metadata
license: mit
task_categories:
- graph-ml
- image-classification
pretty_name: DeepNets
size_categories:
- 1M<n<10M
This is a copy of the DeepNets-1M dataset originally released at https://github.com/facebookresearch/ppuda under the MIT license.
The dataset presents diverse computational graphs (1M training and 1402 evaluation) of neural network architectures used in image classification. See detailed description at https://paperswithcode.com/dataset/deepnets-1m and in the Parameter Prediction for Unseen Deep Architectures paper.
There are four files in this dataset:
- deepnets1m_eval.hdf5; # 16 MB (md5: 1f5641329271583ad068f43e1521517e)
- deepnets1m_meta.tar.gz; # 35 MB (md5: a42b6f513da6bbe493fc16a30d6d4e3e), run
tar -xf deepnets1m_meta.tar.gz
to unpack it before running any code reading the dataset - deepnets1m_search.hdf5; # 1.3 GB (md5: 0a93f4b4e3b729ea71eb383f78ea9b53)
- deepnets1m_train.hdf5; # 10.3 GB (md5: 90bbe84bb1da0d76cdc06d5ff84fa23d)
Citation
If you use this dataset, please cite it as:
@inproceedings{knyazev2021parameter,
title={Parameter Prediction for Unseen Deep Architectures},
author={Knyazev, Boris and Drozdzal, Michal and Taylor, Graham W and Romero-Soriano, Adriana},
booktitle={Advances in Neural Information Processing Systems},
year={2021}
}