status
stringclasses 1
value | repo_name
stringclasses 31
values | repo_url
stringclasses 31
values | issue_id
int64 1
104k
| title
stringlengths 4
233
| body
stringlengths 0
186k
⌀ | issue_url
stringlengths 38
56
| pull_url
stringlengths 37
54
| before_fix_sha
stringlengths 40
40
| after_fix_sha
stringlengths 40
40
| report_datetime
unknown | language
stringclasses 5
values | commit_datetime
unknown | updated_file
stringlengths 7
188
| chunk_content
stringlengths 1
1.03M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | langchain/llms/openai.py | response = ""
params["stream"] = True
async for stream_resp in await acompletion_with_retry(
self, messages=messages, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
response += token
if run_manager:
await run_manager.on_llm_new_token(
token,
)
return LLMResult(
generations=[[Generation(text=response)]],
)
else:
full_response = await acompletion_with_retry(
self, messages=messages, **params
)
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
@property
def _identifying_params(self) -> Mapping[str, Any]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | langchain/llms/openai.py | """Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "openai-chat"
def get_num_tokens(self, text: str) -> int:
"""Calculate num tokens with tiktoken package."""
# ti
if sys.version_info[1] < 8:
return super().get_num_tokens(text)
try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please install it with `pip install tiktoken`."
)
# create
enc = tiktoken.encoding_for_model("gpt-3.5-turbo")
# encode
tokenized_text = enc.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
# ca
return len(tokenized_text) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/chat_models/test_openai.py | """Test ChatOpenAI wrapper."""
import pytest
from langchain.callbacks.manager import CallbackManager
from langchain.chat_models.openai import ChatOpenAI
from langchain.schema import (
BaseMessage,
ChatGeneration,
ChatResult,
HumanMessage,
LLMResult,
SystemMessage,
)
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
def test_chat_openai() -> None:
"""Test ChatOpenAI wrapper."""
chat = ChatOpenAI(max_tokens=10)
message = HumanMessage(content="Hello")
response = chat([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_chat_openai_system_message() -> None:
"""Test ChatOpenAI wrapper with system message."""
chat = ChatOpenAI(max_tokens=10)
system_message = SystemMessage(content="You are to chat with the user.")
human_message = HumanMessage(content="Hello")
response = chat([system_message, human_message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_chat_openai_generate() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/chat_models/test_openai.py | """Test ChatOpenAI wrapper with generate."""
chat = ChatOpenAI(max_tokens=10, n=2)
message = HumanMessage(content="Hello")
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
def test_chat_openai_multiple_completions() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
chat = ChatOpenAI(max_tokens=10, n=5)
message = HumanMessage(content="Hello")
response = chat._generate([message])
assert isinstance(response, ChatResult)
assert len(response.generations) == 5
for generation in response.generations:
assert isinstance(generation.message, BaseMessage)
assert isinstance(generation.message.content, str)
def test_chat_openai_streaming() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/chat_models/test_openai.py | """Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
def test_chat_openai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatOpenAI(max_tokens=10)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model_name
def test_chat_openai_streaming_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatOpenAI(max_tokens=10, streaming=True)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model_name
def test_chat_openai_invalid_streaming_params() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/chat_models/test_openai.py | """Test that streaming correctly invokes on_llm_new_token callback."""
with pytest.raises(ValueError):
ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
n=5,
)
@pytest.mark.asyncio
async def test_async_chat_openai() -> None:
"""Test async generation."""
chat = ChatOpenAI(max_tokens=10, n=2)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.asyncio
async def test_async_chat_openai_streaming() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/chat_models/test_openai.py | """Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/llms/test_openai.py | """Test OpenAI API wrapper."""
from pathlib import Path
from typing import Generator
import pytest
from langchain.callbacks.manager import CallbackManager
from langchain.llms.loading import load_llm
from langchain.llms.openai import OpenAI, OpenAIChat
from langchain.schema import LLMResult
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
def test_openai_call() -> None:
"""Test valid call to openai."""
llm = OpenAI(max_tokens=10)
output = llm("Say foo:")
assert isinstance(output, str)
def test_openai_extra_kwargs() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/llms/test_openai.py | """Test extra kwargs to openai."""
llm = OpenAI(foo=3, max_tokens=10)
assert llm.max_tokens == 10
assert llm.model_kwargs == {"foo": 3}
llm = OpenAI(foo=3, model_kwargs={"bar": 2})
assert llm.model_kwargs == {"foo": 3, "bar": 2}
with pytest.raises(ValueError):
OpenAI(foo=3, model_kwargs={"foo": 2})
def test_openai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
llm = OpenAI(max_tokens=10)
llm_result = llm.generate(["Hello, how are you?"])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == llm.model_name
def test_openai_stop_valid() -> None:
"""Test openai stop logic on valid configuration."""
query = "write an ordered list of five items"
first_llm = OpenAI(stop="3", temperature=0)
first_output = first_llm(query)
second_llm = OpenAI(temperature=0)
second_output = second_llm(query, stop=["3"])
assert first_output == second_output
def test_openai_stop_error() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/llms/test_openai.py | """Test openai stop logic on bad configuration."""
llm = OpenAI(stop="3", temperature=0)
with pytest.raises(ValueError):
llm("write an ordered list of five items", stop=["\n"])
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an OpenAI LLM."""
llm = OpenAI(max_tokens=10)
llm.save(file_path=tmp_path / "openai.yaml")
loaded_llm = load_llm(tmp_path / "openai.yaml")
assert loaded_llm == llm
def test_openai_streaming() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
generator = llm.stream("I'm Pickle Rick")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token["choices"][0]["text"], str)
def test_openai_streaming_error() -> None:
"""Test error handling in stream."""
llm = OpenAI(best_of=2)
with pytest.raises(ValueError):
llm.stream("I'm Pickle Rick")
def test_openai_streaming_best_of_error() -> None:
"""Test validation for streaming fails if best_of is not 1."""
with pytest.raises(ValueError):
OpenAI(best_of=2, streaming=True)
def test_openai_streaming_n_error() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/llms/test_openai.py | """Test validation for streaming fails if n is not 1."""
with pytest.raises(ValueError):
OpenAI(n=2, streaming=True)
def test_openai_streaming_multiple_prompts_error() -> None:
"""Test validation for streaming fails if multiple prompts are given."""
with pytest.raises(ValueError):
OpenAI(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"])
def test_openai_streaming_call() -> None:
"""Test valid call to openai."""
llm = OpenAI(max_tokens=10, streaming=True)
output = llm("Say foo:")
assert isinstance(output, str)
def test_openai_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
assert callback_handler.llm_streams == 10
@pytest.mark.asyncio
async def test_openai_async_generate() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/llms/test_openai.py | """Test async generation."""
llm = OpenAI(max_tokens=10)
output = await llm.agenerate(["Hello, how are you?"])
assert isinstance(output, LLMResult)
@pytest.mark.asyncio
async def test_openai_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
result = await llm.agenerate(["Write me a sentence with 100 words."])
assert callback_handler.llm_streams == 10
assert isinstance(result, LLMResult)
def test_openai_chat_wrong_class() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/llms/test_openai.py | """Test OpenAIChat with wrong class still works."""
llm = OpenAI(model_name="gpt-3.5-turbo")
output = llm("Say foo:")
assert isinstance(output, str)
def test_openai_chat() -> None:
"""Test OpenAIChat."""
llm = OpenAIChat(max_tokens=10)
output = llm("Say foo:")
assert isinstance(output, str)
def test_openai_chat_streaming() -> None:
"""Test OpenAIChat with streaming option."""
llm = OpenAIChat(max_tokens=10, streaming=True)
output = llm("Say foo:")
assert isinstance(output, str)
def test_openai_chat_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAIChat(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
assert callback_handler.llm_streams != 0
@pytest.mark.asyncio
async def test_openai_chat_async_generate() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,331 | Issue: Model and model_name inconsistency in OpenAI LLMs such as ChatOpenAI | ### Issue you'd like to raise.
Argument `model_name` is the standard way of defining a model in LangChain's [ChatOpenAI](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L115). However, OpenAI uses `model` in their own [API](https://platform.openai.com/docs/api-reference/completions/create). To handle this discrepancy, LangChain transforms `model_name` into `model` [here](https://github.com/hwchase17/langchain/blob/65c95f9fb2b86cf3281f2f3939b37e71f048f741/langchain/chat_models/openai.py#L202).
The problem is that, if you ignore model_name and use model in the LLM instantiation e.g. `ChatOpenAI(model=...)`, it still works! It works because model becomes part of `model_kwargs`, which takes precedence over the default `model_name` (which would be "gpt-3.5-turbo"). This leads to an inconsistency: the `model` can be anything (e.g. "gpt-4-0314"), but `model_name` will be the default value.
This inconsistency won't cause any direct issue but can be problematic when you're trying to understand what models are actually being called and used. I'm raising this issue because I lost a couple of hours myself trying to understand what was happening.
### Suggestion:
There are three ways to solve it:
1. Raise an error or warning if model is used as an argument and suggest using model_name instead
2. Raise a warning if model is defined differently from model_name
3. Change from model_name to model to make it consistent with OpenAI's API
I think (3) is unfeasible due to the breaking change, but raising a warning seems low effort and safe enough. | https://github.com/langchain-ai/langchain/issues/4331 | https://github.com/langchain-ai/langchain/pull/4366 | 02ebb15c4a92a23818c2c17486bdaf9f590dc6a5 | ba0057c07712e5e725c7c5e14c02d223783b183c | "2023-05-08T10:49:23Z" | python | "2023-05-08T23:37:34Z" | tests/integration_tests/llms/test_openai.py | """Test async chat."""
llm = OpenAIChat(max_tokens=10)
output = await llm.agenerate(["Hello, how are you?"])
assert isinstance(output, LLMResult)
@pytest.mark.asyncio
async def test_openai_chat_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAIChat(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
result = await llm.agenerate(["Write me a sentence with 100 words."])
assert callback_handler.llm_streams != 0
assert isinstance(result, LLMResult)
def test_openai_modelname_to_contextsize_valid() -> None:
"""Test model name to context size on a valid model."""
assert OpenAI().modelname_to_contextsize("davinci") == 2049
def test_openai_modelname_to_contextsize_invalid() -> None:
"""Test model name to context size on an invalid model."""
with pytest.raises(ValueError):
OpenAI().modelname_to_contextsize("foobar") |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,153 | WhatsAppChatLoader doesn't work on chats exported from WhatsApp | ### System Info
langchain 0.0.158
Mac OS M1
Python 3.11
### Who can help?
@ey
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Use 'Export Chat' feature on WhatsApp.
