problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p02549
u407778590
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['N, K = map(int, input().split())\n\nidou = set()\nfor i in range(0, K):\n L, R = map(int, input().split())\n idou = idou | set(range(L, R + 1))\n\nidou = list(idou)\n\nmoves = [0] * N\nmoves[0] = 1\nfor i in range(0, N):\n for j in range(0, len(idou)):\n if i + idou[j] < N:\n moves[i + idou[j]] += moves[i]\n\nprint(moves)\nprint(moves[N - 1] % 998244353)\n', 'N, K = map(int, input().split())\n\nL = [0] * K\nR = [0] * K\nfor i in range(0, K):\n L[i], R[i] = map(int, input().split())\n\nmoves = [0] * N\nmoves[0] = 1\n\nrui_wa = [0] * N\nrui_wa[0] = 1\n\nfor i in range(1, N):\n for j in range(0, K):\n l = max(i - L[j], 0)\n r = max(i - R[j], 0)\n if i - L[j] < 0:\n continue\n\n moves[i] += (rui_wa[l] - rui_wa[r - 1]) % 998244353\n\n rui_wa[i] = (moves[i] + rui_wa[i - 1]) % 998244353\n\n\n\nprint(moves[N - 1] % 998244353)\n']
['Wrong Answer', 'Accepted']
['s264836860', 's176160941']
[38068.0, 26824.0]
[2207.0, 1433.0]
[367, 491]
p02549
u469254913
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['# import numpy as np\n# import math\n# import copy\n# from collections import deque\nimport sys\ninput = sys.stdin.readline\n\n# from numba import njit,i8\n\n\n\ndef give_dp(N,K,mod,LR,dp,l,r):\n for i in range(N):\n if i > 0:\n dp[i] += dp[i-1]\n dp[i] %= mod\n for k in range(K):\n l = LR[k][0]\n r = LR[k][1]\n if i + l < N:\n dp[i+l] += dp[i]\n dp[i+1] %= mod\n if i + r < N:\n dp[i+r+1] -= dp[i]\n dp[i+1] %= mod\n return dp[-1]\n\n\ndef main():\n N,K = map(int,input().split())\n LR = [list(map(int,input().split())) for i in range(K)]\n # LR = np.array(LR)\n\n mod = 998244353\n\n dp = [0 for i in range(N)]\n dp[0] = 1\n dp[1] = -1\n # dp = np.array(dp)\n\n res = give_dp(N,K,mod,LR,dp,0,0)\n res %= mod\n\n print(res)\n\n\n\nmain()\n', '# import numpy as np\n# import math\n# import copy\n# from collections import deque\nimport sys\ninput = sys.stdin.readline\n\n# from numba import njit,i8\n \n \n\ndef give_dp(N,K,mod,LR,dp,l,r):\n for i in range(N):\n if i > 0:\n dp[i] += dp[i-1]\n dp[i] %= mod\n for k in range(K):\n l = LR[k][0]\n r = LR[k][1]\n if i + l < N:\n dp[i+l] += dp[i]\n dp[i+1] %= mod\n if i + r + 1 < N:\n dp[i+r+1] -= dp[i]\n dp[i+1] %= mod\n return dp[-1]\n \n \ndef main():\n N,K = map(int,input().split())\n LR = [list(map(int,input().split())) for i in range(K)]\n # LR = np.array(LR)\n \n mod = 998244353\n \n dp = [0 for i in range(N)]\n dp[0] = 1\n dp[1] = -1\n # dp = np.array(dp)\n \n res = give_dp(N,K,mod,LR,dp,0,0)\n res %= mod\n \n print(res)\n \n \n \nmain()']
['Runtime Error', 'Accepted']
['s585078445', 's628128833']
[16920.0, 17044.0]
[251.0, 882.0]
[944, 958]
p02549
u521866787
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['n,k =map(int,input().split())\ns =[]\nfor i in range(k):\n l,r=map(int,input().split())\n s+=(list(range(l,r+1)))\nS= set(s)\nprint(S)\n\nmod = 998244353\n\n# How many are there to climb\nstep = [0] * (n+1)\n\n\nfor i in range(1,n+1):\n for s in S:\n if i+s<=n:\n step[i+s]+=1\nprint(step[n])', 'mod = 998244353\nn,k =map(int,input().split())\nstep =[0]*(n+1)\n# step[0]=1\nstep[1]=1\nstepsum=[0]*(n+1)\nstepsum[1]=1\nl=[0]*k\nr=[0]*k\nfor i in range(k):\n l[i],r[i]=map(int,input().split())\n\nfor i in range(2,n+1):\n for j in range(k):\n li = i - r[j]\n ri = i - l[j]\n if ri <= 0:\n continue\n \n step[i] += stepsum[ri] - stepsum[max(0,li-1)]\n # step[i] %= mod\n # print(step)\n stepsum[i] = ( stepsum[i-1] + step[i] )%mod\n\n\nprint(step[n]%mod)']
['Wrong Answer', 'Accepted']
['s525698265', 's096764097']
[29748.0, 25148.0]
[2207.0, 914.0]
[301, 515]
p02549
u539969758
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['N,X,M = map(int,input().split())\n\nans = X\nA = X\nTF = True\nsrt = 1000000\nretu = dict()\nretu[X] = 1\nloop = X\nfor i in range(N-1):\n if TF:\n A = A**2 % M\n if retu.get(A) != None:\n srt = j\n goal = i\n TF = False\n break \n if TF:\n retu[A] = 1\n loop += A\n else:\n break\n \nif N-1 > srt:\n n = (N-srt)//(goal-srt+1)\n saisyo = sum(retu[:srt])\n loop -= saisyo\n print(saisyo + loop*n + sum(retu[srt:N-n*(goal-srt+1)]))\n \nelse:\n print(sum(retu[:N]))\n', 'MOD = 998244353\nN, K = map(int, input().split())\nLR = [list(map(int, input().split())) for _ in range(K)]\n\ndp = [0]*(N+1)\nacc = [0]*(N+1) # acc[i] = dp[1] + ... dp[i]\n\ndp[1] = 1\nacc[1] = 1\nfor i in range(2, N+1):\n for lr in LR:\n l = lr[0]\n r = lr[1]\n\n dp[i] += (acc[max(0, i - l)] - acc[max(0, i - r - 1)] + MOD)\n dp[i] %= MOD\n acc[i] = (acc[i-1] + dp[i]) % MOD\n \n \n\nprint(dp[N])\n# print(acc)\n# print(dp[N])']
['Runtime Error', 'Accepted']
['s870203673', 's997285547']
[9184.0, 24488.0]
[26.0, 1517.0]
[544, 447]
p02549
u545368057
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['n, k = map(int, input().split())\nls = []\nrs = []\nps = []\nMOD = 998244353\ns = set()\nfor _ in range(k):\n l,r = map(int, input().split())\n for i in range(l,r+1):\n s.add(i)\ndp = [0] * (n+1)\ndp[0] = 1\nimos = [0]\nfor i in range(n):\n for d in sorted(list(s), reverse=True):\n if i - d >= 0:\n dp[i] += dp[i-d]\n dp[i-1] -= dp[i]\n dp[i] %= MOD\n\nprint(dp[n-1])', 'n, k = map(int, input().split())\nps = []\nMOD = 998244353\ns = set()\nfor _ in range(k):\n l,r = map(int, input().split())\n ps.append([l,r])\n\ndp = [0] * (n+1)\ndp[0] = 1\nacc = [0,1]\n\nfor i in range(1,n):\n for l, r in ps:\n dp[i] += acc[max(0,i-l+1)] - acc[max(0,i-r)]\n acc.append((acc[i] + dp[i])%MOD)\nprint(dp[n-1]%MOD)\n']
['Wrong Answer', 'Accepted']
['s140648310', 's448209820']
[27936.0, 24756.0]
[2206.0, 1141.0]
[404, 334]
p02549
u632395989
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['N, K = map(int, input().split())\nS = []\nfor j in range(K):\n S.append(list(map(int, input().split())))\n\nm = 998244353\n\nprint(S)\n\ndp = [0] * N\ndp[0] = 1\nsum_of_region = [0] * K\nfor i in range(1, N):\n for j in range(K):\n if i - S[j][0] >= 0:\n sum_of_region[j] += dp[i - S[j][0]]\n if i - S[j][1] - 1 >= 0:\n sum_of_region[j] -= dp[i - S[j][1] - 1]\n dp[i] += sum_of_region[j] % m\n dp[i] %= m\n print(i, dp, sum_of_region)\n\nans = dp[N - 1]\nprint(ans)\n', 'N, K = map(int, input().split())\nS = []\nfor j in range(K):\n S.append(list(map(int, input().split())))\n\nm = 998244353\n\n# print(S)\n\ndp = [0] * N\ndp[0] = 1\nsum_of_region = [0] * K\nfor i in range(1, N):\n for j in range(K):\n if i - S[j][0] >= 0:\n sum_of_region[j] += dp[i - S[j][0]]\n if i - S[j][1] - 1 >= 0:\n sum_of_region[j] -= dp[i - S[j][1] - 1]\n dp[i] += sum_of_region[j] % m\n dp[i] %= m\n # print(i, dp, sum_of_region)\n\nans = dp[N - 1]\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s663842231', 's156399991']
[134228.0, 16856.0]
[2412.0, 1339.0]
[503, 507]
p02549
u686036872
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['N, K = map(int, input().split())\n\nDP = [0]*(N+1)\nDP[1] = 1\n\nS = []\nfor i in range(K):\n S.append(list(map(int, input().split())))\n\nS.sort()\n\nfor i in range(2, N+1):\n for l, r in S:\n DP[i] = (DP[max(i-l, 0)] - DP[max(i-r-1, 0)])%998244353\n DP[i] += DP[i-1]\n\nprint(DP[N]%998244353)', 'N, K = map(int, input().split())\n\nDP = [0]*(N+1)\nDP[1] = 1\n\nS = []\nfor i in range(K):\n S.append(list(map(int, input().split())))\n\nfor i in range(2, N+1):\n for l, r in S:\n DP[i] += (DP[max(i-l, 0)] - DP[max(i-r-1, 0)])\n DP[i] += DP[i-1]\n DP[i] %= 998244353\n\nprint(DP[N]%998244353)', 'N, K = map(int, input().split())\n\nDP = [0]*(N+1)\nDP[1] = 1\n\nS = []\nfor i in range(K):\n S.append(list(map(int, input().split())))\n\nfor i in range(2, N+1):\n for l, r in S:\n DP[i] += (DP[max(i-l, 0)] - DP[max(i-r-1, 0)])%998244353\n DP[i] += DP[i-1]\n\nprint(DP[N]%998244353)', 'N, K = map(int, input().split())\n\nDP = [0]*(N+1)\nDP[1] = 1\n\nS = []\nfor i in range(K):\n S.append(list(map(int, input().split())))\n\nfor i in range(2, N+1):\n for l, r in S:\n DP[i] += (DP[max(i-r, 0)] - DP[max(i-l-1, 0)])%998244353\n DP[i] += DP[i-1]\n\nprint(DP[N]%998244353)', 'N, K = map(int, input().split())\n\nDP = [0]*(N+1)\nDP[1] = 1\n\nS = []\nfor i in range(K):\n S.append(list(map(int, input().split())))\n\nS.sort()\n\nfor i in range(2, N+1):\n for l, r in S:\n if 0 <= i - r <= N and 0 <= i - l - 1 <= N:\n DP[i] = (DP[i-r] - DP[i-l-1])%998244353\n DP[i] += DP[i-1]\n\nprint(DP[N]%998244353)', 'N, K = map(int, input().split())\n\nDP = [0]*(N+1)\nDP[1] = 1\n\nS = []\nfor i in range(K):\n S.append(list(map(int, input().split())))\n\nfor i in range(2, N+1):\n for l, r in S:\n DP[i] += (DP[max(i-l, 0)] - DP[max(i-r-1, 0)])\n DP[i] += DP[i-1]\n DP[i] %= 998244353\n\nprint((DP[N] - DP[N-1])%998244353)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s045192540', 's187294529', 's247222194', 's291847586', 's303687949', 's990556771']
[13768.0, 16840.0, 19732.0, 20024.0, 19400.0, 16900.0]
[1061.0, 1092.0, 1178.0, 1162.0, 724.0, 1121.0]
[298, 302, 289, 289, 334, 314]
p02549
u686230543
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['import numpy as np\n\nmod = 998244353\nn, k = map(int, input().split())\nleft = []\nright = []\nfor _ in range(k):\n l, r = map(int, input().split())\n left.append(l)\n right.append(r)\ndp = np.zeros(n+1, dtype=np.int)\ndp[1] = 1\nfor i in range(2, n+1):\n for j in range(k):\n dp[i] += dp[max(0, i - left[j])] - dp[max(0, i - right[j] - 1)]\n dp[i] %= mod\n dp[i] = (dp[i-1] + dp[i]) % mod\nprint((dp[n] - dp[n-1]) % mod)', 'import numpy as np\n\nmod = 998244353\nn, k = map(int, input().split())\nleft = []\nright = []\nfor _ in range(k):\n l, r = map(int, input().split())\n left.append(l)\n right.append(r)\ndp = np.zeros(n, dtype=np.int)\ndp[0] = 1\nfor i in range(n-1):\n for j in range(k):\n dp[i + left[j] : i + right[j] + 1] += dp[i]\n dp[i + left[j] : i + right[j] + 1] %= mod\nprint(dp[-1])', 'mod = 998244353\nn, k = map(int, input().split())\nleft = []\nright = []\nfor _ in range(k):\n l, r = map(int, input().split())\n left.append(l)\n right.append(r)\ndp = [0] * (n + 1)\ndp[1] = 1\nfor i in range(2, n+1):\n for j in range(k):\n dp[i] += dp[max(0, i - left[j])] - dp[max(0, i - right[j] - 1)]\n dp[i] %= mod\n dp[i] = (dp[i-1] + dp[i]) % mod\nprint((dp[n] - dp[n-1]) % mod)']
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
['s407253943', 's834274718', 's703775323']
[28236.0, 28388.0, 16780.0]
[2206.0, 2206.0, 1453.0]
[416, 369, 382]
p02549
u719840207
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['root=[]\nn,k = map(int,input().split())\nfor i in range(k):\n x,y = map(int,input().split())\n root.append([x,y])\n\ntoori=[0]*(2*10**5)+[0]*n+[0]*(2*10**5)\ntoori[2*10**5]=1\ncum=[0]*k\nfor a,i in enumerate (root):\n s=0\n for j in range (i[0],i[1]+1):\n s+=toori[2*10**5+1-j]\n cum[a]=s\naaa=sum(cum)\ntoori[2*10**5+1]+=aaa', 'root=[]\nn,k = map(int,input().split())\nfor i in range(k):\n x,y = map(int,input().split())\n root.append([x,y])\n\ntoori=[0]*(2*10**5)+[0]*n+[0]*(2*10**5)\ntoori[2*10**5]=1\ncum=[0]*k\nfor a,i in enumerate (root):\n s=0\n for j in range (i[0],i[1]+1):\n s+=toori[2*10**5+1-j]\n cum[a]=s\naaa=sum(cum)%998244353\ntoori[2*10**5+1]+=aaa\n\n\nfor now in range(2,n):\n hueru=0\n for a,i in enumerate (root):\n hueru+=(toori[2*10**5+now-i[0]] - toori[2*10**5+now-1-i[1]])\n aaa+=hueru\n aaa%=998244353\n toori[2*10**5+now]+=aaa\n toori[2*10**5+now]%=998244353\n \n\n\nprint(toori[2*10**5+n-1]%998244353)']
['Wrong Answer', 'Accepted']
['s550646818', 's944369894']
[18236.0, 21516.0]
[61.0, 773.0]
[332, 639]
p02549
u736470924
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['def resolve():\n n, k = map(int, input().split())\n S = []\n for _ in range(k):\n l1, r1 = map(int, input().split())\n S.append(l1)\n S.append(r1)\n S = list(set(S))\n\n dp = [[0 for i in range(n + 1)] for j in range(len(S) + 1)]\n for i in range(len(S) + 1):\n dp[i][1] = 1\n for i in range(1, len(S) + 1):\n for j in range(2, n + 1):\n if j - S[i - 1] >= 0 and dp[i][j - S[i - 1]] > 0:\n dp[i][j] = dp[i][j - S[i - 1]] + dp[i - 1][j]\n else:\n dp[i][j] = dp[i - 1][j]\n\n print(dp[-1][n])\n\nresolve()', 'def resolve():\n n, k = map(int, input().split())\n S = []\n for _ in range(k):\n l1, r1 = map(int, input().split())\n S.append(l1)\n S.append(r1)\n S = list(set(S))\n\n dp = [[0 for i in range(n + 1)] for j in range(len(S) + 1)]\n for i in range(len(S) + 1):\n dp[i][1] = 1\n for i in range(1, len(S) + 1):\n for j in range(2, n + 1):\n if j - S[i - 1] >= 0 and dp[i][j - S[i - 1]] > 0:\n dp[i][j] = dp[i][j - S[i - 1]] + dp[i - 1][j]\n else:\n dp[i][j] = dp[i - 1][j]\n\n print(dp[-1][n] % 998244353)\n\nresolve()\n', 'def resolve():\n n, k = map(int, input().split())\n S = []\n L, R = [], []\n for _ in range(k):\n l1, r1 = map(int, input().split())\n L.append(l1)\n R.append(r1)\n\n dp = [0 for i in range(n + 1)]\n dpsum = [0 for i in range(n + 1)]\n dp[1] = 1\n dpsum[1] = 1\n for i in range(2, n + 1):\n for j in range(k):\n Li = i - R[j]\n Ri = i - L[j]\n if Ri < 0:\n continue\n Li = max(1, Li)\n dp[i] += dpsum[Ri] - dpsum[Li - 1] # dp[Li] ~ dp[Ri]\n dp[i] %= 998244353\n\n dpsum[i] = (dpsum[i - 1] + dp[i]) % 998244353\n\n print(dp[n])\n\nresolve()']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s598533061', 's866113129', 's064404608']
[58604.0, 58792.0, 24412.0]
[1077.0, 1075.0, 667.0]
[593, 606, 660]
p02549
u759412327
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['N,K = map(int,input().split())\nLR = [list(map(int,input().split())) for k in range(K)]\n\ndp = (3*N)*[0]\ndp[0] = 1\ndp[1] = -1\n\nfor n in range(N):\n for L,R in LR:\n dp[L+n]+=dp[n]\n dp[n+R+1]-=dp[n]\n dp[n+1] = (dp[n]+dp[n+1])%998244353\n\nprint(dp[N-1])', 'from numpy import *\nN,K = map(int,input().split())\nLR = [list(map(int,input().split())) for k in range(K)]\nD = (N+2)*[0]\ndp = (N+1)*[0]\ndp[1] = 1\nmod = 998244353\n\nfor L,R in LR:\n D[L]+=1\n D[R+1]-=1\n\nD = cumsum(D)\n\nfor i in range(1,N+1):\n for j in range(1,i):\n if D[j]==1:\n dp[i] = (dp[i]+dp[i-j])%mod\n\nprint(dp)', 'N,K = map(int,input().split())\nLR = [list(map(int,input().split())) for k in range(K)]\n\ndp = (3*N)*[0]\ndp[0] = 1\ndp[1] = -1\n\nfor n in range(N):\n for L,R in LR:\n dp[L+n]+=dp[n]\n dp[n+R+1]-=dp[n]\n dp[n+1] = (dp[n]+dp[n+1])%998244353\n\nprint(dp[N-1])']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s035350556', 's568123396', 's976971097']
