id
stringlengths 14
16
| text
stringlengths 31
3.14k
| source
stringlengths 58
124
|
---|---|---|
7afad359b4bb-18 | field retriever: BaseRetriever [Required]#
Index to connect to.
classmethod from_llm(llm: langchain.schema.BaseLanguageModel, retriever: langchain.schema.BaseRetriever, condense_question_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['chat_history', 'question'], output_parser=None, partial_variables={}, template='Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone question:', template_format='f-string', validate_template=True), chain_type: str = 'stuff', verbose: bool = False, combine_docs_chain_kwargs: Optional[Dict] = None, **kwargs: Any) β langchain.chains.conversational_retrieval.base.BaseConversationalRetrievalChain[source]#
Load chain from LLM.
pydantic model langchain.chains.GraphQAChain[source]#
Chain for question-answering against a graph.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field entity_extraction_chain: LLMChain [Required]#
field graph: NetworkxEntityGraph [Required]# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-19 | field graph: NetworkxEntityGraph [Required]#
field qa_chain: LLMChain [Required]# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-20 | classmethod from_llm(llm: langchain.llms.base.BaseLLM, qa_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['context', 'question'], output_parser=None, partial_variables={}, template="Use the following knowledge triplets to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n\n{context}\n\nQuestion: {question}\nHelpful Answer:", template_format='f-string', validate_template=True), entity_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['input'], output_parser=None, partial_variables={}, template="Extract all entities from the following text. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return.\n\nEXAMPLE\ni'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\ni'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-21 | interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I'm working with Sam.\nOutput: Langchain, Sam\nEND OF EXAMPLE\n\nBegin!\n\n{input}\nOutput:", template_format='f-string', validate_template=True), **kwargs: Any) β langchain.chains.graph_qa.base.GraphQAChain[source]# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-22 | Initialize from LLM.
pydantic model langchain.chains.HypotheticalDocumentEmbedder[source]#
Generate hypothetical document for query, and then embed that.
Based on https://arxiv.org/abs/2212.10496
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field base_embeddings: Embeddings [Required]#
field llm_chain: LLMChain [Required]#
combine_embeddings(embeddings: List[List[float]]) β List[float][source]#
Combine embeddings into final embeddings.
embed_documents(texts: List[str]) β List[List[float]][source]#
Call the base embeddings.
embed_query(text: str) β List[float][source]#
Generate a hypothetical document and embedded it.
classmethod from_llm(llm: langchain.llms.base.BaseLLM, base_embeddings: langchain.embeddings.base.Embeddings, prompt_key: str) β langchain.chains.hyde.base.HypotheticalDocumentEmbedder[source]#
Load and use LLMChain for a specific prompt key.
property input_keys: List[str]#
Input keys for Hydeβs LLM chain.
property output_keys: List[str]#
Output keys for Hydeβs LLM chain.
pydantic model langchain.chains.LLMBashChain[source]#
Chain that interprets a prompt and executes bash code to perform bash operations.
Example | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-23 | Example
from langchain import LLMBashChain, OpenAI
llm_bash = LLMBashChain(llm=OpenAI())
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field llm: langchain.schema.BaseLanguageModel [Required]#
LLM wrapper to use.
field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: "copy the files in the directory named \'target\' into a new directory at the same level as target called \'myNewDirectory\'"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: {question}', template_format='f-string', validate_template=True)#
pydantic model langchain.chains.LLMChain[source]#
Chain to run queries against LLMs. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-24 | Chain to run queries against LLMs.
Example
from langchain import LLMChain, OpenAI, PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field llm: BaseLanguageModel [Required]#
field prompt: BasePromptTemplate [Required]#
Prompt object to use.
async aapply(input_list: List[Dict[str, Any]]) β List[Dict[str, str]][source]#
Utilize the LLM generate method for speed gains.
async aapply_and_parse(input_list: List[Dict[str, Any]]) β Sequence[Union[str, List[str], Dict[str, str]]][source]#
Call apply and then parse the results.
async agenerate(input_list: List[Dict[str, Any]]) β langchain.schema.LLMResult[source]#
Generate LLM result from inputs.
apply(input_list: List[Dict[str, Any]]) β List[Dict[str, str]][source]#
Utilize the LLM generate method for speed gains.
apply_and_parse(input_list: List[Dict[str, Any]]) β Sequence[Union[str, List[str], Dict[str, str]]][source]# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-25 | Call apply and then parse the results.
async apredict(**kwargs: Any) β str[source]#
Format prompt with kwargs and pass to LLM.
Parameters
**kwargs β Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(**kwargs: Any) β Union[str, List[str], Dict[str, str]][source]#
Call apredict and then parse the results.
async aprep_prompts(input_list: List[Dict[str, Any]]) β Tuple[List[langchain.schema.PromptValue], Optional[List[str]]][source]#
Prepare prompts from inputs.
create_outputs(response: langchain.schema.LLMResult) β List[Dict[str, str]][source]#
Create outputs from response.
classmethod from_string(llm: langchain.schema.BaseLanguageModel, template: str) β langchain.chains.base.Chain[source]#
Create LLMChain from LLM and template.
generate(input_list: List[Dict[str, Any]]) β langchain.schema.LLMResult[source]#
Generate LLM result from inputs.
predict(**kwargs: Any) β str[source]#
Format prompt with kwargs and pass to LLM.
Parameters
**kwargs β Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny") | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-26 | Example
completion = llm.predict(adjective="funny")
predict_and_parse(**kwargs: Any) β Union[str, List[str], Dict[str, str]][source]#
Call predict and then parse the results.
prep_prompts(input_list: List[Dict[str, Any]]) β Tuple[List[langchain.schema.PromptValue], Optional[List[str]]][source]#
Prepare prompts from inputs.
pydantic model langchain.chains.LLMCheckerChain[source]#
Chain for question-answering with self-verification.
Example
from langchain import OpenAI, LLMCheckerChain
llm = OpenAI(temperature=0.7)
checker_chain = LLMCheckerChain(llm=llm)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field check_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='Here is a bullet point list of assertions:\n{assertions}\nFor each assertion, determine whether it is true or false. If it is false, explain why.\n\n', template_format='f-string', validate_template=True)# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-27 | field create_draft_answer_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}\n\n', template_format='f-string', validate_template=True)#
field list_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['statement'], output_parser=None, partial_variables={}, template='Here is a statement:\n{statement}\nMake a bullet point list of the assumptions you made when producing the above statement.\n\n', template_format='f-string', validate_template=True)#
field llm: langchain.llms.base.BaseLLM [Required]#
LLM wrapper to use. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-28 | LLM wrapper to use.
field revised_answer_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'question'], output_parser=None, partial_variables={}, template="{checked_assertions}\n\nQuestion: In light of the above assertions and checks, how would you answer the question '{question}'?\n\nAnswer:", template_format='f-string', validate_template=True)#
Prompt to use when questioning the documents.
pydantic model langchain.chains.LLMMathChain[source]#
Chain that interprets a prompt and executes python code to do math.
Example
from langchain import LLMMathChain, OpenAI
llm_math = LLMMathChain(llm=OpenAI())
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field llm: langchain.schema.BaseLanguageModel [Required]#
LLM wrapper to use. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-29 | LLM wrapper to use.
field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Translate a math problem into a expression that can be executed using Python\'s numexpr library. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```text\n${{single line mathematical expression that solves the problem}}\n```\n...numexpr.evaluate(text)...\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n\n```text\n37593 * 67\n```\n...numexpr.evaluate("37593 * 67")...\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: {question}\n', template_format='f-string', validate_template=True)#
Prompt to use to translate to python if neccessary.
pydantic model langchain.chains.LLMRequestsChain[source]#
Chain that hits a URL and then uses an LLM to parse results.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-30 | set_verbose Β» verbose
validate_environment Β» all fields
field llm_chain: LLMChain [Required]#
field requests_wrapper: TextRequestsWrapper [Optional]#
field text_length: int = 8000#
pydantic model langchain.chains.LLMSummarizationCheckerChain[source]#
Chain for question-answering with self-verification.