2. Observe this format for the txt file
```
[11/8/21, 9:41:32 AM] User name: Message text
```
The regular expression used by WhatsAppChatLoader doesn't parse this format successfully
### Expected behavior
Parsing fails | https://github.com/langchain-ai/langchain/issues/4153 | https://github.com/langchain-ai/langchain/pull/4420 | f2150285a495fc530a7707218ea4980c17a170e5 | 2b1403612614127da4e3bd3d22595ce7b3eb1540 | "2023-05-05T05:25:38Z" | python | "2023-05-09T22:00:04Z" | langchain/document_loaders/whatsapp_chat.py | import re
from pathlib import Path
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
def concatenate_rows(date: str, sender: str, text: str) -> str:
"""Combine message information in a readable format ready to be used."""
return f"{sender} on {date}: {text}\n\n"
class WhatsAppChatLoader(BaseLoader):
"""Loader that loads WhatsApp messages text file."""
def __init__(self, path: str):
"""Initialize with path."""
self.file_path = path
def load(self) -> List[Document]:
"""Load documents."""
p = Path(self.file_path)
text_content = ""
with open(p, encoding="utf8") as f:
lines = f.readlines()
message_line_regex = r""" |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,153 | WhatsAppChatLoader doesn't work on chats exported from WhatsApp | ### System Info
langchain 0.0.158
Mac OS M1
Python 3.11
### Who can help?
@ey
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Use 'Export Chat' feature on WhatsApp.
2. Observe this format for the txt file
```
[11/8/21, 9:41:32 AM] User name: Message text
```
The regular expression used by WhatsAppChatLoader doesn't parse this format successfully
### Expected behavior
Parsing fails | https://github.com/langchain-ai/langchain/issues/4153 | https://github.com/langchain-ai/langchain/pull/4420 | f2150285a495fc530a7707218ea4980c17a170e5 | 2b1403612614127da4e3bd3d22595ce7b3eb1540 | "2023-05-05T05:25:38Z" | python | "2023-05-09T22:00:04Z" | langchain/document_loaders/whatsapp_chat.py | \[?
(
\d{1,2}
[\/.]
\d{1,2}
[\/.]
\d{2,4}
,\s
\d{1,2}
:\d{2}
(?:
:\d{2}
)?
(?:[ _](?:AM|PM))?
)
\]?
[\s-]*
([\w\s]+)
[:]+
\s
(.+)
"""
for line in lines:
result = re.match(message_line_regex, line.strip(), flags=re.VERBOSE)
if result:
date, sender, text = result.groups()
text_content += concatenate_rows(date, sender, text)
metadata = {"source": str(p)}
return [Document(page_content=text_content, metadata=metadata)] |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,153 | WhatsAppChatLoader doesn't work on chats exported from WhatsApp | ### System Info
langchain 0.0.158
Mac OS M1
Python 3.11
### Who can help?
@ey
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Use 'Export Chat' feature on WhatsApp.
2. Observe this format for the txt file
```
[11/8/21, 9:41:32 AM] User name: Message text
```
The regular expression used by WhatsAppChatLoader doesn't parse this format successfully
### Expected behavior
Parsing fails | https://github.com/langchain-ai/langchain/issues/4153 | https://github.com/langchain-ai/langchain/pull/4420 | f2150285a495fc530a7707218ea4980c17a170e5 | 2b1403612614127da4e3bd3d22595ce7b3eb1540 | "2023-05-05T05:25:38Z" | python | "2023-05-09T22:00:04Z" | tests/integration_tests/document_loaders/test_whatsapp_chat.py | from pathlib import Path
from langchain.document_loaders import WhatsAppChatLoader
def test_whatsapp_chat_loader() -> None:
"""Test WhatsAppChatLoader."""
file_path = Path(__file__).parent.parent / "examples" / "whatsapp_chat.txt"
loader = WhatsAppChatLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
assert docs[0].metadata["source"] == str(file_path)
assert docs[0].page_content == (
"James on 05.05.23, 15:48:11: Hi here\n\n"
"User name on 11/8/21, 9:41:32 AM: Message 123\n\n"
"User 2 on 1/23/23, 3:19 AM: Bye!\n\n"
"User 1 on 1/23/23, 3:22_AM: And let me know if anything changes\n\n"
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | """Wrapper around ChromaDB embeddings platform."""
from __future__ import annotations
import logging
import uuid
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import xor_args
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
if TYPE_CHECKING:
import chromadb
import chromadb.config
logger = logging.getLogger(__name__)
def _results_to_docs(results: Any) -> List[Document]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | return [doc for doc, _ in _results_to_docs_and_scores(results)]
def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
return [
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
for result in zip(
results["documents"][0],
results["metadatas"][0],
results["distances"][0],
)
]
class Chroma(VectorStore):
"""Wrapper around ChromaDB embeddings platform.
To use, you should have the ``chromadb`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = Chroma("langchain_store", embeddings.embed_query)
"""
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
def __init__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | self,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
embedding_function: Optional[Embeddings] = None,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
collection_metadata: Optional[Dict] = None,
client: Optional[chromadb.Client] = None,
) -> None:
"""Initialize with Chroma client."""
try:
import chromadb |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | import chromadb.config
except ImportError:
raise ValueError(
"Could not import chromadb python package. "
"Please install it with `pip install chromadb`."
)
if client is not None:
self._client = client
else:
if client_settings:
self._client_settings = client_settings
else:
self._client_settings = chromadb.config.Settings()
if persist_directory is not None:
self._client_settings = chromadb.config.Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=persist_directory,
)
self._client = chromadb.Client(self._client_settings)
self._embedding_function = embedding_function
self._persist_directory = persist_directory
self._collection = self._client.get_or_create_collection(
name=collection_name,
embedding_function=self._embedding_function.embed_documents
if self._embedding_function is not None
else None,
metadata=collection_metadata,
)
@xor_args(("query_texts", "query_embeddings"))
def __query_collection( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | self,
query_texts: Optional[List[str]] = None,
query_embeddings: Optional[List[List[float]]] = None,
n_results: int = 4,
where: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Query the chroma collection."""
try:
import chromadb
except ImportError:
raise ValueError(
"Could not import chromadb python package. "
"Please install it with `pip install chromadb`."
)
for i in range(n_results, 0, -1):
try:
return self._collection.query(
query_texts=query_texts,
query_embeddings=query_embeddings,
n_results=i,
where=where,
**kwargs,
)
except chromadb.errors.NotEnoughElementsException:
logger.error(
f"Chroma collection {self._collection.name} "
f"contains fewer than {i} elements." |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | )
raise chromadb.errors.NotEnoughElementsException(
f"No documents found for Chroma collection {self._collection.name}"
)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts (Iterable[str]): Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
ids (Optional[List[str]], optional): Optional list of IDs.
Returns:
List[str]: List of IDs of the added texts.
"""
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
embeddings = None
if self._embedding_function is not None:
embeddings = self._embedding_function.embed_documents(list(texts))
self._collection.add(
metadatas=metadatas, embeddings=embeddings, documents=texts, ids=ids
)
return ids
def similarity_search( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with Chroma.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Document]: List of documents most similar to the query text.
"""
docs_and_scores = self.similarity_search_with_score(query, k, filter=filter)
return [doc for doc, _ in docs_and_scores]
def similarity_search_by_vector( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query vector.
"""
results = self.__query_collection(
query_embeddings=embedding, n_results=k, where=filter
)
return _results_to_docs(results)
def similarity_search_with_score( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Run similarity search with Chroma with distance.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Tuple[Document, float]]: List of documents most similar to the query
text with distance in float.
"""
if self._embedding_function is None:
results = self.__query_collection(
query_texts=[query], n_results=k, where=filter
)
else:
query_embedding = self._embedding_function.embed_query(query)
results = self.__query_collection(
query_embeddings=[query_embedding], n_results=k, where=filter
)
return _results_to_docs_and_scores(results) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents selected by maximal marginal relevance.
"""
results = self.__query_collection(
query_embeddings=embedding,
n_results=fetch_k,
where=filter,
include=["metadatas", "documents", "distances", "embeddings"],
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | mmr_selected = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32),
results["embeddings"][0],
k=k,
lambda_mult=lambda_mult,
)
candidates = _results_to_docs(results)
selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
return selected_results
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | Returns:
List of Documents selected by maximal marginal relevance.
"""
if self._embedding_function is None:
raise ValueError(
"For MMR search, you must specify an embedding function on" "creation."
)
embedding = self._embedding_function.embed_query(query)
docs = self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mul=lambda_mult, filter=filter
)
return docs
def delete_collection(self) -> None:
"""Delete the collection."""
self._client.delete_collection(self._collection.name)
def get(self) -> Chroma:
"""Gets the collection"""
return self._collection.get()
def persist(self) -> None:
"""Persist the collection.
This can be used to explicitly persist the data to disk.
It will also be called automatically when the object is destroyed.
"""
if self._persist_directory is None:
raise ValueError(
"You must specify a persist_directory on"
"creation to persist the collection."
)
self._client.persist()
def update_document(self, document_id: str, document: Document) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | """Update a document in the collection.
Args:
document_id (str): ID of the document to update.
document (Document): Document to update.
"""
text = document.page_content
metadata = document.metadata
self._collection.update_document(document_id, text, metadata)
@classmethod
def from_texts(
cls: Type[Chroma],
texts: List[str],
embedding: Optional[Embeddings] = None,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
client: Optional[chromadb.Client] = None,
**kwargs: Any,
) -> Chroma:
"""Create a Chroma vectorstore from a raw documents. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | If a persist_directory is specified, the collection will be persisted there.
Otherwise, the data will be ephemeral in-memory.
Args:
texts (List[str]): List of texts to add to the collection.
collection_name (str): Name of the collection to create.
persist_directory (Optional[str]): Directory to persist the collection.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
ids (Optional[List[str]]): List of document IDs. Defaults to None.
client_settings (Optional[chromadb.config.Settings]): Chroma client settings
Returns:
Chroma: Chroma vectorstore.
"""
chroma_collection = cls(
collection_name=collection_name,
embedding_function=embedding,
persist_directory=persist_directory,
client_settings=client_settings,
client=client,
)
chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids)
return chroma_collection
@classmethod
def from_documents(
cls: Type[Chroma],
documents: List[Document],
embedding: Optional[Embeddings] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
persist_directory: Optional[str] = None, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,619 | ChromaDB does not support filtering when using ```similarity_search``` or ```similarity_search_by_vector``` | Whereas it should be possible to filter by metadata :
- ```langchain.vectorstores.chroma.similarity_search``` takes a ```filter``` input parameter but do not forward it to ```langchain.vectorstores.chroma.similarity_search_with_score```
- ```langchain.vectorstores.chroma.similarity_search_by_vector``` don't take this parameter in input, although it could be very useful, without any additional complexity - and it would thus be coherent with the syntax of the two other functions | https://github.com/langchain-ai/langchain/issues/1619 | https://github.com/langchain-ai/langchain/pull/1621 | 28091c21018677355a124dd9c46213db3a229183 | d383c0cb435273de83595160c14a2cb45dcecf2a | "2023-03-12T23:58:13Z" | python | "2023-05-09T23:43:00Z" | langchain/vectorstores/chroma.py | client_settings: Optional[chromadb.config.Settings] = None,
client: Optional[chromadb.Client] = None,
**kwargs: Any,
) -> Chroma:
"""Create a Chroma vectorstore from a list of documents.
