|
--- |
|
size_categories: |
|
- 1M<n<10M |
|
--- |
|
|
|
E621 TFRecords to train classifiers and other stuff with my codebases. |
|
|
|
TFRecord serialization/deserialization code: |
|
|
|
```python |
|
NUM_CLASSES = 9331 |
|
|
|
|
|
# Function to convert value to bytes_list |
|
def _bytes_feature(value): |
|
if isinstance(value, type(tf.constant(0))): |
|
value = value.numpy() |
|
elif isinstance(value, str): |
|
value = value.encode() |
|
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) |
|
|
|
|
|
# Function to convert bool/enum/int/uint to int64_list |
|
def _int64_feature(value): |
|
int64_list = tf.train.Int64List(value=tf.reshape(value, (-1,))) |
|
return tf.train.Feature(int64_list=int64_list) |
|
|
|
|
|
# Function to create a tf.train.Example message |
|
def serialize_example(image_id, image_bytes, label_indexes, tag_string): |
|
feature = { |
|
"image_id": _int64_feature(image_id), |
|
"image_bytes": _bytes_feature(image_bytes), |
|
"label_indexes": _int64_feature(label_indexes), |
|
"tag_string": _bytes_feature(tag_string), |
|
} |
|
example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) |
|
return example_proto.SerializeToString() |
|
|
|
|
|
# Function to deserialize a single tf.train.Example message |
|
def deserialize_example(example_proto): |
|
feature_description = { |
|
"image_id": tf.io.FixedLenFeature([], tf.int64), |
|
"image_bytes": tf.io.FixedLenFeature([], tf.string), |
|
"label_indexes": tf.io.VarLenFeature(tf.int64), |
|
"tag_string": tf.io.FixedLenFeature([], tf.string), |
|
} |
|
|
|
# Parse the input 'tf.train.Example' proto using the dictionary above. |
|
parsed_example = tf.io.parse_single_example(example_proto, feature_description) |
|
image_tensor = tf.io.decode_jpeg(parsed_example["image_bytes"], channels=3) |
|
|
|
# We only stored label indexes in the TFRecords to save space |
|
# Emulate MultiLabelBinarizer to get a tensor of 0s and 1s |
|
label_indexes = tf.sparse.to_dense( |
|
parsed_example["label_indexes"], |
|
default_value=0, |
|
) |
|
one_hots = tf.one_hot(label_indexes, NUM_CLASSES) |
|
labels = tf.reduce_max(one_hots, axis=0) |
|
labels = tf.cast(labels, tf.float32) |
|
|
|
sample = { |
|
"image_ids": parsed_example["image_id"], |
|
"images": image_tensor, |
|
"labels": labels, |
|
"tags": parsed_example["tag_string"], |
|
} |
|
return sample |
|
``` |