Ratchada-STT / README.md
zoon-patcharawiwatpong
Upload dataset
5bc8afe verified
metadata
language:
  - en
  - th
license: mit
size_categories:
  - 10K<n<100K
task_categories:
  - automatic-speech-recognition
dataset_info:
  features:
    - name: name
      dtype: string
    - name: audio
      dtype: audio
    - name: label
      dtype: string
    - name: start
      dtype: float64
    - name: end
      dtype: float64
  splits:
    - name: train
      num_bytes: 1068060017.248
      num_examples: 10137
    - name: test
      num_bytes: 184950411.426
      num_examples: 2791
  download_size: 1037733018
  dataset_size: 1253010428.674
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
tags:
  - finance

RATCHADA-STT Dataset

Overview

The dataset includes recordings from earnings calls of publicly traded companies in Thailand. Each audio file is accompanied by a transcription and metadata such as company name, reporting period, and other relevant details.

Dataset Info

  • Total Duration:

    • Train: 26507.87 seconds (~ 7.36 hours)
    • Test: 8376.28 seconds (~ 2.33 hours)
  • File Count:

    • Train: 10912 files
    • Test: 2804 files

Dataset Structure

The dataset consists of recordings from various financial presentations categorized into different subfolders based on event and company.

Metadata

  • Features:

    • path: string
    • array: sequence of float32
    • label: string
    • start: float64
    • end: float64
  • Dataset Size: 2.11 GB

Example Usage

Load the Ratchada-STT dataset

from datasets import load_dataset

dataset = load_dataset("ThinkingMachinesDataScience/Ratchada-STT")

Access train and test splits

train = dataset['train']
test = dataset['test']

Example usage with first sample

print(train[0])

License

This dataset is distributed under the MIT License.

Citation

If you use this dataset in your research or work, please cite it as:

@dataset{thinkingmachinesdatascience/ratchada-stt,
  title = {Ratchada-STT Dataset},
  publisher = {Hugging Face},
  year = {2024},
  author = {Thinking Machines Data Science},
  license = {MIT},
}

Contribution Guidelines

  • Ensure your PR adheres to the repository's coding standards.
  • Include relevant tests and ensure they pass.
  • Update documentation if your contribution changes any functionality.
  • Follow the Hugging Face Community Code of Conduct.