|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A high-quality Vietnamese-English parallel dataset constructed specifically for the medical domain, comprising approximately 360K sentence pairs |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{medev, |
|
title = {{Improving Vietnamese-English Medical Machine Translation}}, |
|
author = {Nhu Vo and Dat Quoc Nguyen and Dung D. Le and Massimo Piccardi and Wray Buntine}, |
|
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING)}, |
|
year = {2024} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "medev" |
|
|
|
_DESCRIPTION = """\ |
|
A high-quality Vietnamese-English parallel dataset constructed specifically for the medical domain, comprising approximately 360K sentence pairs |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/nhuvo/MedEV" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"train_en": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/train.en.txt?download=true", |
|
"train_vie": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/train.vi.txt?download=true", |
|
"val_en": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/val.en.new.txt?download=true", |
|
"val_vie": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/val.vi.new.txt?download=true", |
|
"test_en": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/test.en.new.txt?download=true", |
|
"test_vie": "https://huggingface.co/datasets/nhuvo/MedEV/resolve/main/test.vi.new.txt?download=true", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MedEVDataset(datasets.GeneratorBasedBuilder): |
|
"""A high-quality Vietnamese-English parallel dataset constructed specifically for the medical domain, comprising approximately 360K sentence pairs""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_t2t", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"vie_text": datasets.Value("string"), |
|
"eng_text": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath_en": data_dir["train_en"], |
|
"filepath_vie": data_dir["train_vie"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath_en": data_dir["test_en"], |
|
"filepath_vie": data_dir["test_vie"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath_en": data_dir["val_en"], |
|
"filepath_vie": data_dir["val_vie"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath_en: Path, filepath_vie: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath_en, "r", encoding="utf-8") as f: |
|
en_lines = f.readlines() |
|
with open(filepath_vie, "r", encoding="utf-8") as f: |
|
vie_lines = f.readlines() |
|
|
|
if self.config.schema == "source": |
|
for i in range(len(vie_lines)): |
|
yield i, { |
|
"id": str(i), |
|
"vie_text": vie_lines[i], |
|
"eng_text": en_lines[i], |
|
} |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
for i, (en_line, vie_line) in enumerate(list(zip(en_lines, vie_lines))): |
|
yield i, { |
|
"id": str(i), |
|
"text_1": en_line, |
|
"text_2": vie_line, |
|
"text_1_name": "eng", |
|
"text_2_name": "vie", |
|
} |
|
|