Datasets:

ArXiv:
License:
File size: 10,770 Bytes
846afb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e62cf
 
846afb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e62cf
846afb5
 
 
 
 
19e62cf
846afb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e62cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846afb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Iterator, Optional
from functools import cached_property

import datasets
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
from gluonts.dataset.field_names import FieldName

_CITATION = """\
@article{woo2023pushing,
  title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain},
  author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen},
  journal={arXiv preprint arXiv:2310.05063},
  year={2023}
}
"""


_CONFIGS = {
    "azure_vm_traces_2017": {
        "optional_fields": (
            FieldName.FEAT_STATIC_CAT,
            FieldName.FEAT_STATIC_REAL,
            FieldName.PAST_FEAT_DYNAMIC_REAL,
        ),
        "prediction_length": 48,
        "freq": "5T",
        "stride": 48,
        "univariate": True,
        "multivariate": False,
        "rolling_evaluations": 12,
        "test_split_date": pd.Period(
            year=2016, month=12, day=13, hour=15, minute=55, freq="5T"
        ),
        "_feat_static_cat_cardinalities": {
            "train_test": (
                ("vm_id", 17568),
                ("subscription_id", 2713),
                ("deployment_id", 3255),
                ("vm_category", 3),
            ),
            "pretrain": (
                ("vm_id", 177040),
                ("subscription_id", 5514),
                ("deployment_id", 15208),
                ("vm_category", 3),
            ),
        },
        "target_dim": 1,
        "feat_static_real_dim": 3,
        "past_feat_dynamic_real_dim": 2,
    },
    "borg_cluster_data_2011": {
        "optional_fields": (
            FieldName.FEAT_STATIC_CAT,
            FieldName.PAST_FEAT_DYNAMIC_REAL,
        ),
        "prediction_length": 48,
        "freq": "5T",
        "stride": 48,
        "univariate": False,
        "multivariate": True,
        "rolling_evaluations": 12,
        "test_split_date": pd.Period(
            year=2011, month=5, day=28, hour=18, minute=55, freq="5T"
        ),
        "_feat_static_cat_cardinalities": {
            "train_test": (
                ("job_id", 850),
                ("task_id", 11117),
                ("user", 282),
                ("scheduling_class", 4),
                ("logical_job_name", 718),
            ),
            "pretrain": (
                ("job_id", 6072),
                ("task_id", 154503),
                ("user", 518),
                ("scheduling_class", 4),
                ("logical_job_name", 3899),
            ),
        },
        "target_dim": 2,
        "past_feat_dynamic_real_dim": 5,
    },
    "alibaba_cluster_trace_2018": {
        "optional_fields": (
            FieldName.FEAT_STATIC_CAT,
            FieldName.PAST_FEAT_DYNAMIC_REAL,
        ),
        "prediction_length": 48,
        "freq": "5T",
        "stride": 48,
        "univariate": False,
        "multivariate": True,
        "rolling_evaluations": 12,
        "test_split_date": pd.Period(
            year=2018, month=1, day=8, hour=11, minute=55, freq="5T"
        ),
        "_feat_static_cat_cardinalities": {
            "train_test": (
                ("container_id", 6048),
                ("app_du", 1292),
            ),
            "pretrain": (
                ("container_id", 64457),
                ("app_du", 9484),
            ),
        },
        "target_dim": 2,
        "past_feat_dynamic_real_dim": 6,
    },
}

PRETRAIN = datasets.splits.NamedSplit("pretrain")
TRAIN_TEST = datasets.splits.NamedSplit("train_test")

Cardinalities = tuple[tuple[str, int], ...]


@dataclass
class CloudOpsTSFConfig(datasets.BuilderConfig):
    """BuilderConfig for CloudOpsTSF."""

    # load_dataset kwargs
    train_test: bool = field(default=True, init=False)
    pretrain: bool = field(default=False, init=False)
    _include_metadata: tuple[str, ...] = field(default_factory=tuple, init=False)

    # builder kwargs
    prediction_length: int = field(default=None)
    freq: str = field(default=None)
    stride: int = field(default=None)
    univariate: bool = field(default=None)
    multivariate: bool = field(default=None)
    optional_fields: tuple[str, ...] = field(default=None)
    rolling_evaluations: int = field(default=None)
    test_split_date: pd.Period = field(default=None)
    _feat_static_cat_cardinalities: dict[str, Cardinalities] = field(
        default_factory=dict
    )
    target_dim: int = field(default=1)
    feat_static_real_dim: int = field(default=0)
    past_feat_dynamic_real_dim: int = field(default=0)

    METADATA = [
        "freq",
        "prediction_length",
        "stride",
        "rolling_evaluations",
    ]

    @property
    def include_metadata(self) -> tuple[str, ...]:
        return self._include_metadata

