|
--- |
|
license: apache-2.0 |
|
language: |
|
- zh |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
# CDLA: A Chinese document layout analysis (CDLA) dataset |
|
|
|
### 介绍 |
|
|
|
CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: |
|
|
|
|正文|标题|图片|图片标题|表格|表格标题|页眉|页脚|注释|公式| |
|
|---|---|---|---|---|---|---|---|---|---| |
|
|Text|Title|Figure|Figure caption|Table|Table caption|Header|Footer|Reference|Equation| |
|
|
|
共包含5000张训练集和1000张验证集,分别在train和val目录下。 |
|
|
|
整理自:[CDLA](https://github.com/buptlihang/CDLA) |
|
|
|
标注可视化: |
|
 |
|
|
|
|
|
### 使用方式 |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("SWHL/CDLA") |
|
|
|
train_data = dataset["train"] |
|
print(train_data[0]) |
|
|
|
val_data = dataset["validation"] |
|
print(val_data[0]) |
|
|
|
# {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1240x1754 at 0x12FEE3DF0>, |
|
# 'version': '4.5.6', 'flags': {}, |
|
# 'shapes': [ |
|
# {'label': 'Header', 'points': [[118.0, 135.66666666666669]], 'group_id': None, 'shape_type': 'polygon', 'flags': {}} |
|
# ], |
|
# 'imagePath': 'train_0001.jpg', 'imageData': None, 'imageHeight': 1754, 'imageWidth': 1240} |
|
``` |
|
|
|
### 下载链接 |
|
|
|
- 百度云下载:[link](https://pan.baidu.com/s/1449mhds2ze5JLk-88yKVAA), 提取码: tp0d |
|
- Google Drive Download:[link](https://drive.google.com/file/d/14SUsp_TG8OPdK0VthRXBcAbYzIBjSNLm/view?usp=sharing) |
|
|
|
|
|
### 标注格式 |
|
|
|
我们的标注工具是labelme,所以标注格式和labelme格式一致。这里说明一下比较重要的字段: |
|
|
|
- `shapes`: shapes字段是一个list,里面有多个dict,每个dict代表一个标注实例。 |
|
- `labels`: 类别。 |
|
- `points`: 实例标注。因为我们的标注是Polygon形式,所以points里的坐标数量可能大于4。 |
|
- `shape_type`: "polygon" |
|
- `imagePath`: 图片路径/名 |
|
- `imageHeight`: 高 |
|
- `imageWidth`: 宽 |
|
|
|
|
|
展示一个完整的标注样例: |
|
|
|
<details> |
|
|
|
```json |
|
{ |
|
"version":"4.5.6", |
|
"flags":{}, |
|
"shapes":[ |
|
{ |
|
"label":"Title", |
|
"points":[ |
|
[ |
|
553.1111111111111, |
|
166.59259259259258 |
|
], |
|
[ |
|
553.1111111111111, |
|
198.59259259259258 |
|
], |
|
[ |
|
686.1111111111111, |
|
198.59259259259258 |
|
], |
|
[ |
|
686.1111111111111, |
|
166.59259259259258 |
|
] |
|
], |
|
"group_id":null, |
|
"shape_type":"polygon", |
|
"flags":{} |
|
}, |
|
{ |
|
"label":"Text", |
|
"points":[ |
|
[ |
|
250.5925925925925, |
|
298.0740740740741 |
|
], |
|
[ |
|
250.5925925925925, |
|
345.0740740740741 |
|
], |
|
[ |
|
188.5925925925925, |
|
345.0740740740741 |
|
], |
|
[ |
|
188.5925925925925, |
|
410.0740740740741 |
|
], |
|
[ |
|
188.5925925925925, |
|
456.0740740740741 |
|
], |
|
[ |
|
324.5925925925925, |
|
456.0740740740741 |
|
], |
|
[ |
|
324.5925925925925, |
|
410.0740740740741 |
|
], |
|
[ |
|
1051.5925925925926, |
|
410.0740740740741 |
|
], |
|
[ |
|
1051.5925925925926, |
|
345.0740740740741 |
|
], |
|
[ |
|
1052.5925925925926, |
|
345.0740740740741 |
|
], |
|
[ |
|
1052.5925925925926, |
|
298.0740740740741 |
|
] |
|
], |
|
"group_id":null, |
|
"shape_type":"polygon", |
|
"flags":{} |
|
}, |
|
{ |
|
"label":"Footer", |
|
"points":[ |
|
[ |
|
1033.7407407407406, |
|
1634.5185185185185 |
|
], |
|
[ |
|
1033.7407407407406, |
|
1646.5185185185185 |
|
], |
|
[ |
|
1052.7407407407406, |
|
1646.5185185185185 |
|
], |
|
[ |
|
1052.7407407407406, |
|
1634.5185185185185 |
|
] |
|
], |
|
"group_id":null, |
|
"shape_type":"polygon", |
|
"flags":{} |
|
} |
|
], |
|
"imagePath":"val_0031.jpg", |
|
"imageData":null, |
|
"imageHeight":1754, |
|
"imageWidth":1240 |
|
} |
|
``` |
|
</details> |
|
|
|
### 转COCO格式 |
|
```bash |
|
# train |
|
python3 labelme2coco.py CDLA_dir/train train_save_path --labels labels.txt |
|
|
|
# val |
|
python3 labelme2coco.py CDLA_dir/val val_save_path --labels labels.txt |
|
``` |
|
|
|
转换结果保存在train_save_path/val_save_path目录下。 |
|
|
|
labelme2coco.py取自labelme,更多信息请参考[labelme官方项目](https://github.com/wkentaro/labelme/tree/master/examples/instance_segmentation) |