Example
from langchain import OpenAI, LLMSummarizationCheckerChain
llm = OpenAI(temperature=0.0)
checker_chain = LLMSummarizationCheckerChain(llm=llm)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-31 | set_verbose Β» verbose
field are_all_true_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false.\n\nIf all of the assertions are true, return "True". If any of the assertions are false, return "False".\n\nHere are some examples:\n===\n\nChecked Assertions: """\n- The sky is red: False\n- Water is made of lava: False\n- The sun is a star: True\n"""\nResult: False\n\n===\n\nChecked Assertions: """\n- The sky is blue: True\n- Water is wet: True\n- The sun is a star: True\n"""\nResult: True\n\n===\n\nChecked Assertions: """\n- The sky is blue - True\n- Water is made of lava- False\n- The sun is a star - True\n"""\nResult: False\n\n===\n\nChecked Assertions:"""\n{checked_assertions}\n"""\nResult:', template_format='f-string', validate_template=True)# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-32 | field check_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='You are an expert fact checker. You have been hired by a major news organization to fact check a very important story.\n\nHere is a bullet point list of facts:\n"""\n{assertions}\n"""\n\nFor each fact, determine whether it is true or false about the subject. If you are unable to determine whether the fact is true or false, output "Undetermined".\nIf the fact is false, explain why.\n\n', template_format='f-string', validate_template=True)#
field create_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['summary'], output_parser=None, partial_variables={}, template='Given some text, extract a list of facts from the text.\n\nFormat your output as a bulleted list.\n\nText:\n"""\n{summary}\n"""\n\nFacts:', template_format='f-string', validate_template=True)#
field llm: langchain.llms.base.BaseLLM [Required]#
LLM wrapper to use.
field max_checks: int = 2# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-33 | LLM wrapper to use.
field max_checks: int = 2#
Maximum number of times to check the assertions. Default to double-checking.
field revised_summary_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'summary'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true of false.Β If the answer is false, a suggestion is given for a correction.\n\nChecked Assertions:\n"""\n{checked_assertions}\n"""\n\nOriginal Summary:\n"""\n{summary}\n"""\n\nUsing these checked assertions, rewrite the original summary to be completely true.\n\nThe output should have the same structure and formatting as the original summary.\n\nSummary:', template_format='f-string', validate_template=True)#
pydantic model langchain.chains.MapReduceChain[source]#
Map-reduce chain.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field combine_documents_chain: BaseCombineDocumentsChain [Required]#
Chain to use to combine documents.
field text_splitter: TextSplitter [Required]#
Text splitter to use. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-34 | Text splitter to use.
classmethod from_params(llm: langchain.llms.base.BaseLLM, prompt: langchain.prompts.base.BasePromptTemplate, text_splitter: langchain.text_splitter.TextSplitter) β langchain.chains.mapreduce.MapReduceChain[source]#
Construct a map-reduce chain that uses the chain for map and reduce.
pydantic model langchain.chains.OpenAIModerationChain[source]#
Pass input through a moderation endpoint.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.chains import OpenAIModerationChain
moderation = OpenAIModerationChain()
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field error: bool = False#
Whether or not to error if bad content was found.
field model_name: Optional[str] = None#
Moderation model name to use.
field openai_api_key: Optional[str] = None#
field openai_organization: Optional[str] = None#
pydantic model langchain.chains.OpenAPIEndpointChain[source]#
Chain interacts with an OpenAPI endpoint using natural language.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-35 | set_callback_manager Β» callback_manager
set_verbose Β» verbose
field api_operation: APIOperation [Required]#
field api_request_chain: LLMChain [Required]#
field api_response_chain: Optional[LLMChain] = None#
field param_mapping: _ParamMapping [Required]#
field requests: Requests [Optional]#
field return_intermediate_steps: bool = False#
deserialize_json_input(serialized_args: str) β dict[source]#
Use the serialized typescript dictionary.
Resolve the path, query params dict, and optional requestBody dict.
classmethod from_api_operation(operation: langchain.tools.openapi.utils.api_models.APIOperation, llm: langchain.llms.base.BaseLLM, requests: Optional[langchain.requests.Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, raw_response: bool = False, **kwargs: Any) β OpenAPIEndpointChain[source]#
Create an OpenAPIEndpointChain from an operation and a spec. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-36 | Create an OpenAPIEndpointChain from an operation and a spec.
classmethod from_url_and_method(spec_url: str, path: str, method: str, llm: langchain.llms.base.BaseLLM, requests: Optional[langchain.requests.Requests] = None, return_intermediate_steps: bool = False, **kwargs: Any) β OpenAPIEndpointChain[source]#
Create an OpenAPIEndpoint from a spec at the specified url.
pydantic model langchain.chains.PALChain[source]#
Implements Program-Aided Language Models.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field get_answer_expr: str = 'print(solution())'#
field llm: BaseLanguageModel [Required]#
field prompt: BasePromptTemplate [Required]#
field python_globals: Optional[Dict[str, Any]] = None#
field python_locals: Optional[Dict[str, Any]] = None#
field return_intermediate_steps: bool = False#
field stop: str = '\n\n'#
classmethod from_colored_object_prompt(llm: langchain.schema.BaseLanguageModel, **kwargs: Any) β langchain.chains.pal.base.PALChain[source]#
Load PAL from colored object prompt. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-37 | Load PAL from colored object prompt.
classmethod from_math_prompt(llm: langchain.schema.BaseLanguageModel, **kwargs: Any) β langchain.chains.pal.base.PALChain[source]#
Load PAL from math prompt.
pydantic model langchain.chains.QAGenerationChain[source]#
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field input_key: str = 'text'#
field k: Optional[int] = None#
field llm_chain: LLMChain [Required]#
field output_key: str = 'questions'#
field text_splitter: TextSplitter = <langchain.text_splitter.RecursiveCharacterTextSplitter object>#
classmethod from_llm(llm: langchain.schema.BaseLanguageModel, prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, **kwargs: Any) β langchain.chains.qa_generation.base.QAGenerationChain[source]#
property input_keys: List[str]#
Input keys this chain expects.
property output_keys: List[str]#
Output keys this chain expects.
pydantic model langchain.chains.QAWithSourcesChain[source]#
Question answering with sources over documents.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_naming Β» all fields
pydantic model langchain.chains.RetrievalQA[source]#
Chain for question-answering against an index. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-38 | Chain for question-answering against an index.
Example
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.faiss import FAISS
from langchain.vectorstores.base import VectorStoreRetriever
retriever = VectorStoreRetriever(vectorstore=FAISS(...))
retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field retriever: BaseRetriever [Required]#
pydantic model langchain.chains.RetrievalQAWithSourcesChain[source]#
Question-answering with sources over an index.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_naming Β» all fields
field max_tokens_limit: int = 3375#
Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true
field reduce_k_below_max_tokens: bool = False#
Reduce the number of results to return from store based on tokens limit
field retriever: langchain.schema.BaseRetriever [Required]#
Index to connect to.
pydantic model langchain.chains.SQLDatabaseChain[source]#
Chain for interacting with SQL Database.
Example
from langchain import SQLDatabaseChain, OpenAI, SQLDatabase
db = SQLDatabase(...)
db_chain = SQLDatabaseChain(llm=OpenAI(), database=db)
Validators | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-39 | Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field database: SQLDatabase [Required]#
SQL Database to connect to.
field llm: BaseLanguageModel [Required]#
LLM wrapper to use.
field prompt: Optional[BasePromptTemplate] = None#
Prompt to use to translate natural language to SQL.
field return_direct: bool = False#
Whether or not to return the result of querying the SQL table directly.
field return_intermediate_steps: bool = False#
Whether or not to return the intermediate steps along with the final answer.
field top_k: int = 5#
Number of results to return from the query
pydantic model langchain.chains.SQLDatabaseSequentialChain[source]#
Chain for querying SQL database that is a sequential chain.