    @include_metadata.setter
    def include_metadata(self, value: tuple[str, ...]):
        assert all([v in self.METADATA for v in value]), (
            f"Metadata: {value} is not supported, each item should be one of"
            f" {self.METADATA}"
        )
        self._include_metadata = value

    @cached_property
    def feat_static_cat_cardinalities(self) -> Optional[list[int]]:
        if FieldName.FEAT_STATIC_CAT not in self.optional_fields:
            return None

        if self.pretrain:
            split = "pretrain"
        elif self.train_test:
            split = "train_test"
        else:
            raise ValueError(
                "At least one of `train_test` and `pretrain` should be True"
            )
        return [c[1] for c in self._feat_static_cat_cardinalities[split]]


class CloudOpsTSF(datasets.ArrowBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = []
    for dataset, config in _CONFIGS.items():
        BUILDER_CONFIGS.append(
            CloudOpsTSFConfig(name=dataset, version=VERSION, description="", **config)
        )

    def _info(self) -> datasets.DatasetInfo:
        def sequence_feature(dtype: str, univar: bool) -> datasets.Sequence:
            if univar:
                return datasets.Sequence(datasets.Value(dtype))
            return datasets.Sequence(datasets.Sequence(datasets.Value(dtype)))

        features = {
            FieldName.START: datasets.Value("timestamp[s]"),
            FieldName.TARGET: sequence_feature("float32", self.config.univariate),
            FieldName.ITEM_ID: datasets.Value("string"),
        }

        CAT_FEATS = (
            FieldName.FEAT_STATIC_CAT,
            FieldName.FEAT_DYNAMIC_CAT,
            FieldName.PAST_FEAT_DYNAMIC,
        )
        REAL_FEATS = (
            FieldName.FEAT_STATIC_REAL,
            FieldName.FEAT_DYNAMIC_REAL,
            FieldName.PAST_FEAT_DYNAMIC_REAL,
        )
        STATIC_FEATS = (FieldName.FEAT_STATIC_CAT, FieldName.FEAT_STATIC_REAL)
        DYNAMIC_FEATS = (
            FieldName.FEAT_DYNAMIC_CAT,
            FieldName.FEAT_DYNAMIC_REAL,
            FieldName.PAST_FEAT_DYNAMIC,
            FieldName.PAST_FEAT_DYNAMIC_REAL,
        )

        for ts_field in self.config.optional_fields:
            # Determine field dtype
            if ts_field in CAT_FEATS:
                dtype = "int32"
            elif ts_field in REAL_FEATS:
                dtype = "float32"
            else:
                raise ValueError(f"Invalid field: {ts_field}")

            # Determine field shape
            if ts_field in STATIC_FEATS:
                univar = True
            elif ts_field in DYNAMIC_FEATS:
                univar = False
            else:
                raise ValueError(f"Invalid field: {ts_field}")

            features[ts_field] = sequence_feature(dtype, univar)

        for metadata in self.config.include_metadata:
            if metadata == "freq":
                features[metadata] = datasets.Value("string")
            elif metadata in ("prediction_length", "stride", "rolling_evaluations"):
                features[metadata] = datasets.Value("int32")
            else:
                raise ValueError(f"Invalid metadata: {metadata}")

        features = datasets.Features(features)

        return datasets.DatasetInfo(
            features=features,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> list[datasets.SplitGenerator]:
        generators = []
        if self.config.train_test:
            downloaded_files = dl_manager.download_and_extract(f"{self.config.name}/train_test.zip")
            generators.append(
                datasets.SplitGenerator(
                    name=TRAIN_TEST if self.config.train_test else PRETRAIN,
                    gen_kwargs={"filepath": downloaded_files}
                )
            )
        if self.config.pretrain:
            downloaded_files = dl_manager.download_and_extract(f"{self.config.name}/pretrain.zip")
            generators.append(
                datasets.SplitGenerator(
                    name=PRETRAIN,
                    gen_kwargs={"filepath": downloaded_files}
                )
            )
        return generators

    def _generate_tables(self, filepath: str) -> Iterator[pa.Table]:
        table = pq.read_table(filepath)

        for batch in table.to_batches():
            columns = batch.columns
            schema = batch.schema
            if self.config.include_metadata:
                freq = pa.array([self.config.freq] * len(batch))
                prediction_length = pa.array([self.config.prediction_length] * len(batch))
                rolling_evaluations = pa.array([self.config.rolling_evaluations] * len(batch))
                stride = pa.array([self.config.stride] * len(batch))
                columns += [freq, prediction_length, rolling_evaluations, stride]
                for pa_field in [pa.field('freq', pa.string()),
                                 pa.field('prediction_length', pa.int32()),
                                 pa.field('rolling_evaluations', pa.int32()),
                                 pa.field('stride', pa.int32())]:
                    schema = schema.append(pa_field)
            yield batch[FieldName.ITEM_ID].to_pylist(), pa.Table.from_arrays(columns, schema=schema)