If a persist_directory is specified, the collection will be persisted there.
Otherwise, the data will be ephemeral in-memory.
Args:
collection_name (str): Name of the collection to create.
persist_directory (Optional[str]): Directory to persist the collection.
ids (Optional[List[str]]): List of document IDs. Defaults to None.
documents (List[Document]): List of documents to add to the vectorstore.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
client_settings (Optional[chromadb.config.Settings]): Chroma client settings
Returns:
Chroma: Chroma vectorstore.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
texts=texts,
embedding=embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
persist_directory=persist_directory,
client_settings=client_settings,
client=client,
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | """Wrapper around Redis vector database."""
from __future__ import annotations
import json
import logging
import uuid
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterable,
List,
Mapping,
Optional,
Tuple,
Type,
)
import numpy as np
from pydantic import BaseModel, root_validator
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | from langchain.schema import BaseRetriever
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from redis.client import Redis as RedisType
from redis.commands.search.query import Query
REDIS_REQUIRED_MODULES = [
{"name": "search", "ver": 20400},
{"name": "searchlight", "ver": 20400},
]
def _check_redis_module_exist(client: RedisType, required_modules: List[dict]) -> None:
"""Check if the correct Redis modules are installed."""
installed_modules = client.module_list()
installed_modules = {
module[b"name"].decode("utf-8"): module for module in installed_modules
}
for module in required_modules:
if module["name"] in installed_modules and int(
installed_modules[module["name"]][b"ver"]
) >= int(module["ver"]):
return
error_message = (
"You must add the RediSearch (>= 2.4) module from Redis Stack. "
"Please refer to Redis Stack docs: https://redis.io/docs/stack/"
)
logging.error(error_message)
raise ValueError(error_message)
def _check_index_exists(client: RedisType, index_name: str) -> bool: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | """Check if Redis index exists."""
try:
client.ft(index_name).info()
except:
logger.info("Index does not exist")
return False
logger.info("Index already exists")
return True
def _redis_key(prefix: str) -> str:
"""Redis key schema for a given prefix."""
return f"{prefix}:{uuid.uuid4().hex}"
def _redis_prefix(index_name: str) -> str:
"""Redis key prefix for a given index."""
return f"doc:{index_name}"
def _default_relevance_score(val: float) -> float:
return 1 - val
class Redis(VectorStore): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | """Wrapper around Redis vector database.
To use, you should have the ``redis`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = Redis(
redis_url="redis://username:password@localhost:6379"
index_name="my-index",
embedding_function=embeddings.embed_query,
)
"""
def __init__(
self,
redis_url: str,
index_name: str,
embedding_function: Callable,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
relevance_score_fn: Optional[
Callable[[float], float] |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | ] = _default_relevance_score,
**kwargs: Any,
):
"""Initialize with necessary components."""
try:
import redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
self.embedding_function = embedding_function
self.index_name = index_name
try:
redis_client = redis.from_url(redis_url, **kwargs)
_check_redis_module_exist(redis_client, REDIS_REQUIRED_MODULES)
except ValueError as e:
raise ValueError(f"Redis failed to connect: {e}")
self.client = redis_client
self.content_key = content_key
self.metadata_key = metadata_key
self.vector_key = vector_key
self.relevance_score_fn = relevance_score_fn
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
if not _check_index_exists(self.client, self.index_name):
distance_metric = (
"COSINE"
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
def add_texts( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
embeddings: Optional[List[List[float]]] = None,
keys: Optional[List[str]] = None,
batch_size: int = 1000,
**kwargs: Any,
) -> List[str]:
"""Add more texts to the vectorstore.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
Defaults to None.
embeddings (Optional[List[List[float]]], optional): Optional pre-generated
embeddings. Defaults to None.
keys (Optional[List[str]], optional): Optional key values to use as ids.
Defaults to None.
batch_size (int, optional): Batch size to use for writes. Defaults to 1000.
Returns:
List[str]: List of ids added to the vectorstore
"""
ids = []
prefix = _redis_prefix(self.index_name)
pipeline = self.client.pipeline(transaction=False)
for i, text in enumerate(texts):
key = keys[i] if keys else _redis_key(prefix)
metadata = metadatas[i] if metadatas else {} |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | embedding = embeddings[i] if embeddings else self.embedding_function(text)
pipeline.hset(
key,
mapping={
self.content_key: text,
self.vector_key: np.array(embedding, dtype=np.float32).tobytes(),
self.metadata_key: json.dumps(metadata),
},
)
ids.append(key)
if i % batch_size == 0:
pipeline.execute()
pipeline.execute()
return ids
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
Returns:
List[Document]: A list of documents that are most similar to the query text.
"""
docs_and_scores = self.similarity_search_with_score(query, k=k)
return [doc for doc, _ in docs_and_scores]
def similarity_search_limit_score( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | self, query: str, k: int = 4, score_threshold: float = 0.2, **kwargs: Any
) -> List[Document]:
"""
Returns the most similar indexed documents to the query text within the
score_threshold range.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
score_threshold (float): The minimum matching score required for a document
to be considered a match. Defaults to 0.2.
Because the similarity calculation algorithm is based on cosine similarity,
the smaller the angle, the higher the similarity.
Returns:
List[Document]: A list of documents that are most similar to the query text,
including the match score for each document.
Note:
If there are no documents that satisfy the score_threshold value,
an empty list is returned.
"""
docs_and_scores = self.similarity_search_with_score(query, k=k)
return [doc for doc, score in docs_and_scores if score < score_threshold]
def _prepare_query(self, k: int) -> Query: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | try:
from redis.commands.search.query import Query
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
hybrid_fields = "*"
base_query = (
f"{hybrid_fields}=>[KNN {k} @{self.vector_key} $vector AS vector_score]"
)
return_fields = [self.metadata_key, self.content_key, "vector_score"]
return (
Query(base_query)
.return_fields(*return_fields)
.sort_by("vector_score")
.paging(0, k)
.dialect(2)
)
def similarity_search_with_score( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | self, query: str, k: int = 4
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embedding_function(query)
redis_query = self._prepare_query(k)
params_dict: Mapping[str, str] = {
"vector": np.array(embedding)
.astype(dtype=np.float32)
.tobytes()
} |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | results = self.client.ft(self.index_name).search(redis_query, params_dict)
docs = [
(
Document(
page_content=result.content, metadata=json.loads(result.metadata)
),
float(result.vector_score),
)
for result in results.docs
]
return docs
def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and relevance scores, normalized on a scale from 0 to 1.
0 is dissimilar, 1 is most similar.
"""
if self.relevance_score_fn is None:
raise ValueError(
"relevance_score_fn must be provided to"
" Weaviate constructor to normalize scores"
)
docs_and_scores = self.similarity_search_with_score(query, k=k)
return [(doc, self.relevance_score_fn(score)) for doc, score in docs_and_scores]
@classmethod
def from_texts( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
if not index_name:
index_name = uuid.uuid4().hex
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
embeddings = embedding.embed_documents(texts)
instance._create_index(dim=len(embeddings[0]))
instance.add_texts(texts, metadatas, embeddings)
return instance
@staticmethod
def drop_index( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | index_name: str,
delete_documents: bool,
**kwargs: Any,
) -> bool:
"""
Drop a Redis search index.
Args:
index_name (str): Name of the index to drop.
delete_documents (bool): Whether to drop the associated documents.
Returns:
bool: Whether or not the drop was successful.
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
try:
import redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
try:
if "redis_url" in kwargs:
kwargs.pop("redis_url")
client = redis.from_url(url=redis_url, **kwargs)
except ValueError as e:
raise ValueError(f"Your redis connected error: {e}")
try: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | client.ft(index_name).dropindex(delete_documents)
logger.info("Drop index")
return True
except:
return False
@classmethod
def from_existing_index(
cls,
embedding: Embeddings,
index_name: str,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
**kwargs: Any,
) -> Redis:
"""Connect to an existing Redis index."""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
try:
import redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
try:
if "redis_url" in kwargs:
kwargs.pop("redis_url") |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | client = redis.from_url(url=redis_url, **kwargs)
_check_redis_module_exist(client, REDIS_REQUIRED_MODULES)
assert _check_index_exists(
client, index_name
), f"Index {index_name} does not exist"
except Exception as e:
raise ValueError(f"Redis failed to connect: {e}")
return cls(
redis_url,
index_name,
embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
def as_retriever(self, **kwargs: Any) -> BaseRetriever:
return RedisVectorStoreRetriever(vectorstore=self, **kwargs)
class RedisVectorStoreRetriever(BaseRetriever, BaseModel):
vectorstore: Redis
search_type: str = "similarity"
k: int = 4
score_threshold: float = 0.4
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | langchain/vectorstores/redis.py | """Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in ("similarity", "similarity_limit"):
raise ValueError(f"search_type of {search_type} not allowed.")
return values
def get_relevant_documents(self, query: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(query, k=self.k)
elif self.search_type == "similarity_limit":
docs = self.vectorstore.similarity_search_limit_score(
query, k=self.k, score_threshold=self.score_threshold
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def aget_relevant_documents(self, query: str) -> List[Document]:
raise NotImplementedError("RedisVectorStoreRetriever does not support async")
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
"""Add documents to vectorstore."""
return self.vectorstore.add_documents(documents, **kwargs)
async def aadd_documents(
self, documents: List[Document], **kwargs: Any
) -> List[str]:
"""Add documents to vectorstore."""
return await self.vectorstore.aadd_documents(documents, **kwargs) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | tests/integration_tests/vectorstores/test_redis.py | """Test Redis functionality."""
from langchain.docstore.document import Document
from langchain.vectorstores.redis import Redis
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
TEST_INDEX_NAME = "test"
TEST_REDIS_URL = "redis://localhost:6379"
TEST_SINGLE_RESULT = [Document(page_content="foo")]
TEST_RESULT = [Document(page_content="foo"), Document(page_content="foo")]
def drop(index_name: str) -> bool:
return Redis.drop_index(
index_name=index_name, delete_documents=True, redis_url=TEST_REDIS_URL
)
def test_redis() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = Redis.from_texts(texts, FakeEmbeddings(), redis_url=TEST_REDIS_URL)
output = docsearch.similarity_search("foo", k=1)
assert output == TEST_SINGLE_RESULT
assert drop(docsearch.index_name)
def test_redis_new_vector() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,368 | Add distance metric param to to redis vectorstore index | ### Feature request
Redis vectorstore allows for three different distance metrics: `L2` (flat L2), `COSINE`, and `IP` (inner product). Currently, the `Redis._create_index` method hard codes the distance metric to COSINE.
