problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p03821 | u277429554 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n = int(input())\na = []\nb = []\nfor j in range(n):\n l = list(map(int, input().split()))\n a.append(l[0])\n b.append(l[1])\n c = 0\nfor i in range(n-1, -1, -1):\n if (a[i]+c) % b[i] != 0:\n c += (b[i] - (a[i]+c) % b[i])\nprint(c)', 'n = int(input())\na = []\nb = []\nfor j in range(n):\n l = list(map(int, input().split()))\n a.append(l[0])\n b.append(l[1])\nc = 0\nfor i in range(n-1, -1, -1):\n if (a[i]+c) % b[i] != 0:\n c += (b[i] - (a[i]+c) % b[i])\nprint(c)'] | ['Runtime Error', 'Accepted'] | ['s576353698', 's116525074'] | [8996.0, 16968.0] | [27.0, 262.0] | [239, 238] |
p03821 | u371132735 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['\nN = int(input())\nA = []\nB = []\nfor i in range(N):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\n\npush = 0\nfor i in range(N):\n if (A[N-i-1] + push) % B[N-i-1] != 0:\n push += abs(B[N-i-1] - ((push + A[N-i-1]) % B[N-i-1]))\n print(A[N-i-1] , B[N-i-1],push)\nprint(push)\n', '\nN = int(input())\nA = []\nB = []\nfor i in range(N):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\n\npush = 0\nfor i in range(N):\n if (A[N-i-1] + push) % B[N-i-1] != 0:\n push += abs(B[N-i-1] - ((push + A[N-i-1]) % B[N-i-1]))\nprint(push)\n'] | ['Wrong Answer', 'Accepted'] | ['s463005346', 's131857963'] | [14496.0, 11048.0] | [619.0, 404.0] | [330, 290] |
p03821 | u375616706 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['def floor(a, b):\n return min(0, b - a % b)\n\n\nN = int(input())\nA = []\nB = []\ntotal_add = 0\nfor _ in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\n\nans = 0\nfor i in reversed(range(N)):\n a = A.pop(-1)\n a += total_add\n b = B.pop(-1)\n inc = b*floor(a, b)-a\n total_add += inc\n\nprint(total_add)\n', 'def floor(a, b):\n return b - a % b\n\n\nN = int(input())\nA = []\nB = []\ntotal_add = 0\nfor _ in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\n\nans = 0\nfor i in reversed(range(N)):\n a = A.pop(-1)\n a += total_add\n b = B.pop(-1)\n inc = b*floor(a, b)-a\n total_add += inc\n\nprint(total_add)\n', 'N = int(input())\nA = []\nB = []\ntotal_add = 0\nfor _ in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\n\nans = 0\nfor i in reversed(range(N)):\n a = A.pop(-1)\n a += total_add\n inc = min(0, b - a % b)\n b = B.pop(-1)\n total_add += inc\n\nprint(total_add)\n', 'N = int(input())\nA = []\nB = []\ntotal_add = 0\nfor _ in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\n\nans = 0\ninc = 0\nfor i in reversed(range(N)):\n a = A.pop(-1)\n a += total_add\n if a % b == 0:\n inc = 0\n else:\n inv = b - a % b\n b = B.pop(-1)\n total_add += inc\n\nprint(total_add)\n', 'N = int(input())\nA = []\nB = []\ntotal_add = 0\nfor _ in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\n\ninc = 0\nfor i in reversed(range(N)):\n a = A.pop(-1)\n a += total_add\n b = B.pop(-1)\n if a % b == 0:\n inc = 0\n else:\n inv = b - a % b\n total_add += inc\n\nprint(total_add)\n', 'N = int(input())\nA = []\nB = []\ntotal_add = 0\nfor _ in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\n\ninc = 0\nfor i in reversed(range(N)):\n a = A.pop(-1)\n a += total_add\n b = B.pop(-1)\n inc = b - a % b if a % b != 0 else 0\n total_add += inc\n\nprint(total_add)\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s357388258', 's372805782', 's763162944', 's804284133', 's982904058', 's512469939'] | [11060.0, 11064.0, 11052.0, 11132.0, 11008.0, 11052.0] | [419.0, 399.0, 389.0, 385.0, 383.0, 396.0] | [340, 332, 294, 343, 335, 307] |
p03821 | u388415336 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['seq_a = []\nseq_b = []\nseq_n = int(input())\nfor i in range(seq_n):\n num_a,num_b=map(int,input().split())\n a.append(num_a)\n b.append(num_b)\nx = 0\nfor i in range(seq_n - 1, -1 ,-1):\n elem_a , elem_b = seq_a[i],seq_b[i]\n y = (elem_a + x)% elem_b\n if y != 0: x += (m-y)\nprint(x)', 'seq_a = []\nseq_b = []\nseq_n = int(input())\nfor i in range(seq_n):\n num_a,num_b=map(int,input().split())\n seq_a.append(num_a)\n seq_b.append(num_b)\nx = 0\nfor i in range(seq_n - 1, -1 ,-1):\n elem_a , elem_b = seq_a[i],seq_b[i]\n y = (elem_a + x)% elem_b\n if y != 0: x += (m-y)\nprint(x)', 'seq_a = []\nseq_b = []\nseq_n = int(input())\nfor i in range(seq_n):\n num_a,num_b=map(int,input().split())\n seq_a.append(num_a)\n seq_b.append(num_b)\nx = 0\nfor i in range(seq_n - 1, -1 ,-1):\n seq_n , elem_b = seq_a[i],seq_b[i]\n y = (seq_n + x)% elem_b\n if y != 0: x += (m-y)\nprint(x)', 'a=[]\nb=[]\nn=int(input())\nfor i in range(n):\n j,k=map(int,input().split())\n a.append(j)\n b.append(k)\nx=0\nfor i in range(n-1,-1,-1):\n n,m=a[i],b[i]\n y=(n+x)%m\n if y!=0:x+=m-y\nprint(x)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s336075198', 's672444704', 's864384772', 's239339706'] | [3060.0, 11052.0, 11052.0, 11048.0] | [17.0, 330.0, 326.0, 348.0] | [291, 299, 297, 199] |