The chain is as follows:
1. Based on the query, determine which tables to use.
2. Based on those tables, call the normal SQL database chain.
This is useful in cases where the number of tables in the database is large.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field decider_chain: LLMChain [Required]#
field return_intermediate_steps: bool = False#
field sql_chain: SQLDatabaseChain [Required]# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-40 | classmethod from_llm(llm: langchain.schema.BaseLanguageModel, database: langchain.sql_database.SQLDatabase, query_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['input', 'table_info', 'dialect', 'top_k'], output_parser=None, partial_variables={}, template='Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\n\nPay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n\nUse the following format:\n\nQuestion: "Question here"\nSQLQuery: "SQL Query to run"\nSQLResult: "Result of the SQLQuery"\nAnswer: "Final answer here"\n\nOnly use the tables listed below.\n\n{table_info}\n\nQuestion: | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-41 | listed below.\n\n{table_info}\n\nQuestion: {input}', template_format='f-string', validate_template=True), decider_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['query', 'table_names'], output_parser=CommaSeparatedListOutputParser(), partial_variables={}, template='Given the below input question and list of potential tables, output a comma separated list of the table names that may be necessary to answer this question.\n\nQuestion: {query}\n\nTable Names: {table_names}\n\nRelevant Table Names:', template_format='f-string', validate_template=True), **kwargs: Any) β langchain.chains.sql_database.base.SQLDatabaseSequentialChain[source]# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-42 | Load the necessary chains.
pydantic model langchain.chains.SequentialChain[source]#
Chain where the outputs of one chain feed directly into next.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_chains Β» all fields
field chains: List[langchain.chains.base.Chain] [Required]#
field input_variables: List[str] [Required]#
field return_all: bool = False#
pydantic model langchain.chains.SimpleSequentialChain[source]#
Simple chain where the outputs of one step feed directly into next.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_chains Β» all fields
field chains: List[langchain.chains.base.Chain] [Required]#
field strip_outputs: bool = False#
pydantic model langchain.chains.TransformChain[source]#
Chain transform chain output.
Example
from langchain import TransformChain
transform_chain = TransformChain(input_variables=["text"],
output_variables["entities"], transform=func())
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field input_variables: List[str] [Required]#
field output_variables: List[str] [Required]#
field transform: Callable[[Dict[str, str]], Dict[str, str]] [Required]#
pydantic model langchain.chains.VectorDBQA[source]# | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-43 | pydantic model langchain.chains.VectorDBQA[source]#
Chain for question-answering against a vector database.
Validators
raise_deprecation Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_search_type Β» all fields
field k: int = 4#
Number of documents to query for.
field search_kwargs: Dict[str, Any] [Optional]#
Extra search args.
field search_type: str = 'similarity'#
Search type to use over vectorstore. similarity or mmr.
field vectorstore: VectorStore [Required]#
Vector Database to connect to.
pydantic model langchain.chains.VectorDBQAWithSourcesChain[source]#
Question-answering with sources over a vector database.
Validators
raise_deprecation Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_naming Β» all fields
field k: int = 4#
Number of results to return from store
field max_tokens_limit: int = 3375#
Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true
field reduce_k_below_max_tokens: bool = False#
Reduce the number of results to return from store based on tokens limit
field search_kwargs: Dict[str, Any] [Optional]#
Extra search args.
field vectorstore: langchain.vectorstores.base.VectorStore [Required]#
Vector Database to connect to. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
7afad359b4bb-44 | Vector Database to connect to.
langchain.chains.load_chain(path: Union[str, pathlib.Path], **kwargs: Any) β langchain.chains.base.Chain[source]#
Unified method for loading a chain from LangChainHub or local fs.
previous
SQL Chain example
next
Agents
By Harrison Chase
Β© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/reference/modules/chains.html |
fb5ad5a08443-0 | .rst
.pdf
Agents
Agents#
Interface for agents.
pydantic model langchain.agents.Agent[source]#
Class responsible for calling the language model and deciding the action.
This is driven by an LLMChain. The prompt in the LLMChain MUST include
a variable called βagent_scratchpadβ where the agent can put its
intermediary work.
field allowed_tools: Optional[List[str]] = None#
field llm_chain: langchain.chains.llm.LLMChain [Required]#
field output_parser: langchain.agents.agent.AgentOutputParser [Required]#
async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps β Steps the LLM has taken to date,
along with observations
**kwargs β User inputs.
Returns
Action specifying what tool to use.
abstract classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool]) β langchain.prompts.base.BasePromptTemplate[source]#
Create a prompt for this class. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-1 | Create a prompt for this class.
classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, **kwargs: Any) β langchain.agents.agent.Agent[source]#
Construct an agent from an LLM and tools.
get_allowed_tools() β Optional[List[str]][source]#
get_full_inputs(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Dict[str, Any][source]#
Create the full inputs for the LLMChain from intermediate steps.
plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps β Steps the LLM has taken to date,
along with observations
**kwargs β User inputs.
Returns
Action specifying what tool to use. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-2 | **kwargs β User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β langchain.schema.AgentFinish[source]#
Return response when agent has been stopped due to max iterations.
tool_run_logging_kwargs() β Dict[source]#
abstract property llm_prefix: str#
Prefix to append the LLM call with.
abstract property observation_prefix: str#
Prefix to append the observation with.
property return_values: List[str]#
Return values of the agent.
pydantic model langchain.agents.AgentExecutor[source]#
Consists of an agent using tools.
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_return_direct_tool Β» all fields
validate_tools Β» all fields
field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]#
field early_stopping_method: str = 'force'#
field max_execution_time: Optional[float] = None#
field max_iterations: Optional[int] = 15#
field return_intermediate_steps: bool = False#
field tools: Sequence[BaseTool] [Required]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-3 | field tools: Sequence[BaseTool] [Required]#
classmethod from_agent_and_tools(agent: Union[langchain.agents.agent.BaseSingleActionAgent, langchain.agents.agent.BaseMultiActionAgent], tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Create from agent and tools.
lookup_tool(name: str) β langchain.tools.base.BaseTool[source]#
Lookup tool by name.
save(file_path: Union[pathlib.Path, str]) β None[source]#
Raise error - saving not supported for Agent Executors.
save_agent(file_path: Union[pathlib.Path, str]) β None[source]#
Save the underlying agent.
pydantic model langchain.agents.AgentOutputParser[source]#
abstract parse(text: str) β Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Parse text into agent action/finish.
class langchain.agents.AgentType(value)[source]#
An enumeration.
CHAT_CONVERSATIONAL_REACT_DESCRIPTION = 'chat-conversational-react-description'#
CHAT_ZERO_SHOT_REACT_DESCRIPTION = 'chat-zero-shot-react-description'# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-4 | CONVERSATIONAL_REACT_DESCRIPTION = 'conversational-react-description'#
REACT_DOCSTORE = 'react-docstore'#
SELF_ASK_WITH_SEARCH = 'self-ask-with-search'#
ZERO_SHOT_REACT_DESCRIPTION = 'zero-shot-react-description'#
pydantic model langchain.agents.BaseMultiActionAgent[source]#
Base Agent class.
abstract async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Union[List[langchain.schema.AgentAction], langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps β Steps the LLM has taken to date,
along with observations
**kwargs β User inputs.
Returns
Actions specifying what tool to use.
dict(**kwargs: Any) β Dict[source]#
Return dictionary representation of agent.
get_allowed_tools() β Optional[List[str]][source]#
abstract plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Union[List[langchain.schema.AgentAction], langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps β Steps the LLM has taken to date,
along with observations
**kwargs β User inputs.
Returns | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-5 | along with observations
**kwargs β User inputs.
Returns
Actions specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β langchain.schema.AgentFinish[source]#
Return response when agent has been stopped due to max iterations.
save(file_path: Union[pathlib.Path, str]) β None[source]#
Save the agent.
Parameters
file_path β Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=βpath/agent.yamlβ)
tool_run_logging_kwargs() β Dict[source]#
property return_values: List[str]#
Return values of the agent.
pydantic model langchain.agents.BaseSingleActionAgent[source]#
Base Agent class.
abstract async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps β Steps the LLM has taken to date,
along with observations
**kwargs β User inputs.
Returns
Action specifying what tool to use.
dict(**kwargs: Any) β Dict[source]#
Return dictionary representation of agent. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-6 | Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) β langchain.agents.agent.BaseSingleActionAgent[source]#
get_allowed_tools() β Optional[List[str]][source]#
abstract plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps β Steps the LLM has taken to date,
along with observations
**kwargs β User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β langchain.schema.AgentFinish[source]#
Return response when agent has been stopped due to max iterations.
save(file_path: Union[pathlib.Path, str]) β None[source]#
Save the agent.
