MWG
int64 16
128
| NWG
int64 16
128
| KWG
int64 16
32
| MDIMC
int64 8
32
| NDIMC
int64 8
32
| MDIMA
int64 8
32
| NDIMB
int64 8
32
| KWI
int64 2
8
| VWM
int64 1
8
| VWN
int64 1
8
| STRM
int64 0
1
| STRN
int64 0
1
| SA
int64 0
1
| SB
int64 0
1
| Run_time
float64 13.3
510
| __index_level_0__
int64 0
242k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32 | 128 | 32 | 32 | 8 | 32 | 32 | 8 | 1 | 4 | 1 | 0 | 0 | 0 | 60.91 | 65,656 |
32 | 64 | 32 | 16 | 16 | 16 | 16 | 8 | 2 | 2 | 0 | 0 | 0 | 1 | 37.4875 | 44,641 |
32 | 64 | 32 | 8 | 32 | 16 | 32 | 8 | 1 | 1 | 1 | 0 | 1 | 1 | 43.375 | 42,091 |
128 | 32 | 32 | 16 | 16 | 16 | 32 | 8 | 2 | 1 | 1 | 1 | 1 | 0 | 56.65 | 165,758 |
16 | 128 | 16 | 16 | 8 | 16 | 16 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 86.79 | 13,922 |
128 | 32 | 32 | 8 | 16 | 16 | 16 | 2 | 8 | 2 | 0 | 0 | 1 | 1 | 63.08 | 160,595 |
64 | 128 | 32 | 32 | 16 | 32 | 32 | 2 | 1 | 4 | 0 | 1 | 0 | 1 | 40.5625 | 141,445 |
128 | 128 | 32 | 8 | 32 | 16 | 8 | 8 | 2 | 1 | 1 | 1 | 1 | 0 | 200.7575 | 225,950 |
64 | 32 | 16 | 16 | 8 | 16 | 16 | 8 | 2 | 1 | 0 | 0 | 1 | 1 | 25.805 | 76,611 |
128 | 64 | 16 | 8 | 32 | 32 | 32 | 8 | 1 | 2 | 1 | 1 | 1 | 0 | 24.7525 | 175,934 |
32 | 64 | 16 | 8 | 32 | 32 | 32 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 36.9925 | 35,490 |
64 | 128 | 32 | 8 | 32 | 16 | 32 | 2 | 2 | 2 | 1 | 0 | 0 | 1 | 50.5675 | 131,209 |
32 | 64 | 16 | 16 | 8 | 16 | 8 | 8 | 2 | 2 | 0 | 1 | 0 | 0 | 39.9675 | 36,340 |
16 | 64 | 32 | 16 | 8 | 8 | 16 | 8 | 1 | 2 | 1 | 0 | 1 | 0 | 65.5825 | 10,122 |
64 | 128 | 16 | 8 | 16 | 32 | 8 | 8 | 2 | 2 | 0 | 0 | 1 | 0 | 233.7725 | 116,402 |
128 | 64 | 32 | 8 | 16 | 16 | 32 | 2 | 8 | 2 | 1 | 1 | 0 | 1 | 263.2975 | 186,717 |
32 | 128 | 32 | 8 | 32 | 32 | 16 | 8 | 1 | 2 | 0 | 0 | 0 | 1 | 76.43 | 60,385 |
32 | 64 | 32 | 8 | 16 | 16 | 32 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 38.6025 | 40,803 |
32 | 32 | 32 | 16 | 16 | 32 | 8 | 8 | 1 | 1 | 1 | 0 | 0 | 1 | 73.9325 | 30,793 |
128 | 64 | 32 | 32 | 16 | 16 | 32 | 8 | 1 | 2 | 0 | 1 | 0 | 0 | 129.145 | 199,604 |
128 | 32 | 32 | 8 | 16 | 16 | 16 | 2 | 4 | 1 | 1 | 1 | 0 | 1 | 37.38 | 160,557 |
64 | 128 | 32 | 16 | 8 | 32 | 8 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 121.9275 | 134,118 |
16 | 128 | 16 | 16 | 8 | 8 | 8 | 2 | 1 | 4 | 0 | 1 | 0 | 1 | 52.215 | 13,477 |
16 | 64 | 16 | 8 | 16 | 16 | 32 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 64.1225 | 6,800 |
64 | 16 | 16 | 8 | 16 | 8 | 16 | 8 | 4 | 1 | 1 | 0 | 0 | 0 | 67.6025 | 67,304 |
128 | 32 | 32 | 8 | 16 | 16 | 8 | 2 | 4 | 1 | 0 | 0 | 0 | 0 | 90.065 | 160,288 |
32 | 64 | 32 | 8 | 16 | 16 | 8 | 8 | 1 | 2 | 1 | 1 | 1 | 0 | 33.1325 | 40,542 |
64 | 128 | 32 | 16 | 16 | 32 | 16 | 8 | 1 | 2 | 1 | 0 | 1 | 1 | 35.67 | 137,339 |
