Datasets:

ArXiv:
License:
cloudops_tsf / README.md
gorold's picture
update README
b822614
|
raw
history blame
4.62 kB
---
license: cc-by-4.0
task_categories:
- time-series-forecasting
pretty_name: cloud
size_categories:
- 100M<n<1B
---
# Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
[Paper](https://arxiv.org/abs/2310.05063) | [Code](https://github.com/SalesforceAIResearch/pretrain-time-series-cloudops)
Datasets accompanying the paper "Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain".
## Quick Start
### azure_vm_traces_2017
```python
from datasets import load_dataset
dataset = load_dataset('Salesforce/cloudops_tsf', 'azure_vm_traces_2017')
print(dataset)
DatasetDict({
train_test: Dataset({
features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
num_rows: 17568
})
pretrain: Dataset({
features: ['start', 'target', 'item_id', 'feat_static_cat', 'feat_static_real', 'past_feat_dynamic_real'],
num_rows: 159472
})
})
```
### borg_cluster_data_2011
```python
dataset = load_dataset('Salesforce/cloudops_tsf', 'borg_cluster_data_2011')
print(dataset)
DatasetDict({
train_test: Dataset({
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
num_rows: 11117
})
pretrain: Dataset({
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
num_rows: 143386
})
})
```
### alibaba_cluster_trace_2018
```python
dataset = load_dataset('Salesforce/cloudops_tsf', 'alibaba_cluster_trace_2018')
print(dataset)
DatasetDict({
train_test: Dataset({
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
num_rows: 6048
})
pretrain: Dataset({
features: ['start', 'target', 'item_id', 'feat_static_cat', 'past_feat_dynamic_real'],
num_rows: 58409
})
})
```
## Dataset Config
```python
from datasets import load_dataset_builder
config = load_dataset_builder('Salesforce/cloudops_tsf', 'azure_vm_traces_2017').config
print(config)
CloudOpsTSFConfig(
name='azure_vm_traces_2017',
version=1.0.0,
data_dir=None,
data_files=None,
description='',
prediction_length=48,
freq='5T',
stride=48,
univariate=True,
multivariate=False,
optional_fields=(
'feat_static_cat',
'feat_static_real',
'past_feat_dynamic_real'
),
rolling_evaluations=12,
test_split_date=Period('2016-12-13 15:55', '5T'),
_feat_static_cat_cardinalities={
'pretrain': (
('vm_id', 177040),
('subscription_id', 5514),
('deployment_id', 15208),
('vm_category', 3)
),
'train_test': (
('vm_id', 17568),
('subscription_id', 2713),
('deployment_id', 3255),
('vm_category', 3)
)
},
target_dim=1,
feat_static_real_dim=3,
past_feat_dynamic_real_dim=2
)
```
```test_split_date``` is provided to achieve the same train-test split as given in the paper.
This is essentially the date/time of ```rolling_evaluations * prediction_length``` time steps before the last time step in the dataset.
Note that the pre-training dataset includes the test region, and thus should also be filtered before usage.
## Acknowledgements
The datasets were processed from the following original sources. Please cite the original sources if you use the datasets.
* Azure VM Traces 2017
* Bianchini. Resource central: Understanding and predicting workloads for improved resource management in large cloud platforms. In Proceedings of the 26th Symposium on Operating Systems Principles, pp. 153–167, 2017.
* https://github.com/Azure/AzurePublicDataset
* Borg Cluster Data 2011
* John Wilkes. More Google cluster data. Google research blog, November 2011. Posted at http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.
* https://github.com/google/cluster-data
* Alibaba Cluster Trace 2018
* Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang Bao. Who limits the resource efficiency of my datacenter: An analysis of alibaba datacenter traces. In Proceedings of the International Symposium on Quality of Service, pp. 1–10, 2019.
* https://github.com/alibaba/clusterdata
## Citation
<pre>
@article{woo2023pushing,
title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain},
author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen},
journal={arXiv preprint arXiv:2310.05063},
year={2023}
}
</pre>