Parameters
file_path β Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-7 | Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=βpath/agent.yamlβ)
tool_run_logging_kwargs() β Dict[source]#
property return_values: List[str]#
Return values of the agent.
pydantic model langchain.agents.ConversationalAgent[source]#
An agent designed to hold a conversation in addition to using tools.
field ai_prefix: str = 'AI'#
field output_parser: langchain.agents.agent.AgentOutputParser [Optional]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-8 | classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], prefix: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nTOOLS:\n------\n\nAssistant has access to the following tools:', suffix: str = 'Begin!\n\nPrevious conversation history:\n{chat_history}\n\nNew input: {input}\n{agent_scratchpad}', format_instructions: str = 'To use a tool, please use the following | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-9 | format_instructions: str = 'To use a tool, please use the following format:\n\n```\nThought: Do I need to use a tool? Yes\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n\nWhen you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:\n\n```\nThought: Do I need to use a tool? No\n{ai_prefix}: [your response here]\n```', ai_prefix: str = 'AI', human_prefix: str = 'Human', input_variables: Optional[List[str]] = None) β langchain.prompts.prompt.PromptTemplate[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-10 | Create prompt in the style of the zero shot agent.
Parameters
tools β List of tools the agent will have access to, used to format the
prompt.
prefix β String to put before the list of tools.
suffix β String to put after the list of tools.
ai_prefix β String to use before AI output.
human_prefix β String to use before human output.
input_variables β List of input variables the final prompt will expect.
Returns
A PromptTemplate with the template assembled from the pieces here. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-11 | classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nTOOLS:\n------\n\nAssistant has access to | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-12 | has access to the following tools:', suffix: str = 'Begin!\n\nPrevious conversation history:\n{chat_history}\n\nNew input: {input}\n{agent_scratchpad}', format_instructions: str = 'To use a tool, please use the following format:\n\n```\nThought: Do I need to use a tool? Yes\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n\nWhen you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:\n\n```\nThought: Do I need to use a tool? No\n{ai_prefix}: [your response here]\n```', ai_prefix: str = 'AI', human_prefix: str = 'Human', input_variables: Optional[List[str]] = None, **kwargs: Any) β langchain.agents.agent.Agent[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-13 | Construct an agent from an LLM and tools.
property llm_prefix: str#
Prefix to append the llm call with.
property observation_prefix: str#
Prefix to append the observation with.
pydantic model langchain.agents.ConversationalChatAgent[source]#
An agent designed to hold a conversation in addition to using tools.
field output_parser: langchain.agents.agent.AgentOutputParser [Optional]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-14 | classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], system_message: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.', human_message: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-15 | INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}", input_variables: Optional[List[str]] = None, output_parser: Optional[langchain.schema.BaseOutputParser] = None) β langchain.prompts.base.BasePromptTemplate[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-16 | Create a prompt for this class. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-17 | classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, system_message: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.', human_message: str = | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-18 | about a particular topic, Assistant is here to assist.', human_message: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}", input_variables: Optional[List[str]] = None, **kwargs: Any) β langchain.agents.agent.Agent[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-19 | Construct an agent from an LLM and tools.
property llm_prefix: str#
Prefix to append the llm call with.
property observation_prefix: str#
Prefix to append the observation with.
pydantic model langchain.agents.LLMSingleActionAgent[source]#
field llm_chain: langchain.chains.llm.LLMChain [Required]#
field output_parser: langchain.agents.agent.AgentOutputParser [Required]#
field stop: List[str] [Required]#
async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps β Steps the LLM has taken to date,
along with observations
**kwargs β User inputs.
Returns
Action specifying what tool to use.
plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) β Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]#
Given input, decided what to do.
Parameters
intermediate_steps β Steps the LLM has taken to date,
along with observations
**kwargs β User inputs.
Returns
Action specifying what tool to use.
tool_run_logging_kwargs() β Dict[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-20 | tool_run_logging_kwargs() β Dict[source]#
pydantic model langchain.agents.MRKLChain[source]#
Chain that implements the MRKL system.
Example
from langchain import OpenAI, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
prompt = PromptTemplate(...)
chains = [...]
mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_return_direct_tool Β» all fields
validate_tools Β» all fields
field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]#
field callback_manager: BaseCallbackManager [Optional]#
field early_stopping_method: str = 'force'#
field max_execution_time: Optional[float] = None#
field max_iterations: Optional[int] = 15#
field memory: Optional[BaseMemory] = None#
field return_intermediate_steps: bool = False#
field tools: Sequence[BaseTool] [Required]#
field verbose: bool [Optional]#
classmethod from_chains(llm: langchain.schema.BaseLanguageModel, chains: List[langchain.agents.mrkl.base.ChainConfig], **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
User friendly way to initialize the MRKL chain. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-21 | User friendly way to initialize the MRKL chain.
This is intended to be an easy way to get up and running with the
MRKL chain.
Parameters
llm β The LLM to use as the agent LLM.
chains β The chains the MRKL system has access to.
**kwargs β parameters to be passed to initialization.
Returns
An initialized MRKL chain.
Example
from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm)
chains = [
ChainConfig(
action_name = "Search",
action=search.search,
action_description="useful for searching"
),
ChainConfig(
action_name="Calculator",
action=llm_math_chain.run,
action_description="useful for doing math"
)
]
mrkl = MRKLChain.from_chains(llm, chains)
pydantic model langchain.agents.ReActChain[source]#
Chain that implements the ReAct paper.
Example
from langchain import ReActChain, OpenAI
react = ReAct(llm=OpenAI())
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_return_direct_tool Β» all fields
validate_tools Β» all fields
field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]#
field callback_manager: BaseCallbackManager [Optional]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-22 | field callback_manager: BaseCallbackManager [Optional]#
field early_stopping_method: str = 'force'#
field max_execution_time: Optional[float] = None#
field max_iterations: Optional[int] = 15#
field memory: Optional[BaseMemory] = None#
field return_intermediate_steps: bool = False#
field tools: Sequence[BaseTool] [Required]#
field verbose: bool [Optional]#
pydantic model langchain.agents.ReActTextWorldAgent[source]#
Agent for the ReAct TextWorld chain.
field output_parser: langchain.agents.agent.AgentOutputParser [Optional]#
classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool]) β langchain.prompts.base.BasePromptTemplate[source]#
Return default prompt.
pydantic model langchain.agents.SelfAskWithSearchChain[source]#
Chain that does self ask with search.
Example
from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper
search_chain = GoogleSerperAPIWrapper()
self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_return_direct_tool Β» all fields
validate_tools Β» all fields | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-23 | validate_tools Β» all fields
field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]#
field callback_manager: BaseCallbackManager [Optional]#
field early_stopping_method: str = 'force'#
field max_execution_time: Optional[float] = None#
field max_iterations: Optional[int] = 15#
field memory: Optional[BaseMemory] = None#
field return_intermediate_steps: bool = False#
field tools: Sequence[BaseTool] [Required]#
field verbose: bool [Optional]#
pydantic model langchain.agents.Tool[source]#
Tool that takes in function or coroutine directly.
Validators
set_callback_manager Β» callback_manager
validate_func_not_partial Β» func
field coroutine: Optional[Callable[[...], Awaitable[str]]] = None#
The asynchronous version of the function.
field description: str = ''#
field func: Callable[[...], str] [Required]#
The function to run when the tool is called.
property args: dict#
pydantic model langchain.agents.ZeroShotAgent[source]#
Agent for the MRKL chain.
field output_parser: langchain.agents.agent.AgentOutputParser [Optional]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-24 | classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], prefix: str = 'Answer the following questions as best you can. You have access to the following tools:', suffix: str = 'Begin!\n\nQuestion: {input}\nThought:{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None) β langchain.prompts.prompt.PromptTemplate[source]#
Create prompt in the style of the zero shot agent.
Parameters
tools β List of tools the agent will have access to, used to format the
prompt.
prefix β String to put before the list of tools.
suffix β String to put after the list of tools.
input_variables β List of input variables the final prompt will expect.