[26164.0, 32868.0, 26036.0]
[1375.0, 2207.0, 817.0]
[256, 322, 254]
p02549
u763550415
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['N, K = map(int, input().split())\nS = []\n\nfor _ in range(K):\n L, R = map(int, input().split())\n S.extend(range(L,R+1))\n \nprint(S)\n\n\nDP =[0]*N\nDP[0] = 1\n\nfor i in range(1,N):\n for j in S:\n if i >= j:\n DP[i] += DP[i-j]\n \nprint(DP[-1]%998244353)', 'N, K = map(int, input().split())\n\nL = []\nR = []\n\nfor _ in range(K):\n l, r = map(int, input().split())\n L.append(l)\n R.append(r)\n \ndp = [0]*(N+5)\ndp[1] = 1\n\nfor i in range(2, N+1):\n dp[i] = dp[i-1]\n for j in range(K):\n if i-L[j] >= 0:\n dp[i] += dp[i-L[j]]\n if i-R[j]-1 >= 0:\n dp[i] -= dp[i-R[j]-1]\n dp[i] %= 998244353\n \nprint((dp[N]-dp[N-1])%998244353)']
['Wrong Answer', 'Accepted']
['s749710979', 's058759485']
[19488.0, 16848.0]
[2206.0, 1045.0]
[258, 379]
p02549
u802180430
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['n,k = tuple(map(int,input().split()))\nboolean = [False for _ in range(n+1)]\nfor _ in range(k):\n l,r = tuple(map(int,input().split()))\n for num in range(l,r+1):\n boolean[num] = True;\nFINAL = [i for i in range(len(boolean)) if boolean[i]]\ndp = [0 for _ in range(n+1)]\nfor i in range(2,n+1):\n for lower in FINAL: #optimized!\n if boolean[lower]: #start + lower\n start = i - lower\n if start >= 1:\n \tdp[i]+= dp[start]\nprint(dp[n]%998244353)', 'n,k = tuple(map(int,input().split()))\nboolean = [False for _ in range(n+1)]\nfor _ in range(k):\n l,r = tuple(map(int,input().split()))\n for num in range(l,r+1):\n boolean[num] = True;\ndp = [0 for _ in range(n+1)]\nfor i in range(2,n+1):\n for lower in range(1,i):\n if boolean[lower]: #start + lower\n start = i - lower\n dp[i]+= dp[start]\nprint(dp[n]%998244353)\n \n', "'''go to every index and then run a index - 1 to 1 for it and check whether the proposed number lies somewhere or not'''\nn,k = tuple(map(int,input().split()))\nboolean = [False]*n\nfor _ in range(k):\n l,r = tuple(map(int,input().split()))\n for num in range(l,r+1):\n boolean[num] = True;\ndp = [0 for _ in range(n+1)]\nboolean = [False for _ in range(n+1)]\nfor i in range(2,n+1):\n for lower in range(1,i):\n if boolean[lower]:\n \tstart = i - lower\n dp[i] += dp[start]\nprint(dp[n])\n ", 'MOD = 998244353\nN, K = map(int, input().split())\nLR = [tuple(map(int, input().split())) for i in range(K)]\n \ndp = [0] * (N+1)\ndp[1] = 1 #ok\nfor i in range(1, N):\n dp[i] += dp[i-1] #as min k = 1, so carry this on to the next\n dp[i] %= MOD\n for l, r in LR:\n ll = i + l\n rr = i + r\n if ll <= N:\n dp[ll] += dp[i] #yes ll is accesible\n dp[ll] %= MOD\n if rr < N:\n dp[rr+1] -= dp[i] #not accessible and will get cancelled out when we take prefix sum\n dp[rr+1] %= MOD\n \nprint(dp[-1])']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s186051921', 's314456877', 's921173046', 's910886078']
[19840.0, 12212.0, 9060.0, 16808.0]
[2206.0, 2206.0, 31.0, 1129.0]
[460, 381, 497, 521]
p02549
u811436126
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['import numpy as np\n\nn, k = map(int, input().split())\ns = [list(map(int, input().split())) for _ in range(k)]\nmod = 998244353\n\ns.sort()\n\ndp = np.zeros(n * 2)\ndp[1] = 1\n\nfor i in range(1, n):\n for l, r in s:\n dp[i + l:i + r + 1] += dp[i]\n dp[i + l:i + r + 1] %= mod\n\nprint(dp[n] % mod)\n', 'n, k = map(int, input().split())\nmod = 998244353\nlr = [list(map(int, input().split())) for _ in range(k)]\n\ndp = [0] * (n + 10)\ndp[1] = 1\ncumsum = [0] * (n + 10)\ncumsum[1] = 1\n\nfor i in range(2, n + 1):\n for l, r in lr:\n if l >= i:\n continue\n\n ll = max(1, i - r)\n rr = i - l\n dp[i] += cumsum[rr] - cumsum[ll - 1]\n dp[i] %= mod\n cumsum[i] = cumsum[i - 1] + dp[i]\n cumsum[i] %= mod\n\nprint(dp[n] % mod)\n']
['Wrong Answer', 'Accepted']
['s453202053', 's804689381']
[28404.0, 24556.0]
[2206.0, 836.0]
[301, 454]
p02549
u851125702
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['N,K=map(int,input().split())\nx=998244353\nS=[]\nfor i in range(K):\n l,r=map(int,input().split())\n S.append(l)\n S.append(r)\nS=list(set(S))\ndp=[0 for i in range(N)]\nprint(S)\nfor i in range(N):\n for j in range(len(S)):\n if(i-S[j]>0):\n dp[i]+=dp[i-S[j]]\n dp[i]=dp[i]%x\n elif(i-S[j]==0):\n dp[i]+=1\n dp[i]=dp[i]%x\nprint(dp)', 'N,K=map(int,input().split())\nx=998244353\ndp=[0 for i in range(N)]\nsdp=[0 for i in range(N)]\nL=[]\nR=[]\ndp[0]=1\nsdp[0]=1\nfor i in range(K):\n l,r=map(int,input().split())\n L.append(l)\n R.append(r) \nfor i in range(1,N):\n for j in range(K):\n dp[i]+=(sdp[max(i-L[j],-1)]-sdp[max(i-R[j]-1,-1)])\n dp[i]%=x\n sdp[i]=(sdp[i-1]+dp[i])%x\nprint(dp[-1]%x)']
['Wrong Answer', 'Accepted']
['s795327876', 's309685160']
[20488.0, 24592.0]
[1208.0, 1458.0]
[385, 369]
p02549
u860002137
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['n, k = map(int, input().split())\nMOD = 998244353\n\nlr = []\nfor _ in range(k):\n l, r = map(int, input().split())\n lr += (list(range(l, r + 1)))\n\nlr.sort()\nlr = np.array(lr)\n\ndp = np.zeros(n + n, dtype=np.int64)\ndp[0] = 1\ndp2 = dp.copy()\n\nfor i in range(n):\n idx = i + lr\n dp2[idx] += dp[i]\n dp2 %= MOD\n dp = dp2\n\nprint(dp[n - 1])', 'def solve(l, r, i):\n if i - l < 1:\n return 0\n return dp[i - l] - dp[max(i - r - 1, 0)]\n\n\nn, k = map(int, input().split())\nlr = [list(map(int, input().split())) for _ in range(k)]\nMOD = 998244353\n\ndp = [0] * (n + 1)\ndp[1] = 1\n\nfor i in range(2, n + 1):\n tmp = 0\n for l, r in lr:\n tmp += solve(l, r, i)\n tmp = tmp % MOD\n dp[i] = (dp[i - 1] + tmp) % MOD\n\nprint(tmp)']
['Runtime Error', 'Accepted']
['s585987516', 's192029489']
[18272.0, 16712.0]
[34.0, 765.0]
[345, 394]
p02549
u894521144
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
["mod = 998244353\n\n\ndef main(N, S):\n dp = [0 if n != 0 else 1 for n in range(N)] \n A = [0 if n != 0 else 1 for n in range(N)] \n\n for i in range(1, N): \n for l, r in S: \n if i - l < 0: \n break\n else: \n dp[i] += A[i-l] - A[max(i-r-1, 0)] \n dp[i] %= mod\n A[i] = (A[i-1] + dp[i]) % mod\n print(dp, A)\n\nif __name__ == '__main__':\n N, K = list(map(int, input().split()))\n S = {tuple(map(int, input().split())) for k in range(K)}\n S = sorted(list(S), key = lambda x:x[0]) \n main(N, S)", "mod = 998244353\n\n\ndef main(N, S):\n dp = [0 if n != 0 else 1 for n in range(N)] \n A = [0 if n != 0 else 1 for n in range(N)] \n\n for i in range(1, N): \n for l, r in S: \n if i - l < 0: \n break\n else: \n dp[i] += A[i-l] - A[max(i-r-1, 0)] \n dp[i] %= mod\n A[i] = (A[i-1] + dp[i]) % mod\n print(dp[-1])\n\nif __name__ == '__main__':\n N, K = list(map(int, input().split()))\n S = {tuple(map(int, input().split())) for k in range(K)}\n S = sorted(list(S), key = lambda x:x[0]) \n main(N, S)", "mod = 998244353\n\n\n\n\ndef main(N, S):\n dp = [0 if n != 0 else 1 for n in range(N)] \n A = [0 if n != 0 else 1 for n in range(N)] \n\n for i in range(1, N): \n for l, r in S: \n if i - l < 0: \n break\n else: \n if i - r <= 0: \n dp[i] += A[i-l]\n else:\n dp[i] += A[i-l] - A[i-r-1]\n dp[i] %= mod\n A[i] = (A[i-1] + dp[i]) % mod\n print(dp[-1])\n\nif __name__ == '__main__':\n N, K = list(map(int, input().split()))\n S = {tuple(map(int, input().split())) for k in range(K)}\n S = sorted(list(S), key = lambda x:x[0]) \n main(N, S)"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s329572017', 's996267709', 's963015996']
[13416.0, 12228.0, 24652.0]
[478.0, 456.0, 425.0]
[1347, 1348, 1618]
p02549
u903005414
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
["from numba import jit\n\nimport sys\nsys.setrecursionlimit(10**9)\n\nN, K = map(int, input().split())\nS = set()\n\nMOD = 998244353\nfor _ in range(K):\n L, R = map(int, input().split())\n S |= set(range(L, R + 1))\n# print(f'{S=}')\n\nDP = [-1] * (N + 1)\nDP[0] = 0\nDP[1] = 1\n\n\n@njit\ndef f(idx):\n ans = 0\n for s in S:\n if idx - s < 0:\n continue\n if DP[idx - s] == -1:\n DP[idx - s] = f(idx - s)\n ans += DP[idx - s]\n return ans % MOD\n\n\nans = f(N)\n# print(f'{DP=}')\nprint(ans)\n", "from numba import njit\n\nimport sys\nsys.setrecursionlimit(10**9)\n\nN, K = map(int, input().split())\nS = set()\n\nMOD = 998244353\nfor _ in range(K):\n L, R = map(int, input().split())\n S |= set(range(L, R + 1))\n# print(f'{S=}')\n\nDP = [-1] * (N + 1)\nDP[0] = 0\nDP[1] = 1\n\n\n@njit\ndef f(idx):\n ans = 0\n for s in S:\n if idx - s < 0:\n continue\n if DP[idx - s] == -1:\n DP[idx - s] = f(idx - s)\n ans += DP[idx - s]\n return ans % MOD\n\n\nans = f(N)\n# print(f'{DP=}')\nprint(ans)\n", "N, K = map(int, input().split())\nMOD = 998244353\nLR = []\nfor _ in range(K):\n L, R = map(int, input().split())\n LR.append((L, R))\n# print(f'{LR=}')\n\nDP = [0] * (N + 1)\nDP[1] = 1\nS = [0] * (N + 1)\n\nfor i in range(1, len(DP)):\n for L, R in LR:\n v = S[max(i - L, 0)] - S[max(i - R - 1, 0)]\n DP[i] += v\n DP[i] %= MOD\n S[i] = (S[i - 1] + DP[i]) % MOD\n\n# print(f'{DP=}')\n# print(f'{S=}')\nprint(DP[-1])\n"]
['Runtime Error', 'Runtime Error', 'Accepted']
['s418195130', 's563659136', 's638989403']
[114756.0, 131344.0, 24592.0]
[435.0, 1734.0, 1197.0]
[518, 519, 424]
p02549
u923270446
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['mod = 998244353\nn, k = map(int, input().split())\nlr = [list(map(int, input().split())) for i in range(k)]\ndp = [0 for i in range(n + 1)]\ndp[0] = 1\ncum = [0, 1]\ncur = [0 for i in range(k)]\nfor i in range(1, n + 1):\n cnt = 0\n for j in range(k):\n r = (i - (lr[j][1] - lr[j][0] + 1))\n l = r - (lr[j][1] - lr[j][0])\n print(l, r, cum)\n if l <= 0:\n continue\n cnt += cum[r] - cum[l - 1]\n dp[i] = dp[i - 1] + cnt\n cum.append(cnt + cum[-1])\nprint(dp[n])', 'mod = 998244353\nn, k = map(int, input().split())\nlr = [list(map(int, input().split())) for i in range(k)]\nfor i in range(k):\n lr[i][1] += 1\ndp = [0] * n\ndp[0] = 1\nfor i in range(1, n):\n dp[i] += dp[i - 1]\n if i == 1:\n dp[1] = 0\n for l, r in lr:\n if i - l >= 0:\n dp[i] += dp[i - l]\n if i - r >= 0:\n dp[i] -= dp[i - r]\n dp[i] %= mod\nprint(dp[n - 1])']
['Runtime Error', 'Accepted']
['s265789382', 's636763265']
[141908.0, 16880.0]
[2537.0, 658.0]
[501, 405]
p02549
u936985471
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['import sys\nreadline=sys.stdin.readline\n\nimport numpy as np\nfrom numba import njit,i8\n\nN,K=map(int,readline().split())\nDIV = 998244353\nsteps = []\nfor i in range(K):\n l,r = map(int,readline().split())\n for j in range(l, r + 1):\n steps.append(j)\n \nsteps = sorted(steps)\nsteps = np.array(steps, dtype = int)\n\n@njit(i8(i8[:]),cache = True)\ndef solve(steps):\n dp = np.zeros(N, dtype = int)\n dp[0] = 1\n for i in range(len(dp)):\n for s in steps:\n if i + s >= len(dp):\n break\n dp[i + s] += dp[i]\n dp[i + s] %= DIV\n \n return dp[-1]\n\nprint(solve())\n', 'import sys\nreadline = sys.stdin.readline\n\nN,K = map(int,readline().split())\nDIV = 998244353\n\nL = [None] * K\nR = [None] * K\nfor i in range(K):\n L[i],R[i] = map(int,readline().split())\n\ndp = [0] * (N + 1)\nsdp = [0] * (N + 1)\ndp[1] = 1\nsdp[1] = 1\n \nfor i in range(2, len(dp)):\n for j in range(K):\n li = max(i - R[j], 0)\n ri = i - L[j]\n if ri < 0:\n continue\n dp[i] += (sdp[ri] - sdp[li - 1])\n dp[i] %= DIV\n sdp[i] = sdp[i - 1] + dp[i]\n sdp[i] %= DIV\n \nprint(dp[N])']
['Runtime Error', 'Accepted']
['s323945188', 's229097696']
[108056.0, 24396.0]
[1919.0, 1032.0]
[580, 486]
p02549
u942051624
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['import collections\nimport math\nimport sys\nsys.setrecursionlimit(10**7)\ninf=998244353\n\n\nN,K=map(int,input().split())\nSS=[]\n\nfor i in range(K):\n s1,s2=map(int,input().split())\n for j in range(s1,s2+1):\n SS.append(j)\n\n# Driver program to test above function \n\ntable = [0 for k in range(N-1)] \n\nfor s in SS:\n if s<N-1:\n table[s-1]+=1\nfor i in range(0,N-1):\n for s in SS:\n if i+s<N-1:\n table[i+s]+=table[i]\n table[i+s]%=inf\nprint(table[-1]%inf)\n', 'inf=998244353\n\n\nN,K=map(int,input().split())\nSS=[list(map(int,input().split())) for i in range(K)]\n\nSS.sort()\n\ntable = [0 for k in range(N)] \ndiff = [0 for k in range(N-1)]\n\ntable[0]=1\ndiff[0]=-1\n\nfor i in range(N-1):\n if table[i]!=0:\n for s in SS:\n lef=s[0]\n rig=s[1]\n if i+lef-1<N-1:\n diff[i+lef-1]+=table[i]\n if i+rig<N-1:\n diff[i+rig]-=table[i]\n table[i+1]=table[i]+diff[i]\n table[i+1]%=inf\n\nprint(table[N-1])']
['Wrong Answer', 'Accepted']
['s098398357', 's942076593']
[25140.0, 25180.0]
[2206.0, 982.0]
[495, 503]
p02549
u945228737
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
["# import sys\n\n\n# from collections import deque\n# from decorator import stop_watch\n# \n# \n# @stop_watch\ndef solve(N, K, LR):\n mod = 998244353\n S = []\n for lr in LR:\n S += [i for i in range(lr[0], lr[1] + 1)]\n S.sort()\n dp = [0] * (N + 1)\n dp[1] = 1\n for i in range(1, N + 1):\n for s in S:\n if i + s > N:\n break\n dp[i + s] = (dp[i + s] + dp[i]) % mod\n print(dp[N])\n\n\nif __name__ == '__main__':\n # N, K = map(int, input().split())\n # LR = [[int(i) for i in input().split()] for _ in range(K)]\n # solve(N,K,LR)\n\n # test\n from random import randint\n from func import random_str\n\n N, K = 2 * 10 ** 5, 1\n LR = [[1, N]]\n solve(N, K, LR)\n", "\n\n\n\n# import sys\n\n\n# from collections import deque\n# from decorator import stop_watch\n#\n#\n# @stop_watch\ndef solve(N, K, LR):\n mod = 998244353\n dp = [0] * (N + 1)\n dp[1] = 1\n \n \n \n \n dp[2] = 1 if 1 in [lr[0] for lr in LR] else 0\n for i in range(3, N + 1):\n x = 0\n for l, r in LR:\n x += dp[max(i - l, 0)] - dp[max(i - 1 - r, 0)]\n dp[i] = (dp[i - 1] + x) % mod\n print(dp[N])\n\n\nif __name__ == '__main__':\n N, K = map(int, input().split())\n LR = [[int(i) for i in input().split()] for _ in range(K)]\n solve(N, K, LR)\n\n # # test\n # from random import randint\n # from func import random_str\n # N, K = 2 * 10 ** 5, 1\n # LR = [[1, N]]\n # solve(N, K, LR)\n"]
