ± Ξ² Ξ³ : Type*} [UniformSpace Ξ±] [UniformSpace Ξ²] [UniformSpace Ξ³] {f : Ξ± β†’ Ξ²} {g : Ξ² β†’ Ξ³} (hf : UniformContinuous f) (hg : UniformContinuous g) : UniformContinuous (g ∘ f) :=
Rudin|exercise_4_19
Suppose $f$ is a real function with domain $R^{1}$ which has the intermediate value property: if $f(a)<c<f(b)$, then $f(x)=c$ for some $x$ between $a$ and $b$. Suppose also, for every rational $r$, that the set of all $x$ with $f(x)=r$ is closed. Prove that $f$ is continuous.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_4_19 {f : ℝ β†’ ℝ} (hf : βˆ€ a b c, a < b β†’ f a < c β†’ c < f b β†’ βˆƒ x, a < x ∧ x < b ∧ f x = c) (hg : βˆ€ r : β„š, IsClosed {x | f x = r}) : Continuous f :=
Rudin|exercise_4_24
Assume that $f$ is a continuous real function defined in $(a, b)$ such that $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$ for all $x, y \in(a, b)$. Prove that $f$ is convex.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_4_24 {f : ℝ β†’ ℝ} (hf : Continuous f) (a b : ℝ) (hab : a < b) (h : βˆ€ x y : ℝ, a < x β†’ x < b β†’ a < y β†’ y < b β†’ f ((x + y) / 2) ≀ (f x + f y) / 2) : ConvexOn ℝ (Set.Ioo a b) f :=
Rudin|exercise_5_2
Suppose $f^{\prime}(x)>0$ in $(a, b)$. Prove that $f$ is strictly increasing in $(a, b)$, and let $g$ be its inverse function. Prove that $g$ is differentiable, and that $g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad(a<x<b)$.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_5_2 {a b : ℝ} {f g : ℝ β†’ ℝ} (hf : βˆ€ x ∈ Set.Ioo a b, deriv f x > 0) (hg : g = f⁻¹) : StrictMonoOn f (Set.Ioo a b) ∧ DifferentiableOn ℝ g (Set.Ioo a b) ∧ βˆ€ x ∈ Set.Ioo a b, deriv g (f x) = 1 / deriv f x :=
Rudin|exercise_5_4
If $C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0,$ where $C_{0}, \ldots, C_{n}$ are real constants, prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_5_4 {n : β„•} (C : β„• β†’ ℝ) (hC : βˆ‘ i in (range (n + 1)), (C i) / (i + 1) = 0) : βˆƒ x, x ∈ (Set.Icc (0 : ℝ) 1) ∧ βˆ‘ i in range (n + 1), (C i) * (x^i) = 0 :=
Rudin|exercise_5_6
Suppose (a) $f$ is continuous for $x \geq 0$, (b) $f^{\prime}(x)$ exists for $x>0$, (c) $f(0)=0$, (d) $f^{\prime}$ is monotonically increasing. Put $g(x)=\frac{f(x)}{x} \quad(x>0)$ and prove that $g$ is monotonically increasing.
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_5_6 {f : ℝ β†’ ℝ} (hf1 : ContinuousOn f (Set.Ici 0)) (hf2 : DifferentiableOn ℝ f (Set.Ioi 0)) (hf3 : f 0 = 0) (hf4 : MonotoneOn (deriv f) (Set.Ioi 0)) : MonotoneOn (Ξ» x => f x / x) (Set.Ioi 0) :=
Rudin|exercise_5_15
Suppose $a \in R^{1}, f$ is a twice-differentiable real function on $(a, \infty)$, and $M_{0}, M_{1}, M_{2}$ are the least upper bounds of $|f(x)|,\left|f^{\prime}(x)\right|,\left|f^{\prime \prime}(x)\right|$, respectively, on $(a, \infty)$. Prove that $M_{1}^{2} \leq 4 M_{0} M_{2} .$
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
theorem exercise_5_15 {f : ℝ β†’ ℝ} (a M0 M1 M2 : ℝ) (hf' : DifferentiableOn ℝ f (Set.Ioi a)) (hf'' : DifferentiableOn ℝ (deriv f) (Set.Ioi a)) (hM0 : M0 = sSup {(|f x|) | x ∈ (Set.Ioi a)}) (hM1 : M1 = sSup {(|deriv f x|) | x ∈ (Set.Ioi a)}) (hM2 : M2 = sSup {(|deriv (deriv f) x|) | x ∈ (Set.Ioi a)}) : (M1 ^ 2) ≀ 4 * M0 * M2 :=
Shakarchi|exercise_1_13a
Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $\text{Re}(f)$ is constant, then $f$ is constant.
