CDLA / README.md
SWHL's picture
Update README.md
f4b1146 verified
---
license: apache-2.0
language:
- zh
size_categories:
- 1K<n<10K
---
# CDLA: A Chinese document layout analysis (CDLA) dataset
### 介绍
CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label:
|正文|标题|图片|图片标题|表格|表格标题|页眉|页脚|注释|公式|
|---|---|---|---|---|---|---|---|---|---|
|Text|Title|Figure|Figure caption|Table|Table caption|Header|Footer|Reference|Equation|
共包含5000张训练集和1000张验证集,分别在train和val目录下。
整理自:[CDLA](https://github.com/buptlihang/CDLA)
标注可视化:
![](./assets/demo.png)
### 使用方式
```python
from datasets import load_dataset
dataset = load_dataset("SWHL/CDLA")
train_data = dataset["train"]
print(train_data[0])
val_data = dataset["validation"]
print(val_data[0])
# {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1240x1754 at 0x12FEE3DF0>,
# 'version': '4.5.6', 'flags': {},
# 'shapes': [
# {'label': 'Header', 'points': [[118.0, 135.66666666666669]], 'group_id': None, 'shape_type': 'polygon', 'flags': {}}
# ],
# 'imagePath': 'train_0001.jpg', 'imageData': None, 'imageHeight': 1754, 'imageWidth': 1240}
```
### 下载链接
- 百度云下载:[link](https://pan.baidu.com/s/1449mhds2ze5JLk-88yKVAA), 提取码: tp0d
- Google Drive Download:[link](https://drive.google.com/file/d/14SUsp_TG8OPdK0VthRXBcAbYzIBjSNLm/view?usp=sharing)
### 标注格式
我们的标注工具是labelme,所以标注格式和labelme格式一致。这里说明一下比较重要的字段:
- `shapes`: shapes字段是一个list,里面有多个dict,每个dict代表一个标注实例。
- `labels`: 类别。
- `points`: 实例标注。因为我们的标注是Polygon形式,所以points里的坐标数量可能大于4。
- `shape_type`: "polygon"
- `imagePath`: 图片路径/名
- `imageHeight`: 高
- `imageWidth`: 宽
展示一个完整的标注样例:
<details>
```json
{
"version":"4.5.6",
"flags":{},
"shapes":[
{
"label":"Title",
"points":[
[
553.1111111111111,
166.59259259259258
],
[
553.1111111111111,
198.59259259259258
],
[
686.1111111111111,
198.59259259259258
],
[
686.1111111111111,
166.59259259259258
]
],
"group_id":null,
"shape_type":"polygon",
"flags":{}
},
{
"label":"Text",
"points":[
[
250.5925925925925,
298.0740740740741
],
[
250.5925925925925,
345.0740740740741
],
[
188.5925925925925,
345.0740740740741
],
[
188.5925925925925,
410.0740740740741
],
[
188.5925925925925,
456.0740740740741
],
[
324.5925925925925,
456.0740740740741
],
[
324.5925925925925,
410.0740740740741
],
[
1051.5925925925926,
410.0740740740741
],
[
1051.5925925925926,
345.0740740740741
],
[
1052.5925925925926,
345.0740740740741
],
[
1052.5925925925926,
298.0740740740741
]
],
"group_id":null,
"shape_type":"polygon",
"flags":{}
},
{
"label":"Footer",
"points":[
[
1033.7407407407406,
1634.5185185185185
],
[
1033.7407407407406,
1646.5185185185185
],
[
1052.7407407407406,
1646.5185185185185
],
[
1052.7407407407406,
1634.5185185185185
]
],
"group_id":null,
"shape_type":"polygon",
"flags":{}
}
],
"imagePath":"val_0031.jpg",
"imageData":null,
"imageHeight":1754,
"imageWidth":1240
}
```
</details>
### 转COCO格式
```bash
# train
python3 labelme2coco.py CDLA_dir/train train_save_path --labels labels.txt
# val
python3 labelme2coco.py CDLA_dir/val val_save_path --labels labels.txt
```
转换结果保存在train_save_path/val_save_path目录下。
labelme2coco.py取自labelme,更多信息请参考[labelme官方项目](https://github.com/wkentaro/labelme/tree/master/examples/instance_segmentation)