['Runtime Error', 'Accepted']
['s874144801', 's626452461']
[9524.0, 16828.0]
[27.0, 818.0]
[777, 2056]
p02549
u960237860
2,000
1,048,576
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non- intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r. * When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
['N, K = map(int, input().split())\nS = []\nfor i in range(K):\n L, R = map(int, input().split())\n S += list(range(L, R+1))\n\ndp = [0] * N\ndp[0] = 1\n\nS.sort()\n\nfor i in range(1, N):\n for s in S:\n if i - s < 0:break\n dp[i] = (dp[i] + dp[i - s]) % 998244353\n\nprint(dp)\n\nprint(dp[-1])', 'mod = 998244353\nN, K = map(int, input().split())\n\nS = []\nfor i in range(K):\n L, R = map(int, input().split())\n S.append((L, R))\n\ndp = [0] * (N+1)\ndpsum = [0] * (N+1)\ndp[1] = 1\ndpsum[1] = 1\n\nfor i in range(2, N+1):\n for s in S:\n l = i - s[1]\n r = i - s[0]\n if r < 1:continue\n l = max(1, l)\n\n dp[i] += dpsum[r] - dpsum[l-1]\n dp[i] %= mod\n\n dpsum[i] = (dpsum[i-1] + dp[i]) % mod\n\nprint(dp[-1])\n']
['Wrong Answer', 'Accepted']
['s797528276', 's934468718']
[18928.0, 24356.0]
[2206.0, 932.0]
[298, 445]
p02550
u056358163
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\n\nans = X\nx = X\n\nC = [0, x]\nXd = [-1] * (M+1)\nXd[x] = 0\nXl = [x]\n\nfor i in range(1, N):\n x = x**2 % M\n\n if Xd[x] > -1:\n break\n Xd[x] = i\n Xl.append(x)\n ans += x\n C.append(ans)', 'N, X, M = map(int, input().split())\n\nans = 0\nC = [0]\nXd = [-1] * (M+1)\n\nfor i in range(N):\n x = X if i==0 else x**2 % M\n \n if Xd[x] > -1:\n break\n Xd[x] = i\n ans += x\n C.append(ans)\n\nloop_len = i - Xd[x]\nif loop_len > 0:\n S = C[i] - C[Xd[x]]\n loop_num = (N - i) // loop_len\n ans += loop_num * S\n m = N - loop_num * loop_len - i\n ans += C[Xd[x]+m] - C[Xd[x]]\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s383852709', 's546406764']
[15664.0, 13472.0]
[64.0, 61.0]
[235, 408]
p02550
u060793972
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n,x,m=map(int,input().split())\nl=[0 for i in range(m)]\nans=0\ny=[]\ni=1\nflag=0\nys=n\nwhile i<n:\n if flag==0:\n ans+=x\n l[x]+=1\n x=x*x%m\n i+=1\n if l[x]==2 and flag==0:\n flag=1\n ys=i\n if flag:\n if l[x]==3:\n break\n y.append(x)\nif len(y):\n p,pp=divmod(n-ys,len(y))\n print(ans+p*sum(y)+sum(y[:pp+1]))\n #print(ans,p*sum(y),sum(y[:pp+1]))\nelse:\n print(ans)', 'n,x,m=map(int,input().split())\nl=[0 for i in range(m)]\nans=0\ny=[]\ni=1\nflag=0\nys=n\nwhile i<n:\n if flag==0:\n ans+=x\n l[x]+=1\n x=x*x%m\n i+=1\n if l[x]==2 and flag==0:\n flag=1\n ys=i\n if flag:\n if l[x]==3:\n break\n y.append(x)\nif len(y):\n p,pp=divmod(n-ys,len(y))\n print(ans+p*sum(y)+sum(y[:pp+1]))\n print(ans,p*sum(y),sum(y[:pp+1]))\nelse:\n print(ans)', 'n,x,m=map(int,input().split())\nl=[0 for i in range(m)]\nans=0\ny=[]\ni=1\nflag=0\nys=n\nwhile i<n+1:\n if flag==0:\n ans+=x\n l[x]+=1\n x=x*x%m\n i+=1\n if l[x]==2 and flag==0:\n flag=1\n ys=i\n if flag:\n if l[x]==3:\n break\n y.append(x)\nif len(y):\n p,pp=divmod(n-ys,len(y))\n print(ans+p*sum(y)+sum(y[:pp+1]))\n #print(ans,p*sum(y),sum(y[:pp+1]))\nelse:\n print(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s530979778', 's625113116', 's020307746']
[11784.0, 11792.0, 11872.0]
[107.0, 108.0, 107.0]
[421, 420, 423]
p02550
u095094246
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n,x,m=map(int,input().split())\n\na_i = x\nlog = [x]\napp=[-1]*m\napp[x]=0\nlast = x\nfor i in range(1,n):\n a_i = (a_i**2)%m\n if app[a_i] > -1:\n last = a_i\n break\n app[a_i] = i\n log.append(a_i)\n\n\nans = sum(log[:min(n, app[last])])\nif n > app[last]:\n \n ans += sum(log[app[last]:]) * ((n-app[last]) // (len(log) - app[last]))\n \n ans += sum(log[app[last]:app[last] + (n-app[last]) % (len(log) - app[last])])\nprint(ans)\nprint(*log)', 'n,x,m=map(int,input().split())\n\na_i = x\nlog = [x]\napp=[-1]*m\napp[x]=0\nlast = x\nfor i in range(1,n):\n a_i = (a_i**2)%m\n if app[a_i] > -1:\n last = a_i\n break\n app[a_i] = i\n log.append(a_i)\n\n\nans = sum(log[:min(n, app[last])])\nif n > app[last]:\n \n ans += sum(log[app[last]:]) * ((n-app[last]) // (len(log) - app[last]))\n \n ans += sum(log[app[last]:app[last] + (n-app[last]) % (len(log) - app[last])])\nprint(ans)']
['Wrong Answer', 'Accepted']
['s226560544', 's467751951']
[13636.0, 13660.0]
[70.0, 57.0]
[593, 581]
p02550
u133936772
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n,x,m=map(int,input().split())\nl=[-1]*m\ns=[0]*m\nt=p=0\nwhile l[x]<0:\n t+=1\n l[x]=t\n s[x]=s[p]+x\n p=x\n x=pow(p,2,m)\n print(t,x,s[p])\nT=t+1-l[x]\nprint(T)\nS=s[p]+x-s[x]\nprint(S)\nif n<l[x]:\n print(s[l.index(n)])\nelse:\n print(S*((n-l[x])//T)+s[l.index(l[x]+(n-l[x])%T)])', 'n,x,m=map(int,input().split())\nl,s=[0]*m,[0]*m\nt=p=0\nwhile l[x]<1:\n t+=1\n l[x]=t\n s[x]=s[p]+x\n p=x\n x=p*p%m\nk=l[x]\nd,m=divmod(n-k,t+1-k)\nprint((s[p]+x-s[x])*d+s[l.index(k+m)])']
['Wrong Answer', 'Accepted']
['s726054782', 's148286258']
[14028.0, 14052.0]
[123.0, 61.0]
[272, 180]
p02550
u135346354
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\ndp = [False]*(M+1)\ndp[X] = True\nS = [0]*(M+1)\nS[1] = X\ntmp = X\nfor i in range(2, M+1):\n tmp = pow(tmp, 2, M)\n if dp[tmp]:\n for j in range(i):\n if tmp == S[j]:\n break\n ans = 0\n for k in range(j, i):\n ans += S[k]\n ans *= (N-j-1)//(i-j)\n for k in range(1, j):\n ans += S[k]\n for k in range(j, j+(N-j-1)%(i-j)):\n ans += S[k]\n print(ans)\n break\n else:\n dp[tmp] = True\n S[i] = tmp\nelse:\n print(sum(S))', '\nN, X, M = map(int, input().split())\ndp = [False]*(M+1)\ndp[X] = True\nS = [0]*(M+1)\nS[1] = X\ntmp = X\nfor i in range(2, min(M+1, N+1)):\n tmp = pow(tmp, 2, M)\n if dp[tmp]:\n for j in range(1, i):\n if tmp == S[j]:\n break\n ans = 0\n for k in range(j, i):\n ans += S[k]\n ans *= (N-j+1)//(i-j)\n for k in range(1, j):\n ans += S[k]\n for k in range(j, j+(N-j+1)%(i-j)):\n ans += S[k]\n print(ans)\n break\n else:\n dp[tmp] = True\n S[i] = tmp\nelse:\n print(sum(S))']
['Wrong Answer', 'Accepted']
['s396719153', 's405049806']
[11964.0, 11916.0]
[79.0, 90.0]
[571, 585]
p02550
u137542041
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\n\nnxt = X\nlst = []\ndic = {}\n\nfor i in range(M):\n if nxt in dic:\n loop_st = dic[nxt]\n loop_ed = i - 1\n break\n\n lst.append(nxt)\n dic[nxt] = i\n\n nxt = (nxt ** 2) % M\n\n\nv = N - loop_st\nq, r = divmod(v, loop_ed - loop_st + 1)\n\npre_sum = sum(lst[:loop_st])\nloop_sum = q * sum(lst[loop_st:])\npost_sum = sum(lst[loop_st:loop_st + r])\n', 'N, X, M = map(int, input().split())\n\nnxt = X\nlst = []\ndic = {}\n\nfor i in range(M + 1):\n if nxt in dic:\n loop_st = dic[nxt]\n loop_ed = i - 1\n break\n\n lst.append(nxt)\n dic[nxt] = i\n\n nxt = (nxt ** 2) % M\n\n\nv = N - loop_st\nq, r = divmod(v, loop_ed - loop_st + 1)\n\npre_sum = sum(lst[:loop_st])\nloop_sum = q * sum(lst[loop_st:])\npost_sum = sum(lst[loop_st:loop_st + r])\nprint(pre_sum + loop_sum + post_sum)\n']
['Runtime Error', 'Accepted']
['s422199072', 's533174953']
[15704.0, 15728.0]
[58.0, 63.0]
[394, 435]
p02550
u156815136
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
["#from statistics import median\n#import collections\n\nfrom math import gcd\nfrom itertools import combinations,permutations,accumulate, product \n#from collections import deque\nfrom collections import deque,defaultdict,Counter\nimport decimal\nimport re\nimport math\nimport bisect\nimport heapq\n#\n#\n#\n\n#\n#\n# my_round_int = lambda x:np.round((x*2 + 1)//2)\n\n#\n\n\n\n#\n#\nimport sys\nsys.setrecursionlimit(10000000)\nmod = 10**9 + 7\n#mod = 9982443453\n#mod = 998244353\nINF = float('inf')\nfrom sys import stdin\nreadline = stdin.readline\ndef readInts():\n return list(map(int,readline().split()))\ndef readTuples():\n return tuple(map(int,readline().split()))\ndef I():\n return int(readline())\nn,x,m = readInts()\nlis = []\nprv = None\ndic = defaultdict(int)\nfor i in range(m):\n if i == 0:\n A = x%m\n lis.append(A)\n dic[A] = 1\n else:\n A = (A*A)%m\n if dic[A]:\n prv = A\n break\n else:\n dic[A] = 1\n lis.append(A)\ncnt = None\nfor i in range(len(lis)):\n if lis[i] == prv:\n cnt = i\n break\nif cnt == None:\n cnt = len(lis)\n# front_arr = lis[:cnt]\n# print(lis)\n# loop_arr = lis[cnt:]\n# print(loop_arr)\nif x == 0:\n print(0)\n exit()\nlen_loop_arr = len(loop_arr)\nif n < cnt:\n ans = sum(front_arr[:n])\nelse:\n ans = sum(front_arr)\n sum_loop_arr = sum(loop_arr)\n n -= cnt\n\n loop = n//len_loop_arr\n rest = n - (loop*len_loop_arr)\n mid = loop * sum_loop_arr\n ans += mid\n ans += sum(loop_arr[:rest])\nprint(ans)\n", "#from statistics import median\n#import collections\n\nfrom math import gcd\nfrom itertools import combinations,permutations,accumulate, product \n#from collections import deque\nfrom collections import deque,defaultdict,Counter\nimport decimal\nimport re\nimport math\nimport bisect\nimport heapq\n#\n#\n#\n\n#\n#\n# my_round_int = lambda x:np.round((x*2 + 1)//2)\n\n#\n\n\n\n#\n#\nimport sys\nsys.setrecursionlimit(10000000)\nmod = 10**9 + 7\n#mod = 9982443453\n#mod = 998244353\nINF = float('inf')\nfrom sys import stdin\nreadline = stdin.readline\ndef readInts():\n return list(map(int,readline().split()))\ndef readTuples():\n return tuple(map(int,readline().split()))\ndef I():\n return int(readline())\nn,x,m = readInts()\nlis = []\nprv = None\ndic = defaultdict(int)\nfor i in range(m):\n if i == 0:\n A = x%m\n lis.append(A)\n dic[A] = 1\n else:\n A = (A*A)%m\n if dic[A]:\n prv = A\n break\n else:\n dic[A] = 1\n lis.append(A)\ncnt = None\nfor i in range(len(lis)):\n if lis[i] == prv:\n cnt = i\n break\nif cnt == None:\n cnt = len(lis)\nfront_arr = lis[:cnt]\nloop_arr = lis[cnt:]\nif x == 0:\n print(0)\n exit()\nlen_loop_arr = len(loop_arr)\nif n < cnt:\n ans = sum(front_arr[:n])\nelse:\n ans = sum(front_arr)\n sum_loop_arr = sum(loop_arr)\n n -= cnt\n\n loop = n//len_loop_arr\n rest = n - (loop*len_loop_arr)\n mid = loop * sum_loop_arr\n ans += mid\n ans += sum(loop_arr[:rest])\nprint(ans)\n"]
['Runtime Error', 'Accepted']
['s414962845', 's163659653']
[15616.0, 15580.0]
[63.0, 68.0]
[1852, 1817]
p02550
u159723084
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['# -*- coding: utf-8 -*-\n\nN,X,M=map(int,input().split())\n\nA=[0]*M\nA[0]=X\nD=[0]*M\n\ns=N\nfor i in range(1,N):\n a=A[i-1]**2%M\n if D[a] == 1:\n s=A.index(a)\n break\n else:\n A[i]=a\n D[a]=1\n\nif s==N:\n ans=sum(A[:i])\nelse:\n A=A[:i]\n \n ans=0\n l=len(A)-s\n ans+=sum(A[:s])\n S=sum(A[s:])\n T=(N-s)//l\n ans+=T*S\n K=N-s-l*T\n ans+=sum(A[s:(s+K)])\n\n\nprint(ans)\n', '# -*- coding: utf-8 -*-\n\nN,X,M=map(int,input().split())\n\nA=[0]*(M+1)\nA[0]=X\nD=[0]*(M+1)\n\ns=N\nfor i in range(1,N):\n a=A[i-1]**2%M\n if D[a] == 1:\n s=A.index(a)\n break\n else:\n A[i]=a\n D[a]=1\n\nif s==N:\n ans=sum(A)\nelse:\n A=A[:i]\n \n ans=0\n l=len(A)-s\n ans+=sum(A[:s])\n S=sum(A[s:])\n T=(N-s)//l\n ans+=T*S\n K=N-s-l*T\n ans+=sum(A[s:(s+K)])\n\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s266576924', 's320327037']
[12368.0, 12152.0]
[60.0, 55.0]
[411, 415]
p02550
u202560873
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = [int(x) for x in input().split()]\ncopy = M\n\nk = 0\nwhile M % 2 == 0:\n k += 1\n M = M // 2\nL = M\n\norder = 1\nif L != 1:\n e = 2 % L\n while e != 1:\n order += 1\n e = (2 * e) % L\n\nA = [0] * (k + order)\nA[1] = X\nfor i in range(2, k + order):\n A[i] = (A[i - 1] * A[i - 1]) % copy\n\nS = sum(A[k:])\nans = 0\nif N < k:\n ans = sum(A[1:N + 1])\nelse:\n q, r = (N - k - 1) // order, (N - k - 1) % order\n ans = sum(A[1:k]) + S * q + sum(A[k:k + r])\n\nprint(ans)', 'N, X, M = [int(x) for x in input().split()]\n\nA = [0] * (M + 1)\nfirstApearAt = {i:0 for i in range(M)}\nA[1] = X\nfirstApearAt[X] = 1\nl, r = 1\nfor i in range(2, M + 1):\n A[i] = (A[i - 1] * A[i - 1]) % M\n if firstApearAt[A[i]] > 0:\n r = i\n l = firstApearAt[A[i]]\n break\n firstApearAt[A[i]] = i\n\nans = 0\nif N <= l - 1:\n ans = sum(A[1:N + 1])\nelse:\n q, p = (N - l + 1) // (r - l), (N - l + 1) % (r - l)\n ans = sum(A[1:l]) + q * sum(A[l:r]) + sum(A[l:l + p])\n\nprint(ans)', 'N, X, M = [int(x) for x in input().split()]\ncopy = M\n\nk = 0\nwhile M % 2 == 0:\n k += 1\n M = M // 2\nL = M\n\norder = 1\nif L != 1:\n e = 2 % L\n while e != 1:\n order += 1\n e = (2 * e) % L\n\nA = [0] * (k + order)\nA[1] = X\nfor i in range(2, k + order + 1):\n A[i] = (A[i - 1] * A[i - 1]) % copy\n\nS = sum(A[k:])\nans = 0\nif N < k:\n ans = sum(A[1:N + 1])\nelse:\n q, r = (N - k - 1) // order, (N - k - 1) % order\n ans = sum(A[1:k]) + S * q + sum(A[k:k + r])\n\nprint(ans)', 'N, X, M = [int(x) for x in input().split()]\ncopy = M\n\nk = 0\nwhile M % 2 == 0:\n k += 1\n M = M // 2\nL = M\n\norder = 1\nif L != 1:\n e = 2 % L\n while e != 1:\n order += 1\n e = (2 * e) % L\n\nA = [None] * (k + order)\nA[1] = X\nfor i in range(2, k + order + 1):\n A[i] = (A[i - 1] * A[i - 1]) % copy\n\nS = sum(A[k:])\nans = 0\nif N < k:\n ans = sum(A[1:N + 1])\nelse:\n q, r = (N - k - 1) // order, (N - k - 1) % order\n ans = sum(A[1:k]) + S * q + sum(A[k:k + r])\n\nprint(ans)', 'N, X, M = [int(x) for x in input().split()]\ncopy = M\n\nk = 0\nwhile M % 2 == 0:\n k += 1\n M = M // 2\nL = M\n\norder = 1\nif L != 1:\n e = 2 % L\n while e != 1:\n order += 1\n e = (2 * e) % L\n\nA = [0] * (k + order)\nA[1] = X\nfor i in range(2, k + order):\n A[i] = (A[i - 1] * A[i - 1]) % copy\n\nS = sum(A[k:])\nans = 0\nif N < k:\n ans = sum(A[1:N + 1])\nelse:\n q, r = (N - k - 1) // order, (N - k - 1) % order\n ans = sum(A[1:k]) + S * q + sum(A[k:k + r])\n\nprint(ans)', 'N, X, M = [int(x) for x in input().split()]\n\nA = [0] * (M + 1)\nfirstApearAt = {i:0 for i in range(M)}\nA[1] = X\nfirstApearAt[X] = 1\nl, r = 1, 2\nfor i in range(2, M + 1):\n A[i] = (A[i - 1] * A[i - 1]) % M\n if firstApearAt[A[i]] > 0:\n r = i\n l = firstApearAt[A[i]]\n break\n firstApearAt[A[i]] = i\n\nans = 0\nif N <= l - 1:\n ans = sum(A[1:N + 1])\nelse:\n q, p = (N - l + 1) // (r - l), (N - l + 1) % (r - l)\n ans = sum(A[1:l]) + q * sum(A[l:r]) + sum(A[l:l + p])\n\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s063855579', 's313054417', 's517170041', 's552363375', 's888515710', 's319020630']