p03821 | u391475811 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N=int(input())\nA=[]\nB=[]\nfor i in range(N):\n a,b=map(int,input().split())\n A.append(a)\n B.append(b)\n\nans=0\nfor i in range(N-1,-1,-1):\n a=A[i]+ans\n b=B[i]\n if a < b:\n ans+=(b-a)\n elif a % b==0\n continue\n else:\n ans+=(a+b)//b*b-a\n \nprint(ans)', 'N=int(input())\nA=[]\nB=[]\nfor i in range(N):\n a,b=map(int,input().split())\n A.append(a)\n B.append(b)\n\nans=0\nfor i in range(N-1,-1,-1):\n a=A[i]+ans\n b=B[i]\n if a ==0 or a % b ==0:\n continue\n else:\n ans+=(a+b)//b*b-a\n \nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s824105834', 's177152631'] | [2940.0, 11048.0] | [17.0, 375.0] | [260, 242] |
p03821 | u391731808 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N = int(input())\nAB = [list(map(int,input().split())) for _ in [0]*N]\n\nans = 0\nfor a,b in AB[::-1]:\n a = max(a,ans)\n ans = ((a-1)//b+1)*b\nprint(ans)', 'N = int(input())\nAB = [list(map(int,input().split())) for _ in [0]*N]\n\nans = 0 \nfor a,b in AB[::-1]: ans += (-a-ans)%b\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s025382191', 's092227136'] | [28148.0, 28148.0] | [378.0, 362.0] | [150, 129] |
p03821 | u408375121 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n = int(input())\nl = []\nr = []\nfor _ in range(n):\n a, b = map(int, input().split())\n l.append(a)\n r.append(b)\nbefore_sa = 0\nfor i in range(1, n+1):\n j = 0\n a, b = l[-i], r[-i]\n a += before_sa\n if a % b == 0:\n continue\n else:\n sa = (a//b + 1) * b - a\n before_sa = sa\nprint(before_sa)\n', 'n = int(input())\nl = []\nr = []\nfor _ in range(n):\n a, b = map(int, input())\n l.append(a)\n r.append(b)\nbefore_sa = 0\nfor i in range(1, n+1):\n j = 0\n a, b = l[-i], r[-i]\n while True:\n if j == 0 and a % b == 0:\n sa = 0\n elif j == 0 and a % b != 0:\n sa = (a//b + 1) * b - a\n elif j > 0:\n sa = (a//b + j) * b - a\n if before_sa <= sa:\n before_sa = sa\n break\n j += 1\nprint(before_sa)', 'n = int(input())\nl = []\nr = []\nfor _ in range(n):\n a, b = map(int, input().split())\n l.append(a)\n r.append(b)\nbefore_sa = 0\nfor i in range(1, n+1):\n a, b = l[-i], r[-i]\n a += before_sa\n if a % b == 0:\n continue\n else:\n sa = (a//b + 1) * b - a\n before_sa += sa\nprint(before_sa)\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s582354004', 's903634817', 's867450316'] | [11120.0, 3064.0, 11060.0] | [372.0, 17.0, 379.0] | [300, 422, 293] |
p03821 | u413165887 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n = int(input())\nab = [list(map(int, input().split())) for _i in range(n)]\n\nx = 0\nr = 0\nfor i in range(n-1, -1, -1):\n a, b = ab[i]\n r += (x+a)%b\n x = r\nprint(r)', 'n = int(input())\nab = [list(map(int, input().split())) for _i in range(n)][::-1]\n\nr = 0\nfor i in range(n):\n a, b = ab[i]\n if (r+a)%b==0:\n continue\n r += b-(r+a)%b\nprint(r)'] | ['Wrong Answer', 'Accepted'] | ['s488820335', 's584903735'] | [27136.0, 28188.0] | [241.0, 261.0] | [169, 187] |
p03821 | u425351967 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N = int(input())\nA=[]\nB=[]\nfor i in range(N):\n a,b=[int(n) for n in input().split()]\n A.append(a)\n B.append(b)\n\ncnt=0\n\n# print(list(reversed(range(N))))\nfor i in reversed(range(N)):\n if A[i]%B[i]==0:\n r=0\n else\n r=B[i]-A[i]%B[i]\n cnt+=r\n A=[A[n]+r if n<=i else A[n] for n in range(N)]\n\nprint(cnt)\n', 'N = int(input())\nA=[]\nB=[]\nfor i in range(N):\n a,b=[int(n) for n in input().split()]\n A.append(a)\n B.append(b)\n\ncnt=0\n\n# print(list(reversed(range(N))))\nfor i in reversed(range(N)):\n if (A[i]+cnt)%B[i]==0:\n d=0\n else:\n d=B[i]-(A[i]+cnt)%B[i]\n cnt+=d\n# A=[A[n]+r if n<=i else A[n] for n in range(N)]\n\nprint(cnt)\n'] | ['Runtime Error', 'Accepted'] | ['s677940065', 's905799760'] | [3064.0, 11088.0] | [22.0, 472.0] | [332, 346] |
p03821 | u434208140 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n=int(input())\nc=[list(map(int,unput().split())) for _ in [0]*n].reverse()\nt=0\nfor i in c:\n a=c[0]\n b=c[2]\n t+=b-1-(a+t-1)%b\nprint(t)', 'c=list(reversed([list(map(int,input().split())) for _ in [0]*int(input())]))\nt=0\nfor i in c:\n a=i[0]\n b=i[1]\n t+=b-1-(a+t-1)%b\nprint(t)'] | ['Runtime Error', 'Accepted'] | ['s671260720', 's471407841'] | [3828.0, 28148.0] | [19.0, 380.0] | [136, 138] |
p03821 | u451017206 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N = int(input())\nA = []\nB = []\nfor i in range(N):\n a, b = map(int, input().split())\n A.append(a)\n B.append(b)\n\nA = A[::-1]\nB = B[::-1]\n\nans = 0\nfor a, b in zip(A, B):\n a += ans\n m = b - (a % b) if b != 1 else 0\n m = b if a == 0\n ans += m\nprint(ans)', 'ans = 0\nfor a, b in reversed([[int(j) for j in input().split()] for i in range(int(input()))]):\n a += ans\n k = a % b\n if k != 0: ans += b - k\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s439268851', 's429822962'] | [2940.0, 21156.0] | [17.0, 352.0] | [269, 161] |
p03821 | u474925961 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n=int(input())\na=[]\nrn=0\ncnt=0\nfor i in range(n):\n b,c=map(int,input().split())\n a.append([b,c])\na=a[::-1]\nprint(a) \nfor i in range(n):\n b,c=a[i]\n b+=cnt\n cnt+=(c-b%c)%c\nprint(cnt)\n', 'n=int(input())\na=[]\nrn=0\ncnt=0\nfor i in range(n):\n b,c=map(int,input().split())\n a.append([b,c])\na=a[::-1]\nprint(a) \nfor i in range(n):\n b,c=a[i]\n b+=cnt\n cnt+=(c-b%c)%c\nprint(cnt)\n', 'n=int(input())\na=[]\nrn=0\ncnt=0\nfor i in range(n):\n b,c=map(int,input().split())\n a.append([b,c])\na=a[::-1]\n \nfor i in range(n):\n b,c=a[i]\n b+=cnt\n cnt+=(c-b%c)%c\nprint(cnt)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s291196138', 's850222742', 's169370908'] | [28120.0, 28120.0, 20520.0] | [417.0, 420.0, 380.0] | [198, 198, 189] |
