metadata
license: apache-2.0
task_categories:
- time-series-forecasting
TSFM-ScalingLaws-Dataset
This is the dataset for the paper Towards Neural Scaling Laws for Time Series Foundation Models.
Code: https://github.com/Qingrenn/TSFM-ScalingLaws
Well-trained models: https://huggingface.co/PeacefulData/TSFM-ScalingLaws-Checkpoints
Dataset Summary
Domain | Transport | Climate | Energy | Cloud | Health | Sales | Web | Total |
---|---|---|---|---|---|---|---|---|
Datasets | 8 | 2 | 14 | 3 | 9 | 1 | 2 | 39 |
Time Points | 4.82B | 4.73B | 4.76B | 2.15B | 232M | 140M | 40M | 16.8B |
Proportion | 28.52% | 28.06% | 28.21% | 12.76% | 1.38% | 0.83% | 0.24% | 100% |
Dataset Details
Dataset | Domain | Timepoint | SequenceNum | Proportion |
---|---|---|---|---|
cmip6_1850 | Climate | 1435238400 | 196608 | 0.085 |
cmip6_1855 | Climate | 1435238400 | 196608 | 0.085 |
era5_1990 | Climate | 930349056 | 106496 | 0.055 |
era5_1989 | Climate | 930349056 | 106496 | 0.055 |
azure_vm_traces_2017 | Cloud | 885522908 | 159472 | 0.052 |
alibaba_cluster_trace_2018 | Cloud | 190385060 | 116818 | 0.011 |
borg_cluster_data_2011 | Cloud | 1075105708 | 286772 | 0.063 |
PEMS07 | Energy | 24921792 | 883 | 0.0014 |
elf | Energy | 21792 | 1 | 1.29e-06 |
bdg-2_panther | Energy | 919800 | 105 | 5.45e-05 |
buildings_900k | Energy | 4718473097 | 538577 | 0.27 |
solar_power | Energy | 7397222 | 1 | 0.00043 |
gfc17_load | Energy | 140352 | 8 | 8.32e-06 |
gfc14_load | Energy | 17520 | 1 | 1.039-06 |
bdg-2_bear | Energy | 1482312 | 91 | 8.79e-05 |
bdg-2_fox | Energy | 2324568 | 135 | 0.00013 |
elecdemand | Energy | 17520 | 1 | 1.039e-06 |
covid19_energy | Energy | 31912 | 1 | 1.89e-06 |
spain | Energy | 35064 | 1 | 2.079e-06 |
australian_electricity_demand | Energy | 1153584 | 5 | 6.84e-05 |
pdb | Energy | 17520 | 1 | 1.039e-06 |
sceaux | Energy | 34223 | 1 | 2.029e-06 |
AtrialFibrillation | Health | 38400 | 60 | 2.27e-06 |
SelfRegulationSCP2 | Health | 3064320 | 2660 | 0.00018 |
SelfRegulationSCP1 | Health | 3015936 | 3366 | 0.00017 |
IEEEPPG | Health | 15480000 | 15480 | 0.00091 |
TDBrain | Health | 73299996 | 28644 | 0.0043 |
BIDMC32HR | Health | 63592000 | 15898 | 0.0037 |
PigCVP | Health | 624000 | 312 | 3.7009e-05 |
PigArtPressure | Health | 624000 | 312 | 3.7009e-05 |
MotorImagery | Health | 72576000 | 24192 | 0.0043 |
favorita_sales | Sales | 139179538 | 111840 | 0.0082 |
largest_2019 | Transport | 904032000 | 8600 | 0.053 |
largest_2021 | Transport | 898565760 | 8548 | 0.053 |
PEMS04 | Transport | 15649632 | 921 | 0.00092 |
largest_2020 | Transport | 902397888 | 8561 | 0.053 |
largest_2017 | Transport | 861563520 | 8196 | 0.051 |
PEMS_BAY | Transport | 16941600 | 325 | 0.0010 |
traffic_weekly | Transport | 82752 | 862 | 4.90e-06 |
Q-TRAFFIC | Transport | 264386688 | 45148 | 0.015 |
largest_2018 | Transport | 885951360 | 8428 | 0.052 |
LOOP_SEATTLE | Transport | 33953760 | 323 | 0.0020 |
PEMS08 | Transport | 9106560 | 510 | 0.00054 |
kaggle_web_traffic_weekly | Web | 16537182 | 145063 | 0.00098 |
wiki-rolling_nips | Web | 40619100 | 47675 | 0.0024 |