[13508.0, 20148.0, 12800.0, 12636.0, 13428.0, 21304.0]
[78.0, 42.0, 81.0, 79.0, 87.0, 79.0]
[487, 503, 491, 494, 487, 506]
p02550
u207363774
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N,X,M = map(int,input().split())\n\nd = {X:0}\nl = [X]\ns = 0\n\nfor i in range(1,N):\n l+=[(l[i-1]**2)%M]\n if l[i] in d:\n dl = l[d[l[i]]+1:]\n s += sum(dl)*((N-i-1)//len(dl))\n if (N-i-1)%len(dl) != 0:\n s += sum(dl[0:(N-i-1)%len(dl)])\n break\n s += l[i]\n d[l[i]] = i\nprint(s)', 'N,X,M = map(int,input().split())\n\nd = {X:0}\nl = [X]\n\nfor i in range(1,N):\n l+=[(l[i-1]**2)%M]\n if l[i] in d:\n dl = l[d[l[i]]+1:]\n print(dl)\n l += dl*((N-i-1)//len(dl))\n if (N-i-1)%len(dl) != 0:\n l += dl[0:(N-i-1)%len(dl)]\n break\n d[l[i]] = i\nprint(l)\nprint(sum(l))', 'N,X,M = map(int,input().split())\n\nd = {X:0}\nl = [X]\ns = X\n\nfor i in range(1,N):\n l+=[(l[i-1]**2)%M]\n s += l[i]\n if l[i] in d:\n dl = l[d[l[i]]+1:]\n s += sum(dl)*((N-i-1)//len(dl))\n if (N-i-1)%len(dl) != 0:\n s += sum(dl[0:(N-i-1)%len(dl)])\n break\n d[l[i]] = i\nprint(s)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s425277555', 's561760447', 's892910438']
[15760.0, 30372.0, 15628.0]
[70.0, 136.0, 70.0]
[287, 287, 287]
p02550
u221272125
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N,X,M = map(int,input().split())\nR = [X]\nm = min(N,M)\nfor i in range(m):\n r = R[-1]\n r = r**2%M\n if r in R:\n break\n R.append(r)\nfor i in range(len(R)):\n if r == R[i]:\n break', 'N,X,M = map(int,input().split())\nR = [X]\ndr = {}\nfor i in range(M):\n dr[i] = 0\nm = min(N,M)\nfor i in range(m):\n r = R[-1]\n r = r**2%M\n if dr[r] == 1:\n break\n R.append(r)\n dr[r] = 1\nfor i in range(len(R)):\n if r == R[i]:\n break', 'N,X,M = map(int,input().split())\nR = [X]\nm = min(X,M)\nfor i in range(m):\n r = R[-1]\n r = r**2%M\n if r in R:\n break\n R.append(r)\nfor i in range(len(R)):\n if r == R[i]:\n break\na = 0\nb = sum(R)\nfor j in range(i):\n a += R[j]\n b -= R[j]\nn = len(R) - i\nt = N - i\np = t // n\nq = t % n\nc = 0\nfor j in range(q):\n c += R[i+j]\nans = a + b*p + c\nprint(ans)', 'N,X,M = map(int,input().split())\nR = [X]\nm = min(X,M)\nfor i in range(m):\n r = R[-1]\n r = r**2%M\n if r in R:\n break\n R.append(r)\nfor i in range(len(R)):\n if r == R[i]:\n break\na = 0\nb = sum(R)\nfor j in range(i):\n a += R[j]\n b -= R[j]\nn = len(R) - i\nt = N - i\np = t // n\nq = t % n\nc = 0\nfor j in range(q):\n c += R[i+j]\nans = a + b*p + c\nprint(ans)', 'N,X,M = map(int,input().split())\nR = [X]\ndr = {}\nfor i in range(M):\n dr[i] = 0\nm = min(N,M)\nfor i in range(m):\n r = R[-1]\n r = r**2%M\n if dr[r] == 1:\n break\n R.append(r)\n dr[r] = 1\nfor i in range(len(R)):\n if r == R[i]:\n break\na = 0\nb = sum(R)\nfor j in range(i):\n a += R[j]\n b -= R[j]\nn = len(R) - i\nt = N - i\np = t // n\nq = t % n\nc = 0\nfor j in range(q):\n c += R[i+j]\nans = a + b*p + c\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s031976743', 's327220223', 's664668303', 's772495136', 's853676573']
[9688.0, 19456.0, 9228.0, 9224.0, 19444.0]
[2206.0, 76.0, 28.0, 28.0, 95.0]
[202, 261, 382, 382, 441]
p02550
u288430479
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n,x,m = map(int,input().split())\nmod = m\nans = 0\nbit = [-1 for i in range(m)]\ncycle = False\nfor i in range(n):\n if i == 0 :\n a = x\n bit[a] = i\n ans += a\n else:\n a = (a**2)% mod\n if bit[a] != -1:\n cy_st = bit[a]\n cy_fi = i -1\n cycle = True\n break\n else:\n bit[a] = i\n ans += a\n\nif cycle:\n ans2 = x\n a = x\n for j in range(1,cy_st):\n a = (a**2)% mod\n ans2 += a\n cy_num = ans - ans2\n cy_repe = (n-cy_st) // (cy_fi - cy_st + 1)\n ans3 = cy_num * cy_repe\n cy_amari = (n-cy_st) % (cy_fi - cy_st + 1)\n for i in range(cy_amari):\n a = (a**2)% mod\n ans3 += a\n\nprint(ans2+ans3)\n', 'n,x,m = map(int,input().split())\nmod = m\nans = 0\nbit = [-1 for i in range(m)]\ncycle = False\nfor i in range(n):\n if i == 0 :\n a = x\n bit[a] = i\n ans += a\n else:\n a = (a**2)% mod\n if bit[a] != -1:\n cy_st = bit[a]\n cy_fi = i -1\n cycle = True\n break\n else:\n bit[a] = i\n ans += a\n\nif cycle:\n ans2 = 0\n b = -1\n for j in range(cy_st):\n if j == 0 :\n b = x\n ans2 += b\n else:\n b = (b**2)% mod\n ans2 += b\n cy_num = ans - ans2\n cy_repe = (n-cy_st) // (cy_fi - cy_st + 1)\n ans3 = cy_num * cy_repe\n cy_amari = (n-cy_st) % (cy_fi - cy_st + 1)\n \n if b == -1:\n for j in range(cy_amari):\n if j == 0 :\n b = x\n ans3 += b\n else:\n b = (b**2)% mod\n ans3 += b\n \n else:\n for i in range(cy_amari):\n b = (b**2)% mod\n ans3 += b\n\n print(ans2+ans3)\nelse:\n print(ans)\n']
['Runtime Error', 'Accepted']
['s408257469', 's451912986']
[11204.0, 11396.0]
[67.0, 69.0]
[730, 1071]
p02550
u326609687
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['import numpy as np\ni8 = np.int64\n\n\ndef solve(N, X, M):\n memo_val = np.zeros(M, i8)\n memo_i = np.zeros(M, i8)\n ret = 0\n a = X\n for i in range(1, N):\n ret += a\n if memo_i[a] > 0:\n u = (N - memo_i[a]) // (i - memo_i[a])\n v = (N - memo_i[a]) % (i - memo_i[a])\n ret = u * (ret - memo_val[a])\n nokori = v + memo_i[a]\n for j in range(M):\n if memo_i[j] == nokori:\n ret += memo_val[j]\n return ret\n memo_i[a] = i\n memo_val[a] = ret\n a = a ** 2 % M\n return ret\n\n\nN, X, M = [int(x) for x in input().split()]\nans = solve(N, X, M)\nprint(ans)', 'import numpy as np\ni8 = np.int64\n\n\ndef solve(N, X, M):\n memo_val = np.zeros(M, i8)\n memo_i = np.zeros(M, i8)\n ret = 0\n a = X\n for i in range(1, N):\n ret += a\n if memo_i[a] > 0:\n u = (N - memo_i[a]) // (i - memo_i[a])\n v = (N - memo_i[a]) % (i - memo_i[a])\n ret = u * (ret - memo_val[a])\n nokori = v + memo_i[a]\n for j in range(M):\n if memo_i[j] == nokori:\n ret += memo_val[j]\n return ret\n memo_i[a] = i\n memo_val[a] = ret\n a = a ** 2 % M\n ret += a\n return ret\n\ndef main():\n f = open(0)\n N, X, M = [int(x) for x in f.readline().split()]\n ans = solve(N, X, M)\n print(ans)\n\nmain()']
['Wrong Answer', 'Accepted']
['s505742282', 's484207910']
[27812.0, 28260.0]
[165.0, 163.0]
[680, 745]
p02550
u335406314
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N,X,M=map(int,input().split())\nA = [X,]\nsetA = {A,}\nalast=X\nflag=False\nfor i in range(min(N-1,M)):\n P=alast**2%M\n if P in setA:\n flag=True\n d = A.index(P)\n C=A[d:]\n alast=P\n break\n else:\n A.append(P)\n setA.add(P)\n alast=P\nif alast==0:\n print(sum(C))\nelif (flag==False) and (alast!=0):\n print(sum(A))\nelse:\n suma=sum(C)\n res = (N-d)%len(C)\n print(sum(A[:d])+((N-d)//len(C))*suma + sum(C[:res]))', 'N,X,M=map(int,input().split())\nA = [X,]\nsetA = {X,}\nalast=X\nflag=False\nfor i in range(min(N-1,M)):\n P=alast**2%M\n if P in setA:\n flag=True\n d = A.index(P)\n C=A[d:]\n alast=P\n break\n else:\n A.append(P)\n setA.add(P)\n alast=P\nif flag:\n if alast==0:\n ans = sum(A)\n else:\n res = (N-d)%len(C)\n ans = sum(A[:d])+((N-d)//len(C))*sum(C) + sum(C[:res])\nelse:\n ans = sum(A) \nprint(ans)']
['Runtime Error', 'Accepted']
['s614691896', 's942207037']
[9196.0, 13196.0]
[24.0, 59.0]
[473, 468]
p02550
u347502437
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
[' X, M = map(int, input().split())\nNN = N\nli = []\nwhile X not in li and N != 0:\n li = li + [X]\n X = X ** 2 % M\n N -= 1\n \nif N == 0:\n print(sum(x for x in li))\n\nelif N != 0 and X in li:\n l = len(li)\n s = li.index(X)\n T = l - s\n q = (NN - s) // T\n r = (NN - s) % T\n print(sum(li[i] for i in range(s)) + sum(li[i] for i in range(s, len(li))) * q\n + sum(li[i] for i in range(s, s + r)))', 'N, X, M = map(int, input().split())\nNN = N\nli = []\nisused = [False] * M\nwhile isused[X] == False and N != 0:\n li.append(X)\n isused[X] = True\n X = (X ** 2) % M\n N -= 1\n \nif N == 0:\n print(sum(li))\n\nelif N != 0 and X in li:\n l = len(li)\n s = li.index(X)\n T = l - s\n q = (NN - s) // T\n r = (NN - s) % T\n print(sum(li) + sum(li[i] for i in range(s, len(li))) * (q-1) + sum(li[i] for i in range(s, s + r)))']
['Runtime Error', 'Accepted']
['s872322016', 's109908584']
[9000.0, 11516.0]
[30.0, 64.0]
[427, 437]
p02550
u348293370
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n,x,m = map(int, input().split()) \nans = 0\nx_list = []\n\nfor i in range(m):\n if i == n or x == 0:\n ans = sum(x_list)\n print(ans)\n exit()\n x_list.append(x)\n x = (x**2)%m\n \n if x_list.count(x) == 1:\n break\n\nfor i in range(len(x_list)):\n if x_list[i] == x:\n roop = list(x_list[i:])\n if n % len(roop) == 0:\n ans = sum(roop)*(n//len(roop) - 1) + sum(x_list)\n print(ans)\n else:\n ans = sum(roop)*(n//len(roop) - 1) + sum(x_list) + sum(roop[:(n//len(roop))])\n print(ans)\n exit()', 'N,x,M=map(int,input().split())\nk=x\nL=list()\nc=dict()\nfor i in range(M):\n if i==N:\n print(sum(L))\n exit()\n if x==0:\n print(sum(L))\n exit()\n L.append(x)\n x=(x*x)%M\n if x in c:\n q=x\n break\n c[x]=1\nmoto=sum(L)\nN-=len(L)\nfor i in range(len(L)):\n if L[i]==q:\n roop=list(L[i:])\nL=roop\na=len(L)\nif N%a==0:\n print(moto+(sum(L)*(N//a)))\nelse:\n s=N//a\n t=N%a\n ans=sum(L)*s\n ans+=sum(roop[:t])\n print(moto+ans)']
['Wrong Answer', 'Accepted']
['s528174457', 's349409200']
[9616.0, 14340.0]
[2206.0, 59.0]
[587, 432]
p02550
u366886346
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n,x,m=map(int,input().split())\ncnt2=set()\ncnt2.add(x)\ncnt3=[x]\ncnt4=0\ncnt5=0\ncnt6=x\nfor i in range(1,m+10):\n num2=pow(cnt6,2,m)\n if num2 in cnt2:\n for j in range(len(cnt3)):\n if cnt3[j]==num2:\n cnt7=j\n break\n cnt10=len(cnt3)-cnt7\n num4=sum(cnt3[:cnt7])\n cnt4=len(cnt3)\n break\n cnt2.add(num2)\n cnt3.append(num2)\n cnt6=num2\n if num2==0:\n ans=sum(cnt3)\n cnt5=1\n break\nif cnt5==0:\n ans=num4\n n-=cnt7\n ans+=(n//cnt10)*sum(cnt3[cnt7:])\n ans+=sum(cnt3[cnt7:(n%cnt10)+cnt7])\nif cnt4>=n:\n ans=sum(cnt3[:n])\nprint(ans)\n', 'n,x,m=map(int,input().split())\ncnt2=set()\ncnt2.add(x)\ncnt3=[x]\ncnt4=0\ncnt5=0\ncnt6=x\nfor i in range(1,m+10):\n num2=pow(cnt6,2,m)\n if num2 in cnt2:\n for j in range(len(cnt3)):\n if cnt3[j]==num2:\n cnt7=j\n break\n cnt10=len(cnt3)-cnt7\n num4=sum(cnt3[:cnt7])\n cnt4=len(cnt3)\n break\n cnt2.add(num2)\n cnt3.append(num2)\n cnt6=num2\n if num2==0:\n ans=sum(cnt3)\n cnt5=1\n break\nif cnt5==0 and n>cnt4:\n ans=num4\n n-=cnt7\n ans+=(n//cnt10)*sum(cnt3[cnt7:])\n ans+=sum(cnt3[cnt7:(n%cnt10)+cnt7])\nif cnt4>=n:\n ans=sum(cnt3[:n])\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s003552454', 's076041530']
[13268.0, 13264.0]
[82.0, 83.0]
[639, 650]
p02550
u414050834
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n,x,m=map(int,input().split())\nans=0\np=0\nl=[x]\nif x%m==0:\n print(x)\nelse:\n for i in range(1,n):\n s=(l[i-1]**2)%m\n if s==0:\n p=1\n break\n if s in l:\n break\n else:\n l.append(s)\n if p==0:\n t=sum(l[1:])\n k=n//(len(l)-1)\n j=n%(len(1)-1)\n ans=x+t*k+sum(l[1:j+1])\n print(ans)\n else:\n print(sum(l))', 'n,x,m=map(int,input().split())\norder=[-1 for i in range(m)] \nindex=0 \na=[] \nwhile order[x]==-1: \n order[x]=index \n a.append(x)\n x=(x**2)%m\n index+=1\ntmp=sum(a[order[x]:index]) \nt=index-order[x] \nif n-1<order[x]: \n print(sum(a[:n]))\nelse:\n sum1=sum(a[:order[x]]) \n x1=n-order[x] \n n1=x1//t \n n2=x1%t\n print(sum1+n1*tmp+sum(a[order[x]:order[x]+n2]))']
['Runtime Error', 'Accepted']
['s886467679', 's785215285']
[9644.0, 13644.0]
[2206.0, 61.0]
[343, 716]
p02550
u416011173
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['# -*- coding: utf-8 -*-\n\nN, X, M = list(map(int, input().split()))\n\n\n\n\ndef f(x: int, m: int) -> int:\n return x**2 % m\n\n\nA = {X}\nloop_start_index = 0\nwhile True:\n A_next = f(A[-1], M)\n if A_next in A:\n loop_start_index = A.index(A_next)\n break\n else:\n A.add(A_next)\n\nloop_length = len(A) - loop_start_index\nloop_cnt = (N - loop_start_index) // loop_length\nloop_res = (N - loop_start_index) % loop_length\nans = sum(A[:loop_start_index]) + \\\n loop_cnt * sum(A[loop_start_index:]) + \\\n sum(A[loop_start_index: loop_start_index + loop_res])\n\n\nprint(ans)\n', '# -*- coding: utf-8 -*-\n\ndef get_input() -> tuple:\n \n \n N, X, M = list(map(int, input().split()))\n\n return N, X, M\n\n\ndef f(x: int, m: int) -> int:\n \n return x % m\n\n\ndef main(N: int, X: int, M: int) -> None:\n \n \n A = [X]\n s = {X}\n i = 0\n while True:\n A_next = f(A[-1], M)\n if A_next in s:\n i = A.index(A_next)\n break\n else:\n A.append(A_next)\n s.add(A_next)\n\n loop_length = len(A) - i\n loop_cnt = (N - i) // loop_length\n loop_res = (N - i) % loop_length\n ans = sum(A[:i]) + loop_cnt * sum(A[i:]) + sum(A[i: i + loop_res])\n\n \n print(ans)\n\n\nif __name__ == "__main__":\n \n N, X, M = get_input()\n\n \n main(N, X, M)\n', '# -*- coding: utf-8 -*-\n\ndef get_input() -> tuple:\n \n \n N, X, M = list(map(int, input().split()))\n\n return N, X, M\n\n\ndef f(x: int, m: int) -> int:\n \n return x % m\n\n\ndef main(N: int, X: int, M: int) -> None:\n \n \n A = [X]\n s = {X}\n i = 0\n while True:\n A_next = f(A[-1]**2, M)\n if A_next in s:\n i = A.index(A_next)\n break\n else:\n A.append(A_next)\n s.add(A_next)\n\n loop_length = len(A) - i\n loop_cnt = (N - i) // loop_length\n loop_res = (N - i) % loop_length\n ans = sum(A[:i]) + loop_cnt * sum(A[i:]) + sum(A[i: i + loop_res])\n\n \n print(ans)\n\n\nif __name__ == "__main__":\n \n N, X, M = get_input()\n\n \n main(N, X, M)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s061351612', 's715283256', 's999216555']