p03821 | u536034761 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['from sys import stdin\ndef main():\n readline = stdin.readline\n N = int(readline())\n L = [list(map(int, readline().split())) for _ in range(N)]\n cnt = 0\n for l in L[::-1]:\n a = l[0] + cnt\n b = l[1]\n if a % b != 0:\n cnt += a % b\n print(cnt)\nif __name__ == "__main__":\n main()', 'from sys import stdin\ndef main():\n readline = stdin.readline\n N = int(readline())\n L = [list(map(int, readline().split())) for _ in range(N)]\n cnt = 0\n for l in L[::-1]:\n a = l[0] + cnt\n b = l[1]\n if a % b != 0:\n cnt += b - a % b\n print(cnt)\nif __name__ == "__main__":\n main()'] | ['Wrong Answer', 'Accepted'] | ['s917173856', 's203015822'] | [28096.0, 28112.0] | [141.0, 143.0] | [293, 297] |
p03821 | u573272932 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N = int(input())\ncnt = 0\nL = []\nfor i in range(N):\n\tL.append(list(map(int, input().split())))\n\nfor i in range(N):\n\tA, B = L[-i+1]\n\tcnt += -(A + cnt)%B\n\tprint(cnt)', 'N = int(input())\ncnt = 0\nL = []\nfor i in range(N):\n\tL.append(list(map(int, input().split())))\n\nL = L[::-1]\n\nfor i in range(N):\n\tA, B = L[i]\n\tif A:\n\t\tcnt += -(A + cnt)%B\n\telse:\n\t\tcnt += B - cnt\n\tprint(cnt)', 'N = int(input())\ncnt = 0\nL = []\nfor i in range(N):\n\tL.append(list(map(int, input().split())))\n\nL = L[::-1]\n \nfor i in range(N):\n\tA, B = L[i]\n\tif A:\n\t\tcnt += -(A + cnt)%B\n\nprint(cnt)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s151814206', 's882462532', 's791523710'] | [28916.0, 28900.0, 28148.0] | [483.0, 477.0, 405.0] | [162, 204, 181] |
p03821 | u595893956 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n=int(input())\na=[]\nb=[]\nret = 0\nfor i in range(n):\n a[i],b[i]=map(int,input().split())\nfor i in range(n):\n ret+=b[-1-i]-(ret+a[-1-i])%b[-1-i]\nprint(ret)', 'n=int(input())\na=[]\nb=[]\nret = 0\nfor i in range(n):\n s,t=map(int,input().split())\n a+=[s]\n b+=[t]\nfor i in range(n):\n ret+=(b[-1-i]-(ret+a[-1-i])%b[-1-i])%b[-1-i]\nprint(ret)'] | ['Runtime Error', 'Accepted'] | ['s069351557', 's450178349'] | [3060.0, 11052.0] | [17.0, 380.0] | [155, 177] |
p03821 | u623687794 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n=int(input())\na=[0]*n;b=a[:]\nfor i in range(n):\n c,d=map(int,input().split())\n a[i]=c;b[i]=d\nans=0\nfor i in range(n)[::-1]:\n while a[i]%b[i]!=0:\n a[i]+=1\n ans+=1\nprint(ans)', 'n=int(input())\na=[0]*n;b=a[:]\nfor i in range(n):\n c,d=map(int,input().split())\n a[i]=c;b[i]=d\nans=0\nfor i in range(n)[::-1]:\n a[i]+=ans\n ans+=a[i]%b[i]\nprint(ans)\n', 'n=int(input())\na=[0]*n;b=a[:]\nfor i in range(n):\n c,d=map(int,input().split())\n a[i]=c;b[i]=d\nans=0\nfor i in range(n)[::-1]:\n a[i]+=ans\n if a[i]%b[i]==0:continue\n ans+=b[i]-(a[i]%b[i])\nprint(ans)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s427198564', 's962063384', 's054676397'] | [12916.0, 14836.0, 14836.0] | [2104.0, 347.0, 385.0] | [182, 167, 201] |
p03821 | u623814058 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N=int(input())\nA=[map(int,input().split()) for _ in range(N)]\n\nr=0\nfor i in range(N-1,-1,-1):\n a,b=A[i]\n a+=r\n r+=-(-a//b)*A[i][1]-a\nprint(r)', 'N=int(input())\nA=[list(map(int,input().split())) for _ in range(N)]\n\nr=0\nfor i in range(N-1,-1,-1):\n a,b=A[i]\n a+=r\n r+=-(-a//b)*A[i][1]-a\nprint(r)'] | ['Runtime Error', 'Accepted'] | ['s120558419', 's987770244'] | [52504.0, 27408.0] | [300.0, 261.0] | [150, 156] |
p03821 | u627417051 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N = int(input())\ns = 0\nfor i in range(N):\n\tAB = list(map(int, input().split()))\n\tif AB[0] % AB[1] != 0:\n\t\ts += AB[1] - (AB[0] % AB[1])\nprint(s)', 'N = int(input())\nAL = []\nBL = []\n\nfor i in range(N):\n\tA, B =list(map(int,input().split()))\n\tAL.append(A)\n\tBL.append(B)\n\nc = 0\nfor i in range(N):\n\tx = BL[-1 -i] - ((AL[-1 -i] + c) % BL[-1 -i])\n\tif x == BL[-1 -i]:\n\t\tx = 0\n\tc += x\n\nprint(c)'] | ['Wrong Answer', 'Accepted'] | ['s247874083', 's565554518'] | [3060.0, 11136.0] | [381.0, 404.0] | [143, 237] |
p03821 | u631914718 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n = int(input())\na, b = [0]*n, [0]*n\nfor i in range(n):\n\ta[i], b[i] = map(int, input().split())\n\nans = 0\nfor i in range(n)[::-1]:\n\ta_, b_ = a[i] + p, b[i]\n\tif a%b != 0:\n\t\tans += (a_ // b_ + 1) * b_ - a_\n\nprint(p)', 'n = int(input())\na, b = [], []\nfor i in range(n):\n\ta[i], b[i] = map(int, input().split())\n\nans = 0\nfor i in range(n)[::-1]:\n\ta_, b_ = a[i] + ans, b[i]\n\tif a_%b_ != 0:\n\t\tans += ((a_ // b_ + 1) * b_ - a_)\n\nprint(ans)\n', 'n = int(input())\na, b = [], []\nfor i in range(n):\n\ta[i], b[i] = map(int, input().split())\n\nans = 0\nfor i in range(n)[::-1]:\n\ta_, b_ = a[i] + ans, b[i]\n\tif a_%b_ != 0:\n\t\tans += ((a_ // b_ + 1) * b_ - a_)\n\nprint(p)\n', 'n = int(input())\na, b = [0]*n, [0]*n\nfor i in range(n):\n\ta[i], b[i] = map(int, input().split())\n\nans = 0\nfor i in range(n)[::-1]:\n\ta_, b_ = a[i] + p, b[i]\n\tif a_%b_ != 0:\n\t\tans += (a_ // b_ + 1) * b_ - a_\n\nprint(p)\n', 'n = int(input())\nab = []\nfor i in range(n):\n\ta, b = map(int, input().split())\n\tab.append((a, b))\n\nans = 0\nfor i in range(n)[::-1]:\n\ta, b = ab[i][0]+ans, ab[i][1]\n\tif a%b != 0:\n\t\tans += ((a//b + 1)*b - a)\n\nprint(ans)\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s239157077', 's405245376', 's545214903', 's698031805', 's486765814'] | [10996.0, 3064.0, 3064.0, 10996.0, 16676.0] | [377.0, 23.0, 23.0, 369.0, 471.0] | [212, 215, 213, 215, 216] |
