metadata
dataset_info:
features:
- name: prompt
dtype: string
- name: messages
list:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: train_douban_sft
num_bytes: 5567696
num_examples: 3086
- name: train_human_value_sft
num_bytes: 806635
num_examples: 1007
- name: train_logi_qa_sft
num_bytes: 666517
num_examples: 421
- name: train_ruozhiba_sft
num_bytes: 228494
num_examples: 240
- name: train_segmentfault_sft
num_bytes: 1068526
num_examples: 458
- name: train_wiki_sft
num_bytes: 27611061
num_examples: 10603
- name: train_wikihow_sft
num_bytes: 11069103
num_examples: 1485
- name: train_xhs_sft
num_bytes: 2551884
num_examples: 1508
- name: train_zhihu_sft
num_bytes: 13986060
num_examples: 5631
- name: train_sft
num_bytes: 63555976
num_examples: 24439
- name: test_sft
num_bytes: 228494
num_examples: 240
download_size: 67916523
dataset_size: 127340446
configs:
- config_name: default
data_files:
- split: train_douban_sft
path: data/train_douban_sft-*
- split: train_human_value_sft
path: data/train_human_value_sft-*
- split: train_logi_qa_sft
path: data/train_logi_qa_sft-*
- split: train_ruozhiba_sft
path: data/train_ruozhiba_sft-*
- split: train_segmentfault_sft
path: data/train_segmentfault_sft-*
- split: train_wiki_sft
path: data/train_wiki_sft-*
- split: train_wikihow_sft
path: data/train_wikihow_sft-*
- split: train_xhs_sft
path: data/train_xhs_sft-*
- split: train_zhihu_sft
path: data/train_zhihu_sft-*
- split: train_sft
path: data/train_sft-*
- split: test_sft
path: data/test_sft-*
task_categories:
- question-answering
language:
- zh
pretty_name: e
size_categories:
- 10K<n<100K
COIG-CQIA-sft: COIG-CQIA for sft in alignment-handbook
数据完全来自于COIG-CQIA。
暂时忽略了chinese_traditional,coig_pc,exam,finance这些转换麻烦或者语义上不适合当QA数据集的subset。 其中train_sft是全集,test_sft是ruozhiba,以便代码能够跑通。
经过reformat的本数据集可以直接使用alignment-handbook 进行sft。
可以使用zephyr-7b-beta/sft/config_qlora.yaml进行尝试,模型和数据集都可以使用本地文件夹。
@misc{bai2024coig,
title={COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning},
author={Bai, Yuelin and Du, Xinrun and Liang, Yiming and Jin, Yonggang and Liu, Ziqiang and Zhou, Junting and Zheng, Tianyu and Zhang, Xincheng and Ma, Nuo and Wang, Zekun and others},
year={2024},
eprint={2403.18058},
archivePrefix={arXiv},
primaryClass={cs.CL}
}