Returns
A PromptTemplate with the template assembled from the pieces here. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-25 | Returns
A PromptTemplate with the template assembled from the pieces here.
classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Answer the following questions as best you can. You have access to the following tools:', suffix: str = 'Begin!\n\nQuestion: {input}\nThought:{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, **kwargs: Any) β langchain.agents.agent.Agent[source]#
Construct an agent from an LLM and tools.
property llm_prefix: str#
Prefix to append the llm call with.
property observation_prefix: str# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-26 | Prefix to append the llm call with.
property observation_prefix: str#
Prefix to append the observation with.
langchain.agents.create_csv_agent(llm: langchain.llms.base.BaseLLM, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Create csv agent by loading to a dataframe and using pandas agent. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-27 | langchain.agents.create_json_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.json.toolkit.JsonToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with JSON.\nYour goal is to return a final answer by interacting with the JSON.\nYou have access to the following tools which help you learn more about the JSON you are interacting with.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nDo not make up any information that is not contained in the JSON.\nYour input to the tools should be in the form of `data["key"][0]` where `data` is the JSON blob you are interacting with, and the syntax used is Python. \nYou should only use keys that you know for a fact exist. You must validate that a key exists by seeing it previously when calling `json_spec_list_keys`. \nIf you have not seen a key in one of those responses, you cannot use it.\nYou should only add one key at a time to the path. You cannot add multiple keys at once.\nIf you encounter a "KeyError", go back to the previous key, look at the available keys, and try again.\n\nIf the question does not seem to be related to the JSON, just return "I don\'t know" as the answer.\nAlways begin your interaction with the | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-28 | don\'t know" as the answer.\nAlways begin your interaction with the `json_spec_list_keys` tool with input "data" to see what keys exist in the JSON.\n\nNote that sometimes the value at a given path is large. In this case, you will get an error "Value is a large dictionary, should explore its keys directly".\nIn this case, you should ALWAYS follow up by using the `json_spec_list_keys` tool to see what keys exist at that path.\nDo not simply refer the user to the JSON or a section of the JSON, as this is not a valid answer. Keep digging until you find the answer and explicitly return it.\n', suffix: str = 'Begin!"\n\nQuestion: {input}\nThought: I should look at the keys that exist in data to see what I have access to\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, verbose: bool = False, **kwargs: Any) β | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-29 | None, verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-30 | Construct a json agent from an LLM and tools. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-31 | langchain.agents.create_openapi_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = "You are an agent designed to answer questions by making web requests to an API given the openapi spec.\n\nIf the question does not seem related to the API, return I don't know. Do not make up an answer.\nOnly use information provided by the tools to construct your response.\n\nFirst, find the base URL needed to make the request.\n\nSecond, find the relevant paths needed to answer the question. Take note that, sometimes, you might need to make more than one request to more than one path to answer the question.\n\nThird, find the required parameters needed to make the request. For GET requests, these are usually URL parameters and for POST requests, these are request body parameters.\n\nFourth, make the requests needed to answer the question. Ensure that you are sending the correct parameters to the request by checking which parameters are required. For parameters with a fixed set of values, please use the spec to look at which values are allowed.\n\nUse the exact parameter names as listed in the spec, do not make up any names or abbreviate the names of parameters.\nIf you get a not found error, ensure that you are using a path that actually exists in the spec.\n", suffix: str = 'Begin!\n\nQuestion: | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-32 | suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should explore the spec to find the base url for the API.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False, return_intermediate_steps: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-33 | Construct a json agent from an LLM and tools.
langchain.agents.create_pandas_dataframe_agent(llm: langchain.llms.base.BaseLLM, df: Any, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = '\nYou are working with a pandas dataframe in Python. The name of the dataframe is `df`.\nYou should use the tools below to answer the question posed of you:', suffix: str = '\nThis is the result of `print(df.head())`:\n{df}\n\nBegin!\nQuestion: {input}\n{agent_scratchpad}', input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Construct a pandas agent from an LLM and dataframe. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-34 | langchain.agents.create_pbi_agent(llm: langchain.llms.base.BaseLLM, toolkit: Optional[langchain.agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit], powerbi: Optional[langchain.utilities.powerbi.PowerBIDataset] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with a Power BI Dataset.\nGiven an input question, create a syntactically correct DAX query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\n\nYou have access to tools for interacting with the Power BI Dataset. Only use the below tools. Only use the information returned by the below tools to construct your final answer. Usually I should first ask which tables I have, then how each table is defined and then ask the question to query tool to create a query for me and then I should ask the query tool to execute it, finally create a nice sentence that answers the question. If you receive an error back that mentions that the query was wrong try to phrase the question differently and get a new query from the question to query tool.\n\nIf the question | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-35 | get a new query from the question to query tool.\n\nIf the question does not seem related to the dataset, just return "I don\'t know" as the answer.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should first ask which tables I have, then how each table is defined and then ask the question to query tool to create a query for me and then I should ask the query tool to execute it, finally create a nice sentence that answers the question.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', examples: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, agent_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) β langchain.agents.agent.AgentExecutor[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-36 | Construct a pbi agent from an LLM and tools. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-37 | langchain.agents.create_pbi_chat_agent(llm: langchain.chat_models.base.BaseChatModel, toolkit: Optional[langchain.agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit], powerbi: Optional[langchain.utilities.powerbi.PowerBIDataset] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'Assistant is a large language model trained by OpenAI built to help users interact with a PowerBI Dataset.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. \n\nGiven an input question, create a syntactically correct DAX query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-38 | Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nUsually I should first ask which tables I have, then how each table is defined and then ask the question to query tool to create a query for me and then I should ask the query tool to execute it, finally create a complete sentence that answers the question. If you receive an error back that mentions that the query was wrong try to phrase the question differently and get a new query from the question to query tool.\n', suffix: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}\n", examples: Optional[str] = None, input_variables: Optional[List[str]] = None, memory: | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-39 | input_variables: Optional[List[str]] = None, memory: Optional[langchain.memory.chat_memory.BaseChatMemory] = None, top_k: int = 10, verbose: bool = False, agent_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) β langchain.agents.agent.AgentExecutor[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-40 | Construct a pbi agent from an Chat LLM and tools.
If you supply only a toolkit and no powerbi dataset, the same LLM is used for both. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-41 | langchain.agents.create_sql_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with a SQL database.\nGiven an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for the relevant columns given the question.\nYou have access to tools for interacting with the database.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nYou MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.\n\nDO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.\n\nIf the question does not seem related to the database, just return "I don\'t know" as the answer.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should look at the tables | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-42 | {input}\nThought: I should look at the tables in the database to see what I can query.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]# | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-43 | Construct a sql agent from an LLM and tools.
langchain.agents.create_vectorstore_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions about sets of documents.\nYou have access to tools for interacting with the documents, and the inputs to the tools are questions.\nSometimes, you will be asked to provide sources for your questions, in which case you should use the appropriate tool to do so.\nIf the question does not seem relevant to any of the tools provided, just return "I don\'t know" as the answer.\n', verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Construct a vectorstore agent from an LLM and tools. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-44 | Construct a vectorstore agent from an LLM and tools.
langchain.agents.create_vectorstore_router_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions.\nYou have access to tools for interacting with different sources, and the inputs to the tools are questions.\nYour main task is to decide which of the tools is relevant for answering question at hand.\nFor complex questions, you can break the question down into sub questions and use tools to answers the sub questions.\n', verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Construct a vectorstore router agent from an LLM and tools.
langchain.agents.get_all_tool_names() β List[str][source]#
Get a list of all possible tool names. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-45 | Get a list of all possible tool names.
langchain.agents.initialize_agent(tools: Sequence[langchain.tools.base.BaseTool], llm: langchain.schema.BaseLanguageModel, agent: Optional[langchain.agents.agent_types.AgentType] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Load an agent executor given tools and LLM.
Parameters
tools β List of tools this agent has access to.
llm β Language model to use as the agent.
agent β Agent type to use. If None and agent_path is also None, will default to
AgentType.ZERO_SHOT_REACT_DESCRIPTION.
callback_manager β CallbackManager to use. Global callback manager is used if
not provided. Defaults to None.
agent_path β Path to serialized agent to use.
agent_kwargs β Additional key word arguments to pass to the underlying agent
**kwargs β Additional key word arguments passed to the agent executor
Returns
An agent executor
langchain.agents.load_agent(path: Union[str, pathlib.Path], **kwargs: Any) β langchain.agents.agent.BaseSingleActionAgent[source]#
Unified method for loading a agent from LangChainHub or local fs. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-46 | Unified method for loading a agent from LangChainHub or local fs.
langchain.agents.load_tools(tool_names: List[str], llm: Optional[langchain.llms.base.BaseLLM] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) β List[langchain.tools.base.BaseTool][source]#
Load tools based on their name.
Parameters
tool_names β name of tools to load.
llm β Optional language model, may be needed to initialize certain tools.
callback_manager β Optional callback manager. If not provided, default global callback manager will be used.
Returns
List of tools.
langchain.agents.tool(*args: Union[str, Callable], return_direct: bool = False, args_schema: Optional[Type[pydantic.main.BaseModel]] = None, infer_schema: bool = True) β Callable[source]#
Make tools out of functions, can be used with or without arguments.