[9056.0, 9240.0, 13216.0]
[28.0, 33.0, 55.0]
[639, 1258, 1261]
p02550
u481187938
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
["#!usr/bin/env python3\n\ndef L(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline().rstrip())\ndef SL(): return list(sys.stdin.readline().rstrip())\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\n\n\ndef main():\n N, X, M = LI()\n p = [0] * (M+10)\n p[1] = X\n for i in range(2, M+10):\n p[i] = pow(X, pow(2, i-1, M-1), M)\n s = 0\n for v in p:\n s = (s + v) % M\n\n tmp = 0\n for i in range(N % M):\n tmp = (tmp + p[i]) % M\n\n print((N // M * s % M + tmp) % M)\n\n\nif __name__ == '__main__':\n main()", '#!usr/bin/env python3\nfrom collections import defaultdict, deque, Counter, OrderedDict\nfrom bisect import bisect_left, bisect_right\nfrom functools import reduce, lru_cache\nfrom heapq import heappush, heappop, heapify\n\nimport itertools\nimport math, fractions\nimport sys, copy\n\n\ndef L(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline().rstrip())\ndef SL(): return list(sys.stdin.readline().rstrip())\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI1(): return [int(x) - 1 for x in sys.stdin.readline().split()]\ndef LS(): return [list(x) for x in sys.stdin.readline().split()]\ndef R(n): return [sys.stdin.readline().strip() for _ in range(n)]\ndef LR(n): return [L() for _ in range(n)]\ndef IR(n): return [I() for _ in range(n)]\ndef LIR(n): return [LI() for _ in range(n)]\ndef LIR1(n): return [LI1() for _ in range(n)]\ndef SR(n): return [SL() for _ in range(n)]\ndef LSR(n): return [LS() for _ in range(n)]\n\ndef perm(n, r): return math.factorial(n) // math.factorial(r)\ndef comb(n, r): return math.factorial(n) // (math.factorial(r) * math.factorial(n-r))\n\ndef make_list(n, *args, default=0): return [make_list(*args, default=default) for _ in range(n)] if len(args) > 0 else [default for _ in range(n)]\n\ndire = [[1, 0], [0, 1], [-1, 0], [0, -1]]\ndire8 = [[1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1], [1, -1]]\nalphabets = "abcdefghijklmnopqrstuvwxyz"\nALPHABETS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"\nMOD = 1000000007\nINF = float("inf")\n\nsys.setrecursionlimit(1000000)\nclass ModInt:\n def __init__(self, x, MOD=1000000007): self.x, self.MOD = x % MOD, MOD\n def __str__(self): return str(self.x)\n def __add__(self, other): return ModInt(self.x + other.x) if isinstance(other, ModInt) else ModInt(self.x + other)\n def __sub__(self, other): return ModInt(self.x - other.x) if isinstance(other, ModInt) else ModInt(self.x - other)\n def __mul__(self, other): return ModInt(self.x * other.x) if isinstance(other, ModInt) else ModInt(self.x * other)\n def __truediv__(self, other): return ModInt(self.x * other.inverse()) if isinstance(other, ModInt) else ModInt(self.x * pow(other, self.MOD - 2, self.MOD))\n def __pow__(self, other): return ModInt(pow(self.x, other.x, self.MOD)) if isinstance(other, ModInt) else ModInt(pow(self.x, other, self.MOD))\n def __rsub__(self, other): return ModInt(other.x - self.x) if isinstance(other, ModInt) else ModInt(other - self.x)\n def __rtruediv__(self, other): return ModInt(other.x * other.inverse()) if isinstance(other, ModInt) else ModInt(other * pow(self.x, self.MOD - 2, self.MOD))\n def __rpow__(self, other): return ModInt(pow(other.x, self.x, self.MOD)) if isinstance(other, ModInt) else ModInt(pow(other, self.x, self.MOD))\n __repr__, __radd__, __rmul__ = __str__, __add__, __mul__\n def inverse(self): return pow(self.x, self.MOD - 2, self.MOD)\n\ndef main():\n N, X, M = LI()\n tmp = X\n s = set()\n while True:\n if tmp in s: break\n s.add(tmp)\n tmp = (tmp * tmp) % M\n\n f = len(s)\n s = set()\n\n while True:\n if tmp in s: break\n s.add(tmp)\n tmp = (tmp * tmp) % M\n\n mid = len(s)\n summid = sum(s)\n rest = (N - f + mid) % mid\n cnt = (N - f + mid) // mid\n\n first = f - mid\n tmp = X\n s = set()\n for _ in range(first):\n s.add(tmp)\n tmp = (tmp * tmp) % M\n first_res = sum(s)\n\n s = set()\n for _ in range(rest):\n s.add(tmp)\n tmp = (tmp * tmp) % M\n last_res = sum(s)\n\n print(first_res+ summid*cnt+ last_res)\n\n\n\n\nif __name__ == \'__main__\':\n main()']
['Runtime Error', 'Accepted']
['s425247408', 's524080567']
[9056.0, 14508.0]
[30.0, 69.0]
[574, 3588]
p02550
u495667483
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['import sys, math, re\nfrom functools import lru_cache\nfrom collections import deque\nsys.setrecursionlimit(10**9)\nMOD = 10**9+7\n\ndef input():\n return sys.stdin.readline()[:-1]\n\ndef mi():\n return map(int, input().split())\n\ndef ii():\n return int(input())\n\ndef i2(n):\n tmp = [list(mi()) for i in range(n)]\n return [list(i) for i in zip(*tmp)]\n\ndef main():\n N, X, M = mi()\n r = [-1]*M\n\n now = X\n cnt = 0\n while True:\n if r[now] != -1:\n break\n r[now] = cnt\n now = (now*now)%M\n cnt += 1\n\n d = [(r[i], i) for i in range(M) if r[i] != -1]\n d.sort()\n T = len(d)-r[now]\n\n s = list(v for k, v in d if k < len(d)-T)\n t = list(v for k, v in d if k >= len(d)-T)\n\n if N < len(s):\n ans = sum(s[:N])\n else:\n ans = sum(s) + sum(t)*((N-len(s))//M) + sum(t[:(N-len(s))%M])\n print(sum(s), sum(t)*((N-len(s))//M), sum(t[:(N-len(s))%M]))\n\n print(ans)\n\n\n\nif __name__ == "__main__":\n main()', 'import sys, math, re\nfrom functools import lru_cache\nfrom collections import deque\nsys.setrecursionlimit(10**9)\nMOD = 10**9+7\n\ndef input():\n return sys.stdin.readline()[:-1]\n\ndef mi():\n return map(int, input().split())\n\ndef ii():\n return int(input())\n\ndef i2(n):\n tmp = [list(mi()) for i in range(n)]\n return [list(i) for i in zip(*tmp)]\n\ndef main():\n N, X, M = mi()\n r = [-1]*M\n\n now = X\n cnt = 0\n while True:\n if r[now] != -1:\n break\n \n r[now] = cnt\n\n now = (now*now)%M\n cnt += 1\n \n d = [(r[i], i) for i in range(M) if r[i] != -1]\n d.sort()\n\n s = [v for k, v in d[:r[now]]]\n t = [v for k, v in d[r[now]:]]\n\n ns = len(s)\n nt = len(t)\n\n if N < ns:\n print(sum(s[:N]))\n return\n \n print(sum(s) + sum(t) * ((N-ns)//nt) + sum(t[:(N-ns)%nt]))\n\n\n\nif __name__ == "__main__":\n main()']
['Wrong Answer', 'Accepted']
['s371075110', 's534152629']
[17932.0, 18124.0]
[92.0, 96.0]
[980, 901]
p02550
u536034761
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\nflag = [False for _ in range(M)]\nrecord = list()\nrecord.append(X)\nflag[X] = 1\n\nAn = X\n\nfor i in range(M + 1):\n An = pow(An, 2, M)\n if flag[An]:\n start = flag[An]\n cnt = i + 2 - start\n cost = record[-1] - record[start - 2] if start > 1 else record[-1]\n break\n\n else:\n record.append(An + record[-1])\n flag[An] = i + 2\n\nif start >= N:\n print(record[N - 1])\nelse:\n print(((N - start) // cnt) * cost\n + record[(N - start) % cnt + start - 1])\n print(cost)\n', 'N, X, M = map(int, input().split())\nrecord_sum = [0, ]\nflag = [False for _ in range(M)]\nAn = X\n\n# n=1\nrecord_sum.append(An)\nflag[An] = 1\n\nfor i in range(2, M + 2):\n An = pow(An, 2, M) \n record_sum.append(record_sum[-1] + An)\n\n if flag[An]:\n start_index = flag[An]\n initial_cost = record_sum[start_index - 1]\n cycle_cost = record_sum[-1] - record_sum[start_index]\n cycle_length = i - start_index\n else:\n flag[An] = i\n\nif start_index >= N:\n print(record_sum[N])\n\nelse:\n ans = 0\n ans += ((N - start_index) // cycle_length) * cycle_cost\n ans += record_sum[(N - start_index) % cycle_length + start_index]\n\n print(ans)\n']
['Wrong Answer', 'Accepted']
['s955259079', 's756357432']
[13712.0, 16464.0]
[84.0, 152.0]
[561, 703]
p02550
u539969758
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N,X,M = map(int,input().split())\n\nans = X\nA = X\nTF = True\nsrt = 1000000\nretu = dict()\nretu[X] = 1\nloop = X\nfor i in range(N-1):\n if TF:\n A = A**2 % M\n if retu.get(A) != None:\n srt = j\n goal = i\n TF = False\n break \n if TF:\n retu[A] = 1\n loop += A\n else:\n break\n \nif N-1 > srt:\n n = (N-srt)//(goal-srt+1)\n saisyo = sum(retu[:srt])\n loop -= saisyo\n print(saisyo + loop*n + sum(retu[srt:N-n*(goal-srt+1)]))\n \nelse:\n print(sum(retu[:N]))\n', 'N, X, M = map(int, input().split())\n\ncandicate = [pow(i, 2, M) for i in range(M)]\nans = 0\nnow = X\nA = [0]\nX2 = pow(X, 2, M)\n\nd = dict()\n\nflag = True\nfor i in range(1, N):\n if i == 1:\n A.append(X)\n \n else:\n nxt = candicate[A[i-1]]\n\n if d.get(nxt) == None:\n if nxt == 0:\n A.append(nxt)\n break\n else:\n A.append(nxt)\n d[nxt] = i\n\n else:\n flag = False\n break\n\n\nif flag:\n print(sum(A))\nelse:\n l = d[nxt]\n r = i - 1\n circle_total = 0\n for j in range(l, r+1):\n circle_total += A[j]\n \n for j in range(1, l):\n ans += A[j]\n\n width = r - l + 1\n N -= (l - 1)\n ans += circle_total * (N // width)\n\n for j in range(l, l + N % width):\n ans += A[j]\n\n print(ans)\n', 'N,X,M = map(int,input().split())\n\nans = X\nA = X\nTF = True\nsrt = 1000000\nretu = [X]\nd = dict()\nd[X] = 0\nloop = X\nflag = False\nfor i in range(N-1):\n if TF:\n A = A**2 % M\n if d.get(A) != None:\n srt = d[A]\n goal = i\n TF = False\n \n if TF:\n retu.append(A)\n d[A] = i + 1\n loop += A\n else:\n flag = True\n break\n \nif flag:\n n = (N-srt)//(goal-srt+1)\n saisyo = sum(retu[:srt])\n loop -= saisyo\n print(saisyo + loop*n + sum(retu[srt:N-n*(goal-srt+1)]))\n \nelse:\n print(sum(retu[:N]))\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s083305804', 's652685904', 's411434845']
[13996.0, 18020.0, 15828.0]
[57.0, 144.0, 64.0]
[544, 842, 593]
p02550
u543000780
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\nls = [False]*M\nls_mod = []\nx = X\nfor m in range(M+1):\n if ls[x] == False:\n ls_mod.append(x)\n ls[x] = m\n x = (x**2)%M\n else:\n last = m\n fast = ls[x]\n diff = last - fast\n break\nif last >= N:\n print(sum(ls_mod[:N]))\nelse:\n shou = (N-fast) // diff\n amari = (N-fast) % diff\n print(sum(ls_mod[:fast])+sum([fast:])*shou+sum([fast:fast+amari]))', 'N, X, M = map(int, input().split())\nls = [False]*M\nls_mod = []\nx = X\nfor m in range(M+1):\n if ls[x] == False:\n ls_mod.append(x)\n ls[x] = m\n x = (x**2)%M\n else:\n last = m\n fast = ls[x]\n diff = last - fast\n break\nprint(last)\n"""if last >= N:\n print(sum(ls_mod[:N]))\nelse:\n shou = (N-fast) // diff\n amari = (N-fast) % diff\n print(sum(ls_mod[:fast])+sum(ls_mod[fast:])*shou+sum(ls_mod[fast:fast+amari]))\n"""\n', 'N, X, M = map(int, input().split())\nls = [False]*M\nls_mod = []\nx = X\nfor m in range(M+1):\n if ls[x] == False:\n ls_mod.append(x)\n ls[x] = m\n x = (x**2)%M\n else:\n last = m\n fast = ls[x]\n diff = last - fast\n break\n"""if last >= N:\n print(sum(ls_mod[:N]))\nelse:\n shou = (N-fast) // diff\n amari = (N-fast) % diff\n print(sum(ls_mod[:fast])+sum(ls_mod[fast:])*shou+sum(ls_mod[fast:fast+amari]))\n\n"""', 'N, X, M = map(int, input().split())\nls = [False]*M\nls_mod = []\nx = X\nfor m in range(M+1):\n if ls[x] == False:\n ls_mod.append(x)\n ls[x] = m\n x = (x**2)%M\n else:\n last = m\n fast = ls[x]\n diff = last - fast\n break\nif M == 1:\n print(0)\nelse:\n if last > N:\n print(sum(ls_mod[:N]))\n else:\n shou = (N-fast) // diff\n amari = (N-fast) % diff\n print(sum(ls_mod[:fast])+sum(ls_mod[fast:])*shou+sum(ls_mod[fast:fast+amari]))\n\n']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s246428901', 's289086282', 's796667232', 's372182947']
[9076.0, 13260.0, 13116.0, 13572.0]
[27.0, 62.0, 53.0, 58.0]
[399, 431, 419, 452]
p02550
u607155447
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\n\nans = 0\nchck = 0\nflag = [0]*(10**5 +1)\nlst = [X]\n\nfor i in range(N):\n X = (X**2)%M\n\n if flag[X] == 1:\n break\n\n flag[X] = 1\n lst.append(X)\n\npreindex = lst.index(X)\n\npreloop = lst[:index]\nloop = lst[index:]\n\nloopnum = (N - len(preloop))//len(loop)\nloopafternum = (N - len(preloop))%len(loop)\n\nans = sum(preloop) + sum(loop)*loopnum + sum(loop[:loopafternum])\nprint(ans)', 'N, X, M = map(int, input().split())\n\nans = 0\nflag = [0]*(10**5 + 2)\nlst = [X]\n\nfor i in range(N):\n X = (X**2)%M\n\n if flag[X] == 1:\n break\n\n flag[X] = 1\n lst.append(X)\n\npreindex = lst.index(X)\n\npreloop = lst[:preindex]\nloop = lst[preindex:]\n\nloopnum = (N - len(preloop))//len(loop)\nloopafternum = (N - len(preloop))%len(loop)\n\nans = sum(preloop) + sum(loop)*loopnum + sum(loop[:loopafternum])\nprint(ans)']
['Runtime Error', 'Accepted']
['s312055747', 's013318311']
[11568.0, 12172.0]
[55.0, 56.0]
[423, 421]
p02550
u625864724
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n, x, m = map(int,input().split())\nlst = [0 for i in range(m)]\nlst2 = [x]\ni = 2\nlst[x] = 1\nwhile True:\n if (i > n):\n break\n x = x**2%m\n if (lst[x] == 0):\n lst[x] = i\n lst2.append(lst2[i - 2] + x)\n i = i + 1\n else:\n lst2.append(lst2[i - 2] + x)\n break\na = i - lst[x]\nb = lst2[i - 1] - lst2[i - 1 - a]\ni = i - 1\nc = (n - i)//a\nd = (n - i)%a\nans = lst2[i - 1] + b*c + lst2[i - 1 - a + d] - lst2[i - 1 - a]\nprint(ans)\n', 'n, x, m = map(int,input().split())\nlst = [0 for i in range(m)]\nlst2 = [x]\ni = 2\nlst[x] = 1\nc = 0\nwhile True:\n if (i > n):\n break\n x = x**2%m\n if (lst[x] == 0):\n lst[x] = i\n lst2.append(lst2[i - 2] + x)\n i = i + 1\n else:\n lst2.append(lst2[i - 2] + x)\n c = 1\n break\nif (c == 1):\n a = i - lst[x]\n b = lst2[i - 1] - lst2[i - 1 - a]\n\n c = (n - i)//a\n d = (n - i)%a\n ans = lst2[i - 1] + b*c + lst2[i - 1 - a + d] - lst2[i - 1 - a]\n print(ans)\n\nelse:\n print(lst2[n - 1])\n']
['Runtime Error', 'Accepted']
['s756473359', 's932952800']
[13764.0, 13768.0]
[69.0, 72.0]
[468, 546]
p02550
u628285938