```py
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Constants
distance_metric = (
"COSINE" # distance metric for the vectors (ex. COSINE, IP, L2)
)
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
```
This should be parameterized.
### Motivation
I'd like to be able to use L2 distance metrics.
### Your contribution
I've already forked and made a branch that parameterizes the distance metric in `langchain.vectorstores.redis`:
```py
def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
) def _create_index(self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE") -> None:
try:
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Check if index exists
if not _check_index_exists(self.client, self.index_name):
# Define schema
schema = (
TextField(name=self.content_key),
TextField(name=self.metadata_key),
VectorField(
self.vector_key,
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": dim,
"DISTANCE_METRIC": distance_metric,
},
),
)
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=schema,
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
...
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
content_key: str = "content",
metadata_key: str = "metadata",
vector_key: str = "content_vector",
distance_metric: REDIS_DISTANCE_METRICS = "COSINE",
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# Create instance
instance = cls(
redis_url=redis_url,
index_name=index_name,
embedding_function=embedding.embed_query,
content_key=content_key,
metadata_key=metadata_key,
vector_key=vector_key,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric)
# Add data to Redis
instance.add_texts(texts, metadatas, embeddings)
return instance
```
I'll make the PR and link this issue | https://github.com/langchain-ai/langchain/issues/4368 | https://github.com/langchain-ai/langchain/pull/4375 | f46710d4087c3f27e95cfc4b2c96956d7c4560e8 | f668251948c715ef3102b2bf84ff31aed45867b5 | "2023-05-09T00:40:32Z" | python | "2023-05-11T07:20:01Z" | tests/integration_tests/vectorstores/test_redis.py | """Test adding a new document"""
texts = ["foo", "bar", "baz"]
docsearch = Redis.from_texts(texts, FakeEmbeddings(), redis_url=TEST_REDIS_URL)
docsearch.add_texts(["foo"])
output = docsearch.similarity_search("foo", k=2)
assert output == TEST_RESULT
assert drop(docsearch.index_name)
def test_redis_from_existing() -> None:
"""Test adding a new document"""
texts = ["foo", "bar", "baz"]
Redis.from_texts(
texts, FakeEmbeddings(), index_name=TEST_INDEX_NAME, redis_url=TEST_REDIS_URL
)
docsearch2 = Redis.from_existing_index(
FakeEmbeddings(), index_name=TEST_INDEX_NAME, redis_url=TEST_REDIS_URL
)
output = docsearch2.similarity_search("foo", k=1)
assert output == TEST_SINGLE_RESULT
def test_redis_add_texts_to_existing() -> None:
"""Test adding a new document"""
docsearch = Redis.from_existing_index(
FakeEmbeddings(), index_name=TEST_INDEX_NAME, redis_url=TEST_REDIS_URL
)
docsearch.add_texts(["foo"])
output = docsearch.similarity_search("foo", k=2)
assert output == TEST_RESULT
assert drop(TEST_INDEX_NAME) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,167 | User Agent on WebBaseLoader does not set header_template when passing `header_template` | ### System Info
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
```
loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()
```
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
`loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()`
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Expected behavior
Not throw 403 when calling loader.
Modifying INIT and setting the session headers works if the template is passed | https://github.com/langchain-ai/langchain/issues/4167 | https://github.com/langchain-ai/langchain/pull/4579 | 372a5113ff1cce613f78d58c9e79e7c49aa60fac | 3b6206af49a32d947a75965a5167c8726e1d5639 | "2023-05-05T10:04:47Z" | python | "2023-05-15T03:09:27Z" | langchain/document_loaders/web_base.py | """Web base loader class."""
import asyncio
import logging
import warnings
from typing import Any, List, Optional, Union
import aiohttp
import requests
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
logger = logging.getLogger(__name__)
default_header_template = {
"User-Agent": "",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*"
";q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Referer": "https://www.google.com/",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",
}
def _build_metadata(soup: Any, url: str) -> dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,167 | User Agent on WebBaseLoader does not set header_template when passing `header_template` | ### System Info
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
```
loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()
```
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
`loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()`
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Expected behavior
Not throw 403 when calling loader.
Modifying INIT and setting the session headers works if the template is passed | https://github.com/langchain-ai/langchain/issues/4167 | https://github.com/langchain-ai/langchain/pull/4579 | 372a5113ff1cce613f78d58c9e79e7c49aa60fac | 3b6206af49a32d947a75965a5167c8726e1d5639 | "2023-05-05T10:04:47Z" | python | "2023-05-15T03:09:27Z" | langchain/document_loaders/web_base.py | """Build metadata from BeautifulSoup output."""
metadata = {"source": url}
if title := soup.find("title"):
metadata["title"] = title.get_text()
if description := soup.find("meta", attrs={"name": "description"}):
metadata["description"] = description.get("content", None)
if html := soup.find("html"):
metadata["language"] = html.get("lang", None)
return metadata
class WebBaseLoader(BaseLoader):
"""Loader that uses urllib and beautiful soup to load webpages."""
web_paths: List[str]
requests_per_second: int = 2
"""Max number of concurrent requests to make."""
default_parser: str = "html.parser"
"""Default parser to use for BeautifulSoup."""
def __init__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,167 | User Agent on WebBaseLoader does not set header_template when passing `header_template` | ### System Info
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
```
loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()
```
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
`loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()`
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Expected behavior
Not throw 403 when calling loader.
Modifying INIT and setting the session headers works if the template is passed | https://github.com/langchain-ai/langchain/issues/4167 | https://github.com/langchain-ai/langchain/pull/4579 | 372a5113ff1cce613f78d58c9e79e7c49aa60fac | 3b6206af49a32d947a75965a5167c8726e1d5639 | "2023-05-05T10:04:47Z" | python | "2023-05-15T03:09:27Z" | langchain/document_loaders/web_base.py | self, web_path: Union[str, List[str]], header_template: Optional[dict] = None
):
"""Initialize with webpage path."""
if isinstance(web_path, str):
self.web_paths = [web_path]
elif isinstance(web_path, List):
self.web_paths = web_path
self.session = requests.Session()
try:
import bs4
except ImportError:
raise ValueError(
"bs4 package not found, please install it with " "`pip install bs4`"
)
try:
from fake_useragent import UserAgent
headers = header_template or default_header_template
headers["User-Agent"] = UserAgent().random
self.session.headers = dict(headers)
except ImportError:
logger.info(
"fake_useragent not found, using default user agent. "
"To get a realistic header for requests, `pip install fake_useragent`."
)
@property
def web_path(self) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,167 | User Agent on WebBaseLoader does not set header_template when passing `header_template` | ### System Info
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
```
loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()
```
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
`loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()`
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Expected behavior
Not throw 403 when calling loader.
Modifying INIT and setting the session headers works if the template is passed | https://github.com/langchain-ai/langchain/issues/4167 | https://github.com/langchain-ai/langchain/pull/4579 | 372a5113ff1cce613f78d58c9e79e7c49aa60fac | 3b6206af49a32d947a75965a5167c8726e1d5639 | "2023-05-05T10:04:47Z" | python | "2023-05-15T03:09:27Z" | langchain/document_loaders/web_base.py | if len(self.web_paths) > 1:
raise ValueError("Multiple webpaths found.")
return self.web_paths[0]
async def _fetch(
self, url: str, retries: int = 3, cooldown: int = 2, backoff: float = 1.5
) -> str:
async with aiohttp.ClientSession() as session:
for i in range(retries):
try:
async with session.get(
url, headers=self.session.headers
) as response:
return await response.text()
except aiohttp.ClientConnectionError as e:
if i == retries - 1:
raise
else:
logger.warning(
f"Error fetching {url} with attempt "
f"{i + 1}/{retries}: {e}. Retrying..."
)
await asyncio.sleep(cooldown * backoff**i)
raise ValueError("retry count exceeded")
async def _fetch_with_rate_limit( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,167 | User Agent on WebBaseLoader does not set header_template when passing `header_template` | ### System Info
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
```
loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()
```
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
`loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()`
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Expected behavior
Not throw 403 when calling loader.
Modifying INIT and setting the session headers works if the template is passed | https://github.com/langchain-ai/langchain/issues/4167 | https://github.com/langchain-ai/langchain/pull/4579 | 372a5113ff1cce613f78d58c9e79e7c49aa60fac | 3b6206af49a32d947a75965a5167c8726e1d5639 | "2023-05-05T10:04:47Z" | python | "2023-05-15T03:09:27Z" | langchain/document_loaders/web_base.py | self, url: str, semaphore: asyncio.Semaphore
) -> str:
async with semaphore:
return await self._fetch(url)
async def fetch_all(self, urls: List[str]) -> Any:
"""Fetch all urls concurrently with rate limiting."""
semaphore = asyncio.Semaphore(self.requests_per_second)
tasks = []
for url in urls:
task = asyncio.ensure_future(self._fetch_with_rate_limit(url, semaphore))
tasks.append(task)
try:
from tqdm.asyncio import tqdm_asyncio
return await tqdm_asyncio.gather(
*tasks, desc="Fetching pages", ascii=True, mininterval=1
)
except ImportError:
warnings.warn("For better logging of progress, `pip install tqdm`")
return await asyncio.gather(*tasks)
@staticmethod
def _check_parser(parser: str) -> None:
"""Check that parser is valid for bs4."""
valid_parsers = ["html.parser", "lxml", "xml", "lxml-xml", "html5lib"]
if parser not in valid_parsers:
raise ValueError(
"`parser` must be one of " + ", ".join(valid_parsers) + "."
)
def scrape_all(self, urls: List[str], parser: Union[str, None] = None) -> List[Any]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,167 | User Agent on WebBaseLoader does not set header_template when passing `header_template` | ### System Info
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
```
loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()
```
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
`loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()`
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Expected behavior
Not throw 403 when calling loader.
Modifying INIT and setting the session headers works if the template is passed | https://github.com/langchain-ai/langchain/issues/4167 | https://github.com/langchain-ai/langchain/pull/4579 | 372a5113ff1cce613f78d58c9e79e7c49aa60fac | 3b6206af49a32d947a75965a5167c8726e1d5639 | "2023-05-05T10:04:47Z" | python | "2023-05-15T03:09:27Z" | langchain/document_loaders/web_base.py | """Fetch all urls, then return soups for all results."""
from bs4 import BeautifulSoup
results = asyncio.run(self.fetch_all(urls))
final_results = []
for i, result in enumerate(results):
url = urls[i]
if parser is None:
if url.endswith(".xml"):
parser = "xml"
else:
parser = self.default_parser
self._check_parser(parser)
final_results.append(BeautifulSoup(result, parser))
return final_results
def _scrape(self, url: str, parser: Union[str, None] = None) -> Any:
from bs4 import BeautifulSoup
if parser is None:
if url.endswith(".xml"):
parser = "xml"
else:
parser = self.default_parser
self._check_parser(parser)
html_doc = self.session.get(url)
html_doc.encoding = html_doc.apparent_encoding
return BeautifulSoup(html_doc.text, parser)
def scrape(self, parser: Union[str, None] = None) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,167 | User Agent on WebBaseLoader does not set header_template when passing `header_template` | ### System Info
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
```
loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()
```
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Hi Team,
When using WebBaseLoader and setting header_template the user agent does not get set and sticks with the default python user agend.