64 | 64 | 32 | 8 | 8 | 8 | 32 | 2 | 8 | 1 | 1 | 0 | 1 | 1 | 215.3925 | 97,451 |
16 | 64 | 16 | 8 | 16 | 8 | 8 | 2 | 1 | 2 | 0 | 0 | 1 | 0 | 46.305 | 6,098 |
128 | 64 | 16 | 8 | 8 | 32 | 8 | 2 | 1 | 2 | 1 | 0 | 0 | 1 | 465.9275 | 171,449 |
128 | 64 | 32 | 8 | 8 | 16 | 16 | 2 | 8 | 4 | 1 | 0 | 0 | 0 | 498.085 | 183,480 |
32 | 128 | 32 | 8 | 8 | 8 | 32 | 8 | 1 | 2 | 1 | 1 | 0 | 0 | 265.205 | 55,500 |
32 | 128 | 32 | 8 | 16 | 8 | 16 | 2 | 1 | 8 | 0 | 1 | 1 | 1 | 47.8675 | 57,111 |
128 | 64 | 32 | 32 | 8 | 16 | 8 | 2 | 2 | 8 | 0 | 0 | 1 | 1 | 42.4075 | 197,587 |
64 | 128 | 32 | 16 | 16 | 8 | 16 | 2 | 1 | 8 | 1 | 1 | 1 | 0 | 25.615 | 135,262 |
128 | 128 | 16 | 8 | 32 | 32 | 16 | 2 | 2 | 1 | 0 | 0 | 0 | 1 | 319.9525 | 208,913 |
32 | 128 | 16 | 16 | 16 | 16 | 16 | 2 | 2 | 8 | 0 | 0 | 0 | 0 | 36.9525 | 53,360 |
64 | 128 | 32 | 8 | 16 | 32 | 16 | 2 | 2 | 8 | 1 | 0 | 0 | 0 | 281.625 | 129,080 |
128 | 64 | 32 | 8 | 16 | 8 | 16 | 8 | 1 | 4 | 0 | 0 | 1 | 0 | 211.6825 | 185,410 |
64 | 32 | 32 | 32 | 8 | 8 | 8 | 2 | 2 | 4 | 0 | 0 | 1 | 0 | 53.8325 | 85,394 |
128 | 32 | 32 | 16 | 32 | 32 | 32 | 8 | 4 | 1 | 1 | 1 | 0 | 0 | 129.075 | 166,716 |
32 | 128 | 32 | 8 | 8 | 32 | 8 | 8 | 1 | 1 | 0 | 1 | 1 | 1 | 156.935 | 56,391 |
128 | 128 | 16 | 32 | 8 | 16 | 16 | 8 | 2 | 2 | 0 | 1 | 1 | 1 | 97.6025 | 215,447 |
32 | 64 | 32 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 33.62 | 39,112 |
64 | 32 | 32 | 32 | 8 | 32 | 8 | 8 | 1 | 4 | 0 | 1 | 0 | 0 | 75.54 | 86,212 |
64 | 64 | 16 | 16 | 8 | 8 | 8 | 2 | 2 | 4 | 0 | 1 | 0 | 1 | 29.865 | 92,549 |
32 | 128 | 32 | 8 | 16 | 8 | 16 | 8 | 2 | 4 | 1 | 0 | 1 | 1 | 35.3825 | 57,355 |
128 | 32 | 32 | 16 | 16 | 8 | 16 | 2 | 8 | 1 | 0 | 1 | 0 | 1 | 128.785 | 164,869 |
32 | 128 | 16 | 8 | 16 | 8 | 16 | 8 | 1 | 8 | 0 | 0 | 0 | 0 | 28.915 | 49,424 |
32 | 128 | 32 | 16 | 8 | 8 | 16 | 8 | 2 | 8 | 1 | 0 | 1 | 1 | 40.43 | 61,019 |
64 | 64 | 32 | 8 | 16 | 16 | 16 | 2 | 4 | 1 | 0 | 1 | 1 | 0 | 34.585 | 100,454 |
128 | 128 | 32 | 32 | 16 | 16 | 32 | 2 | 2 | 4 | 1 | 1 | 0 | 1 | 29.035 | 240,445 |
128 | 128 | 16 | 32 | 8 | 32 | 16 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 266.9975 | 215,841 |
128 | 64 | 16 | 16 | 8 | 16 | 8 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 156.175 | 177,167 |
128 | 32 | 32 | 8 | 32 | 8 | 32 | 8 | 8 | 1 | 0 | 1 | 0 | 1 | 137.53 | 161,717 |
128 | 64 | 16 | 16 | 16 | 16 | 32 | 8 | 4 | 2 | 0 | 1 | 1 | 1 | 22.5575 | 179,767 |
128 | 128 | 16 | 8 | 32 | 32 | 32 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 260.02 | 209,230 |
16 | 32 | 16 | 8 | 8 | 8 | 8 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 68.295 | 1,561 |
128 | 128 | 32 | 16 | 16 | 32 | 16 | 2 | 1 | 4 | 1 | 0 | 1 | 1 | 227.3325 | 234,827 |