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['# -*- coding: utf-8 -*-\n"""\nCreated on Sat Sep 19 22:03:19 2020\n\n@author: liang\n"""\n\nN, X, M = map(int,input().split())\nmod_set = {X}\nmod_lis = [X]\nA = [0]*(10**6+1)\nA[0] = X\nflag = False\n\nfor i in range(1,min(10**6,N)):\n tmp = A[i-1]**2%M\n if tmp in mod_set:\n flag = True\n break\n A[i] = tmp\n mod_set.add(tmp)\n mod_lis.append(tmp)\n\nif flag:\n j = mod_lis.index(tmp)\nelse:\n j = i\nT = i - j\nans = 0\nif T != -1: \n ans += sum(mod_lis[:j])\n T_sum = sum(mod_lis[j:])\n \n ans += T_sum * ((N-j)//T)\n #print((N-j)//T, T_sum)\n T_lis = mod_lis[j:i] \n ans += sum(T_lis[:(N-j)%T])\nelse:\n ans = sum(mod_lis)\n#print(T_lis)\n#print((N-j)%T)\n#print(T_lis[:10])\nprint(ans)\n#print(T_sum)\n#print(sum(T_lis))', '# -*- coding: utf-8 -*-\n"""\nCreated on Sat Sep 19 22:03:19 2020\n\n@author: liang\n"""\n\nN, X, M = map(int,input().split())\nmod_set = {X}\nmod_lis = [X]\nA = [0]*(10**6+1)\nA[0] = X\nflag = False\n\n\nl = 1\nfor i in range(1,min(10**6,N)):\n l = i\n tmp = A[i-1]**2%M\n if tmp in mod_set:\n flag = True\n break\n A[i] = tmp\n mod_set.add(tmp)\n mod_lis.append(tmp)\n\nif flag:\n j = mod_lis.index(tmp)\nelse:\n j = l\nT = l - j\nans = 0\nif T != 0: \n #print("A")\n ans += sum(mod_lis[:j])\n T_sum = sum(mod_lis[j:])\n q, r = divmod(N-j,T)\n ans += T_sum * q\n #print((N-j)//T, T_sum)\n T_lis = mod_lis[j:] \n ans += sum(T_lis[:r])\nelse:\n #print("B")\n ans = sum(mod_lis)\n # print(mod_lis)\n#print(T_lis)\n#print((N-j)%T)\n#print(T_lis[:10])\nprint(ans)\n#print(T_sum)\n#print(sum(T_lis))']
['Runtime Error', 'Accepted']
['s095125658', 's864440639']
[21388.0, 21288.0]
[71.0, 79.0]
[842, 1645]
p02550
u630554891
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['import math\nn,x,m=map(int, input().split())\na = x\nans = a\nl=[a]\nflg=[0]*m\n\nfor i in range(1,m):\n tmp=(a*a)%m\n a=tmp \n ans+=tmp\n if flg[a]==1:\n lp = l.index(a)\n break\n else:\n l.append(a)\n flg[a]=1\n\nif lp != 0:\n l2 = l[lp:]\n tmp = sum(l2)\n b=math.floor((n-len(l))/len(l2))\n c=(n-len(l))%len(l2)\n if c==0:\n ans+=b*tmp\n else:\n ans+=b*tmp+sum(l2[:c])-l2[0]\n\nprint(ans)', 'n,x,m=map(int, input().split())\na = x\nans = a\nl=[a]\n\nfor i in range(1,n):\n tmp=(a*a)%m\n a=tmp \n ans+=tmp\n if a in l:\n lp = l.index(a)\n break\n else:\n l.append(a)\n\nl2 = l[lp:]\ntmp = sum(l2)\n\nb=int((n-len(l))/len(l2))\nc=(n-len(l))%len(l2)\n\nans+=b*tmp+sum(l2[:c])\nprint(ans)', 'n,x,m=map(int, input().split())\na=x\nans=a\nflg=[0]*m\nflg[a]=1\nl=[a]\nlp=-1\n\nfor i in range(1,n):\n tmp=(a*a)%m\n a=tmp\n if flg[a]==1:\n lp = l.index(a)\n break\n else: \n ans+=tmp\n l.append(a)\n flg[a]=1\n\nif lp != -1:\n l2 = l[lp:]\n tmp = sum(l2)\n b=(n-len(l))//len(l2)\n c=n-len(l)-b*len(l2)\n ans=ans+(b*tmp)+sum(l2[:c])\n\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s028062170', 's104363176', 's599112204']
[12344.0, 9592.0, 12172.0]
[56.0, 2206.0, 54.0]
[438, 307, 387]
p02550
u642012866
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\n\nlim = 10**5+1\n\nf = [0]*(lim)\na = [0]*(lim)\n\nx = X\nf[x] = 1\na[1] = x\n\nans = x\n\ni = 1\nl = N\nwhile i < l:\n i += 1\n\n x **= 2\n x %= M\n if not x:\n break\n\n if f[x]:\n lp_len = (i-f[x])\n z = (l-i+1)//lp_len\n if z:\n ls = ans - a[f[x]-1]\n ans += ls * z\n i += z*lp_len\n\n if i < l:\n ans += x\n \n f[x] = i\n if i < lim:\n a[i] = ans\n\nprint(ans)', 'N, X, M = map(int, input().split())\n\nlim = 10**5*2+1\n\nf = [0]*(lim)\na = [0]*(lim)\n\nx = X\nf[x] = 1\na[1] = x\n\nans = x\n\ni = 1\nl = N\nwhile i < l:\n i += 1\n\n x **= 2\n x %= M\n if not x:\n break\n\n if f[x]:\n lp_len = (i-f[x])\n z = (l-i+1)//lp_len\n if z:\n ls = ans - a[f[x]-1]\n ans += ls * z\n i += z*lp_len\n\n if i <= l:\n ans += x\n \n f[x] = i\n if i < lim:\n a[i] = ans\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s435392705', 's094838566']
[15264.0, 16868.0]
[104.0, 98.0]
[466, 469]
p02550
u645487439
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n, x, m = map(int, input().split())\nans = 0\nloop_list = [0] * m\nloop_list[x] = 1\norder_list = [x]\n\nfor i in range(1, m + 1):\n x = pow(x, 2, m)\n if loop_list[x] != 1:\n loop_list[x] = 1\n order_list.append(x)\n else:\n break\n\nindex = order_list.index(x)\ntime = (n - index) // (len(order_list) - index)\nmod = (n - index) % (len(order_list) - index)\n\nans += sum(order_list[:index - 1])\nans += sum(order_list[index:]) * time\nans += sum(order_list[index:index + mod - 1])\n\nprint(ans)\n', 'n, x, m = map(int, input().split())\nans = 0\nloop_list = [0] * m\nloop_list[x] = 1\norder_list = [x]\n\nfor i in range(1, m + 1):\n x = pow(x, 2, m)\n if loop_list[x] != 1:\n loop_list[x] = 1\n order_list.append(x)\n else:\n break\n\nindex = order_list.index(x)\ntime = (n - index) // (len(order_list) - index)\nmod = (n - index) % (len(order_list) - index)\n\nans += sum(order_list[:index])\nans += sum(order_list[index:]) * time\nans += sum(order_list[index:index + mod])\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s546005706', 's578152054']
[12164.0, 12184.0]
[78.0, 85.0]
[506, 498]
p02550
u684814987
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['\n\ndef main():\n n, x, m = map(int, input().split())\n l = [x]\n ltot = [x]\n\n flg = 0\n tot = x\n a = x\n for i in range(n):\n a = a ** 2 % m\n if a in set(l):\n for j in range(len(l)):\n if l[j] == a:\n l2 = l[j:]\n z = (n - j) // len(l2) - 1\n y = (n - j) % len(l2)\n tot += (ltot[y-1] - ltot[j-1]) + (ltot[-1] - ltot[j-1]) * z\n \n flg = 1\n break\n if flg:\n break\n tot += a\n l.append(a)\n ltot.append(tot)\n\n print(tot)\n\n\nmain()\n\n', '\n\ndef main():\n n, x, m = map(int, input().split())\n mflg = [-1] * m\n mflg[x] = 0\n ltot = [x]\n\n tot = x\n a = x\n for i in range(1, n):\n a = a ** 2 % m\n\n if mflg[a] >= 0:\n b = mflg[a]\n z = (n - i) // (i - b)\n y = (n - i) % (i - b)\n if b == 0 and y == 0:\n tot += ltot[i - 1] * z\n elif b == 0:\n tot += ltot[b - 1 + y] + ltot[i - 1] * z\n else:\n tot += (ltot[b - 1 + y] - ltot[b - 1]) + (ltot[i - 1] - ltot[b - 1]) * z\n break\n\n mflg[a] = i\n tot += a\n ltot.append(tot)\n\n print(tot)\n\n\nmain()\n\n']
['Wrong Answer', 'Accepted']
['s893602418', 's552743853']
[10540.0, 13496.0]
[2206.0, 53.0]
[683, 665]
p02550
u699522269
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N,X,M = map(int,input().split())\nrt = 0\nfor i in range(2,N+1):\n dps[i] = (dps[i-1]**2)%M\n rt+=dps[i]\nprint(rt)', 'N,X,M = map(int,input().split())\ndps = [0,X%M]+[0 for i in range(N)]\nrt = 0\nfor i in range(2,N+1):\n dps[i] = (dps[i-1]**2)%M\n rt+= dps[i]\nprint(rt)', 'n, x, m = map(int, input().split())\nmn = min(n, m)\nP = []\nsum_p = 0\nX = [-1] * m\nfor i in range(mn):\n if X[x] > -1:\n cyc_len = len(P) - X[x]\n remain = P[X[x]]\n cyc = (sum_p - remain) * ((n - X[x]) // cyc_len)\n remain += P[X[x] + (n - X[x]) % cyc_len] - P[X[x]]\n print(cyc + remain)\n exit()\n P.append(sum_p)\n sum_p += x\n X[x] = i\n x = x*x % m\nprint(sum_p)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s128037989', 's580105984', 's678104335']
[8944.0, 632488.0, 13616.0]
[28.0, 2227.0, 52.0]
[112, 149, 411]
p02550
u734876600
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n, x, m = map(int, input().split())\na = x\nmod = [a]\nloop = []\ncnt = 0\nwhile cnt < n:\n a = a**2 % m\n if a in mod:\n i = mod.index(a)\n before = mod[:i]\n loop = mod[i:]\n break\n mod.append(a)\n cnt += 1\n\nlength = len(loop)\nif length == 0:\n print(sum(mod[:n]))\nelse:\n print(loop)\n t = (n-i)//length\n amari = (n-i) % length\n print("t, amari:",t,",",amari)\n ans = sum(before) + t * sum(loop) + sum(loop[:amari])\n print(ans)\n', 'n, x, m = map(int, input().split())\na = x\nmod = [a]\nloop = []\ncnt = 0\nwhile cnt < n:\n a = a**2 % m\n if a in mod:\n i = mod.index(a)\n before = mod[:i]\n loop = mod[i:]\n break\n mod.append(a)\n cnt += 1\n\nlength = len(loop)\nif length == 0:\n print(sum(mod[:n]))\nelse:\n print(loop)\n t = (n-i)//length\n amari = (n-i) % length\n ans = sum(before) + t * sum(loop) + sum(loop[:amari])\n print(ans)\n', 'n, x, m = map(int, input().split())\na = x\ndup = [0]*(10**5+10)\nmod = [a]\nloop = []\ncnt = 0\nwhile cnt < n:\n a = a**2 % m\n if dup[a]==1:\n i = mod.index(a)\n before = mod[:i]\n loop = mod[i:]\n break\n mod.append(a)\n dup[a] = 1\n cnt += 1\n\nlength = len(loop)\nif length == 0:\n print(sum(mod[:n]))\nelse:\n t = (n-i)//length\n amari = (n-i) % length\n ans = sum(before) + t * sum(loop) + sum(loop[:amari])\n print(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s052979197', 's249515872', 's013042536']
[9588.0, 9644.0, 12460.0]
[2205.0, 2206.0, 61.0]
[476, 441, 462]
p02550
u784022244
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N,X,M=map(int, input().split())\nimport time\nfrom math import log, ceil\n\n\n\nini=[0]*M\nmod=[0]*M\nini[0]=sum(list(range(1,M)))\nCounter=[0]*M\nCounter[0]=M-1\n\nfor i in range(1,M):\n now=i+1\n temp=now\n count=1\n while now**2<M:\n now=now**2\n temp+=now\n count+=1\n m=(now**2)%M\n ini[i]=temp\n mod[i]=m\n Counter[i]=count\n#print(ini[:5])\n#print("ok")\n#print(Counter[:100])\nans=0\ncount=0\nnow=X\ndone=[-1]*M\nok=False\nwhile True:\n if now==0:\n print(ans)\n exit()\n if count+Counter[now-1]>N:\n break\n if done[now-1]==-1 or ok is True:\n done[now-1]=(ans, count)\n ans+=ini[now-1]\n #print(ini[now-1])\n count+=Counter[now-1]\n now=mod[now-1]\n else:\n pans, pcount=done[now-1]\n #print(count, pcount)\n #print("break")\n ans+=(ans-pans)*((N-count)//(count-pcount))\n count+=(count-pcount)*((N-count)//(count-pcount))+1\n #print(count)\n ok=True\n\n\nprint(ans, count, now, )\n\n\n\nwhile True:\n if count==N:\n break\n\n ans+=now%M\n now=(now**2)%M\n count+=1\n\n \n\nprint(ans)\n\n\n\n\n\n\n#print(ini)\n#print(mod)\n#print(Counter)', 'N,X,M=map(int, input().split())\n\nans=0\ncount=0\nnow=X\ndone=[-1]*(M-1)\nL=[]\nif now==0:\n print(ans)\n exit()\nj=False\nwhile True:\n if count==N:\n break\n\n if now==0:\n print(ans)\n exit()\n else:\n if done[now-1]==-1:\n done[now-1]=1\n L.append(now)\n else:\n for i in range(len(L)):\n if L[i]==now:\n j=i\n break\n ans+=now\n count+=1\n now=(now**2)%M\n\nif j:\n L=L[j:]\n\ntotal=sum(L)\nlength=len(L)\n\nans+=((N-count)//length)*total\nans+=sum(L[:(N-count)%length])\nprint(ans)']
['Wrong Answer', 'Accepted']
['s652369068', 's919493512']
[25812.0, 12116.0]
[2206.0, 64.0]
[1156, 589]
p02550
u811817592
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['# -*- coding: utf-8 -*-\nN, X, M = map(int, input().split())\n\nmod_check_list = [False for _ in range(M)]\nmod_list = [(X ** 2) % M]\ncounter = 1\nmod_sum = (X ** 2) % M\nlast_mod = 0\nfor i in range(M):\n now_mod = (mod_list[-1] ** 2) % M\n if mod_check_list[now_mod]:\n last_mod = now_mod\n break\n mod_check_list[now_mod] = True\n mod_list.append(now_mod)\n counter += 1\n mod_sum += now_mod\n\nloop_start_idx = 0\nfor i in range(counter):\n if last_mod == mod_list[i]:\n loop_start_idx = i\n break\n\nloop_list = mod_list[loop_start_idx:]\nloop_num = counter - loop_start_idx\nans = 0\nif mod_list[-1] == 0:\n ans = X + sum(mod_list[:min(counter, N - 1)])\nelse:\n if (N - 1) <= counter:\n ans = X + sum(mod_list[:counter])\n print(aa)\n else:\n ans += X + mod_sum\n N -= (counter + 1)\n ans += sum(loop_list) * (N // loop_num) + sum(loop_list[:N % loop_num])\nprint(ans)', 'n,x,m=map(int,input().split())\na=[]\nmod_check_list = [False for _ in range(M)]\na.append(x*x%m)\nind=0\ns=0\nfor i in range(m):\n t=a[i]*a[i]%m\n if mod_check_list[t]:\n ind=a.index(t)\n break\n mod_check_list[t] = True\n a.append(t)\ns=sum(a[ind:])\nl=len(a)-ind\nloop_times = (n-1-ind)//l\nanswer=loop_times*s\nfor i in range((n-1-ind)%l):\n answer+=a[i+ind]\nprint(answer+x+sum(a[:ind]))', 'n,x,m=map(int,input().split())\na=[]\nmod_check_list = [False for _ in range(m)]\na.append(x*x%m)\nind=0\ns=0\nfor i in range(m):\n t=a[i]*a[i]%m\n if mod_check_list[t]:\n ind=a.index(t)\n break\n mod_check_list[t] = True\n a.append(t)\ns=sum(a[ind:])\nl=len(a)-ind\nloop_times = (n-1-ind)//l\nanswer=loop_times*s\nfor i in range((n-1-ind)%l):\n answer+=a[i+ind]\nprint(answer+x+sum(a[:ind]))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s172080829', 's621886069', 's831466044']
[12436.0, 9228.0, 12172.0]
[76.0, 27.0, 62.0]
[932, 402, 402]
p02550
u845620905
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\nx = X\nnums = []\nisSearched = [False] * (M+1)\nisSearchedNums = [-1] * (M+1)\nn = 0\nlooped = 0\nwhile True:\n x = (x*x) % M\n if isSearched[x]:\n looped = isSearchedNums[x]\n break\n isSearched[x] = True\n isSearchedNums[x] = n\n nums.append(x)\n n+=1\nif (isSearched[0]):\n ans = X\n for i in range(min((N-1), len(nums))):\n ans += nums[i]\n\n print(ans)\nelse:\n ans = X\n al = 0\n d = len(nums) - looped\n for i in range(looped, len(nums)):\n al += nums[i]\n\n if N - 1 > len(nums):\n N -= len(nums)\n ans += sum(nums)\n ans += al * ((N-1) // d)\n for i in range(looped, ((N-1) % d) + looped):\n ans += nums[i]\n else:\n for i in range(i, N - 1):\n ans += nums[i]\n\n print(ans)\n\n', 'N, X, M = map(int, input().split())\nx = X\nnums = []\nisSearched = [False] * (M+1)\nisSearchedNums = [-1] * (M+1)\nn = 0\nlooped = 0\nwhile True:\n x = (x*x) % M\n if isSearched[x]:\n looped = isSearchedNums[x]\n break\n isSearched[x] = True\n isSearchedNums[x] = n\n nums.append(x)\n n+=1\nif (isSearched[0]):\n ans = X\n for i in range(min((N-1), len(nums))):\n ans += nums[i]\n\n print(ans)\nelse:\n ans = X\n al = 0\n d = len(nums) - looped\n for i in range(looped, len(nums)):\n al += nums[i]\n if N - 1 > len(nums):\n N -= len(nums)\n ans += sum(nums)\n ans += al * ((N-1) // d)\n for i in range(looped, ((N-1) % d) + looped):\n ans += nums[i]\n else:\n for i in range(N - 1):\n ans += nums[i]\n\n print(ans)\n\n']
['Wrong Answer', 'Accepted']
['s694575795', 's681047736']
[14104.0, 13972.0]
[66.0, 67.0]
[816, 812]
p02550
u854524560