`loader = WebBaseLoader(url, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
data = loader.load()`
printing the headers in the INIT function shows the headers are passed in the template
BUT in the load function or scrape the self.sessions.headers shows
FIX set the default_header_template in INIT if header template present
NOTE: this is due to Loading a page on WPENGINE who wont allow python user agents
LangChain 0.0.158
Python 3.11
### Expected behavior
Not throw 403 when calling loader.
Modifying INIT and setting the session headers works if the template is passed | https://github.com/langchain-ai/langchain/issues/4167 | https://github.com/langchain-ai/langchain/pull/4579 | 372a5113ff1cce613f78d58c9e79e7c49aa60fac | 3b6206af49a32d947a75965a5167c8726e1d5639 | "2023-05-05T10:04:47Z" | python | "2023-05-15T03:09:27Z" | langchain/document_loaders/web_base.py | """Scrape data from webpage and return it in BeautifulSoup format."""
if parser is None:
parser = self.default_parser
return self._scrape(self.web_path, parser)
def load(self) -> List[Document]:
"""Load text from the url(s) in web_path."""
docs = []
for path in self.web_paths:
soup = self._scrape(path)
text = soup.get_text()
metadata = _build_metadata(soup, path)
docs.append(Document(page_content=text, metadata=metadata))
return docs
def aload(self) -> List[Document]:
"""Load text from the urls in web_path async into Documents."""
results = self.scrape_all(self.web_paths)
docs = []
for i in range(len(results)):
soup = results[i]
text = soup.get_text()
metadata = _build_metadata(soup, self.web_paths[i])
docs.append(Document(page_content=text, metadata=metadata))
return docs |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | """Loader that loads YouTube transcript."""
from __future__ import annotations
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from pydantic.dataclasses import dataclass
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
logger = logging.getLogger(__name__)
SCOPES = ["https://www.googleapis.com/auth/youtube.readonly"]
@dataclass
class GoogleApiClient: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | """A Generic Google Api Client.
To use, you should have the ``google_auth_oauthlib,youtube_transcript_api,google``
python package installed.
As the google api expects credentials you need to set up a google account and
register your Service. "https://developers.google.com/docs/api/quickstart/python"
Example:
.. code-block:: python
from langchain.document_loaders import GoogleApiClient
google_api_client = GoogleApiClient(
service_account_path=Path("path_to_your_sec_file.json")
)
"""
credentials_path: Path = Path.home() / ".credentials" / "credentials.json"
service_account_path: Path = Path.home() / ".credentials" / "credentials.json"
token_path: Path = Path.home() / ".credentials" / "token.json"
def __post_init__(self) -> None:
self.creds = self._load_credentials()
@root_validator
def validate_channel_or_videoIds_is_set(
cls, values: Dict[str, Any]
) -> Dict[str, Any]:
"""Validate that either folder_id or document_ids is set, but not both."""
if not values.get("credentials_path") and not values.get(
"service_account_path"
):
raise ValueError("Must specify either channel_name or video_ids")
return values
def _load_credentials(self) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | """Load credentials."""
try:
from google.auth.transport.requests import Request
from google.oauth2 import service_account
from google.oauth2.credentials import Credentials
from google_auth_oauthlib.flow import InstalledAppFlow
from youtube_transcript_api import YouTubeTranscriptApi
except ImportError:
raise ImportError(
"You must run"
"`pip install --upgrade "
"google-api-python-client google-auth-httplib2 "
"google-auth-oauthlib "
"youtube-transcript-api` "
"to use the Google Drive loader"
)
creds = None
if self.service_account_path.exists():
return service_account.Credentials.from_service_account_file(
str(self.service_account_path)
)
if self.token_path.exists():
creds = Credentials.from_authorized_user_file(str(self.token_path), SCOPES)
if not creds or not creds.valid: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | if creds and creds.expired and creds.refresh_token:
creds.refresh(Request())
else:
flow = InstalledAppFlow.from_client_secrets_file(
str(self.credentials_path), SCOPES
)
creds = flow.run_local_server(port=0)
with open(self.token_path, "w") as token:
token.write(creds.to_json())
return creds
class YoutubeLoader(BaseLoader):
"""Loader that loads Youtube transcripts."""
def __init__(
self,
video_id: str,
add_video_info: bool = False,
language: str = "en",
continue_on_failure: bool = False,
):
"""Initialize with YouTube video ID."""
self.video_id = video_id
self.add_video_info = add_video_info
self.language = language
self.continue_on_failure = continue_on_failure
@classmethod
def from_youtube_url(cls, youtube_url: str, **kwargs: Any) -> YoutubeLoader:
"""Given youtube URL, load video."""
video_id = youtube_url.split("youtube.com/watch?v=")[-1]
return cls(video_id, **kwargs)
def load(self) -> List[Document]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | """Load documents."""
try:
from youtube_transcript_api import (
NoTranscriptFound,
TranscriptsDisabled,
YouTubeTranscriptApi,
)
except ImportError:
raise ImportError(
"Could not import youtube_transcript_api python package. "
"Please install it with `pip install youtube-transcript-api`."
)
metadata = {"source": self.video_id}
if self.add_video_info:
video_info = self._get_video_info()
metadata.update(video_info)
try:
transcript_list = YouTubeTranscriptApi.list_transcripts(self.video_id)
except TranscriptsDisabled:
return []
try:
transcript = transcript_list.find_transcript([self.language])
except NoTranscriptFound:
en_transcript = transcript_list.find_transcript(["en"])
transcript = en_transcript.translate(self.language)
transcript_pieces = transcript.fetch()
transcript = " ".join([t["text"].strip(" ") for t in transcript_pieces])
return [Document(page_content=transcript, metadata=metadata)] |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | def _get_video_info(self) -> dict:
"""Get important video information.
Components are:
- title
- description
- thumbnail url,
- publish_date
- channel_author
- and more.
"""
try:
from pytube import YouTube
except ImportError:
raise ImportError(
"Could not import pytube python package. "
"Please install it with `pip install pytube`."
)
yt = YouTube(f"https://www.youtube.com/watch?v={self.video_id}")
video_info = {
"title": yt.title,
"description": yt.description,
"view_count": yt.views,
"thumbnail_url": yt.thumbnail_url,
"publish_date": yt.publish_date,
"length": yt.length,
"author": yt.author,
}
return video_info
@dataclass
class GoogleApiYoutubeLoader(BaseLoader): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | """Loader that loads all Videos from a Channel
To use, you should have the ``googleapiclient,youtube_transcript_api``
python package installed.
As the service needs a google_api_client, you first have to initialize
the GoogleApiClient.
Additionally you have to either provide a channel name or a list of videoids
"https://developers.google.com/docs/api/quickstart/python"
Example:
.. code-block:: python
from langchain.document_loaders import GoogleApiClient
from langchain.document_loaders import GoogleApiYoutubeLoader
google_api_client = GoogleApiClient(
service_account_path=Path("path_to_your_sec_file.json")
)
loader = GoogleApiYoutubeLoader(
google_api_client=google_api_client,
channel_name = "CodeAesthetic"
)
load.load()
"""
google_api_client: GoogleApiClient
channel_name: Optional[str] = None
video_ids: Optional[List[str]] = None
add_video_info: bool = True
captions_language: str = "en"
continue_on_failure: bool = False
def __post_init__(self) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | self.youtube_client = self._build_youtube_client(self.google_api_client.creds)
def _build_youtube_client(self, creds: Any) -> Any:
try:
from googleapiclient.discovery import build
from youtube_transcript_api import YouTubeTranscriptApi
except ImportError:
raise ImportError(
"You must run"
"`pip install --upgrade "
"google-api-python-client google-auth-httplib2 "
"google-auth-oauthlib "
"youtube-transcript-api` "
"to use the Google Drive loader"
)
return build("youtube", "v3", credentials=creds)
@root_validator
def validate_channel_or_videoIds_is_set( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | cls, values: Dict[str, Any]
) -> Dict[str, Any]:
"""Validate that either folder_id or document_ids is set, but not both."""
if not values.get("channel_name") and not values.get("video_ids"):
raise ValueError("Must specify either channel_name or video_ids")
return values
def _get_transcripe_for_video_id(self, video_id: str) -> str:
from youtube_transcript_api import NoTranscriptFound, YouTubeTranscriptApi
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
try:
transcript = transcript_list.find_transcript([self.captions_language])
except NoTranscriptFound:
for available_transcript in transcript_list:
transcript = available_transcript.translate(self.captions_language)
continue
transcript_pieces = transcript.fetch()
return " ".join([t["text"].strip(" ") for t in transcript_pieces])
def _get_document_for_video_id(self, video_id: str, **kwargs: Any) -> Document: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | captions = self._get_transcripe_for_video_id(video_id)
video_response = (
self.youtube_client.videos()
.list(
part="id,snippet",
id=video_id,
)
.execute()
)
return Document(
page_content=captions,
metadata=video_response.get("items")[0],
)
def _get_channel_id(self, channel_name: str) -> str:
request = self.youtube_client.search().list(
part="id",
q=channel_name,
type="channel",
maxResults=1,
)
response = request.execute()
channel_id = response["items"][0]["id"]["channelId"]
return channel_id
def _get_document_for_channel(self, channel: str, **kwargs: Any) -> List[Document]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | try:
from youtube_transcript_api import (
NoTranscriptFound,
TranscriptsDisabled,
)
except ImportError:
raise ImportError(
"You must run"
"`pip install --upgrade "
"youtube-transcript-api` "
"to use the youtube loader"
)
channel_id = self._get_channel_id(channel)
request = self.youtube_client.search().list(
part="id,snippet",
channelId=channel_id,
maxResults=50,
)
video_ids = []
while request is not None:
response = request.execute() |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | for item in response["items"]:
if not item["id"].get("videoId"):
continue
meta_data = {"videoId": item["id"]["videoId"]}
if self.add_video_info:
item["snippet"].pop("thumbnails")
meta_data.update(item["snippet"])
try:
page_content = self._get_transcripe_for_video_id(
item["id"]["videoId"]
)
video_ids.append(
Document(
page_content=page_content,
metadata=meta_data,
)
)
except (TranscriptsDisabled, NoTranscriptFound) as e:
if self.continue_on_failure:
logger.error(
"Error fetching transscript "
+ f" {item['id']['videoId']}, exception: {e}"
)
else:
raise e
pass
request = self.youtube_client.search().list_next(request, response)
return video_ids
def load(self) -> List[Document]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,451 | YoutubeLoader.from_youtube_url should handle common YT url formats | ### Feature request
`YoutubeLoader.from_youtube_url` accepts single URL format. It should be able to handle at least the most common types of Youtube urls out there.