p03821 | u638033979 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n = int(input())\nA = []\nB = []\n\nfor _ in range(n):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\n\nprint(A)\nA.reverse()\nB.reverse()\n\nans = 0\nfor i in range(n):\n temp = B[i] - (A[i] % B[i])\n if temp == B[i]:\n temp = 0\n A = list(map(lambda x: x + temp, A))\n ans += temp\n\nprint(ans)', 'n = int(input())\nA = []\nB = []\n\nfor _ in range(n):\n a,b = map(int,input().split())\n A.append(a)\n B.append(b)\n\nA.reverse()\nB.reverse()\n\nans = 0\nfor i in range(n):\n temp = B[i] - ((A[i]+ans) % B[i])\n if temp == B[i]:\n temp = 0\n ans += temp\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s517210735', 's142863923'] | [20772.0, 11052.0] | [2105.0, 351.0] | [318, 274] |
p03821 | u680851063 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n = int(input())\na,b=[],[]\n\nfor i in range(n):\n x,y = map(int,input().split())\n a.append(x)\n b.append(y)\n\na=list(reversed(a))\nb=list(reversed(b))\n\nOK=0\nfor i in range(n):\n A=a[i]+OK\n if A==b[i]:\n continue\n else:\n ok=b[i]-A%b[i]-A\n OK+=ok\n\nprint(OK)\n', 'n = int(input())\na,b=[],[]\n\nfor i in range(n):\n x,y = map(int,input().split())\n a.append(x)\n b.append(y)\n\na=list(reversed(a))\nb=list(reversed(b))\n\nOK=0\nfor i in range(n):\n A=a[i]+OK\n ok=b[i]-A%b[i]-A\n OK+=ok\n\nprint(OK)\n', 'n = int(input())\na,b=[],[]\n\nfor i in range(n):\n x,y = map(int,input().split())\n a.append(x)\n b.append(y)\nprint(a,b)\n\na=list(reversed(a))\nb=list(reversed(b))\nprint(a,b)\n\nOK=0\nfor i in range(n):\n A=a[i]+OK\n if A<b[i]:\n ok=b[i]-A\n elif A==b[i]:\n continue\n else:\n ok=-(-A//b[i])*b[i]-A\n OK+=ok\n\nprint(OK)', 'n = int(input())\na,b=[],[]\n\nfor i in range(n):\n x,y = map(int,input().split())\n a.append(x)\n b.append(y)\n\na=list(reversed(a))\nb=list(reversed(b))\n\nans=0\nOK=0\nfor i in range(n):\n tmp=a[i]+OK\n if tmp<=b[i] and tmp!=0:\n ok=b[i]-tmp\n elif tmp==0:\n continue\n else:\n ok=-(-tmp//b[i])*b[i]-tmp\n OK=OK+ok\n\nprint(OK)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s275697296', 's393621629', 's511171567', 's210821824'] | [17736.0, 17620.0, 19976.0, 17684.0] | [257.0, 246.0, 313.0, 269.0] | [284, 237, 345, 352] |
p03821 | u724742135 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['from sys import stdin\nN = int(stdin.readline().rstrip())\nAB = [list(map(int, stdin.readline().rstrip().split())) for _ in range(N)]\nans = 0\nfor i in range(N-1, -1, -1):\n \ta, b = AB[i]\n\tans += (b - (a + ans) % b) % b\nprint(ans)', 'from sys import stdin\nN = int(stdin.readline().rstrip())\nAB = [list(map(int, stdin.readline().rstrip().split())) for _ in range(N)]\nans = 0\nfor i in range(N-1, -1, -1):\n a, b = AB[i]\n ans += (b - (a + ans) % b) % b\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s430620686', 's395938768'] | [2940.0, 27380.0] | [17.0, 236.0] | [227, 227] |
p03821 | u760771686 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N = int(input())\nArray = []\nfor i in range(N):\n Array.append(tuple(map(int,input().split())))\n\nres = 0\nfor i in reversed(range(N)):\n a,b = Array[i]\n a+=res\n res+ = b-a%b\nprint(res)', 'N = int(input())\nArray = []\nfor i in range(N):\n Array.append(tuple(map(int,input().split())))\n\nres = 0\nfor i in reversed(range(N)):\n a,b = Array[i]\n a+=res\n res+= ((b-a%b)%b)\nprint(res)'] | ['Runtime Error', 'Accepted'] | ['s523128577', 's314496416'] | [9032.0, 22572.0] | [26.0, 251.0] | [184, 189] |
p03821 | u760961723 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N =int(input())\nAB = [list(map(int,input().split())) for _ in range(N)]\n\nans = 0\nfor i in range(N):\n if AB[-1][0]%AB[-1][1]==0:\n push = 0\n else:\n push = (AB[-1][1] - (AB[-1][0]%AB[-1][1]))\n ans += push\n for j in range(len(AB)):\n AB[j][0] += push\n print(i,ans,push,AB)\n AB.pop()\nprint(ans)', 'N =int(input())\na = [0] * N\nb = [0] * N\nfor i in range(N):\n A, B = map(int, input().split())\n a[i], b[i] = A, B\n \nans = 0\nfor i in range(N-1,-1,-1):\n if (a[i]+ans)%b[i]==0:\n push = 0\n else:\n push = b[i] - (a[i]+ans)%b[i]\n ans += push\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s499759128', 's634848369'] | [113828.0, 10868.0] | [2106.0, 366.0] | [303, 262] |
p03821 | u761320129 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N = int(input())\nAB = [tuple(map(int,input().split())) for i in range(N)]\nz = 0\nfor a,b in AB[::-1]:\n z += -(z+a)%b\n print(a,b,z)\nprint(z)\n', 'N = int(input())\nAB = [tuple(map(int,input().split())) for i in range(N)]\nz = 0\nfor a,b in AB[::-1]:\n z += -(z+a)%b\nprint(z)'] | ['Wrong Answer', 'Accepted'] | ['s210261507', 's321502451'] | [20888.0, 17380.0] | [523.0, 336.0] | [145, 127] |