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\nA = [X]\nA_dict = {X}\na = X\ns = X\nr = 0\nr0 = 0\nl = 0\namari = 0\n\nfor i in range(M+1):\n a = a ** 2 % M\n if a in A_dict:\n r0 = A.index(a)\n l = len(A[r0:])\n r = (N - i - 1) // l\n amari = (N - i - 1) % l\n s = sum(A[:r0]) + sum(A[r0:])*r + sum(A[r0:r0+amari])\n break\n A.append(a)\n A_dict.add(a)\n s += A[-1]\n\nprint(s)', 'N, X, M = map(int, input().split())\nA = [X]\nA_dict = {X}\na = X\ns = X\nr = 0\nr0 = 0\nl = 0\namari = 0\n\nfor i in range(M+1):\n a = a ** 2 % M\n if a in A_dict:\n r0 = A.index(a)\n l = len(A[r0:])\n r = (N - i - 1) // l\n amari = (N - i - 1) % l\n s = sum(A[:r0]) + sum(A[r0:])*r + sum(A[r0:r0+amari])\n break\n A.append(a)\n A_dict.add(a)\n\nprint(s)', 'N, X, M = map(int, input().split())\nA = []\na = X\ns = X\nr = 0\nr0 = 0\nl = 0\namari = 0\n\nA.append(X)\nfor i in range(N-1):\n a = a ** 2 % M\n if A.count(a) >= 1:\n if a == 0:\n s = sum(A)\n break\n else:\n r0 = A.index(a)\n l = len(A[r0:])\n r = (N - i - 1) // l\n amari = (N - i - 1) % l\n s = sum(A) + sum(A[r0:])*r + sum(A[r0:r0+amari])\n break\n A.append(a)\n\nprint(s)', 'N, X, M = map(int, input().split())\nA = [X]\na = X\ns = X\nr = 0\nr0 = 0\nl = 0\namari = 0\n\nfor i in range(N-1):\n if A.count(a ** 2 % M) >= 1:\n if a == 0:\n s = sum(A)\n break\n else:\n r0 = A.index(a)\n l = len(A[r0:])\n r = (N - i - 1) // l\n amari = (N - i - 1) % l\n s = s + sum(A[r0:])*r + sum(A[r0:r0+amari])\n break\n A.append(a**2 % M)\n s += A[-1]\n\nprint(s)', 'N, X, M = map(int, input().split())\nA = [X]\nA_dict = {X}\na = X\ns = X\nr = 0\nr0 = 0\nl = 0\namari = 0\n\nfor i in range(M+1):\n a = a ** 2 % M\n if a in A_dict:\n r0 = A.index(a)\n l = len(A[r0:])\n r = (N - i - 1) // l\n amari = (N - i - 1) % l\n s = s + sum(A[r0:])*r + sum(A[r0:r0+amari])\n break\n A.append(a)\n A_dict.add(a)\n s += A[-1]\n\nprint(s)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s184454665', 's291317396', 's295898293', 's799516474', 's858204470']
[13136.0, 13136.0, 9732.0, 9140.0, 13132.0]
[65.0, 56.0, 2206.0, 27.0, 62.0]
[368, 355, 402, 398, 358]
p02550
u903082918
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['\nimport sys\nimport math\nfrom functools import reduce\n\ndef readString():\n return sys.stdin.readline()\n\ndef readInteger():\n return int(readString())\n\ndef readStringSet(n):\n return sys.stdin.readline().split(" ")[:n]\n\ndef readIntegerSet(n):\n return list(map(int, readStringSet(n)))\n\ndef readIntegerMatrix(n, m):\n return reduce(lambda acc, _: acc + [readIntegerSet(m)], range(0, n), [])\n\ndef main(N, X, M):\n A = X\n l = [A]\n i = -1\n for _ in range(1, M):\n A = (A * A) % M if M > 0 else 0\n if A in l:\n i = l.index(A)\n break\n else:\n l.append(A)\n\n if i == -1:\n return sum(l)\n else:\n s1 = sum(l[:i])\n len_repeat = len(l) - i\n s2 = sum(l[i:])\n\n # return s1 + int((N-i)/len_repeat) * s2 + sum(l[i:(N-i)%len_repeat+i])\n\nif __name__ == "__main__":\n _N, _X, _M = readIntegerSet(3)\n\n print(main(_N, _X, _M))', '\nimport sys\nimport math\nfrom functools import reduce\n\ndef readString():\n return sys.stdin.readline()\n\ndef readInteger():\n return int(readString())\n\ndef readStringSet(n):\n return sys.stdin.readline().split(" ")[:n]\n\ndef readIntegerSet(n):\n return list(map(int, readStringSet(n)))\n\ndef readIntegerMatrix(n, m):\n return reduce(lambda acc, _: acc + [readIntegerSet(m)], range(0, n), [])\n\ndef main(N, X, M):\n A = X\n l = [A]\n i = -1\n for _ in range(1, M):\n A = (A * A) % M if M > 0 else 0\n l.append(A)\n\n if i == -1:\n return sum(l)\n else:\n s1 = sum(l[:i])\n len_repeat = len(l) - i\n s2 = sum(l[i:])\n\n return s1 + int((N-i)/len_repeat) * s2 + sum(l[i:(N-i)%len_repeat+i])\n\nif __name__ == "__main__":\n _N, _X, _M = readIntegerSet(3)\n\n print(main(_N, _X, _M))', '\nimport sys\nimport math\nfrom functools import reduce\n\ndef readString():\n return sys.stdin.readline()\n\ndef readInteger():\n return int(readString())\n\ndef readStringSet(n):\n return sys.stdin.readline().split(" ")[:n]\n\ndef readIntegerSet(n):\n return list(map(int, readStringSet(n)))\n\ndef readIntegerMatrix(n, m):\n return reduce(lambda acc, _: acc + [readIntegerSet(m)], range(0, n), [])\n\ndef main(N, X, M):\n A = X\n l = [A]\n i = -1\n for _ in range(1, M):\n A = A # (A * A) % M if M > 0 else 0\n if A in l:\n i = l.index(A)\n break\n else:\n l.append(A)\n\n if i == -1:\n return sum(l)\n else:\n s1 = sum(l[:i])\n len_repeat = len(l) - i\n s2 = sum(l[i:])\n\n return s1 + int((N-i)/len_repeat) * s2 + sum(l[i:(N-i)%len_repeat+i])\n\nif __name__ == "__main__":\n _N, _X, _M = readIntegerSet(3)\n\n print(main(_N, _X, _M))', '\nimport sys\nimport math\nfrom functools import reduce\n\ndef readString():\n return sys.stdin.readline()\n\ndef readInteger():\n return int(readString())\n\ndef readStringSet(n):\n return sys.stdin.readline().split(" ")[:n]\n\ndef readIntegerSet(n):\n return list(map(int, readStringSet(n)))\n\ndef readIntegerMatrix(n, m):\n return reduce(lambda acc, _: acc + [readIntegerSet(m)], range(0, n), [])\n\ndef main(N, X, M):\n A = X\n m = {A: A}\n i = -1\n for j in range(1, M):\n A = (A * A) % M if M > 0 else 0\n if A in m:\n i = list(m.keys()).index(A)\n break\n else:\n m[A] = A\n\n if i == -1:\n return sum(m.values())\n else:\n l = list(m.values())\n s1 = sum(l[:i])\n len_repeat = len(l) - i\n s2 = sum(l[i:])\n\n return s1 + int((N-i)/len_repeat) * s2 + sum(l[i:(N-i)%len_repeat+i])\n\nif __name__ == "__main__":\n _N, _X, _M = readIntegerSet(3)\n\n print(main(_N, _X, _M))']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s449461102', 's544215917', 's787758034', 's676105789']
[10008.0, 13408.0, 9576.0, 14592.0]
[2206.0, 52.0, 35.0, 50.0]
[983, 899, 985, 1032]
p02550
u913662443
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['n, x, m = map(int,input().split())\nans = x\nnum = 0\nl = [0]*min(m,10**4)\nlis = [-1]*min(m,10**4)\nl[0] = x\nlis[x] = num\nfor i in range(1,n):\n x = (x*x)%m\n num += 1\n if lis[x]!=-1:\n a = (n-i)//(i-lis[x])\n b = (n-i)%(i-lis[x])\n ans += a * sum(l[lis[x]:i])\n break\n l[i] = x\n lis[x] = i\n ans += x\nfor i in range(lis[x],lis[x]+b):\n ans += l[i]\nprint(ans)', 'n, x, m = map(int,input().split())\nans = x\nnum = 0\nl = [0]*n\nlis = [-1]*n\nl[0] = x\nlis[x] = num\nfor i in range(1,n):\n x = (x*x)%m\n num += 1\n if lis[x]!=-1:\n a = (n-i)//(i-lis[x])\n b = (n-i)%(i-lis[x])\n ans += a * sum(l[lis[x]:i])\n break\n l[i] = x\n lis[x] = i\n ans += x\nfor i in range(lis[x],lis[x]+b):\n ans += l[i]\nprint(ans)', 'n, x, m = map(int,input().split())\nans = x\nnum = 0\nl = [0]*1000\nlis = [-1]*1000\nl[0] = x\nlis[x] = num\nfor i in range(1,n):\n x = (x*x)%m\n num += 1\n if lis[x]!=-1:\n a = (n-i)//(i-lis[x])\n b = (n-i)%(i-lis[x])\n ans += a * sum(l[lis[x]:i])\n break\n l[i] = x\n lis[x] = i\n ans += x\nfor i in range(lis[x],lis[x]+b):\n ans += l[i]\nprint(ans)', 'n, x, m = map(int,input().split())\nans = x\nnum = 0\nl = [0]*m\nlis = [-1]*m\nl[0] = x\nlis[x] = num\nfor i in range(1,n):\n x = (x*x)%m\n num += 1\n if lis[x]!=-1:\n a = (n-i)//(i-lis[x])\n b = (n-i)%(i-lis[x])\n ans += a * sum(l[lis[x]:i])\n break\n l[i] = x\n lis[x] = i\n ans += x\nfor i in range(lis[x],lis[x]+b):\n ans += l[i]\nprint(ans)', 'n, x, m = map(int,input().split())\nans = x\nnum = 0\nl = [0]*m\nlis = [-1]*m\nl[0] = x\nlis[x] = num\nfor i in range(1,n):\n x = (x*x)%m\n num += 1\n if lis[x]!=-1:\n a = (n-i)//(i-lis[x])\n b = (n-i)%(i-lis[x])\n ans += a * sum(l[lis[x]:i])\n for j in range(lis[x],lis[x]+b):\n ans += l[j]\n break\n l[i] = x\n lis[x] = i\n ans += x\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s056010691', 's195429644', 's558825763', 's782103849', 's412113980']
[9232.0, 23984.0, 9248.0, 13804.0, 13936.0]
[28.0, 49.0, 27.0, 59.0, 56.0]
[396, 374, 380, 374, 390]
p02550
u935511247
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['#import sys\n#print(sys.maxsize)\nN,X,M=map(int,input().split())\ntable=list(range(M))\nfor i in range(M):\n table[i]=((table[i]%M)**2)%M\nprint(table[471])\nstart=X%M\nrireki=list()\nrireki.append(start)\nss=0\nfor j in range(1,N):\n if table[start] in rireki:\n ss=rireki.index(table[start])\n break\n else:\n rireki.append(table[start])\n start=table[start]\nnn=len(rireki)\nrep=(N-ss)//(nn-ss)\nnokori=N-ss-rep*(nn-ss)\nloop=rireki[ss:]\n#print(nn)\n#print(rep)\n#print(sum(loop))\n#print(ss)\n\nif 0 in rireki:\n goukei=sum(rireki)\nelse:\n goukei=rep*sum(loop)+sum(rireki[:ss])+sum(loop[:nokori])\nprint(goukei)', '#import sys\n#print(sys.maxsize)\nN,X,M=map(int,input().split())\n#table=list(range(M))\n\n # table[i]=((table[i]%M)**2)%M\n#print(table[471])\nstart=X%M\nrset=set()\nrireki=list()\nrset.add(start)\nrireki.append(start)\nss=0\nfor j in range(1,M+1):\n start=(start**2)%M\n if start in rset:\n ss=rireki.index(start)\n break\n else:\n rireki.append(start)\n rset.add(start)\nnn=len(rireki)\nrep=(N-ss)//(nn-ss)\nnokori=N-ss-rep*(nn-ss)\nloop=rireki[ss:]\n#print(nn)\n#print(rep)\n#print(sum(loop))\n#print(ss)\n\nif 0 in rireki:\n goukei=sum(rireki)\nelse:\n goukei=rep*sum(loop)+sum(rireki[:ss])+sum(loop[:nokori])\nprint(goukei)']
['Runtime Error', 'Accepted']
['s281803898', 's993922583']
[13016.0, 13532.0]
[2206.0, 59.0]
[658, 688]
p02550
u936985471
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['import sys\nreadline=sys.stdin.readline\n\nN,X,M = map(int,readline().split())\nroute = [X]\ndic = {}\nfirst = []\nloop = []\nfor i in range(1, N):\n X = (X ** 2) % M\n if X in dic:\n first = route[:dic[X]]\n loop = route[dic[X]:]\n break\n route.append(X)\n dic[X] = i\n\nif N == len(first):\n print(sum(first))\nelif N < len(first):\n print(sum(first[:N]))\nelse:\n ans = sum(first)\n one_loop = sum(loop)\n N -= len(first)\n loop_cnt = N // len(loop)\n rest = N % len(loop)\n ans += loop_cnt * (sum(loop))\n ans += sum(loop[:rest])\n\n print(ans)\n', 'import sys\nreadline = sys.stdin.readline\n\nN,X,M = map(int,readline().split())\n\nnex = [(i ** 2) % M for i in range(M)]\ncum = [i for i in range(M)]\n\nans = 0\nwhile N:\n if N & 1:\n ans += cum[X]\n X = nex[X]\n cum = [cum[i] + cum[nex[i]] for i in range(M)]\n nex = [nex[nex[i]] for i in range(M)]\n N >>= 1\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s708289117', 's244176493']
[15564.0, 23968.0]
[57.0, 1121.0]
[543, 319]
p02550
u973972117
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N,X,M = map(int,input().split())\nA = X%M\nAns = A\nModset = set()\nModset.add(A)\nsig = 0\nN -= 1\nfor i in range(10**7):\n A = pow(A,2,M)\n Ans += A\n if A ==0:\n break\n if A not in Modset:\n Modset.add(A)\n N -= 1\n else:\n Ans -= A\n sig = 1\n break\nprint(N,Ans)\nif sig == 1:\n S = A\n B = A\n rep = 0\n for i in range(10**6):\n B = pow(B,2,M)\n rep += 1\n if A== B:\n break\n else:\n S += B\n Rep = N//rep\n Ans += Rep*S\n N -= Rep*rep\n if N != 0:\n Ans += A\n N -= 1\n for i in range(10**6):\n if N == 0:\n break\n Ans += pow(A,2,M)\nprint(Ans)', 'N,X,M = map(int,input().split())\nA = X%M\nAns = A\nModset = set()\nModset.add(A)\ni = 1\nfor _ in range(10**6):\n A = pow(A,2,M)\n if A not in Modset:\n Modset.add(A)\n Ans += A\n i += 1\n else:\n break\nif 0 in Modset:\n print(Ans)\nelse:\n S = A\n B = A\n j = 1\n for _ in range(10**6):\n B = pow(B,2,M)\n if A != B:\n S += B\n j += 1\n else:\n break\n rep = (N-i)//j\n Ans += S*rep\n i += j*rep\n if i < N:\n i += 1\n Ans += A\n for _ in range(10**10):\n if i == N:\n break\n else:\n i += 1\n A = pow(A,2,M)\n Ans += A\n print(Ans)']
['Wrong Answer', 'Accepted']
['s193600108', 's664929171']
[12508.0, 12452.0]
[899.0, 169.0]
[702, 719]
p02550
u995062424
2,000
1,048,576
Let us denote by f(x, m) the remainder of the Euclidean division of x by m. Let A be the sequence that is defined by the initial value A_1=X and the recurrence relation A_{n+1} = f(A_n^2, M). Find \displaystyle{\sum_{i=1}^N A_i}.
['N, X, M = map(int, input().split())\n\nrec = []\ns = set()\nrec.append(X)\ns.add(X)\nr = X\nidx == -1\nidx1 = -1\nfor i in range(N+1):\n r = (r**2)%M\n if(r not in s):\n rec.append(r)\n s.add(r)\n else:\n rec.append(r)\n idx = i+1\n break\n \nfor i in range(len(rec)):\n if(rec[i] == rec[idx]):\n idx1 = i\n break\n\nif(idx == -1 and idx1 == -1):\n print(sum(rec))\nelif(idx1 != idx): \n ans = sum(rec[:idx1])\n ans += sum(rec[idx1:idx])*((N-idx1)//(idx-idx1))+sum(rec[idx1:(idx1+(N-idx1)%(idx-idx1))])\n print(ans)\nelse:\n ans = sum(rec[:idx1])\n ans += rec[idx]*(N-idx1)\n print(ans)', 'N, X, M = map(int, input().split())\n\nrec = []\ns = set()\nrec.append(X)\ns.add(X)\nr = X\nidx = -1\nidx1 = -1\nfor i in range(N+1):\n r = (r**2)%M\n if(r not in s):\n rec.append(r)\n s.add(r)\n else:\n rec.append(r)\n idx = i+1\n break\n \nfor i in range(len(rec)):\n if(rec[i] == rec[idx]):\n idx1 = i\n break\n\nif(idx == -1 or idx1 == -1):\n print(sum(rec[:N]))\nelif(idx1 != idx): \n ans = sum(rec[:idx1])\n ans += sum(rec[idx1:idx])*((N-idx1)//(idx-idx1))+sum(rec[idx1:(idx1+(N-idx1)%(idx-idx1))])\n print(ans)\nelse:\n ans = sum(rec[:idx1])\n ans += rec[idx]*(N-idx1)\n print(ans)']
['Runtime Error', 'Accepted']
['s532287025', 's372759054']
[9092.0, 13224.0]
[28.0, 60.0]
[644, 646]
p02551
u785573018
2,000
1,048,576
There is a grid with N rows and N columns of squares. Let (i, j) be the square at the i-th row from the top and the j-th column from the left. Each of the central (N-2) \times (N-2) squares in the grid has a black stone on it. Each of the 2N - 1 squares on the bottom side and the right side has a white stone on it. Q queries are given. We ask you to process them in order. There are two kinds of queries. Their input format and description are as follows: * `1 x`: Place a white stone on (1, x). After that, for each black stone between (1, x) and the first white stone you hit if you go down from (1, x), replace it with a white stone. * `2 x`: Place a white stone on (x, 1). After that, for each black stone between (x, 1) and the first white stone you hit if you go right from (x, 1), replace it with a white stone. How many black stones are there on the grid after processing all Q queries?
