|
import json |
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Licenses, Tasks |
|
|
|
_DATASETNAME = "thai_depression" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["tha"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{hamalainen-etal-2021-detecting, |
|
title = "Detecting Depression in Thai Blog Posts: a Dataset and a Baseline", |
|
author = {H{\"a}m{\"a}l{\"a}inen, Mika and |
|
Patpong, Pattama and |
|
Alnajjar, Khalid and |
|
Partanen, Niko and |
|
Rueter, Jack}, |
|
editor = "Xu, Wei and |
|
Ritter, Alan and |
|
Baldwin, Tim and |
|
Rahimi, Afshin", |
|
booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)", |
|
month = nov, |
|
year = "2021", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.wnut-1.3", |
|
doi = "10.18653/v1/2021.wnut-1.3", |
|
pages = "20--25", |
|
abstract = "We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs. |
|
We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53%% accuracy with a Thai BERT model in detecting depression. |
|
This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia. |
|
Our corpus, code and trained models have been released openly on Zenodo.", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs. |
|
We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53%% accuracy with a Thai BERT model in detecting depression. |
|
This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia. |
|
Our corpus, code and trained models have been released openly on Zenodo. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/records/4734552" |
|
|
|
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value |
|
|
|
_URLs = "https://zenodo.org/records/4734552/files/data.zip?download=1" |
|
|
|
_SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ThaiDepressionDataset(datasets.GeneratorBasedBuilder): |
|
"""Thai depression detection dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} seacrowd schema", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(["depression", "no_depression"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
path = Path(dl_manager.download_and_extract(_URLs)) |
|
data_files = { |
|
"train": path / "splits/train.json", |
|
"test": path / "splits/test.json", |
|
"valid": path / "splits/valid.json", |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_files["valid"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_files["test"]}, |
|
), |
|
] |
|
|
|
def _parse_and_label(self, file_path): |
|
with open(file_path, "r", encoding="utf-8") as file: |
|
data = json.load(file) |
|
|
|
parsed_data = [] |
|
for item in data: |
|
parsed_data.append({"text": item[0], "label": item[1]}) |
|
|
|
return parsed_data |
|
|
|
def _generate_examples(self, filepath: Path): |
|
print("Reading ", filepath) |
|
for id, row in enumerate(self._parse_and_label(filepath)): |
|
if self.config.schema == "source": |
|
yield id, {"text": row["text"], "label": row["label"]} |
|
elif self.config.schema == "seacrowd_text": |
|
yield id, {"id": str(id), "text": row["text"], "label": row["label"]} |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|