Parameters
*args β The arguments to the tool.
return_direct β Whether to return directly from the tool rather
than continuing the agent loop.
args_schema β optional argument schema for user to specify
infer_schema β Whether to infer the schema of the arguments from
the functionβs signature. This also makes the resultant tool
accept a dictionary input to its run() function.
Requires:
Function must be of type (str) -> str
Function must have a docstring
Examples
@tool | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
fb5ad5a08443-47 | Function must have a docstring
Examples
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
previous
Agents
next
Tools
By Harrison Chase
Β© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/reference/modules/agents.html |
a17e6783cd11-0 | .rst
.pdf
Document Loaders
Document Loaders#
All different types of document loaders.
class langchain.document_loaders.AZLyricsLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None)[source]#
Loader that loads AZLyrics webpages.
load() β List[langchain.schema.Document][source]#
Load webpage.
web_paths: List[str]#
class langchain.document_loaders.AirbyteJSONLoader(file_path: str)[source]#
Loader that loads local airbyte json files.
load() β List[langchain.schema.Document][source]#
Load file.
pydantic model langchain.document_loaders.ApifyDatasetLoader[source]#
Logic for loading documents from Apify datasets.
field apify_client: Any = None#
field dataset_id: str [Required]#
The ID of the dataset on the Apify platform.
field dataset_mapping_function: Callable[[Dict], langchain.schema.Document] [Required]#
A custom function that takes a single dictionary (an Apify dataset item)
and converts it to an instance of the Document class.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.AzureBlobStorageContainerLoader(conn_str: str, container: str, prefix: str = '')[source]#
Loading logic for loading documents from Azure Blob Storage. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-1 | Loading logic for loading documents from Azure Blob Storage.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.AzureBlobStorageFileLoader(conn_str: str, container: str, blob_name: str)[source]#
Loading logic for loading documents from Azure Blob Storage.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.BSHTMLLoader(file_path: str, open_encoding: Optional[str] = None, bs_kwargs: Optional[dict] = None)[source]#
Loader that uses beautiful soup to parse HTML files.
load() β List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.BigQueryLoader(query: str, project: Optional[str] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None)[source]#
Loads a query result from BigQuery into a list of documents.
Each document represents one row of the result. The page_content_columns
are written into the page_content of the document. The metadata_columns
are written into the metadata of the document. By default, all columns
are written into the page_content and none into the metadata.
load() β List[langchain.schema.Document][source]#
Load data into document objects. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-2 | Load data into document objects.
class langchain.document_loaders.BiliBiliLoader(video_urls: List[str])[source]#
Loader that loads bilibili transcripts.
load() β List[langchain.schema.Document][source]#
Load from bilibili url.
class langchain.document_loaders.BlackboardLoader(blackboard_course_url: str, bbrouter: str, load_all_recursively: bool = True, basic_auth: Optional[Tuple[str, str]] = None, cookies: Optional[dict] = None)[source]#
Loader that loads all documents from a Blackboard course.
This loader is not compatible with all Blackboard courses. It is only
compatible with courses that use the new Blackboard interface.
To use this loader, you must have the BbRouter cookie. You can get this
cookie by logging into the course and then copying the value of the
BbRouter cookie from the browserβs developer tools.
Example
from langchain.document_loaders import BlackboardLoader
loader = BlackboardLoader(
blackboard_course_url="https://blackboard.example.com/webapps/blackboard/execute/announcement?method=search&context=course_entry&course_id=_123456_1",
bbrouter="expires:12345...",
)
documents = loader.load()
base_url: str#
check_bs4() β None[source]#
Check if BeautifulSoup4 is installed.
Raises
ImportError β If BeautifulSoup4 is not installed.
download(path: str) β None[source]# | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-3 | download(path: str) β None[source]#
Download a file from a url.
Parameters
path β Path to the file.
folder_path: str#
load() β List[langchain.schema.Document][source]#
Load data into document objects.
Returns
List of documents.
load_all_recursively: bool#
parse_filename(url: str) β str[source]#
Parse the filename from a url.
Parameters
url β Url to parse the filename from.
Returns
The filename.
class langchain.document_loaders.BlockchainDocumentLoader(contract_address: str, blockchainType: langchain.document_loaders.blockchain.BlockchainType = BlockchainType.ETH_MAINNET, api_key: str = 'docs-demo', startToken: int = 0)[source]#
Loads elements from a blockchain smart contract into Langchain documents.
The supported blockchains are: Ethereum mainnet, Ethereum Goerli testnet,
Polygon mainnet, and Polygon Mumbai testnet.
If no BlockchainType is specified, the default is Ethereum mainnet.
The Loader uses the Alchemy API to interact with the blockchain.
ALCHEMY_API_KEY environment variable must be set to use this loader.
Future versions of this loader can:
Support additional Alchemy APIs (e.g. getTransactions, etc.)
load() β List[langchain.schema.Document][source]#
Load data into document objects. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-4 | Load data into document objects.
class langchain.document_loaders.CSVLoader(file_path: str, source_column: Optional[str] = None, csv_args: Optional[Dict] = None, encoding: Optional[str] = None)[source]#
Loads a CSV file into a list of documents.
Each document represents one row of the CSV file. Every row is converted into a
key/value pair and outputted to a new line in the documentβs page_content.
The source for each document loaded from csv is set to the value of the
file_path argument for all doucments by default.
You can override this by setting the source_column argument to the
name of a column in the CSV file.
The source of each document will then be set to the value of the column
with the name specified in source_column.
Output Example:column1: value1
column2: value2
column3: value3
load() β List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.ChatGPTLoader(log_file: str, num_logs: int = - 1)[source]#
Loader that loads conversations from exported ChatGPT data.
load() β List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.CoNLLULoader(file_path: str)[source]#
Load CoNLL-U files.
load() β List[langchain.schema.Document][source]#
Load from file path. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-5 | Load from file path.
class langchain.document_loaders.CollegeConfidentialLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None)[source]#
Loader that loads College Confidential webpages.
load() β List[langchain.schema.Document][source]#
Load webpage.
web_paths: List[str]#
class langchain.document_loaders.ConfluenceLoader(url: str, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None)[source]#
Load Confluence pages. Port of https://llamahub.ai/l/confluence
This currently supports both username/api_key and Oauth2 login.
Specify a list page_ids and/or space_key to load in the corresponding pages into
Document objects, if both are specified the union of both sets will be returned.
You can also specify a boolean include_attachments to include attachments, this
is set to False by default, if set to True all attachments will be downloaded and
ConfluenceReader will extract the text from the attachments and add it to the
Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG, | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-6 | SVG, Word and Excel.
Hint: space_key and page_id can both be found in the URL of a page in Confluence
- https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id>
Example
from langchain.document_loaders import ConfluenceLoader
loader = ConfluenceLoader(
url="https://yoursite.atlassian.com/wiki",
username="me",
api_key="12345"
)
documents = loader.load(space_key="SPACE",limit=50)
Parameters
url (str) β _description_
api_key (str, optional) β _description_, defaults to None
username (str, optional) β _description_, defaults to None
oauth2 (dict, optional) β _description_, defaults to {}
cloud (bool, optional) β _description_, defaults to True
number_of_retries (Optional[int], optional) β How many times to retry, defaults to 3
min_retry_seconds (Optional[int], optional) β defaults to 2
max_retry_seconds (Optional[int], optional) β defaults to 10
confluence_kwargs (dict, optional) β additional kwargs to initialize confluence with
Raises
ValueError β Errors while validating input
ImportError β Required dependencies not installed. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-7 | ImportError β Required dependencies not installed.
load(space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, label: Optional[str] = None, cql: Optional[str] = None, include_attachments: bool = False, include_comments: bool = False, limit: Optional[int] = 50, max_pages: Optional[int] = 1000) β List[langchain.schema.Document][source]#
Parameters
space_key (Optional[str], optional) β Space key retrieved from a confluence URL, defaults to None
page_ids (Optional[List[str]], optional) β List of specific page IDs to load, defaults to None
label (Optional[str], optional) β Get all pages with this label, defaults to None
cql (Optional[str], optional) β CQL Expression, defaults to None
include_attachments (bool, optional) β defaults to False
include_comments (bool, optional) β defaults to False
limit (int, optional) β Maximum number of pages to retrieve per request, defaults to 50
max_pages (int, optional) β Maximum number of pages to retrieve in total, defaults 1000
Raises
ValueError β _description_
ImportError β _description_
Returns
_description_
Return type
List[Document]
paginate_request(retrieval_method: Callable, **kwargs: Any) β List[source]#
Paginate the various methods to retrieve groups of pages. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-8 | Paginate the various methods to retrieve groups of pages.