p03821 | u777283665 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n = int(input())\nA, B = np.zeros(n), np.zeros(n)\nfor i in range(n):\n a, b = map(int, input().split())\n A[i] = a\n B[i] = b', 'ans = 0\n\nfor i in range(10**9):\n ans += 1\n \nprint(ans', 'n = int(input())\nab = [map(int, input().split()) for _ in range(n)]\n\nans = 0\nfor a, b in reversed(ab):\n a += ans\n ans += (-a) % b\n\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s022148258', 's238690297', 's887686976'] | [3060.0, 3064.0, 50420.0] | [17.0, 17.0, 407.0] | [130, 55, 147] |
p03821 | u838644735 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['def main():\n N, *AB = map(int, open(0).read().split())\n ans = 0\n for i in range(N - 1, 0, -1):\n a = AB[i * 2 + 0]\n b = AB[i * 2 + 1]\n ans += (b - a - ans) % b\n print(ans)\n\nif __name__ == "__main__":\n main()\n', 'def main():\n N, *AB = map(int, open(0).read().split())\n ans = 0\n for i in range(N - 1, -1, -1):\n a = AB[i * 2 + 0]\n b = AB[i * 2 + 1]\n ans += (b - a - ans) % b\n print(ans)\n\nif __name__ == "__main__":\n main()\n'] | ['Wrong Answer', 'Accepted'] | ['s752732601', 's111681782'] | [25124.0, 25124.0] | [102.0, 102.0] | [243, 244] |
p03821 | u905715926 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['n = int(input())\nans = 0\nli = []\nfor i in range(n):\n a,b = map(int,input().split())\n li.append(map(int,input().split()))\nfor (a,b) in li[::-1]:\n ans += (b-((a+ans)%b))%b\nprint(ans)\n', 'n = int(input())\nans = 0\nli = []\nfor i in range(n):\n a,b = map(int,input().split())\n li.append((a,b))\nfor (a,b) in li[::-1]:\n ans += (b-((a+ans)%b))%b\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s352014053', 's023055237'] | [26712.0, 17352.0] | [316.0, 350.0] | [190, 171] |
p03821 | u952708174 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['def a_multiple_array_(N, A, B):\n ans = 0 \n for k in range(N - 1, -1, -1): \n remainder = (A[k] + ans) % B[k] \n if remainder != 0: \n ans += B[k] - remainder\n return ans\n\nN = int(Input())\nA, B = [], []\nfor _ in range(N):\n a, b = [int(i) for i in input().split()]\n A.append(a)\n B.append(b)\nprint(a_multiple_array_(N, A, B))', 'def a_multiple_array_(N, A, B):\n ans = 0 \n for k in range(N - 1, -1, -1): \n remainder = (A[k] + ans) % B[k] \n if remainder != 0: \n ans += B[k] - remainder\n return ans\n\nN = int(input())\nA, B = [], []\nfor _ in range(N):\n a, b = [int(i) for i in input().split()]\n A.append(a)\n B.append(b)\nprint(a_multiple_array_(N, A, B))'] | ['Runtime Error', 'Accepted'] | ['s651071625', 's813750112'] | [3064.0, 11096.0] | [17.0, 352.0] | [514, 514] |
p03821 | u966695411 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['N = int(input())\ncnt = 0\nL = [list(map(int, input().split())) for x in range(N)]\nfor a, b in L[::-1]:\n a += cnt\n if a < b && a != 0 : cnt += b - a\n if a > b: \n if a % b:\n cnt += b - a % b\n else:\n cnt += a % b\nprint(cnt)', 'N = int(input())\ncnt = 0\nL = [list(map(int, input().split())) for x in range(N)]\nfor a, b in L[::-1]:\n a += cnt\n if a < b and a != 0 : cnt += b - a\n if a > b: \n if a % b:\n cnt += b - a % b\n else:\n cnt += a % b\nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s425593334', 's346591692'] | [3064.0, 28276.0] | [29.0, 518.0] | [264, 265] |
p03821 | u987164499 | 2,000 | 262,144 | There are an integer sequence A_1,...,A_N consisting of N terms, and N buttons. When the i-th (1 ≦ i ≦ N) button is pressed, the values of the i terms from the first through the i-th are all incremented by 1. There is also another integer sequence B_1,...,B_N. Takahashi will push the buttons some number of times so that for every i, A_i will be a multiple of B_i. Find the minimum number of times Takahashi will press the buttons. | ['from sys import stdin\nimport fractions\n\nn = int(stdin.readline().rstrip())\nli = [[0,0]]+[list(map(int,stdin.readline().rstrip().split())) for _ in range(n)]\nli = li[::-1]\ncount = 0\nfor i in range(n):\n if li[i][0]%li[i][1] != 0:\n count += li[i][1]-li[i][0]%li[i][1]\n li[i+1][0] += count\n print(li)\nprint(count)', 'from sys import stdin\nimport fractions\n\nn = int(stdin.readline().rstrip())\nli = [[0,0]]+[list(map(int,stdin.readline().rstrip().split())) for _ in range(n)]\nli = li[::-1]\ncount = 0\nfor i in range(n):\n count += -li[i][0]%li[i][1]\n li[i+1][0] += count\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s707951362', 's291797653'] | [138536.0, 33344.0] | [2106.0, 261.0] | [329, 268] |