32 | 64 | 32 | 8 | 8 | 16 | 16 | 8 | 2 | 2 | 0 | 1 | 1 | 0 | 39.5925 | 39,206 |
16 | 64 | 16 | 8 | 8 | 8 | 8 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 49.065 | 5,237 |
64 | 128 | 32 | 32 | 16 | 32 | 16 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 41.97 | 141,165 |
64 | 64 | 32 | 32 | 8 | 16 | 8 | 8 | 2 | 2 | 1 | 0 | 1 | 1 | 33.14 | 108,859 |
16 | 128 | 32 | 8 | 32 | 8 | 16 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 66.58 | 16,684 |
32 | 32 | 32 | 8 | 8 | 16 | 8 | 8 | 2 | 2 | 0 | 1 | 0 | 1 | 41.2 | 27,205 |
128 | 128 | 32 | 32 | 8 | 16 | 32 | 2 | 2 | 4 | 1 | 0 | 0 | 0 | 320.1225 | 238,712 |
64 | 64 | 16 | 8 | 8 | 8 | 8 | 2 | 4 | 8 | 0 | 1 | 1 | 0 | 288.23 | 87,094 |
64 | 64 | 32 | 32 | 8 | 16 | 8 | 8 | 2 | 4 | 0 | 1 | 0 | 0 | 38.4075 | 108,868 |
128 | 128 | 32 | 8 | 16 | 8 | 32 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 489.63 | 221,888 |
32 | 64 | 16 | 8 | 16 | 8 | 8 | 8 | 1 | 4 | 0 | 0 | 0 | 0 | 39.0775 | 33,808 |
64 | 32 | 16 | 8 | 8 | 16 | 8 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 29.4675 | 72,967 |
128 | 128 | 32 | 16 | 16 | 32 | 32 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 353 | 235,228 |
128 | 32 | 16 | 8 | 32 | 16 | 16 | 8 | 4 | 1 | 1 | 1 | 1 | 0 | 29.6225 | 153,582 |
64 | 64 | 32 | 8 | 16 | 32 | 8 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 62.275 | 100,841 |
64 | 32 | 32 | 16 | 8 | 32 | 16 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 41.0275 | 83,535 |
64 | 128 | 16 | 8 | 16 | 8 | 32 | 8 | 1 | 2 | 0 | 0 | 1 | 1 | 131.0075 | 114,963 |
64 | 64 | 32 | 8 | 8 | 32 | 16 | 2 | 2 | 4 | 1 | 1 | 0 | 0 | 331.2025 | 98,812 |
32 | 32 | 32 | 8 | 16 | 32 | 32 | 8 | 1 | 1 | 1 | 1 | 1 | 0 | 41.0725 | 28,574 |
64 | 32 | 16 | 8 | 32 | 16 | 16 | 8 | 1 | 1 | 0 | 1 | 1 | 1 | 52.345 | 75,351 |
16 | 32 | 32 | 8 | 8 | 16 | 8 | 8 | 1 | 4 | 1 | 0 | 0 | 1 | 52.3825 | 3,577 |
128 | 32 | 32 | 32 | 8 | 32 | 16 | 8 | 4 | 2 | 0 | 0 | 1 | 1 | 27.77 | 168,339 |
16 | 64 | 32 | 8 | 32 | 8 | 8 | 8 | 2 | 2 | 0 | 0 | 0 | 0 | 62.0475 | 9,456 |
64 | 128 | 32 | 8 | 16 | 16 | 16 | 8 | 1 | 4 | 0 | 1 | 0 | 1 | 244.93 | 128,261 |
16 | 32 | 16 | 16 | 8 | 8 | 8 | 8 | 1 | 4 | 0 | 1 | 0 | 1 | 49.5225 | 2,709 |
32 | 32 | 32 | 8 | 32 | 16 | 16 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 134.005 | 28,933 |
32 | 64 | 32 | 8 | 8 | 8 | 32 | 8 | 4 | 2 | 0 | 0 | 0 | 1 | 49.4725 | 38,769 |
32 | 128 | 32 | 8 | 16 | 8 | 8 | 8 | 4 | 8 | 1 | 0 | 0 | 0 | 31.91 | 57,048 |
128 | 128 | 32 | 16 | 32 | 16 | 16 | 8 | 8 | 4 | 0 | 0 | 0 | 1 | 75.405 | 235,825 |
128 | 32 | 32 | 32 | 8 | 8 | 8 | 8 | 4 | 1 | 0 | 0 | 0 | 0 | 41.99 | 166,960 |
64 | 32 | 16 | 8 | 8 | 8 | 16 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 67.455 | 72,518 |