Unfortunately, due to page size, sometimes the Confluence API
doesnβt match the limit value. If limit is >100 confluence
seems to cap the response to 100. Also, due to the Atlassian Python
package, we donβt get the βnextβ values from the β_linksβ key because
they only return the value from the results key. So here, the pagination
starts from 0 and goes until the max_pages, getting the limit number
of pages with each request. We have to manually check if there
are more docs based on the length of the returned list of pages, rather than
just checking for the presence of a next key in the response like this page
would have you do:
https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/
Parameters
retrieval_method (callable) β Function used to retrieve docs
Returns
List of documents
Return type
List
process_attachment(page_id: str) β List[str][source]#
process_doc(link: str) β str[source]#
process_image(link: str) β str[source]#
process_page(page: dict, include_attachments: bool, include_comments: bool) β langchain.schema.Document[source]#
process_pdf(link: str) β str[source]#
process_svg(link: str) β str[source]#
process_xls(link: str) β str[source]# | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-9 | process_xls(link: str) β str[source]#
static validate_init_args(url: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None) β Optional[List][source]#
Validates proper combinations of init arguments
class langchain.document_loaders.DataFrameLoader(data_frame: Any, page_content_column: str = 'text')[source]#
Load Pandas DataFrames.
load() β List[langchain.schema.Document][source]#
Load from the dataframe.
class langchain.document_loaders.DiffbotLoader(api_token: str, urls: List[str], continue_on_failure: bool = True)[source]#
Loader that loads Diffbot file json.
load() β List[langchain.schema.Document][source]#
Extract text from Diffbot on all the URLs and return Document instances | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-10 | Extract text from Diffbot on all the URLs and return Document instances
class langchain.document_loaders.DirectoryLoader(path: str, glob: str = '**/[!.]*', silent_errors: bool = False, load_hidden: bool = False, loader_cls: typing.Union[typing.Type[langchain.document_loaders.unstructured.UnstructuredFileLoader], typing.Type[langchain.document_loaders.text.TextLoader], typing.Type[langchain.document_loaders.html_bs.BSHTMLLoader]] = <class 'langchain.document_loaders.unstructured.UnstructuredFileLoader'>, loader_kwargs: typing.Optional[dict] = None, recursive: bool = False, show_progress: bool = False)[source]#
Loading logic for loading documents from a directory.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.DiscordChatLoader(chat_log: pd.DataFrame, user_id_col: str = 'ID')[source]#
Load Discord chat logs.
load() β List[langchain.schema.Document][source]#
Load all chat messages. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-11 | Load all chat messages.
class langchain.document_loaders.DuckDBLoader(query: str, database: str = ':memory:', read_only: bool = False, config: Optional[Dict[str, str]] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None)[source]#
Loads a query result from DuckDB into a list of documents.
Each document represents one row of the result. The page_content_columns
are written into the page_content of the document. The metadata_columns
are written into the metadata of the document. By default, all columns
are written into the page_content and none into the metadata.
load() β List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.EverNoteLoader(file_path: str)[source]#
Loader to load in EverNote files..
load() β List[langchain.schema.Document][source]#
Load document from EverNote file.
class langchain.document_loaders.FacebookChatLoader(path: str)[source]#
Loader that loads Facebook messages json directory dump.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.GCSDirectoryLoader(project_name: str, bucket: str, prefix: str = '')[source]#
Loading logic for loading documents from GCS.
load() β List[langchain.schema.Document][source]# | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-12 | load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.GCSFileLoader(project_name: str, bucket: str, blob: str)[source]#
Loading logic for loading documents from GCS.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.GitLoader(repo_path: str, clone_url: Optional[str] = None, branch: Optional[str] = 'main', file_filter: Optional[Callable[[str], bool]] = None)[source]#
Loads files from a Git repository into a list of documents.
Repository can be local on disk available at repo_path,
or remote at clone_url that will be cloned to repo_path.
Currently supports only text files.
Each document represents one file in the repository. The path points to
the local Git repository, and the branch specifies the branch to load
files from. By default, it loads from the main branch.
load() β List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.GitbookLoader(web_page: str, load_all_paths: bool = False, base_url: Optional[str] = None, content_selector: str = 'main')[source]#
Load GitBook data.
load from either a single page, or
load all (relative) paths in the navbar.
load() β List[langchain.schema.Document][source]# | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-13 | load() β List[langchain.schema.Document][source]#
Fetch text from one single GitBook page.
web_paths: List[str]#
class langchain.document_loaders.GoogleApiClient(credentials_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json'), service_account_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json'), token_path: pathlib.Path = PosixPath('/home/docs/.credentials/token.json'))[source]#
A Generic Google Api Client.
To use, you should have the google_auth_oauthlib,youtube_transcript_api,google
python package installed.
As the google api expects credentials you need to set up a google account and
register your Service. βhttps://developers.google.com/docs/api/quickstart/pythonβ
Example
from langchain.document_loaders import GoogleApiClient
google_api_client = GoogleApiClient(
service_account_path=Path("path_to_your_sec_file.json")
)
credentials_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json')#
service_account_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json')# | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-14 | token_path: pathlib.Path = PosixPath('/home/docs/.credentials/token.json')#
classmethod validate_channel_or_videoIds_is_set(values: Dict[str, Any]) β Dict[str, Any][source]#
Validate that either folder_id or document_ids is set, but not both.
class langchain.document_loaders.GoogleApiYoutubeLoader(google_api_client: langchain.document_loaders.youtube.GoogleApiClient, channel_name: Optional[str] = None, video_ids: Optional[List[str]] = None, add_video_info: bool = True, captions_language: str = 'en', continue_on_failure: bool = False)[source]#
Loader that loads all Videos from a Channel
To use, you should have the googleapiclient,youtube_transcript_api
python package installed.
As the service needs a google_api_client, you first have to initialize
the GoogleApiClient.
Additionally you have to either provide a channel name or a list of videoids
βhttps://developers.google.com/docs/api/quickstart/pythonβ
Example
from langchain.document_loaders import GoogleApiClient
from langchain.document_loaders import GoogleApiYoutubeLoader
google_api_client = GoogleApiClient(
service_account_path=Path("path_to_your_sec_file.json")
)
loader = GoogleApiYoutubeLoader(
google_api_client=google_api_client,
channel_name = "CodeAesthetic" | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-15 | channel_name = "CodeAesthetic"
)
load.load()
add_video_info: bool = True#
captions_language: str = 'en'#
channel_name: Optional[str] = None#
continue_on_failure: bool = False#
google_api_client: langchain.document_loaders.youtube.GoogleApiClient#
load() β List[langchain.schema.Document][source]#
Load documents.
classmethod validate_channel_or_videoIds_is_set(values: Dict[str, Any]) β Dict[str, Any][source]#
Validate that either folder_id or document_ids is set, but not both.
video_ids: Optional[List[str]] = None#
pydantic model langchain.document_loaders.GoogleDriveLoader[source]#
Loader that loads Google Docs from Google Drive.
Validators
validate_credentials_path Β» credentials_path
validate_folder_id_or_document_ids Β» all fields
field credentials_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json')#
field document_ids: Optional[List[str]] = None#
field file_ids: Optional[List[str]] = None#
field folder_id: Optional[str] = None#
field recursive: bool = False#
field service_account_key: pathlib.Path = PosixPath('/home/docs/.credentials/keys.json')# | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-16 | field token_path: pathlib.Path = PosixPath('/home/docs/.credentials/token.json')#
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.GutenbergLoader(file_path: str)[source]#
Loader that uses urllib to load .txt web files.
load() β List[langchain.schema.Document][source]#
Load file.
class langchain.document_loaders.HNLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None)[source]#
Load Hacker News data from either main page results or the comments page.
load() β List[langchain.schema.Document][source]#
Get important HN webpage information.
