hyperedge
int64
1
49.7k
nodes
stringclasses
523 values
timestamp
float64
172B
3,573B
1
[1, 2]
3,547,497,600,000
6
[11, 12, 13]
3,499,459,200,000
7
[11, 12, 13]
3,499,459,200,000
8
[14, 15]
3,193,689,600,000
9
[16, 17]
3,247,257,600,000
10
[16, 17]
3,247,257,600,000
11
[16, 17]
3,247,257,600,000
12
[18, 14, 15]
3,385,065,600,000
13
[18, 14, 15]
3,281,212,800,000
14
[18, 14, 15]
3,281,212,800,000
15
[18, 14, 15]
3,281,212,800,000
16
[18, 14, 15]
3,281,212,800,000
18
[16, 17]
3,247,257,600,000
19
[16, 17]
3,247,257,600,000
21
[16, 17]
3,317,328,000,000
22
[16, 17]
3,317,328,000,000
24
[18]
3,076,012,800,000
25
[18]
3,053,116,800,000
26
[18]
3,053,116,800,000
27
[18]
3,053,116,800,000
30
[18]
3,156,451,200,000
31
[18]
3,192,393,600,000
32
[18]
3,168,806,400,000
33
[18]
3,168,806,400,000
34
[18]
3,208,291,200,000
35
[18]
3,208,291,200,000
44
[29, 30]
3,043,699,200,000
45
[29, 30]
3,154,809,600,000
46
[29, 30]
3,154,809,600,000
47
[29, 30]
3,096,921,600,000
48
[18]
3,289,766,400,000
49
[32, 31]
3,284,841,600,000
50
[32, 31]
3,398,112,000,000
54
[29, 30]
3,043,699,200,000
58
[37, 38]
3,247,257,600,000
60
[29, 30]
3,398,025,600,000
61
[29, 30]
3,398,025,600,000
62
[29, 30]
3,398,025,600,000
67
[45, 46]
3,439,756,800,000
68
[48, 49, 50, 47]
3,517,084,800,000
69
[51, 52, 53]
3,360,355,200,000
70
[51, 52, 53]
3,360,355,200,000
71
[51, 52, 53]
3,360,355,200,000
72
[54, 55]
3,452,803,200,000
73
[51, 52, 53]
3,421,094,400,000
74
[51, 52, 53]
3,497,212,800,000
75
[51, 52, 53]
3,497,212,800,000
78
[58, 59, 60]
3,321,043,200,000
79
[58, 59, 60]
3,321,043,200,000
80
[58, 59, 60]
3,321,043,200,000
81
[59, 60, 61]
2,981,404,800,000
82
[59, 60, 61]
2,981,404,800,000
83
[59, 60, 61]
2,981,404,800,000
84
[59, 60, 61]
2,981,404,800,000
85
[59, 60, 61]
3,050,956,800,000
86
[64, 62, 63]
3,439,756,800,000
87
[64, 62, 63]
3,520,886,400,000
88
[65, 66]
3,479,068,800,000
89
[65, 66]
3,479,068,800,000
91
[72, 73, 71]
3,510,000,000,000
92
[72, 73, 71]
3,510,000,000,000
93
[65, 66]
3,479,068,800,000
94
[65, 66]
3,479,068,800,000
95
[64, 62, 63]
3,520,886,400,000
96
[64, 62, 63]
3,520,886,400,000
97
[74, 75, 76, 77, 78, 79, 53]
3,265,401,600,000
98
[74, 75, 76, 77, 78, 79, 53]
3,265,401,600,000
99
[74, 75, 76, 77, 78, 79, 53]
3,265,401,600,000
108
[54, 55]
3,452,803,200,000
109
[54, 55]
3,452,803,200,000
110
[54, 55]
3,452,803,200,000
111
[59, 85, 86, 87]
3,194,812,800,000
112
[59, 85, 86, 87]
3,460,406,400,000
113
[88, 89]
2,379,888,000,000
114
[88, 89]
2,379,888,000,000
115
[59, 87]
3,247,862,400,000
116
[88, 89]
2,379,888,000,000
117
[90, 91]
3,235,680,000,000
118
[90, 91]
3,515,875,200,000
119
[74, 75, 78]
3,312,230,400,000
120
[74, 75, 78]
3,027,196,800,000
121
[92, 93]
3,501,532,800,000
122
[94]
3,008,448,000,000
123
[94]
3,075,667,200,000
124
[94]
3,116,188,800,000
125
[94]
3,111,868,800,000
126
[96, 95]
3,243,715,200,000
127
[96, 95]
3,510,345,600,000
128
[96, 95]
3,529,094,400,000
129
[96, 95]
3,529,094,400,000
138
[100, 101, 102]
2,545,862,400,000
139
[100, 101, 102]
2,404,339,200,000
140
[100, 101, 102]
2,991,081,600,000
141
[100, 101, 102]
2,991,081,600,000
142
[59, 85, 86, 87]
2,823,552,000,000
143
[103, 104, 105, 106, 107, 108]
3,477,340,800,000
145
[112, 111]
2,776,723,200,000
146
[90, 91]
3,021,321,600,000
147
[113, 114]
3,057,609,600,000
149
[115, 116]
3,091,478,400,000

Source Paper: https://arxiv.org/abs/1802.06916

Usage

from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

dataset = CornellTemporalHyperGraphDataset(root = "./", name="NDC-classes", split="train")

Citation

@article{Benson-2018-simplicial,
 author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
 title = {Simplicial closure and higher-order link prediction},
 year = {2018},
 doi = {10.1073/pnas.1800683115},
 publisher = {National Academy of Sciences},
 issn = {0027-8424},
 journal = {Proceedings of the National Academy of Sciences}
}
Downloads last month
51

Models trained or fine-tuned on SauravMaheshkar/NDC-classes

Collection including SauravMaheshkar/NDC-classes