|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, |
|
Licenses, Tasks) |
|
|
|
_CITATION = """\ |
|
@inproceedings{mayhew-etal-2020-simultaneous, |
|
title = "Simultaneous Translation and Paraphrase for Language Education", |
|
author = "Mayhew, Stephen and |
|
Bicknell, Klinton and |
|
Brust, Chris and |
|
McDowell, Bill and |
|
Monroe, Will and |
|
Settles, Burr", |
|
editor = "Birch, Alexandra and |
|
Finch, Andrew and |
|
Hayashi, Hiroaki and |
|
Heafield, Kenneth and |
|
Junczys-Dowmunt, Marcin and |
|
Konstas, Ioannis and |
|
Li, Xian and |
|
Neubig, Graham and |
|
Oda, Yusuke", |
|
booktitle = "Proceedings of the Fourth Workshop on Neural Generation and Translation", |
|
month = jul, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.ngt-1.28", |
|
doi = "10.18653/v1/2020.ngt-1.28", |
|
pages = "232--243", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "duolingo_staple_2020" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is provided by Duolingo for their Simultaneous Translation and |
|
Paraphrase for Language Education (STAPLE) shared task in 2020. It contains |
|
English prompts and corresponding sets of plausible translations in five other |
|
languages, including Vietnamese. Each prompt is provided with a baseline |
|
automatic reference translation from Amazon, as well as some accepted |
|
translations with corresponding user response rates used for task scoring. |
|
""" |
|
|
|
_HOMEPAGE = "https://sharedtask.duolingo.com/#data" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_4_0.value |
|
|
|
_LOCAL = True |
|
|
|
_URLS = "https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/38OJR6&version=6.0" |
|
|
|
|
|
|
|
_SUBSETS = ["aws_baseline", "gold"] |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "6.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class DuolingoStaple2020Dataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset for the Duolingo STAPLE 2020 shared task.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [] |
|
for subset in _SUBSETS: |
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} {subset} source schema", |
|
schema="source", |
|
subset_id=subset, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {subset} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=subset, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_gold_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
if self.config.subset_id == "aws_baseline": |
|
features = datasets.Features( |
|
{ |
|
"prompt_id": datasets.Value("string"), |
|
"source_text": datasets.Value("string"), |
|
"translation": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.subset_id == "gold": |
|
features = datasets.Features( |
|
{ |
|
"prompt_id": datasets.Value("string"), |
|
"source_text": datasets.Value("string"), |
|
"translations": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"weight": datasets.Value("float64"), |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the data_dir kwarg (staple-2020 dir) to load_dataset.") |
|
else: |
|
data_dir = Path(self.config.data_dir) / "en_vi" |
|
|
|
if self.config.subset_id == "aws_baseline": |
|
filename = "aws_baseline.pred" |
|
elif self.config.subset_id == "gold": |
|
filename = "2020-02-20.gold" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir / f"train.en_vi.{'2020-01-13.gold' if self.config.subset_id == 'gold' else filename}.txt", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir / f"test.en_vi.{filename}.txt", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir / f"dev.en_vi.{filename}.txt", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.subset_id == "aws_baseline": |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
entries = f.read().strip().split("\n\n") |
|
|
|
for key, entry in enumerate(entries): |
|
parts = entry.split("|") |
|
prompt_id = parts[0].strip() |
|
source_text, translation = list(map(str.strip, parts[1].split("\n"))) |
|
|
|
if self.config.schema == "source": |
|
yield key, { |
|
"prompt_id": prompt_id, |
|
"source_text": source_text, |
|
"translation": translation, |
|
} |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
yield key, { |
|
"id": str(key), |
|
"text_1": source_text, |
|
"text_2": translation, |
|
"text_1_name": "english", |
|
"text_2_name": "translation", |
|
} |
|
|
|
|
|
elif self.config.subset_id == "gold": |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
entries = f.read().strip().split("\n\n") |
|
|
|
key = 0 |
|
for entry in entries: |
|
parts = entry.split("\n") |
|
prompt_id, source_text = list(map(str.strip, parts[0].split("|"))) |
|
|
|
if self.config.schema == "source": |
|
translations = [] |
|
for answer in parts[1:]: |
|
translation, weight = list(map(str.strip, answer.split("|"))) |
|
translations.append({"text": translation, "weight": float(weight)}) |
|
yield key, { |
|
"prompt_id": prompt_id, |
|
"source_text": source_text, |
|
"translations": translations, |
|
} |
|
key += 1 |
|
|
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
for answer in parts[1:]: |
|
translation, _ = list(map(str.strip, answer.split("|"))) |
|
yield key, { |
|
"id": str(key), |
|
"text_1": source_text, |
|
"text_2": translation, |
|
"text_1_name": "english", |
|
"text_2_name": "translation", |
|
} |
|
key += 1 |
|
|