Components are:
title
content
source url,
time of post
author of the post
number of comments
rank of the post
load_comments(soup_info: Any) β List[langchain.schema.Document][source]#
Load comments from a HN post.
load_results(soup: Any) β List[langchain.schema.Document][source]#
Load items from an HN page.
web_paths: List[str]# | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-17 | Load items from an HN page.
web_paths: List[str]#
class langchain.document_loaders.HuggingFaceDatasetLoader(path: str, page_content_column: str = 'text', name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, cache_dir: Optional[str] = None, keep_in_memory: Optional[bool] = None, save_infos: bool = False, use_auth_token: Optional[Union[bool, str]] = None, num_proc: Optional[int] = None)[source]#
Loading logic for loading documents from the Hugging Face Hub.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.IFixitLoader(web_path: str)[source]#
Load iFixit repair guides, device wikis and answers.
iFixit is the largest, open repair community on the web. The site contains nearly
100k repair manuals, 200k Questions & Answers on 42k devices, and all the data is
licensed under CC-BY.
This loader will allow you to download the text of a repair guide, text of Q&Aβs
and wikis from devices on iFixit using their open APIs and web scraping.
load() β List[langchain.schema.Document][source]#
Load data into document objects. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-18 | Load data into document objects.
load_device(url_override: Optional[str] = None, include_guides: bool = True) β List[langchain.schema.Document][source]#
load_guide(url_override: Optional[str] = None) β List[langchain.schema.Document][source]#
load_questions_and_answers(url_override: Optional[str] = None) β List[langchain.schema.Document][source]#
static load_suggestions(query: str = '', doc_type: str = 'all') β List[langchain.schema.Document][source]#
class langchain.document_loaders.IMSDbLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None)[source]#
Loader that loads IMSDb webpages.
load() β List[langchain.schema.Document][source]#
Load webpage.
web_paths: List[str]#
class langchain.document_loaders.ImageCaptionLoader(path_images: Union[str, List[str]], blip_processor: str = 'Salesforce/blip-image-captioning-base', blip_model: str = 'Salesforce/blip-image-captioning-base')[source]#
Loader that loads the captions of an image
load() β List[langchain.schema.Document][source]#
Load from a list of image files | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-19 | Load from a list of image files
class langchain.document_loaders.NotebookLoader(path: str, include_outputs: bool = False, max_output_length: int = 10, remove_newline: bool = False, traceback: bool = False)[source]#
Loader that loads .ipynb notebook files.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.NotionDBLoader(integration_token: str, database_id: str)[source]#
Notion DB Loader.
Reads content from pages within a Noton Database.
:param integration_token: Notion integration token.
:type integration_token: str
:param database_id: Notion database id.
:type database_id: str
load() β List[langchain.schema.Document][source]#
Load documents from the Notion database.
:returns: List of documents.
:rtype: List[Document]
load_page(page_id: str) β langchain.schema.Document[source]#
Read a page.
class langchain.document_loaders.NotionDirectoryLoader(path: str)[source]#
Loader that loads Notion directory dump.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.ObsidianLoader(path: str, encoding: str = 'UTF-8', collect_metadata: bool = True)[source]#
Loader that loads Obsidian files from disk. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-20 | Loader that loads Obsidian files from disk.
FRONT_MATTER_REGEX = re.compile('^---\\n(.*?)\\n---\\n', re.MULTILINE|re.DOTALL)#
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.OnlinePDFLoader(file_path: str)[source]#
Loader that loads online PDFs.
file_path: str#
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.OutlookMessageLoader(file_path: str)[source]#
Loader that loads Outlook Message files using extract_msg.
TeamMsgExtractor/msg-extractor
load() β List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.PDFMinerLoader(file_path: str)[source]#
Loader that uses PDFMiner to load PDF files.
file_path: str#
load() β List[langchain.schema.Document][source]#
Load file.
class langchain.document_loaders.PDFMinerPDFasHTMLLoader(file_path: str)[source]#
Loader that uses PDFMiner to load PDF files as HTML content.
file_path: str#
load() β List[langchain.schema.Document][source]#
Load file.
langchain.document_loaders.PagedPDFSplitter#
alias of langchain.document_loaders.pdf.PyPDFLoader | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-21 | alias of langchain.document_loaders.pdf.PyPDFLoader
class langchain.document_loaders.PlaywrightURLLoader(urls: List[str], continue_on_failure: bool = True, headless: bool = True, remove_selectors: Optional[List[str]] = None)[source]#
Loader that uses Playwright and to load a page and unstructured to load the html.
This is useful for loading pages that require javascript to render.
urls#
List of URLs to load.
Type
List[str]
continue_on_failure#
If True, continue loading other URLs on failure.
Type
bool
headless#
If True, the browser will run in headless mode.
Type
bool
load() β List[langchain.schema.Document][source]#
Load the specified URLs using Playwright and create Document instances.
Returns
A list of Document instances with loaded content.
Return type
List[Document]
class langchain.document_loaders.PyMuPDFLoader(file_path: str)[source]#
Loader that uses PyMuPDF to load PDF files.
file_path: str#
load(**kwargs: Optional[Any]) β List[langchain.schema.Document][source]#
Load file.
class langchain.document_loaders.PyPDFLoader(file_path: str)[source]#
Loads a PDF with pypdf and chunks at character level.
Loader also stores page numbers in metadatas.
file_path: str#
load() β List[langchain.schema.Document][source]#
Load given path as pages. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-22 | Load given path as pages.
class langchain.document_loaders.PythonLoader(file_path: str)[source]#
Load Python files, respecting any non-default encoding if specified.
class langchain.document_loaders.ReadTheDocsLoader(path: str, encoding: Optional[str] = None, errors: Optional[str] = None, **kwargs: Optional[Any])[source]#
Loader that loads ReadTheDocs documentation directory dump.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.RoamLoader(path: str)[source]#
Loader that loads Roam files from disk.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.S3DirectoryLoader(bucket: str, prefix: str = '')[source]#
Loading logic for loading documents from s3.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.S3FileLoader(bucket: str, key: str)[source]#
Loading logic for loading documents from s3.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.SRTLoader(file_path: str)[source]#
Loader for .srt (subtitle) files.
load() β List[langchain.schema.Document][source]#
Load using pysrt file. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-23 | Load using pysrt file.
class langchain.document_loaders.SeleniumURLLoader(urls: List[str], continue_on_failure: bool = True, browser: Literal['chrome', 'firefox'] = 'chrome', executable_path: Optional[str] = None, headless: bool = True)[source]#
Loader that uses Selenium and to load a page and unstructured to load the html.
This is useful for loading pages that require javascript to render.
urls#
List of URLs to load.
Type
List[str]
continue_on_failure#
If True, continue loading other URLs on failure.
Type
bool
browser#
The browser to use, either βchromeβ or βfirefoxβ.
Type
str
executable_path#
The path to the browser executable.
Type
Optional[str]
headless#
If True, the browser will run in headless mode.
Type
bool
load() β List[langchain.schema.Document][source]#
Load the specified URLs using Selenium and create Document instances.
Returns
A list of Document instances with loaded content.
Return type
List[Document]
class langchain.document_loaders.SitemapLoader(web_path: str, filter_urls: Optional[List[str]] = None, parsing_function: Optional[Callable] = None)[source]#
Loader that fetches a sitemap and loads those URLs.
load() β List[langchain.schema.Document][source]#
Load sitemap.
parse_sitemap(soup: Any) β List[dict][source]# | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
a17e6783cd11-24 | parse_sitemap(soup: Any) β List[dict][source]#
Parse sitemap xml and load into a list of dicts.
web_paths: List[str]#
class langchain.document_loaders.SlackDirectoryLoader(zip_path: str, workspace_url: Optional[str] = None)[source]#
Loader for loading documents from a Slack directory dump.
load() β List[langchain.schema.Document][source]#
Load and return documents from the Slack directory dump.
class langchain.document_loaders.TelegramChatLoader(path: str)[source]#
Loader that loads Telegram chat json directory dump.
load() β List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.TextLoader(file_path: str, encoding: Optional[str] = None)[source]#
Load text files.
load() β List[langchain.schema.Document][source]#
Load from file path.
class langchain.document_loaders.TwitterTweetLoader(auth_handler: Union[OAuthHandler, OAuth2BearerHandler], twitter_users: Sequence[str], number_tweets: Optional[int] = 100)[source]#
Twitter tweets loader.
Read tweets of user twitter handle.
First you need to go to
https://developer.twitter.com/en/docs/twitter-api
/getting-started/getting-access-to-the-twitter-api
to get your token. And create a v2 version of the app. | /content/https://python.langchain.com/en/latest/reference/modules/document_loaders.html |
Subsets and Splits