Qingren's picture
Update README.md
a184c49 verified
metadata
license: apache-2.0
task_categories:
  - time-series-forecasting

TSFM-ScalingLaws-Dataset

This is the dataset for the paper Towards Neural Scaling Laws for Time Series Foundation Models.

Code: https://github.com/Qingrenn/TSFM-ScalingLaws

Well-trained models: https://huggingface.co/PeacefulData/TSFM-ScalingLaws-Checkpoints

Dataset Summary

Domain Transport Climate Energy Cloud Health Sales Web Total
Datasets 8 2 14 3 9 1 2 39
Time Points 4.82B 4.73B 4.76B 2.15B 232M 140M 40M 16.8B
Proportion 28.52% 28.06% 28.21% 12.76% 1.38% 0.83% 0.24% 100%

Dataset Details

Dataset Domain Timepoint SequenceNum Proportion
cmip6_1850 Climate 1435238400 196608 0.085
cmip6_1855 Climate 1435238400 196608 0.085
era5_1990 Climate 930349056 106496 0.055
era5_1989 Climate 930349056 106496 0.055
azure_vm_traces_2017 Cloud 885522908 159472 0.052
alibaba_cluster_trace_2018 Cloud 190385060 116818 0.011
borg_cluster_data_2011 Cloud 1075105708 286772 0.063
PEMS07 Energy 24921792 883 0.0014
elf Energy 21792 1 1.29e-06
bdg-2_panther Energy 919800 105 5.45e-05
buildings_900k Energy 4718473097 538577 0.27
solar_power Energy 7397222 1 0.00043
gfc17_load Energy 140352 8 8.32e-06
gfc14_load Energy 17520 1 1.039-06
bdg-2_bear Energy 1482312 91 8.79e-05
bdg-2_fox Energy 2324568 135 0.00013
elecdemand Energy 17520 1 1.039e-06
covid19_energy Energy 31912 1 1.89e-06
spain Energy 35064 1 2.079e-06
australian_electricity_demand Energy 1153584 5 6.84e-05
pdb Energy 17520 1 1.039e-06
sceaux Energy 34223 1 2.029e-06
AtrialFibrillation Health 38400 60 2.27e-06
SelfRegulationSCP2 Health 3064320 2660 0.00018
SelfRegulationSCP1 Health 3015936 3366 0.00017
IEEEPPG Health 15480000 15480 0.00091
TDBrain Health 73299996 28644 0.0043
BIDMC32HR Health 63592000 15898 0.0037
PigCVP Health 624000 312 3.7009e-05
PigArtPressure Health 624000 312 3.7009e-05
MotorImagery Health 72576000 24192 0.0043
favorita_sales Sales 139179538 111840 0.0082
largest_2019 Transport 904032000 8600 0.053
largest_2021 Transport 898565760 8548 0.053
PEMS04 Transport 15649632 921 0.00092
largest_2020 Transport 902397888 8561 0.053
largest_2017 Transport 861563520 8196 0.051
PEMS_BAY Transport 16941600 325 0.0010
traffic_weekly Transport 82752 862 4.90e-06
Q-TRAFFIC Transport 264386688 45148 0.015
largest_2018 Transport 885951360 8428 0.052
LOOP_SEATTLE Transport 33953760 323 0.0020
PEMS08 Transport 9106560 510 0.00054
kaggle_web_traffic_weekly Web 16537182 145063 0.00098
wiki-rolling_nips Web 40619100 47675 0.0024