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
theorem exercise_1_13a {f : β„‚ β†’ β„‚} (Ξ© : Set β„‚) (a b : Ξ©) (h : IsOpen Ξ©) (hf : DifferentiableOn β„‚ f Ξ©) (hc : βˆƒ (c : ℝ), βˆ€ z ∈ Ξ©, (f z).re = c) : f a = f b :=
Shakarchi|exercise_1_13c
Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $|f|$ is constant, then $f$ is constant.
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
theorem exercise_1_13c {f : β„‚ β†’ β„‚} (Ξ© : Set β„‚) (a b : Ξ©) (h : IsOpen Ξ©) (hf : DifferentiableOn β„‚ f Ξ©) (hc : βˆƒ (c : ℝ), βˆ€ z ∈ Ξ©, abs (f z) = c) : f a = f b :=
Shakarchi|exercise_1_19b
Prove that the power series $\sum z^n/n^2$ converges at every point of the unit circle.
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
theorem exercise_1_19b (z : β„‚) (hz : abs z = 1) (s : β„• β†’ β„‚) (h : s = (Ξ» n => βˆ‘ i in (range n), z ^ (i + 1) / (i + 1) ^ 2)) : βˆƒ y, Tendsto s atTop (𝓝 y) :=
Shakarchi|exercise_1_26
Suppose $f$ is continuous in a region $\Omega$. Prove that any two primitives of $f$ (if they exist) differ by a constant.
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
theorem exercise_1_26 (f F₁ Fβ‚‚ : β„‚ β†’ β„‚) (Ξ© : Set β„‚) (h0 : Nonempty Ξ©) (h1 : IsOpen Ξ©) (h2 : IsConnected Ξ©) (hf : ContinuousOn f Ξ©) (hF₁ : DifferentiableOn β„‚ F₁ Ξ©) (hFβ‚‚ : DifferentiableOn β„‚ Fβ‚‚ Ξ©) (hdF₁ : βˆ€ x ∈ Ξ©, deriv F₁ x = f x) (hdFβ‚‚ : βˆ€ x ∈ Ξ©, deriv Fβ‚‚ x = f x) : βˆƒ c : β„‚, βˆ€ x, F₁ x = Fβ‚‚ x + c :=
Shakarchi|exercise_2_9
Let $\Omega$ be a bounded open subset of $\mathbb{C}$, and $\varphi: \Omega \rightarrow \Omega$ a holomorphic function. Prove that if there exists a point $z_{0} \in \Omega$ such that $\varphi\left(z_{0}\right)=z_{0} \quad \text { and } \quad \varphi^{\prime}\left(z_{0}\right)=1$ then $\varphi$ is linear.
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
theorem exercise_2_9 {f : β„‚ β†’ β„‚} (Ξ© : Set β„‚) (b : Bornology.IsBounded Ξ©) (h : IsOpen Ξ©) (hf : DifferentiableOn β„‚ f Ξ©) (z : Ξ©) (hz : f z = z) (h'z : deriv f z = 1) : βˆƒ (f_lin : β„‚ β†’L[β„‚] β„‚), βˆ€ x ∈ Ξ©, f x = f_lin x :=
Shakarchi|exercise_3_3
Show that $ \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx = \pi \frac{e^{-a}}{a}$ for $a > 0$.
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
theorem exercise_3_3 (a : ℝ) (ha : 0 < a) : Tendsto (Ξ» y => ∫ x in -y..y, Real.cos x / (x ^ 2 + a ^ 2)) atTop (𝓝 (Real.pi * (Real.exp (-a) / a))) :=
Shakarchi|exercise_3_9
Show that $\int_0^1 \log(\sin \pi x) dx = - \log 2$.
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
theorem exercise_3_9 : ∫ x in (0 : ℝ)..(1 : ℝ), Real.log (Real.sin (Real.pi * x)) = - Real.log 2 :=
Shakarchi|exercise_3_22
Show that there is no holomorphic function $f$ in the unit disc $D$ that extends continuously to $\partial D$ such that $f(z) = 1/z$ for $z \in \partial D$.
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
theorem exercise_3_22 (D : Set β„‚) (hD : D = ball 0 1) (f : β„‚ β†’ β„‚) (hf : DifferentiableOn β„‚ f D) (hfc : ContinuousOn f (closure D)) : Β¬ βˆ€ z ∈ (sphere (0 : β„‚) 1), f z = 1 / z :=