### Motivation
Current video id extraction is pretty naive. It doesn't handle anything than single specific type of youtube url. Any valid but different video address leads to exception.
### Your contribution
I've prepared a PR where i've introduced `.extract_video_id` method. Under the hood it uses regex to find video id in most popular youtube urls. Regex is based on Youtube-dl solution which can be found here: https://github.com/ytdl-org/youtube-dl/blob/211cbfd5d46025a8e4d8f9f3d424aaada4698974/youtube_dl/extractor/youtube.py#L524 | https://github.com/langchain-ai/langchain/issues/4451 | https://github.com/langchain-ai/langchain/pull/4452 | 8b42e8a510d7cafc6ce787b9bcb7a2c92f973c96 | c2761aa8f4266e97037aa25480b3c8e26e7417f3 | "2023-05-10T11:09:22Z" | python | "2023-05-15T14:45:19Z" | langchain/document_loaders/youtube.py | """Load documents."""
document_list = []
if self.channel_name:
document_list.extend(self._get_document_for_channel(self.channel_name))
elif self.video_ids:
document_list.extend(
[
self._get_document_for_video_id(video_id)
for video_id in self.video_ids
]
)
else:
raise ValueError("Must specify either channel_name or video_ids")
return document_list |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,631 | [feature] Add support for streaming response output to HuggingFaceTextGenInference LLM | ### Feature request
Per title, request is to add feature for streaming output response, something like this:
```python
from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = HuggingFaceTextGenInference(
inference_server_url='http://localhost:8010',
max_new_tokens=512,
top_k=10,
top_p=0.95,
typical_p=0.95,
temperature=0.01,
stop_sequences=['</s>'],
repetition_penalty=1.03,
stream=True
)
print(llm("What is deep learning?", callbacks=[StreamingStdOutCallbackHandler()]))
```
### Motivation
Having streaming response output is useful for chat situations to reduce perceived latency for the user. Current implementation of HuggingFaceTextGenInference class implemented in [PR 4447](https://github.com/hwchase17/langchain/pull/4447) does not support streaming.
### Your contribution
Feature added in [PR #4633](https://github.com/hwchase17/langchain/pull/4633) | https://github.com/langchain-ai/langchain/issues/4631 | https://github.com/langchain-ai/langchain/pull/4633 | 435b70da472525bfec4ced38a8446c878af2c27b | c70ae562b466ba9a6d0f587ab935fd9abee2bc87 | "2023-05-13T16:16:48Z" | python | "2023-05-15T14:59:12Z" | langchain/llms/huggingface_text_gen_inference.py | """Wrapper around Huggingface text generation inference API."""
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
class HuggingFaceTextGenInference(LLM):
"""
HuggingFace text generation inference API.
This class is a wrapper around the HuggingFace text generation inference API.
It is used to generate text from a given prompt.
Attributes:
- max_new_tokens: The maximum number of tokens to generate.
- top_k: The number of top-k tokens to consider when generating text.
- top_p: The cumulative probability threshold for generating text.
- typical_p: The typical probability threshold for generating text.
- temperature: The temperature to use when generating text.
- repetition_penalty: The repetition penalty to use when generating text.
- stop_sequences: A list of stop sequences to use when generating text.
- seed: The seed to use when generating text.
- inference_server_url: The URL of the inference server to use.
- timeout: The timeout value in seconds to use while connecting to inference server. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,631 | [feature] Add support for streaming response output to HuggingFaceTextGenInference LLM | ### Feature request
Per title, request is to add feature for streaming output response, something like this:
```python
from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = HuggingFaceTextGenInference(
inference_server_url='http://localhost:8010',
max_new_tokens=512,
top_k=10,
top_p=0.95,
typical_p=0.95,
temperature=0.01,
stop_sequences=['</s>'],
repetition_penalty=1.03,
stream=True
)
print(llm("What is deep learning?", callbacks=[StreamingStdOutCallbackHandler()]))
```
### Motivation
Having streaming response output is useful for chat situations to reduce perceived latency for the user. Current implementation of HuggingFaceTextGenInference class implemented in [PR 4447](https://github.com/hwchase17/langchain/pull/4447) does not support streaming.
### Your contribution
Feature added in [PR #4633](https://github.com/hwchase17/langchain/pull/4633) | https://github.com/langchain-ai/langchain/issues/4631 | https://github.com/langchain-ai/langchain/pull/4633 | 435b70da472525bfec4ced38a8446c878af2c27b | c70ae562b466ba9a6d0f587ab935fd9abee2bc87 | "2023-05-13T16:16:48Z" | python | "2023-05-15T14:59:12Z" | langchain/llms/huggingface_text_gen_inference.py | - client: The client object used to communicate with the inference server.
Methods:
- _call: Generates text based on a given prompt and stop sequences.
- _llm_type: Returns the type of LLM.
"""
"""
Example:
.. code-block:: python
llm = HuggingFaceTextGenInference(
inference_server_url = "http://localhost:8010/",
max_new_tokens = 512,
top_k = 10,
top_p = 0.95,
typical_p = 0.95,
temperature = 0.01,
repetition_penalty = 1.03,
)
"""
max_new_tokens: int = 512
top_k: Optional[int] = None
top_p: Optional[float] = 0.95
typical_p: Optional[float] = 0.95
temperature: float = 0.8
repetition_penalty: Optional[float] = None
stop_sequences: List[str] = Field(default_factory=list)
seed: Optional[int] = None
inference_server_url: str = ""
timeout: int = 120
client: Any
class Config: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,631 | [feature] Add support for streaming response output to HuggingFaceTextGenInference LLM | ### Feature request
Per title, request is to add feature for streaming output response, something like this:
```python
from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = HuggingFaceTextGenInference(
inference_server_url='http://localhost:8010',
max_new_tokens=512,
top_k=10,
top_p=0.95,
typical_p=0.95,
temperature=0.01,
stop_sequences=['</s>'],
repetition_penalty=1.03,
stream=True
)
print(llm("What is deep learning?", callbacks=[StreamingStdOutCallbackHandler()]))
```
### Motivation
Having streaming response output is useful for chat situations to reduce perceived latency for the user. Current implementation of HuggingFaceTextGenInference class implemented in [PR 4447](https://github.com/hwchase17/langchain/pull/4447) does not support streaming.
### Your contribution
Feature added in [PR #4633](https://github.com/hwchase17/langchain/pull/4633) | https://github.com/langchain-ai/langchain/issues/4631 | https://github.com/langchain-ai/langchain/pull/4633 | 435b70da472525bfec4ced38a8446c878af2c27b | c70ae562b466ba9a6d0f587ab935fd9abee2bc87 | "2023-05-13T16:16:48Z" | python | "2023-05-15T14:59:12Z" | langchain/llms/huggingface_text_gen_inference.py | """Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
import text_generation
values["client"] = text_generation.Client(
values["inference_server_url"], timeout=values["timeout"]
)
except ImportError:
raise ValueError(
"Could not import text_generation python package. "
"Please install it with `pip install text_generation`."
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "hf_textgen_inference"
def _call( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,631 | [feature] Add support for streaming response output to HuggingFaceTextGenInference LLM | ### Feature request
Per title, request is to add feature for streaming output response, something like this:
```python
from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = HuggingFaceTextGenInference(
inference_server_url='http://localhost:8010',
max_new_tokens=512,
top_k=10,
top_p=0.95,
typical_p=0.95,
temperature=0.01,
stop_sequences=['</s>'],
repetition_penalty=1.03,
stream=True
)
print(llm("What is deep learning?", callbacks=[StreamingStdOutCallbackHandler()]))
```
### Motivation
Having streaming response output is useful for chat situations to reduce perceived latency for the user. Current implementation of HuggingFaceTextGenInference class implemented in [PR 4447](https://github.com/hwchase17/langchain/pull/4447) does not support streaming.
### Your contribution
Feature added in [PR #4633](https://github.com/hwchase17/langchain/pull/4633) | https://github.com/langchain-ai/langchain/issues/4631 | https://github.com/langchain-ai/langchain/pull/4633 | 435b70da472525bfec4ced38a8446c878af2c27b | c70ae562b466ba9a6d0f587ab935fd9abee2bc87 | "2023-05-13T16:16:48Z" | python | "2023-05-15T14:59:12Z" | langchain/llms/huggingface_text_gen_inference.py | self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
if stop is None:
stop = self.stop_sequences
else:
stop += self.stop_sequences
res = self.client.generate(
prompt,
stop_sequences=stop,
max_new_tokens=self.max_new_tokens,
top_k=self.top_k,
top_p=self.top_p,
typical_p=self.typical_p,
temperature=self.temperature,
repetition_penalty=self.repetition_penalty,
seed=self.seed,
)
for stop_seq in stop:
if stop_seq in res.generated_text:
res.generated_text = res.generated_text[
: res.generated_text.index(stop_seq)
]
return res.generated_text |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | """Load tools."""
