File size: 4,972 Bytes
1703442 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """
@inproceedings{flores-radev-2022-look,
title = "Look Ma, Only 400 Samples! Revisiting the Effectiveness of Automatic N-Gram Rule Generation for Spelling Normalization in {F}ilipino",
author = "Flores, Lorenzo Jaime and
Radev, Dragomir",
booktitle = "Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sustainlp-1.5",
pages = "29--35",
}
"""
_LOCAL = False
_LANGUAGES = ["fil"]
_DATASETNAME = "filipino_slang_norm"
_DESCRIPTION = """\
This dataset contains 398 abbreviated and/or contracted Filipino words used in
Facebook comments made on weather advisories from a Philippine weather bureau.
volunteers.
"""
_HOMEPAGE = "https://github.com/ljyflores/efficient-spelling-normalization-filipino"
_LICENSE = Licenses.UNKNOWN.value
_URLS = {
"train": "https://github.com/ljyflores/efficient-spelling-normalization-filipino/raw/main/data/train_words.csv",
"test": "https://github.com/ljyflores/efficient-spelling-normalization-filipino/raw/main/data/test_words.csv",
}
_SUPPORTED_TASKS = [Tasks.MULTILEXNORM]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class FilipinoSlangNormDataset(datasets.GeneratorBasedBuilder):
"""Filipino Slang Norm dataset by Flores and Radev (2022)"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"src_sent": datasets.Value("string"),
"norm_sent": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
data_files = {
"train": Path(dl_manager.download_and_extract(_URLS["train"])),
"test": Path(dl_manager.download_and_extract(_URLS["test"])),
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_files["test"],
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yield examples as (key, example) tuples"""
with open(filepath, encoding="utf-8") as f:
for guid, line in enumerate(f):
src_sent, norm_sent = line.strip("\n").split(",")
if self.config.schema == "source":
example = {
"id": str(guid),
"src_sent": src_sent,
"norm_sent": norm_sent,
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
example = {
"id": str(guid),
"text_1": src_sent,
"text_2": norm_sent,
"text_1_name": "src_sent",
"text_2_name": "norm_sent",
}
yield guid, example
|