p03822 | u163320134 | 2,000 | 262,144 | N contestants participated in a competition. The total of N-1 matches were played in a knockout tournament. For some reasons, the tournament may not be "fair" for all the contestants. That is, the number of the matches that must be played in order to win the championship may be different for each contestant. The structure of the tournament is formally described at the end of this statement. After each match, there were always one winner and one loser. The last contestant standing was declared the champion. Figure: an example of a tournament For convenience, the contestants were numbered 1 through N. The contestant numbered 1 was the champion, and the contestant numbered i(2 ≦ i ≦ N) was defeated in a match against the contestant numbered a_i. We will define the _depth_ of the tournament as the maximum number of the matches that must be played in order to win the championship over all the contestants. Find the minimum possible depth of the tournament. The formal description of the structure of the tournament is as follows. In the i-th match, one of the following played against each other: * Two predetermined contestants * One predetermined contestant and the winner of the j-th match, where j(j<i) was predetermined * The winner of the j-th match and the winner of the k-th match, where j and k (j,k<i, j ≠ k) were predetermined Such structure is valid structure of the tournament, if and only if no contestant who has already been defeated in a match will never play in a match, regardless of the outcome of the matches. | ['import sys\nsys.setrecurtionlimit(10**9)\n\ndef dfs(v):\n if len(g[v])==0:\n return 0\n dic={}\n for u in g[v]:\n tmp=dfs(u)\n if tmp not in dic:\n dic[tmp]=1\n else:\n dic[tmp]+=1\n pos=max(dic.keys())\n return pos+dic[pos]\n\nn=int(input())\ng=[[] for _ in range(n+1)]\nfor i in range(n-1):\n v=int(input())\n g[v].append(i+2)\nprint(dfs(1))', 'import sys\nsys.setrecursionlimit(10**9)\n\ndef dfs(v):\n if len(g[v])==0:\n return 0\n dic={}\n for u in g[v]:\n tmp=dfs(u)\n if tmp not in dic:\n dic[tmp]=1\n else:\n dic[tmp]+=1\n return min([pos+dic[pos] for pos in dic.keys()])\n\nn=int(input())\ng=[[] for _ in range(n+1)]\nfor i in range(n-1):\n v=int(input())\n g[v].append(i+2)\nprint(dfs(1))', 'import sys\nsys.setrecursionlimit(10**9)\n\ndef dfs(v):\n if len(g[v])==0:\n return 0\n dic={}\n for u in g[v]:\n tmp=dfs(u)\n if tmp not in dic:\n dic[tmp]=1\n else:\n dic[tmp]+=1\n arr=[]\n for pos in dic.keys():\n arr+=[pos]*dic[pos]\n arr=sorted(arr,reverse=True)\n return max([(i+1)+arr[i] for i in range(len(arr))])\n\nn=int(input())\ng=[[] for _ in range(n+1)]\nfor i in range(n-1):\n v=int(input())\n g[v].append(i+2)\nprint(dfs(1))'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s161650181', 's255517482', 's112503071'] | [3064.0, 159536.0, 159536.0] | [17.0, 591.0, 882.0] | [351, 358, 450] |
p03822 | u287132915 | 2,000 | 262,144 | N contestants participated in a competition. The total of N-1 matches were played in a knockout tournament. For some reasons, the tournament may not be "fair" for all the contestants. That is, the number of the matches that must be played in order to win the championship may be different for each contestant. The structure of the tournament is formally described at the end of this statement. After each match, there were always one winner and one loser. The last contestant standing was declared the champion. Figure: an example of a tournament For convenience, the contestants were numbered 1 through N. The contestant numbered 1 was the champion, and the contestant numbered i(2 ≦ i ≦ N) was defeated in a match against the contestant numbered a_i. We will define the _depth_ of the tournament as the maximum number of the matches that must be played in order to win the championship over all the contestants. Find the minimum possible depth of the tournament. The formal description of the structure of the tournament is as follows. In the i-th match, one of the following played against each other: * Two predetermined contestants * One predetermined contestant and the winner of the j-th match, where j(j<i) was predetermined * The winner of the j-th match and the winner of the k-th match, where j and k (j,k<i, j ≠ k) were predetermined Such structure is valid structure of the tournament, if and only if no contestant who has already been defeated in a match will never play in a match, regardless of the outcome of the matches. | ['import sys\nsys.setrecursionlimit(10**10)\n\nn = int(input())\ndic = {}\nfor i in range(n+1):\n if i <= 1: continue\n ai = int(input())\n if ai in dic:\n dic[ai].append(i)\n else:\n dic[ai] = [i]\n\ndef dfs(nxt):\n lst = []\n if nxt in dic:\n while dic[nxt] != []:\n child = dic[nxt].pop()\n tempmax = dfs(child)\n lst.append(tempmax)\n else:\n return 0\n lst.sort(reverse=True)\n for i in range(len(lst)):\n lst[i] += i+1\n return max(lst)\n\nans = dfs(1)\nprint(ans)', 'import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\ndic = {}\nfor i in range(n+1):\n if i <= 1: continue\n ai = int(input())\n if ai in dic:\n dic[ai].append(i)\n else:\n dic[ai] = [i]\n\ndef dfs(node):\n lst = []\n if node in dic:\n while dic[node] != []:\n child = dic[node].pop()\n tempmax = dfs(child)\n lst.append(tempmax)\n else:\n return 0\n lst.sort(reverse=True)\n for i in range(len(lst)):\n lst[i] += i+1\n return max(lst)\n\nans = dfs(1)\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s156707832', 's644919727'] | [3064.0, 114076.0] | [18.0, 583.0] | [538, 541] |