import warnings
from typing import Any, Dict, List, Optional, Callable, Tuple
from mypy_extensions import Arg, KwArg
from langchain.agents.tools import Tool
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs
from langchain.chains.api.base import APIChain
from langchain.chains.llm_math.base import LLMMathChain
from langchain.chains.pal.base import PALChain
from langchain.requests import TextRequestsWrapper
from langchain.tools.arxiv.tool import ArxivQueryRun
from langchain.tools.base import BaseTool
from langchain.tools.bing_search.tool import BingSearchRun
from langchain.tools.ddg_search.tool import DuckDuckGoSearchRun
from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun
from langchain.tools.metaphor_search.tool import MetaphorSearchResults
from langchain.tools.google_serper.tool import GoogleSerperResults, GoogleSerperRun
from langchain.tools.graphql.tool import BaseGraphQLTool
from langchain.tools.human.tool import HumanInputRun
from langchain.tools.python.tool import PythonREPLTool
from langchain.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
from langchain.tools.scenexplain.tool import SceneXplainTool
from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun
from langchain.tools.shell.tool import ShellTool
from langchain.tools.wikipedia.tool import WikipediaQueryRun
from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun
from langchain.tools.openweathermap.tool import OpenWeatherMapQueryRun
from langchain.utilities import ArxivAPIWrapper
from langchain.utilities.bing_search import BingSearchAPIWrapper
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper
from langchain.utilities.awslambda import LambdaWrapper
from langchain.utilities.graphql import GraphQLAPIWrapper
from langchain.utilities.searx_search import SearxSearchWrapper
from langchain.utilities.serpapi import SerpAPIWrapper
from langchain.utilities.wikipedia import WikipediaAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper
def _get_python_repl() -> BaseTool:
return PythonREPLTool()
def _get_tools_requests_get() -> BaseTool:
return RequestsGetTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_post() -> BaseTool:
return RequestsPostTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_patch() -> BaseTool: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | return RequestsPatchTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_put() -> BaseTool:
return RequestsPutTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_delete() -> BaseTool:
return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper())
def _get_terminal() -> BaseTool:
return ShellTool()
_BASE_TOOLS: Dict[str, Callable[[], BaseTool]] = {
"python_repl": _get_python_repl,
"requests": _get_tools_requests_get,
"requests_get": _get_tools_requests_get,
"requests_post": _get_tools_requests_post,
"requests_patch": _get_tools_requests_patch,
"requests_put": _get_tools_requests_put,
"requests_delete": _get_tools_requests_delete,
"terminal": _get_terminal,
}
def _get_pal_math(llm: BaseLanguageModel) -> BaseTool:
return Tool(
name="PAL-MATH",
description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.",
func=PALChain.from_math_prompt(llm).run,
)
def _get_pal_colored_objects(llm: BaseLanguageModel) -> BaseTool:
return Tool(
name="PAL-COLOR-OBJ",
description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.",
func=PALChain.from_colored_object_prompt(llm).run,
)
def _get_llm_math(llm: BaseLanguageModel) -> BaseTool: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | return Tool(
name="Calculator",
description="Useful for when you need to answer questions about math.",
func=LLMMathChain.from_llm(llm=llm).run,
coroutine=LLMMathChain.from_llm(llm=llm).arun,
)
def _get_open_meteo_api(llm: BaseLanguageModel) -> BaseTool:
chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS)
return Tool(
name="Open Meteo API",
description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
_LLM_TOOLS: Dict[str, Callable[[BaseLanguageModel], BaseTool]] = {
"pal-math": _get_pal_math,
"pal-colored-objects": _get_pal_colored_objects,
"llm-math": _get_llm_math,
"open-meteo-api": _get_open_meteo_api,
}
def _get_news_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool:
news_api_key = kwargs["news_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key}
)
return Tool(
name="News API",
description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_tmdb_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | tmdb_bearer_token = kwargs["tmdb_bearer_token"]
chain = APIChain.from_llm_and_api_docs(
llm,
tmdb_docs.TMDB_DOCS,
headers={"Authorization": f"Bearer {tmdb_bearer_token}"},
)
return Tool(
name="TMDB API",
description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_podcast_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool:
listen_api_key = kwargs["listen_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm,
podcast_docs.PODCAST_DOCS,
headers={"X-ListenAPI-Key": listen_api_key},
)
return Tool(
name="Podcast API",
description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_lambda_api(**kwargs: Any) -> BaseTool:
return Tool(
name=kwargs["awslambda_tool_name"],
description=kwargs["awslambda_tool_description"],
func=LambdaWrapper(**kwargs).run,
)
def _get_wolfram_alpha(**kwargs: Any) -> BaseTool: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs))
def _get_google_search(**kwargs: Any) -> BaseTool:
return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_wikipedia(**kwargs: Any) -> BaseTool:
return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs))
def _get_arxiv(**kwargs: Any) -> BaseTool:
return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs))
def _get_google_serper(**kwargs: Any) -> BaseTool:
return GoogleSerperRun(api_wrapper=GoogleSerperAPIWrapper(**kwargs))
def _get_google_serper_results_json(**kwargs: Any) -> BaseTool:
return GoogleSerperResults(api_wrapper=GoogleSerperAPIWrapper(**kwargs))
def _get_google_search_results_json(**kwargs: Any) -> BaseTool:
return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_serpapi(**kwargs: Any) -> BaseTool:
return Tool(
name="Search",
description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.",
func=SerpAPIWrapper(**kwargs).run,
coroutine=SerpAPIWrapper(**kwargs).arun,
)
def _get_searx_search(**kwargs: Any) -> BaseTool:
return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs))
def _get_searx_search_results_json(**kwargs: Any) -> BaseTool:
wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"}
return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs)
def _get_bing_search(**kwargs: Any) -> BaseTool: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs))
def _get_metaphor_search(**kwargs: Any) -> BaseTool:
return MetaphorSearchResults(api_wrapper=MetaphorSearchAPIWrapper(**kwargs))
def _get_ddg_search(**kwargs: Any) -> BaseTool:
return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs))
def _get_human_tool(**kwargs: Any) -> BaseTool:
return HumanInputRun(**kwargs)
def _get_scenexplain(**kwargs: Any) -> BaseTool:
return SceneXplainTool(**kwargs)
def _get_graphql_tool(**kwargs: Any) -> BaseTool:
graphql_endpoint = kwargs["graphql_endpoint"]
wrapper = GraphQLAPIWrapper(graphql_endpoint=graphql_endpoint)
return BaseGraphQLTool(graphql_wrapper=wrapper)
def _get_openweathermap(**kwargs: Any) -> BaseTool:
return OpenWeatherMapQueryRun(api_wrapper=OpenWeatherMapAPIWrapper(**kwargs))
_EXTRA_LLM_TOOLS: Dict[
str,
Tuple[Callable[[Arg(BaseLanguageModel, "llm"), KwArg(Any)], BaseTool], List[str]],
] = {
"news-api": (_get_news_api, ["news_api_key"]),
"tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]),
"podcast-api": (_get_podcast_api, ["listen_api_key"]),
}
_EXTRA_OPTIONAL_TOOLS: Dict[str, Tuple[Callable[[KwArg(Any)], BaseTool], List[str]]] = {
"wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]),
"google-search": (_get_google_search, ["google_api_key", "google_cse_id"]),
"google-search-results-json": (
_get_google_search_results_json,
["google_api_key", "google_cse_id", "num_results"], |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | ),
"searx-search-results-json": (
_get_searx_search_results_json,
["searx_host", "engines", "num_results", "aiosession"],
),
"bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]),
"metaphor-search": (_get_metaphor_search, ["metaphor_api_key"]),
"ddg-search": (_get_ddg_search, []),
"google-serper": (_get_google_serper, ["serper_api_key", "aiosession"]),
"google-serper-results-json": (
_get_google_serper_results_json,
["serper_api_key", "aiosession"],
),
"serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]),
"searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]),
"wikipedia": (_get_wikipedia, ["top_k_results", "lang"]),
"arxiv": (
_get_arxiv,
["top_k_results", "load_max_docs", "load_all_available_meta"],
),
"human": (_get_human_tool, ["prompt_func", "input_func"]),
"awslambda": (
_get_lambda_api,
["awslambda_tool_name", "awslambda_tool_description", "function_name"],
),
"sceneXplain": (_get_scenexplain, []),
"graphql": (_get_graphql_tool, ["graphql_endpoint"]),
"openweathermap-api": (_get_openweathermap, ["openweathermap_api_key"]),
}
def _handle_callbacks( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | callback_manager: Optional[BaseCallbackManager], callbacks: Callbacks
) -> Callbacks:
if callback_manager is not None:
warnings.warn(
"callback_manager is deprecated. Please use callbacks instead.",
DeprecationWarning,
)
if callbacks is not None:
raise ValueError(
"Cannot specify both callback_manager and callbacks arguments."
)
return callback_manager
return callbacks
def load_huggingface_tool(
task_or_repo_id: str,
model_repo_id: Optional[str] = None,
token: Optional[str] = None,
remote: bool = False,
**kwargs: Any,
) -> BaseTool:
try:
from transformers import load_tool
except ImportError:
raise ValueError(
"HuggingFace tools require the libraries `transformers>=4.29.0`"
" and `huggingface_hub>=0.14.1` to be installed." |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | " Please install it with"
" `pip install --upgrade transformers huggingface_hub`."
)
hf_tool = load_tool(
task_or_repo_id,
model_repo_id=model_repo_id,
token=token,
remote=remote,
**kwargs,
)
outputs = hf_tool.outputs
if set(outputs) != {"text"}:
raise NotImplementedError("Multimodal outputs not supported yet.")
inputs = hf_tool.inputs
if set(inputs) != {"text"}:
raise NotImplementedError("Multimodal inputs not supported yet.")
return Tool.from_function(
hf_tool.__call__, name=hf_tool.name, description=hf_tool.description
)
def load_tools(
tool_names: List[str],
llm: Optional[BaseLanguageModel] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> List[BaseTool]:
"""Load tools based on their name.
Args:
tool_names: name of tools to load.
llm: Optional language model, may be needed to initialize certain tools.
callbacks: Optional callback manager or list of callback handlers. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | If not provided, default global callback manager will be used.
Returns:
List of tools.
"""
tools = []
callbacks = _handle_callbacks(
callback_manager=kwargs.get("callback_manager"), callbacks=callbacks
)
for name in tool_names:
if name == "requests":
warnings.warn(
"tool name `requests` is deprecated - "
"please use `requests_all` or specify the requests method"
)
if name == "requests_all":
requests_method_tools = [
_tool for _tool in _BASE_TOOLS if _tool.startswith("requests_")
]
tool_names.extend(requests_method_tools)
elif name in _BASE_TOOLS:
tools.append(_BASE_TOOLS[name]())
elif name in _LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
tool = _LLM_TOOLS[name](llm)
tools.append(tool)
elif name in _EXTRA_LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided") |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/agents/load_tools.py | _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name]
missing_keys = set(extra_keys).difference(kwargs)
if missing_keys:
raise ValueError(
f"Tool {name} requires some parameters that were not "
f"provided: {missing_keys}"
)
sub_kwargs = {k: kwargs[k] for k in extra_keys}
tool = _get_llm_tool_func(llm=llm, **sub_kwargs)
tools.append(tool)
elif name in _EXTRA_OPTIONAL_TOOLS:
_get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name]
sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs}
tool = _get_tool_func(**sub_kwargs)
tools.append(tool)
else:
raise ValueError(f"Got unknown tool {name}")
if callbacks is not None:
for tool in tools:
tool.callbacks = callbacks
return tools
def get_all_tool_names() -> List[str]:
"""Get a list of all possible tool names."""
return (
list(_BASE_TOOLS)
+ list(_EXTRA_OPTIONAL_TOOLS)
+ list(_EXTRA_LLM_TOOLS)
+ list(_LLM_TOOLS)
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/utilities/serpapi.py | """Chain that calls SerpAPI.
Heavily borrowed from https://github.com/ofirpress/self-ask
"""
import os
import sys
from typing import Any, Dict, Optional, Tuple
import aiohttp
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.utils import get_from_dict_or_env
class HiddenPrints:
"""Context manager to hide prints."""
def __enter__(self) -> None:
"""Open file to pipe stdout to."""
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, "w")
def __exit__(self, *_: Any) -> None:
"""Close file that stdout was piped to."""
sys.stdout.close()
sys.stdout = self._original_stdout
class SerpAPIWrapper(BaseModel): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/utilities/serpapi.py | """Wrapper around SerpAPI.
