|
"""A large crowd-sourced dataset for developing natural language interfaces for relational databases""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{zhongSeq2SQL2017, |
|
author = {Victor Zhong and |
|
Caiming Xiong and |
|
Richard Socher}, |
|
title = {Seq2SQL: Generating Structured Queries from Natural Language using |
|
Reinforcement Learning}, |
|
journal = {CoRR}, |
|
volume = {abs/1709.00103}, |
|
year = {2017} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A large crowd-sourced dataset for developing natural language interfaces for relational databases |
|
""" |
|
|
|
_DATA_URL = "https://github.com/salesforce/WikiSQL/raw/master/data.tar.bz2" |
|
|
|
_AGG_OPS = ["", "MAX", "MIN", "COUNT", "SUM", "AVG"] |
|
_COND_OPS = ["=", ">", "<", "OP"] |
|
|
|
|
|
class WikiSQL(datasets.GeneratorBasedBuilder): |
|
"""WikiSQL: A large crowd-sourced dataset for developing natural language interfaces for relational databases""" |
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"phase": datasets.Value("int32"), |
|
"question": datasets.Value("string"), |
|
"table": { |
|
"header": datasets.features.Sequence(datasets.Value("string")), |
|
"page_title": datasets.Value("string"), |
|
"page_id": datasets.Value("string"), |
|
"types": datasets.features.Sequence(datasets.Value("string")), |
|
"id": datasets.Value("string"), |
|
"section_title": datasets.Value("string"), |
|
"caption": datasets.Value("string"), |
|
"rows": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), |
|
"name": datasets.Value("string"), |
|
}, |
|
"sql": { |
|
"human_readable": datasets.Value("string"), |
|
"sel": datasets.Value("int32"), |
|
"agg": datasets.Value("int32"), |
|
"conds": datasets.features.Sequence( |
|
{ |
|
"column_index": datasets.Value("int32"), |
|
"operator_index": datasets.Value("int32"), |
|
"condition": datasets.Value("string"), |
|
} |
|
), |
|
}, |
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://github.com/salesforce/WikiSQL", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_dir = dl_manager.download_and_extract(_DATA_URL) |
|
dl_dir = os.path.join(dl_dir, "data") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"main_filepath": os.path.join(dl_dir, "test.jsonl"), |
|
"tables_filepath": os.path.join(dl_dir, "test.tables.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"main_filepath": os.path.join(dl_dir, "dev.jsonl"), |
|
"tables_filepath": os.path.join(dl_dir, "dev.tables.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"main_filepath": os.path.join(dl_dir, "train.jsonl"), |
|
"tables_filepath": os.path.join(dl_dir, "train.tables.jsonl"), |
|
}, |
|
), |
|
] |
|
|
|
def _convert_to_human_readable(self, sel, agg, columns, conditions): |
|
"""Make SQL query string. Based on https://github.com/salesforce/WikiSQL/blob/c2ed4f9b22db1cc2721805d53e6e76e07e2ccbdc/lib/query.py#L10""" |
|
|
|
rep = f"SELECT {_AGG_OPS[agg]} {columns[sel] if columns is not None else f'col{sel}'} FROM table" |
|
|
|
if conditions: |
|
rep += " WHERE " + " AND ".join([f"{columns[i]} {_COND_OPS[o]} {v}" for i, o, v in conditions]) |
|
return " ".join(rep.split()) |
|
|
|
def _generate_examples(self, main_filepath, tables_filepath): |
|
"""Yields examples.""" |
|
|
|
|
|
with open(tables_filepath, encoding="utf-8") as f: |
|
tables = [json.loads(line) for line in f] |
|
id_to_tables = {x["id"]: x for x in tables} |
|
|
|
with open(main_filepath, encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
row = json.loads(line) |
|
row["table"] = id_to_tables[row["table_id"]] |
|
del row["table_id"] |
|
|
|
|
|
row["table"]["page_title"] = row["table"].get("page_title", "") |
|
row["table"]["section_title"] = row["table"].get("section_title", "") |
|
row["table"]["caption"] = row["table"].get("caption", "") |
|
row["table"]["name"] = row["table"].get("name", "") |
|
row["table"]["page_id"] = str(row["table"].get("page_id", "")) |
|
|
|
|
|
row["table"]["rows"] = [[str(e) for e in r] for r in row["table"]["rows"]] |
|
|
|
|
|
row["sql"]["human_readable"] = self._convert_to_human_readable( |
|
row["sql"]["sel"], |
|
row["sql"]["agg"], |
|
row["table"]["header"], |
|
row["sql"]["conds"], |
|
) |
|
|
|
|
|
|
|
|
|
for i in range(len(row["sql"]["conds"])): |
|
row["sql"]["conds"][i] = { |
|
"column_index": row["sql"]["conds"][i][0], |
|
"operator_index": row["sql"]["conds"][i][1], |
|
"condition": str(row["sql"]["conds"][i][2]), |
|
} |
|
yield idx, row |
|
|