p03822 | u334712262 | 2,000 | 262,144 | N contestants participated in a competition. The total of N-1 matches were played in a knockout tournament. For some reasons, the tournament may not be "fair" for all the contestants. That is, the number of the matches that must be played in order to win the championship may be different for each contestant. The structure of the tournament is formally described at the end of this statement. After each match, there were always one winner and one loser. The last contestant standing was declared the champion. Figure: an example of a tournament For convenience, the contestants were numbered 1 through N. The contestant numbered 1 was the champion, and the contestant numbered i(2 ≦ i ≦ N) was defeated in a match against the contestant numbered a_i. We will define the _depth_ of the tournament as the maximum number of the matches that must be played in order to win the championship over all the contestants. Find the minimum possible depth of the tournament. The formal description of the structure of the tournament is as follows. In the i-th match, one of the following played against each other: * Two predetermined contestants * One predetermined contestant and the winner of the j-th match, where j(j<i) was predetermined * The winner of the j-th match and the winner of the k-th match, where j and k (j,k<i, j ≠ k) were predetermined Such structure is valid structure of the tournament, if and only if no contestant who has already been defeated in a match will never play in a match, regardless of the outcome of the matches. | ["# -*- coding: utf-8 -*-\nimport resource\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict, deque\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\nfrom operator import add, mul, sub\n\nsys.setrecursionlimit(10000000)\ninput = sys.stdin.readline\nINF = 2**62-1\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input().strip()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\n@mt\ndef slv(N, A):\n g = defaultdict(list)\n for i, a in enumerate(A):\n i += 2\n g[a].append(i)\n\n @lru_cache(maxsize=None)\n def f(u):\n d = [f(v) for v in g[u]]\n \n if not d:\n return 0\n\n d.sort()\n while len(d) > 1:\n l = d.pop()\n r = d.pop()\n d.append(max((l + 1, r)))\n return d[0] + 1\n return f(1)\n\n\ndef main():\n N = read_int()\n A = [read_int() for _ in range(N-1)]\n print(slv(N, A))\n\n\nif __name__ == '__main__':\n main()\n", "# -*- coding: utf-8 -*-\nimport resource\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict, deque\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\nfrom operator import add, mul, sub\n\nsys.setrecursionlimit(10000000)\ninput = sys.stdin.readline\nINF = 2**62-1\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input().strip()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\ng = defaultdict(list)\n\n\ndef f(u):\n d = [f(v) for v in g[u]]\n if not d:\n return 0\n\n d.sort(reverse=True)\n while len(d) > 1:\n l = d.pop()\n r = d.pop()\n d.append(max((l + 1, r)))\n return d[0] + 1\n\n@mt\ndef slv(N, A):\n global g\n for i, a in enumerate(A):\n i += 2\n g[a].append(i)\n\n return f(1)\n\n\ndef main():\n N = read_int()\n A = [read_int() for _ in range(N-1)]\n print(slv(N, A))\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s338633423', 's692540965'] | [417360.0, 239656.0] | [1162.0, 687.0] | [1614, 1541] |
p03822 | u425351967 | 2,000 | 262,144 | N contestants participated in a competition. The total of N-1 matches were played in a knockout tournament. For some reasons, the tournament may not be "fair" for all the contestants. That is, the number of the matches that must be played in order to win the championship may be different for each contestant. The structure of the tournament is formally described at the end of this statement. After each match, there were always one winner and one loser. The last contestant standing was declared the champion. Figure: an example of a tournament For convenience, the contestants were numbered 1 through N. The contestant numbered 1 was the champion, and the contestant numbered i(2 ≦ i ≦ N) was defeated in a match against the contestant numbered a_i. We will define the _depth_ of the tournament as the maximum number of the matches that must be played in order to win the championship over all the contestants. Find the minimum possible depth of the tournament. The formal description of the structure of the tournament is as follows. In the i-th match, one of the following played against each other: * Two predetermined contestants * One predetermined contestant and the winner of the j-th match, where j(j<i) was predetermined * The winner of the j-th match and the winner of the k-th match, where j and k (j,k<i, j ≠ k) were predetermined Such structure is valid structure of the tournament, if and only if no contestant who has already been defeated in a match will never play in a match, regardless of the outcome of the matches. | ['\n\ndepth=[-1]*N\nparent=[-1]*N\nchilds=[[] for i in range(N)]\n\ndepth[0]=0\ndef calc_depth(n):\n for child in childs[n]:\n depth[child]=depth[n]+1\n calc_depth(child)\n\ndef calc_height(n):\n if childs[n]==[]:\n return 0 \n childs_height=[]\n for child in childs[n]:\n childs_height.append(calc_height(child))\n childs_height.sort(reverse=True)\n heightlist=[childs_height[i]+i for i in