To use, you should have the ``google-search-results`` python package installed,
and the environment variable ``SERPAPI_API_KEY`` set with your API key, or pass
`serpapi_api_key` as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain import SerpAPIWrapper
serpapi = SerpAPIWrapper()
"""
search_engine: Any
params: dict = Field(
default={
"engine": "google",
"google_domain": "google.com",
"gl": "us",
"hl": "en",
}
)
serpapi_api_key: Optional[str] = None
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/utilities/serpapi.py | """Validate that api key and python package exists in environment."""
serpapi_api_key = get_from_dict_or_env(
values, "serpapi_api_key", "SERPAPI_API_KEY"
)
values["serpapi_api_key"] = serpapi_api_key
try:
from serpapi import GoogleSearch
values["search_engine"] = GoogleSearch
except ImportError:
raise ValueError(
"Could not import serpapi python package. "
"Please install it with `pip install google-search-results`."
)
return values
async def arun(self, query: str, **kwargs: Any) -> str:
"""Run query through SerpAPI and parse result async."""
return self._process_response(await self.aresults(query))
def run(self, query: str, **kwargs: Any) -> str:
"""Run query through SerpAPI and parse result."""
return self._process_response(self.results(query))
def results(self, query: str) -> dict:
"""Run query through SerpAPI and return the raw result."""
params = self.get_params(query)
with HiddenPrints():
search = self.search_engine(params)
res = search.get_dict()
return res
async def aresults(self, query: str) -> dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/utilities/serpapi.py | """Use aiohttp to run query through SerpAPI and return the results async."""
def construct_url_and_params() -> Tuple[str, Dict[str, str]]:
params = self.get_params(query)
params["source"] = "python"
if self.serpapi_api_key:
params["serp_api_key"] = self.serpapi_api_key
params["output"] = "json"
url = "https://serpapi.com/search"
return url, params
url, params = construct_url_and_params()
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.get(url, params=params) as response:
res = await response.json()
else:
async with self.aiosession.get(url, params=params) as response:
res = await response.json()
return res
def get_params(self, query: str) -> Dict[str, str]:
"""Get parameters for SerpAPI."""
_params = {
"api_key": self.serpapi_api_key,
"q": query,
}
params = {**self.params, **_params}
return params
@staticmethod
def _process_response(res: dict) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,328 | Issue: Can not configure serpapi base url via env | ### Issue you'd like to raise.
Currently, the base URL of Serpapi is been hard coded.
While some search services(e.g. Bing, `BING_SEARCH_URL`) are configurable.
In some companies, the original can not be allowed to access. We need to use nginx redirect proxy.
So we need to make the base URL configurable via env.
### Suggestion:
Make serpapi base url configurable via env | https://github.com/langchain-ai/langchain/issues/4328 | https://github.com/langchain-ai/langchain/pull/4402 | cb802edf75539872e18068edec8e21216f3e51d2 | 5111bec54071e42a7865766dc8bb8dc72c1d13b4 | "2023-05-08T09:27:24Z" | python | "2023-05-15T21:25:25Z" | langchain/utilities/serpapi.py | """Process response from SerpAPI."""
if "error" in res.keys():
raise ValueError(f"Got error from SerpAPI: {res['error']}")
if "answer_box" in res.keys() and "answer" in res["answer_box"].keys():
toret = res["answer_box"]["answer"]
elif "answer_box" in res.keys() and "snippet" in res["answer_box"].keys():
toret = res["answer_box"]["snippet"]
elif (
"answer_box" in res.keys()
and "snippet_highlighted_words" in res["answer_box"].keys()
):
toret = res["answer_box"]["snippet_highlighted_words"][0]
elif (
"sports_results" in res.keys()
and "game_spotlight" in res["sports_results"].keys()
):
toret = res["sports_results"]["game_spotlight"]
elif (
"knowledge_graph" in res.keys()
and "description" in res["knowledge_graph"].keys()
):
toret = res["knowledge_graph"]["description"]
elif "snippet" in res["organic_results"][0].keys():
toret = res["organic_results"][0]["snippet"]
else:
toret = "No good search result found"
return toret |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,720 | Add summarization task type for HuggingFace APIs | ### Feature request
Add summarization task type for HuggingFace APIs.
This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
### Motivation
My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial.
### Your contribution
I will submit a PR. | https://github.com/langchain-ai/langchain/issues/4720 | https://github.com/langchain-ai/langchain/pull/4721 | 580861e7f206395d19cdf4896a96b1e88c6a9b5f | 3f0357f94acb1e669c8f21f937e3438c6c6675a6 | "2023-05-15T11:23:49Z" | python | "2023-05-15T23:26:17Z" | langchain/llms/huggingface_endpoint.py | """Wrapper around HuggingFace APIs."""
from typing import Any, Dict, List, Mapping, Optional
import requests
from pydantic import Extra, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
VALID_TASKS = ("text2text-generation", "text-generation")
class HuggingFaceEndpoint(LLM): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,720 | Add summarization task type for HuggingFace APIs | ### Feature request
Add summarization task type for HuggingFace APIs.
This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
### Motivation
My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial.
### Your contribution
I will submit a PR. | https://github.com/langchain-ai/langchain/issues/4720 | https://github.com/langchain-ai/langchain/pull/4721 | 580861e7f206395d19cdf4896a96b1e88c6a9b5f | 3f0357f94acb1e669c8f21f937e3438c6c6675a6 | "2023-05-15T11:23:49Z" | python | "2023-05-15T23:26:17Z" | langchain/llms/huggingface_endpoint.py | """Wrapper around HuggingFaceHub Inference Endpoints.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Only supports `text-generation` and `text2text-generation` for now.
Example:
.. code-block:: python
from langchain.llms import HuggingFaceEndpoint
endpoint_url = (
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
)
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token="my-api-key"
)
"""
endpoint_url: str = ""
"""Endpoint URL to use."""
task: Optional[str] = None
"""Task to call the model with. Should be a task that returns `generated_text`."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = None
class Config: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,720 | Add summarization task type for HuggingFace APIs | ### Feature request
Add summarization task type for HuggingFace APIs.
This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
### Motivation
My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial.
### Your contribution
I will submit a PR. | https://github.com/langchain-ai/langchain/issues/4720 | https://github.com/langchain-ai/langchain/pull/4721 | 580861e7f206395d19cdf4896a96b1e88c6a9b5f | 3f0357f94acb1e669c8f21f937e3438c6c6675a6 | "2023-05-15T11:23:49Z" | python | "2023-05-15T23:26:17Z" | langchain/llms/huggingface_endpoint.py | """Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)
try:
from huggingface_hub.hf_api import HfApi
try:
HfApi(
endpoint="https://huggingface.co",
token=huggingfacehub_api_token,
).whoami()
except Exception as e:
raise ValueError(
"Could not authenticate with huggingface_hub. "
"Please check your API token."
) from e
except ImportError:
raise ValueError(
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
values["huggingfacehub_api_token"] = huggingfacehub_api_token
return values
@property
def _identifying_params(self) -> Mapping[str, Any]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,720 | Add summarization task type for HuggingFace APIs | ### Feature request
Add summarization task type for HuggingFace APIs.
This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
### Motivation
My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial.
### Your contribution
I will submit a PR. | https://github.com/langchain-ai/langchain/issues/4720 | https://github.com/langchain-ai/langchain/pull/4721 | 580861e7f206395d19cdf4896a96b1e88c6a9b5f | 3f0357f94acb1e669c8f21f937e3438c6c6675a6 | "2023-05-15T11:23:49Z" | python | "2023-05-15T23:26:17Z" | langchain/llms/huggingface_endpoint.py | """Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint_url": self.endpoint_url, "task": self.task},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,720 | Add summarization task type for HuggingFace APIs | ### Feature request
Add summarization task type for HuggingFace APIs.
This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
### Motivation
My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial.
### Your contribution
I will submit a PR. | https://github.com/langchain-ai/langchain/issues/4720 | https://github.com/langchain-ai/langchain/pull/4721 | 580861e7f206395d19cdf4896a96b1e88c6a9b5f | 3f0357f94acb1e669c8f21f937e3438c6c6675a6 | "2023-05-15T11:23:49Z" | python | "2023-05-15T23:26:17Z" | langchain/llms/huggingface_endpoint.py | """Return type of llm."""
return "huggingface_endpoint"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call out to HuggingFace Hub's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = hf("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs}
headers = {
"Authorization": f"Bearer {self.huggingfacehub_api_token}", |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,720 | Add summarization task type for HuggingFace APIs | ### Feature request
Add summarization task type for HuggingFace APIs.
This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
### Motivation
My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial.
### Your contribution
I will submit a PR. | https://github.com/langchain-ai/langchain/issues/4720 | https://github.com/langchain-ai/langchain/pull/4721 | 580861e7f206395d19cdf4896a96b1e88c6a9b5f | 3f0357f94acb1e669c8f21f937e3438c6c6675a6 | "2023-05-15T11:23:49Z" | python | "2023-05-15T23:26:17Z" | langchain/llms/huggingface_endpoint.py | "Content-Type": "application/json",
}
try:
response = requests.post(
self.endpoint_url, headers=headers, json=parameter_payload
)
except requests.exceptions.RequestException as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
generated_text = response.json()
if "error" in generated_text:
raise ValueError(
f"Error raised by inference API: {generated_text['error']}"
)
if self.task == "text-generation":
text = generated_text[0]["generated_text"][len(prompt) :]
elif self.task == "text2text-generation":
text = generated_text[0]["generated_text"]
else:
raise ValueError(
f"Got invalid task {self.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,720 | Add summarization task type for HuggingFace APIs | ### Feature request
Add summarization task type for HuggingFace APIs.
This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
### Motivation
My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial.
### Your contribution
I will submit a PR. | https://github.com/langchain-ai/langchain/issues/4720 | https://github.com/langchain-ai/langchain/pull/4721 | 580861e7f206395d19cdf4896a96b1e88c6a9b5f | 3f0357f94acb1e669c8f21f937e3438c6c6675a6 | "2023-05-15T11:23:49Z" | python | "2023-05-15T23:26:17Z" | langchain/llms/huggingface_hub.py | """Wrapper around HuggingFace APIs."""
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
DEFAULT_REPO_ID = "gpt2"
VALID_TASKS = ("text2text-generation", "text-generation")
class HuggingFaceHub(LLM):
"""Wrapper around HuggingFaceHub models.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Only supports `text-generation` and `text2text-generation` for now.
Example:
.. code-block:: python
from langchain.llms import HuggingFaceHub
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
"""
client: Any
repo_id: str = DEFAULT_REPO_ID
"""Model name to use."""
task: Optional[str] = None
"""Task to call the model with. Should be a task that returns `generated_text`."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = None
class Config: |