Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,688 Bytes
6d1ce12
20ac86e
f1389f8
 
 
 
 
 
 
c50ada3
f1389f8
 
 
 
 
 
48300bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2ead31
 
 
2cb26b7
9c99884
 
e2ead31
 
 
 
 
 
6005e03
995c57e
 
2cb26b7
4b8204a
 
e2ead31
 
 
e077e99
 
 
2cb26b7
e7dbc39
 
e2ead31
c2958b7
 
e2ead31
a1c47d8
 
f3c9eae
 
 
2cb26b7
06b8972
 
e2ead31
06b8972
 
e2ead31
e077e99
 
e2ead31
06b8972
 
2cb26b7
06b8972
 
e2ead31
06b8972
 
e2ead31
06b8972
 
dfdf998
e077e99
e4d1343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ea854
6d1ce12
c14929e
8c43aac
f1389f8
e677ed6
 
e3a855b
f1389f8
8c43aac
f1389f8
c50ada3
f1389f8
8c43aac
f1389f8
c50ada3
 
 
 
 
 
 
 
 
 
 
f1389f8
8c43aac
f1389f8
8c43aac
 
f1389f8
8c43aac
f1389f8
8c43aac
f1389f8
8c43aac
f1389f8
25c8944
f1389f8
25c8944
f1389f8
8c43aac
f1389f8
25c8944
f1389f8
 
c50ada3
 
 
 
f1389f8
 
 
 
 
25c8944
 
418bcdf
25c8944
f1389f8
 
 
 
 
 
 
 
 
 
 
 
418bcdf
25c8944
f1389f8
 
 
 
 
 
 
 
 
 
dfdf998
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
license: apache-2.0
tags:
- natural-language-understanding
language_creators:
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Polyglot or Not? Fact-Completion Benchmark
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text2text-generation
dataset_info:
  features:
  - name: dataset_id
    dtype: string
  - name: stem
    dtype: string
  - name: 'true'
    dtype: string
  - name: 'false'
    dtype: string
  - name: relation
    dtype: string
  - name: subject
    dtype: string
  - name: object
    dtype: string
  splits:
  - name: English
    num_bytes: 3474255
    num_examples: 26254
  - name: Spanish
    num_bytes: 3175733
    num_examples: 18786
  - name: French
    num_bytes: 3395566
    num_examples: 18395
  - name: Russian
    num_bytes: 659526
    num_examples: 3289
  - name: Portuguese
    num_bytes: 4158146
    num_examples: 22974
  - name: German
    num_bytes: 2611160
    num_examples: 16287
  - name: Italian
    num_bytes: 3709786
    num_examples: 20448
  - name: Ukrainian
    num_bytes: 1868358
    num_examples: 7918
  - name: Polish
    num_bytes: 1683647
    num_examples: 9484
  - name: Romanian
    num_bytes: 2846002
    num_examples: 17568
  - name: Czech
    num_bytes: 1631582
    num_examples: 9427
  - name: Bulgarian
    num_bytes: 4597410
    num_examples: 20577
  - name: Swedish
    num_bytes: 3226502
    num_examples: 21576
  - name: Serbian
    num_bytes: 1327674
    num_examples: 5426
  - name: Hungarian
    num_bytes: 865409
    num_examples: 4650
  - name: Croatian
    num_bytes: 1195097
    num_examples: 7358
  - name: Danish
    num_bytes: 3580458
    num_examples: 23365
  - name: Slovenian
    num_bytes: 1299653
    num_examples: 7873
  - name: Dutch
    num_bytes: 3732795
    num_examples: 22590
  - name: Catalan
    num_bytes: 3319466
    num_examples: 18898
  download_size: 27090207
  dataset_size: 52358225
language:
- en
- fr
- es
- de
- uk
- bg
- ca
- da
- hr
- hu
- it
- nl
- pl
- pt
- ro
- ru
- sl
- sr
- sv
- cs
---

# Dataset Card

- **Homepage:** https://bit.ly/ischool-berkeley-capstone
- **Repository:** https://github.com/daniel-furman/Capstone
- **Point of Contact:** daniel_furman@berkeley.edu

## Dataset Summary

This is the dataset for **Polyglot or Not?: Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models**.

## Test Description

 Given a factual association such as *The capital of France is **Paris***, we determine whether a model adequately "knows" this information with the following test:
 
 * Step **1**: prompt the model to predict the likelihood of the token **Paris** following *The Capital of France is*
 
 * Step **2**: prompt the model to predict the average likelihood of a set of false, counterfactual tokens following the same stem.
 
 If the value from **1** is greater than the value from **2** we conclude that model adequately recalls that fact. Formally, this is an application of the Contrastive Knowledge Assessment proposed in [[1][bib]]. 
 
 For every foundation model of interest (like [LLaMA](https://arxiv.org/abs/2302.13971)), we perform this assessment on a set of facts translated into 20 languages. All told, we score foundation models on 303k fact-completions ([results](https://github.com/daniel-furman/capstone#multilingual-fact-completion-results)). 
 
 We also score monolingual models (like [GPT-2](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)) on English-only fact-completion ([results](https://github.com/daniel-furman/capstone#english-fact-completion-results)).

## Languages

The dataset covers 20 languages, which use either the Latin or Cyrillic scripts: bg, ca, cs, da, de, en, es, fr, hr, hu, it,
nl, pl, pt, ro, ru, sl, sr, sv, uk.

## Data Splits

The dataset splits correspond to the 20 languages above. 

## Source Data

We sourced the English cut of the dataset from [1] and [2] and used the Google Translate API to produce the other 19 language cuts.

## Licensing Information

The dataset is licensed under the Apache 2.0 license and may be used with the corresponding affordances without limit. 

## Citation Information

```
@misc{polyglot_or_not,
  author = {Daniel Furman and Tim Schott and Shreshta Bhat},
  title = {Polyglot or Not?: Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models},
  year = {2023}
  publisher = {GitHub},
  howpublished = {\url{https://github.com/daniel-furman/Capstone}},
}
```

## Bibliography

[1] Dong, Qingxiu, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. "Calibrating Factual Knowledge in Pretrained Language Models". In Findings of the Association for Computational Linguistics: EMNLP 2022. [arXiv:2210.03329][cka] (2022).

```
@misc{dong2022calibrating,
      doi = {10.48550/arXiv.2210.03329},
      title={Calibrating Factual Knowledge in Pretrained Language Models}, 
      author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
      year={2022},
      eprint={2210.03329},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

[2] Meng, Kevin, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. "Mass Editing Memory in a Transformer." arXiv preprint [arXiv:2210.07229][memit] (2022).

```
@misc{meng2022massediting,
      doi = {10.48550/arXiv.2210.07229},
      title={Mass-Editing Memory in a Transformer}, 
      author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
      year={2022},
      eprint={2210.07229},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```