|
# Golos dataset |
|
|
|
Golos is a Russian corpus suitable for speech research. The dataset mainly consists of recorded audio files manually annotated on the crowd-sourcing platform. The total duration of the audio is about 1240 hours. |
|
We have made the corpus freely available for downloading, along with the acoustic model prepared on this corpus. |
|
Also we create 3-gram KenLM language model using an open Common Crawl corpus. |
|
|
|
## **Dataset structure** |
|
|
|
| Domain | Train files | Train hours | Test files | Test hours | |
|
|:--------------:|:----------:|:------:|:-----:|:----:| |
|
| Crowd | 979 796 | 1 095 | 9 994 | 11.2 | |
|
| Farfield | 124 003 | 132.4| 1 916 | 1.4 | |
|
| Total | 1 103 799 | 1 227.4|11 910 | 12.6 | |
|
|
|
|
|
## **Downloads** |
|
|
|
|
|
### **Audio files in opus format** |
|
|
|
| Archive | Size | Link | |
|
|:----------------:|:----------:|:-------------------:| |
|
| golos_opus.tar | 20.5 GB | https://sc.link/JpD | |
|
|
|
### **Audio files in wav format** |
|
|
|
Manifest files with all the training transcription texts are in the train_crowd9.tar archive listed in the table: |
|
|
|
| Archives | Size | Links | |
|
|-------------------|------------|---------------------| |
|
| train_farfield.tar| 15.4 GB | https://sc.link/1Z3 | |
|
| train_crowd0.tar | 11 GB | https://sc.link/Lrg | |
|
| train_crowd1.tar | 14 GB | https://sc.link/MvQ | |
|
| train_crowd2.tar | 13.2 GB | https://sc.link/NwL | |
|
| train_crowd3.tar | 11.6 GB | https://sc.link/Oxg | |
|
| train_crowd4.tar | 15.8 GB | https://sc.link/Pyz | |
|
| train_crowd5.tar | 13.1 GB | https://sc.link/Qz7 | |
|
| train_crowd6.tar | 15.7 GB | https://sc.link/RAL | |
|
| train_crowd7.tar | 12.7 GB | https://sc.link/VG5 | |
|
| train_crowd8.tar | 12.2 GB | https://sc.link/WJW | |
|
| train_crowd9.tar | 8.08 GB | https://sc.link/XKk | |
|
| test.tar | 1.3 GB | https://sc.link/Kqr | |
|
|
|
|
|
### **Acoustic and language models** |
|
|
|
Acoustic model built using [QuartzNet15x5](https://arxiv.org/pdf/1910.10261.pdf) architecture and trained using [NeMo toolkit](https://github.com/NVIDIA/NeMo/tree/r1.0.0b4) |
|
|
|
|
|
Three n-gram language models created using [KenLM Language Model Toolkit](https://kheafield.com/code/kenlm) |
|
|
|
* LM built on [Common Crawl](https://commoncrawl.org) Russian dataset |
|
* LM built on Golos train set |
|
* LM built on [Common Crawl](https://commoncrawl.org) and Golos datasets together (50/50) |
|
|
|
| Archives | Size | Links | |
|
|--------------------------|------------|-----------------| |
|
| QuartzNet15x5_golos.nemo | 68 MB | https://sc.link/ZMv | |
|
| KenLMs.tar | 4.8 GB | https://sc.link/YL0 | |
|
|
|
|
|
Golos data and models are also available in the hub of pre-trained models, datasets, and containers - DataHub ML Space. You can train the model and deploy it on the high-performance SberCloud infrastructure in [ML Space](https://sbercloud.ru/ru/aicloud/mlspace) - full-cycle machine learning development platform for DS-teams collaboration based on the Christofari Supercomputer. |
|
|
|
|
|
## **Evaluation** |
|
|
|
Percents of Word Error Rate for different test sets |
|
|
|
|
|
| Decoder \ Test set | Crowd test | Farfield test | MCV<sup>1</sup> dev | MCV<sup>1</sup> test | |
|
|-------------------------------------|-----------|----------|-----------|----------| |
|
| Greedy decoder | 4.389 % | 14.949 % | 9.314 % | 11.278 % | |
|
| Beam Search with Common Crawl LM | 4.709 % | 12.503 % | 6.341 % | 7.976 % | |
|
| Beam Search with Golos train set LM | 3.548 % | 12.384 % | - | - | |
|
| Beam Search with Common Crawl and Golos LM | 3.318 % | 11.488 % | 6.4 % | 8.06 % | |
|
|
|
|
|
<sup>1</sup> [Common Voice](https://commonvoice.mozilla.org) - Mozilla's initiative to help teach machines how real people speak. |
|
|
|
## **Resources** |
|
|
|
[[arxiv.org] Golos: Russian Dataset for Speech Research](https://arxiv.org/abs/2106.10161) |
|
|
|
[[habr.com] Golos — самый большой русскоязычный речевой датасет, размеченный вручную, теперь в открытом доступе](https://habr.com/ru/company/sberdevices/blog/559496/) |
|
|
|
[[habr.com] Как улучшить распознавание русской речи до 3% WER с помощью открытых данных](https://habr.com/ru/company/sberdevices/blog/569082/) |
|
|