['n, q = map(int, input().split())\nl = [0]*n; u = [0]*n; lmin = n-2; umin = n-2; lgoal = n; ugoal = n\nfor _ in range(q):\n s, t = map(int, input().split())\n if s == 1:\n if t > ugoal+1: u[t-1] = 0\n else:\n for i in range(t, ugoal-1):u[i] = umin\n lmin = t-2; ugoal = t\n else:\n if t > lgoal+1: l[t-1] = 0\n else:\n for i in range(t, lgoal-1):l[i] = lmin\n umin = t-2; lgoal = t\nprint(sum(l)+sum(u)+lmin*umin)', 'n, q = map(int, input().split())\nl = [0]*n; u = [0]*n; lmin = n-2; umin = n-2; lgoal = n; ugoal = n\nfor _ in range(q):\n s, t = map(int, input().split())\n if s == 1:\n if t > ugoal: u[t-1] = 0\n else:\n for i in range(t, ugoal-1):u[i] = umin\n lmin = t-2; ugoal = t\n else:\n if t > lgoal: l[t-1] = 0\n else:\n for i in range(t, lgoal-1):l[i] = lmin\n umin = t-2; lgoal = t\nprint(sum(l)+sum(u)+lmin*umin)']
['Wrong Answer', 'Accepted']
['s746746435', 's607591883']
[11964.0, 11964.0]
[423.0, 413.0]
[479, 475]
p02552
u005977014
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['a,b,c,d=map(int,input().split())\nif a>=0 and b>=0 and c>=0 and d>=0:\n print(b*d)\nelif a<=0 and b>=0 and c>=0 and d>=0:\n print(b*d)\nelif a<=0 and b<=0 and c>=0 and d>=0:\n print(b*c)\nelif a<=0 and b>=0 and c<=0 and d>=0:\n print(b*d)\nelif a<=0 and b<=0 and c<=0 and d>=0:\n print(a*c)\nelif a<=0 and b>=0 and c<=0 and d<=0:\n print(a*c)\nelif a<=0 and b<=0 and c<=0 and d<=0:\n print(a*c)', 'X=int(input())\nif X==0:\n print(1)\nelse:\n print(0)']
['Runtime Error', 'Accepted']
['s797411251', 's077805600']
[9152.0, 9144.0]
[22.0, 30.0]
[387, 51]
p02552
u007448456
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x = 0\n\nif x == 0:\n print("1")\nif x == 1:\n print("0")', 'x = int(input())\n\nif x == 0:\n print("1")\nif x == 1:\n print("0")']
['Wrong Answer', 'Accepted']
['s901056410', 's319839667']
[9004.0, 9028.0]
[33.0, 27.0]
[58, 69]
p02552
u013202780
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['print("O" if input()=="1" else "1")', 'import sys\nprint(int(sys.stdin.readline())^1)']
['Wrong Answer', 'Accepted']
['s853568975', 's932311382']
[8864.0, 9120.0]
[26.0, 27.0]
[35, 45]
p02552
u013617325
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
["#!/usr/bin/env python3\nimport sys\n\n\ndef solve(x: int):\n\n if x == 1:\n return print('0')\n\n elif x == 0:\n return print('1')1\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n x = int(next(tokens)) # type: int\n solve(x)\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(x: int):\n\n if x == 1:\n return print('0')\n\n elif x == 0:\n return print('1')\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n x = int(next(tokens)) # type: int\n solve(x)\n\nif __name__ == '__main__':\n main()\n"]
['Runtime Error', 'Accepted']
['s289489774', 's452729699']
[8944.0, 9168.0]
[25.0, 33.0]
[567, 566]
p02552
u015767468
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['def big(x):\n if x==0:\n return 1\n elif x==1:\n return 0', 'x=int(input())\nif x==0:\n print 1\nelif x==1:\n print 0', 'x=int(input())\nif x==1:\n print(0)\nelif x==0:\n print(1)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s157223077', 's448382599', 's875562127']
[9000.0, 8880.0, 8760.0]
[23.0, 26.0, 30.0]
[61, 54, 56]
p02552
u024340351
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['print(1-input())', 'print(1-int(input()))']
['Runtime Error', 'Accepted']
['s452177763', 's414279787']
[9044.0, 8984.0]
[26.0, 27.0]
[16, 21]
p02552
u024568043
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['print(int(not int(input()))', 'print(int(not int(input())))']
['Runtime Error', 'Accepted']
['s770215384', 's279933231']
[8876.0, 9144.0]
[23.0, 27.0]
[27, 28]
p02552
u038819082
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['a,b,c,d=map(int,input().split())\nprint(max(a*c,a*d,b*c,b*d))', 'x=int(input())\nif x==0:\n x=1\nelse:\n x=0\nprint(x)']
['Runtime Error', 'Accepted']
['s034933335', 's569644797']
[9116.0, 9084.0]
[26.0, 24.0]
[60, 50]
p02552
u042709364
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x = int(x)\n# OUTPUTS\n# Print 1 if input is equal to 0\nif x == 0:\n print(1)\n exit()\n\n# Print 0 if input is equal to 1\nif x == 1:\n print(0)\n exit()\n\n', "VAR = input('Please enter an integer: ')\nVAR = int(VAR)\n# OUTPUTS\n# Print 1 if input is equal to 0\nif VAR == 0:\n print(1)\n exit()\n# sys.exit('1')\n\n# Print 0 if input is equal to 1\nif VAR == 1:\n print(0)\n exit()\n# sys.exit('0')\n", "var = input('Please enter an integer: ')\nvar = int(var)\n# OUTPUTS \n# Print 1 if input is equal to 0 \nif var == 0:\n\texit()\n# sys.exit('1') \n \n# Print 0 if input is equal to 1\nif var == 1:\n\texit()\n# sys.exit('0')\n", 'import sys\n\n\nvar = input("Please enter an integer: ")\n\n# Error check 1: Is the input an integer?\ntry:\n val = int(var)\nexcept ValueError:\n sys.exit(\'Input is not an integer\') \n\n# Convert input to integer\nvar = int(var)\n\n# Error check 2: Is the input within bounds?\nif var > 1 or var < 0:\n sys.exit(\'Input is not within accepted bounds\')\n\n# OUTPUTS \n# Print 1 if input is equal to 0 \nif var == 0:\n sys.exit(\'1\') \n \n# Print 0 if input is equal to 1\nif var == 1:\n sys.exit(\'0\')\n', 'x = input()\nx = int(x)\n# OUTPUTS\n# Print 1 if input is equal to 0\nif x == 0:\n print(1)\n exit()\n\n# Print 0 if input is equal to 1\nif x == 1:\n print(0)\n exit()\n ']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s153467752', 's197696732', 's383241755', 's712235786', 's671591246']
[8948.0, 9008.0, 9152.0, 9004.0, 8968.0]
[26.0, 30.0, 30.0, 19.0, 24.0]
[159, 244, 219, 504, 171]
p02552
u048826171
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['n = input()\nif n == 0:\n print(1)\nelif n ==1:\n print(0)', 'n = int(input())\nprint(1^n)']
['Wrong Answer', 'Accepted']
['s378280994', 's406425012']
[9080.0, 9080.0]
[30.0, 29.0]
[56, 27]
p02552
u052331051
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['if __name__ == "__main__":\n a = input()\n a = int(a)\n if a==0:\n print(0)\n if a==1:\n print(1)', 'if __name__ == "__main__":\n a = input()\n a = int(a)\n if a==0:\n print(1)\n if a==1:\n print(0)']
['Wrong Answer', 'Accepted']
['s233599272', 's138054142']
[9152.0, 9152.0]
[31.0, 29.0]
[117, 117]
p02552
u055641210
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['if input(int()):\n print(0)\nelse:\n print(1)', 'if int(input()):\n print(0)\nelse:\n print(1)']
['Wrong Answer', 'Accepted']
['s543077464', 's708557276']
[8880.0, 9100.0]
[24.0, 25.0]
[48, 48]
p02552
u056118261
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x = int(input())\nif x==1:\n print(0)\nelse if x==0:\n print(1)', 'x = int(input())\nif x==1:\n print(0)\n \nelse:\n print(1)']
['Runtime Error', 'Accepted']
['s747561023', 's751783574']
[9004.0, 9144.0]
[27.0, 32.0]
[61, 56]
p02552
u056511037
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['princt(int(input()) ^ 1)', 'print(int(input()) ^ 1)']
['Runtime Error', 'Accepted']
['s423031727', 's032543389']
[8992.0, 9172.0]
[24.0, 27.0]
[24, 23]
p02552
u066120361
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x = int(input())\nprint(1 if x == 0 else 1)', 'x = int(input())\nif x == 0:\n print(1)\nelif x == 1:\n print(0)']
['Wrong Answer', 'Accepted']
['s192198050', 's945256795']
[9032.0, 9144.0]
[27.0, 28.0]
[42, 66]
p02552
u066455063
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x = int(input())\n\nprint(1 if x == 1 else 0)', 'x = int(input())\n \nprint(1 if x == 0 else 1)', 'x = int(input())\n\nif x == 1:\n print(0)\n \nelif x == 0:\n print(1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s609233976', 's827294419', 's973506204']
[9016.0, 9068.0, 8952.0]
[26.0, 31.0, 29.0]
[43, 44, 66]
p02552
u067694718
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['print(~int(input()))', 'print(~input())', 'print(1^int(input()))']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s325331905', 's475560260', 's928398432']
[9016.0, 9000.0, 9036.0]
[28.0, 28.0, 25.0]
[20, 15, 21]
p02552
u068142202
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x = int(input())\nif x != 1:\n print(0)\nelse:\n print(1)', 'x = int(input())\nif x == 1:\n print(0)\nelse:\n print(1)\n ']
['Wrong Answer', 'Accepted']
['s836494848', 's263907350']
[9144.0, 9092.0]
[28.0, 25.0]
[59, 64]
p02552
u090046582
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['if x == 0:\n print(1)\nelse:\n print(0)', '\nif x == 0:\n print(1)\nelse:\n print(0)', '\nx=0\n\nif x == 0:\n print(1)\nelse:\n print(0)', 'n=int(input())\nif (n==1):\n print("0")\nelse:\n print("1")']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s293888176', 's627652753', 's689319347', 's842125848']
[9008.0, 9072.0, 8928.0, 9028.0]
[25.0, 28.0, 34.0, 26.0]
[36, 37, 42, 61]
p02552
u102067593
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
["a=input()\nif a==1:\n print('0')\nelse:\n print('1')", "a=input()\nif a=='1':\n print('0')\nelse:\n print('1')"]
['Wrong Answer', 'Accepted']
['s071421799', 's065459062']
[8992.0, 9056.0]
[26.0, 32.0]
[50, 52]
p02552
u107915058
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x = input()\nprint("1" if x == "0" else "1")', 'x = input()\nprint("1" if x == "0" else "0")']
['Wrong Answer', 'Accepted']
['s729765063', 's390606291']
[9084.0, 9080.0]
[32.0, 31.0]
[43, 43]
p02552
u114868394
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x=int(input())\nif x=0:\n print(1)\nelse:\n print(0)', 'a,b,c,d=list(map(int,input().split()))\nif a>=0 and c>=0:\n one=b\n two=d\n\nelif a<0 and c<0:\n one=a\n two=c\n\nelif a>=0 and c<0:\n one=a\n two=d\nelse:\n one=b\n two=c\n\n\nprint(one*two)', 'x=int(input())\nif x==0:\n print(1)\nelse:\n print(0)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s430953934', 's526087327', 's655897562']
[9000.0, 9124.0, 9148.0]
[29.0, 24.0, 32.0]
[54, 198, 55]
p02552
u116763463
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x = int(input())\nif x == 0:\n\tprint(x^1)', '#include<bits/stdc++.h>\nusing namespace std;\n\n\n\nint mod = 1000000007;\n\n// #include "debug.cpp"\n\nint dp[1000010][4];\n\nint32_t main(){\n\tint n;\n\tcin >> n;\n\n\tif(n == 1){\n\t\tcout << "0\\n";\n\t\treturn 0;\n\t}\n\n\tdp[2][0] = 64;\n\tdp[2][1] = 17;\n\tdp[2][2] = 17;\n\tdp[2][3] = 2;\n\n\tfor(int i=3; i<=n; i++){\n\t\tdp[i][0] = dp[i-1][0]*8;\n\t\tdp[i][1] = dp[i-1][0] + dp[i-1][1]*9;\n\t\tdp[i][2] = dp[i-1][0] + dp[i-1][2]*9;\n\t\tdp[i][3] = dp[i-1][1] + dp[i-1][2] + dp[i-1][3]*10;\n\n\t\tdp[i][0] %= mod;\n\t\tdp[i][1] %= mod;\n\t\tdp[i][2] %= mod;\n\t\tdp[i][3] %= mod;\n\t}\n\n\tcout << dp[n][3] << "\\n";\n}', 'x = int(input())\nprint(x^1)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s658454850', 's852705130', 's734413912']
[9144.0, 9000.0, 9144.0]
[27.0, 24.0, 30.0]
[39, 580, 27]
p02552
u119015607
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['a,b,c,d= map(int,input().split())\n\nif a>=0 and b>=0 and c>=0 and d>=0:\n print(b*d)\nelif a>=0 and b>=0 and c<=0 and d<=0:\n print(a*d)\nelif a>=0 and b>=0 and c<=0 and d>=0:\n print(b*d)\nelif a<=0 and b>=0 and c>=0 and d>=0:\n print(b*d)\nelif a<=0 and b<=0 and c<=0 and d>=0:\n print(a*c)\nelif a<=0 and b<=0 and c>=0 and d>=0:\n print(a*c)\nelif a<=0 and b<=0 and c<=0 and d<=0:\n print(a*d)\nelif a<=0 and b<=0 and c<=0 and d>=0:\n print(a*c)\nelif a<=0 and b>=0 and c<=0 and d>=0:\n x=a*c\n y=b*d\n print(x,y)\n if x>=y:\n print(x)\n else:\n print(y)', 'a,b,c,d= map(int,input().split())\n\nif a>=0 and b>=0 and c>=0 and d>=0:\n print(b*d)\nelif a>=0 and b>=0 and c<=0 and d<=0:\n print(a*d)\nelif a>=0 and b>=0 and c<=0 and d>=0:\n print(b*d)\nelif a<=0 and b>=0 and c>=0 and d>=0:\n print(b*d)\nelif a<=0 and b<=0 and c<=0 and d>=0:\n print(a*c)\nelif a<=0 and b<=0 and c>=0 and d>=0:\n print(a*c)\nelif a<=0 and b<=0 and c<=0 and d<=0:\n print(a*d)\nelif a<=0 and b<=0 and c<=0 and d>=0:\n print(a*c)\nelif a<=0 and b>=0 and c<=0 and d>=0:\n x=a*c\n y=b*d\n #print(x,y)\n if x>=y:\n print(x)\n else:\n print(y)', 'x= int(input())\n\nif x ==0:\n print(1)\nelse:\n print(0)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s555727750', 's639404436', 's382391348']
[9192.0, 9200.0, 9148.0]
[23.0, 26.0, 34.0]
[586, 587, 58]
p02552
u120758605
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x=int(input())\nif(x==1):\n print("0")\n elif(x==0):\n \n print("1")\n else:\n pass', 'x=int(input())\nif(x==1):\n print("0")\n elif(x==0):\n print("1")\n else:\n pass', 'x=int(input())\nif(x==1):\n \n print("0")\nelif(x==0):\n \n print("1")\nelse:\n \n pass\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s522932756', 's748732573', 's580218489']
[8840.0, 8884.0, 9044.0]
[23.0, 27.0, 25.0]
[80, 77, 85]
p02552
u135331079
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['print(not int(input()))', 'print(not(int(input())))', "if input() == '0':\n print(1)\nelse:\n print(0)"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s633422742', 's787723993', 's092669886']
[9056.0, 9152.0, 8920.0]
[23.0, 28.0, 29.0]
[23, 24, 50]
p02552
u135642682
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['a,b,c,d = map(int, input().split())\nif a >=0:\n if c > 0:\n print(b * d)\n elif d < 0:\n print(a * d)\n else:\n print(b*d)\nelse:\n if c > 0:\n print(b * c)\n elif d < 0:\n print(a * c)\n else:\n print(b * c)', 'a,b,c,d = map(int, input().split())\nif a >=0:\n if c > 0:\n print(b * d)\n elif d < 0:\n print(a * d)\n else:\n print(b*d)\nelse:\n if c > 0:\n print(b * c)\n elif d < 0:\n print(a * c)\n else:\n print(b * c)', 'x = int(input())\nif x==1:\n print("0")\nelse:\n print("1")']
['Runtime Error', 'Runtime Error', 'Accepted']
['s193274845', 's811770987', 's587518160']
[9208.0, 9184.0, 9144.0]
[23.0, 28.0, 27.0]
[255, 255, 61]
p02552
u135832955
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
["import random\n\n\ndef gcd(a, b):\n if a == 0:\n return b\n return gcd(b % a, a)\n\n\ndef lcm(a, b):\n return (a * b) / gcd(a, b)\nx=input()\nif x==1:\n print('0')\nelse:\n print('1')", 'import random\n\n\ndef gcd(a, b):\n if a == 0:\n return b\n return gcd(b % a, a)\n\n\ndef lcm(a, b):\n return (a * b) / gcd(a, b)\n# a=list(map(int , input().split()))\n# ans=-1\n\n# for j in range(i+1,4):\n# if ans==-1:\n# ans=a[i]*a[j]\n# else:\n# ans=max(ans, a[i]*a[j])\n# print(ans)\nx=int(input())\nif x==1:\n print(0)\nelse:\n print(1)']
['Wrong Answer', 'Accepted']
['s338782402', 's695349339']
[9436.0, 9488.0]
[31.0, 32.0]
[190, 404]
p02552
u153924627
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['if int(input()) == 1:\n print(1)\nelse:\n print(0)', 'if int(input()) == 1:\n print(0)\nelse:\n print(1)']
['Wrong Answer', 'Accepted']
['s606896632', 's292214598']
[9156.0, 9136.0]
[29.0, 27.0]
[49, 49]
p02552
u161701206
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['a = input()\nprint(a)', 'a = int(input())\nif a != 0:\n print(0)\nelse:\n print(1)']
['Wrong Answer', 'Accepted']
['s126217862', 's936167151']
[9132.0, 9088.0]
[29.0, 31.0]
[20, 59]
p02552
u167542063
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['x=input()\nif x==1:\n \tprint("0")\nelif x==0:\n \tprint("1")\n ', 'x=int(input())\nif x==1:\n \tprint(0)\nelif x==0:\n \tprint(1)']
['Wrong Answer', 'Accepted']
['s744088834', 's919040168']
[8940.0, 9144.0]
[23.0, 27.0]
[62, 58]
p02552
u168825829
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['X = int(input())\nif X == "0":\n print("1")\nelif X == "1":\n print("0")', 'X = int(input())\nif X == 0:\n print("1")\nelif X == 1:\n print("0")']
['Wrong Answer', 'Accepted']
['s741028515', 's837502256']
[9088.0, 9080.0]
[30.0, 31.0]
[74, 70]
p02552
u171356057
2,000
1,048,576
Given is an integer x that is greater than or equal to 0, and less than or equal to 1. Output 1 if x is equal to 0, or 0 if x is equal to 1.
['def(x)\n if x == 1\n return 0\nreturn 1', 'x = int ( input() )\nif x==1:\n print (0)\n \nelse :\n print (1)']
['Runtime Error', 'Accepted']
['s234907499', 's786938371']
[8852.0, 9052.0]
[25.0, 29.0]
[37, 62]