64 | 32 | 32 | 16 | 8 | 8 | 32 | 2 | 4 | 1 | 0 | 0 | 1 | 1 | 38.1675 | 82,691 |
32 | 16 | 32 | 32 | 8 | 8 | 16 | 8 | 1 | 1 | 1 | 0 | 0 | 0 | 122.9325 | 22,392 |
64 | 128 | 32 | 16 | 16 | 8 | 8 | 8 | 1 | 2 | 0 | 0 | 1 | 0 | 34.52 | 135,026 |
128 | 64 | 32 | 32 | 8 | 32 | 8 | 2 | 2 | 4 | 0 | 0 | 0 | 0 | 56.47 | 198,432 |
32 | 16 | 32 | 8 | 8 | 8 | 8 | 8 | 1 | 1 | 0 | 1 | 1 | 1 | 81.835 | 20,647 |
64 | 128 | 32 | 16 | 8 | 8 | 8 | 2 | 4 | 1 | 1 | 1 | 1 | 1 | 332.105 | 132,143 |
128 | 64 | 16 | 8 | 16 | 16 | 32 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 183.395 | 174,086 |
64 | 64 | 32 | 8 | 16 | 16 | 8 | 8 | 2 | 2 | 1 | 0 | 1 | 1 | 38.15 | 100,283 |
128 | 64 | 32 | 8 | 16 | 16 | 8 | 2 | 1 | 4 | 1 | 0 | 1 | 0 | 170.3375 | 185,866 |
Information
SGEMM GPU kernel performance Data Set available for download at https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
We performed some filtering on this dataset.
Here is the original information of this dataset:
This data set measures the running time of a matrix-matrix product AB = C, where all matrices have size 2048 x 2048, using a parameterizable SGEMM GPU kernel with 241600 possible parameter combinations. For each tested combination, 4 runs were performed and their results are reported as the 4 last columns. All times are measured in milliseconds.
There are 14 parameter, the first 10 are ordinal and can only take up to 4 different powers of two values, and the 4 last variables are binary. Out of 1327104 total parameter combinations, only 241600 are feasible (due to various kernel constraints). This data set contains the results for all these feasible combinations.
The experiment was run on a desktop workstation running Ubuntu 16.04 Linux with an Intel Core i5 (3.5GHz), 16GB RAM, and a NVidia Geforce GTX 680 4GB GF580 GTX-1.5GB GPU. We use the 'gemm_fast' kernel from the automatic OpenCL kernel tuning library 'CLTune' (https://github.com/CNugteren/CLTune).
- Note: for this kind of data sets it is usually better to work with the logarithm of the running times (see e.g. Falch and Elster, 'Machine learning-based auto-tuning for enhanced performance portability of OpenCL applications', 2015).
Download
from datasets import load_dataset
dataset = load_dataset("Rosykunai/SGEMM_GPU_performance")
Reference
- Rafael Ballester-Ripoll, Enrique G. Paredes, Renato Pajarola.
- Sobol Tensor Trains for Global Sensitivity Analysis.
- In arXiv Computer Science / Numerical Analysis e-prints, 2017
- Cedric Nugteren and Valeriu Codreanu.
- CLTune: A Generic Auto-Tuner for OpenCL Kernels.
- In: MCSoC: 9th International Symposium on Embedded Multicore/Many-core Systems-on-Chip. IEEE, 2015
- Downloads last month
- 29