range(len(childs_height))]\n return max(heightlist)+1\n\nfor i in range (1,N):\n a=int(input())-1\n childs[a].append(i)\n\nprint(calc_height(0))\n', 'import sys\nsys.setrecursionlimit(500000)\n\nN=int(input())\n\n\ndepth=[-1]*N\nparent=[-1]*N\nchilds=[[] for i in range(N)]\n\ndepth[0]=0\ndef calc_depth(n):\n for child in childs[n]:\n depth[child]=depth[n]+1\n calc_depth(child)\n\ndef calc_height(n):\n if childs[n]==[]:\n return 0 \n childs_height=[]\n for child in childs[n]:\n childs_height.append(calc_height(child))\n childs_height.sort(reverse=True)\n heightlist=[childs_height[i]+i for i in range(len(childs_height))]\n return max(heightlist)+1\n\nfor i in range (1,N):\n a=int(input())-1\n childs[a].append(i)\n\nprint(calc_height(0))\n'] | ['Runtime Error', 'Accepted'] | ['s348801004', 's877665730'] | [3188.0, 139440.0] | [24.0, 865.0] | [563, 620] |
p03822 | u754022296 | 2,000 | 262,144 | N contestants participated in a competition. The total of N-1 matches were played in a knockout tournament. For some reasons, the tournament may not be "fair" for all the contestants. That is, the number of the matches that must be played in order to win the championship may be different for each contestant. The structure of the tournament is formally described at the end of this statement. After each match, there were always one winner and one loser. The last contestant standing was declared the champion. Figure: an example of a tournament For convenience, the contestants were numbered 1 through N. The contestant numbered 1 was the champion, and the contestant numbered i(2 ≦ i ≦ N) was defeated in a match against the contestant numbered a_i. We will define the _depth_ of the tournament as the maximum number of the matches that must be played in order to win the championship over all the contestants. Find the minimum possible depth of the tournament. The formal description of the structure of the tournament is as follows. In the i-th match, one of the following played against each other: * Two predetermined contestants * One predetermined contestant and the winner of the j-th match, where j(j<i) was predetermined * The winner of the j-th match and the winner of the k-th match, where j and k (j,k<i, j ≠ k) were predetermined Such structure is valid structure of the tournament, if and only if no contestant who has already been defeated in a match will never play in a match, regardless of the outcome of the matches. | ['import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nimport heapq\n\ndef main():\n n = int(input())\n T = [[] for _ in range(n+1)]\n for i in range(1, n):\n T[int(input())].append(i)\n\n def dfs(v):\n if not T[v]:\n return 0\n L = []\n for i in T[v]:\n heapq.heappush(L, dfs(i)+1)\n temp = heapq.heappop(L)\n while L:\n temp = max(temp+1, heapq.heappop(L))\n return temp\n\n ans = dfs(1)\n print(ans)\n \nif __name__ == "__main__":\n main()', 'import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nimport heapq\n\ndef main():\n n = int(input())\n T = [[] for _ in range(n)]\n for i in range(1, n):\n a = int(input())\n a -= 1\n T[a].append(i)\n\n def dfs(v):\n if not T[v]:\n return 0\n L = []\n for i in T[v]:\n heapq.heappush(L, dfs(i)+1)\n temp = heapq.heappop(L)\n while L:\n temp = max(temp+1, heapq.heappop(L))\n return temp\n\n ans = dfs(0)\n print(ans)\n \nif __name__ == "__main__":\n main()'] | ['Runtime Error', 'Accepted'] | ['s475568412', 's183925110'] | [594968.0, 131480.0] | [1431.0, 321.0] | [476, 495] |
p03822 | u844789719 | 2,000 | 262,144 | N contestants participated in a competition. The total of N-1 matches were played in a knockout tournament. For some reasons, the tournament may not be "fair" for all the contestants. That is, the number of the matches that must be played in order to win the championship may be different for each contestant. The structure of the tournament is formally described at the end of this statement. After each match, there were always one winner and one loser. The last contestant standing was declared the champion. Figure: an example of a tournament For convenience, the contestants were numbered 1 through N. The contestant numbered 1 was the champion, and the contestant numbered i(2 ≦ i ≦ N) was defeated in a match against the contestant numbered a_i. We will define the _depth_ of the tournament as the maximum number of the matches that must be played in order to win the championship over all the contestants. Find the minimum possible depth of the tournament. The formal description of the structure of the tournament is as follows. In the i-th match, one of the following played against each other: * Two predetermined contestants * One predetermined contestant and the winner of the j-th match, where j(j<i) was predetermined * The winner of the j-th match and the winner of the k-th match, where j and k (j,k<i, j ≠ k) were predetermined Such structure is valid structure of the tournament, if and only if no contestant who has already been defeated in a match will never play in a match, regardless of the outcome of the matches. | ['import collections, sys\nsys.setrecursionlimit(10**5 + 5)\nN, *A = [int(_) for _ in open(0).read().split()]\nwin_lose = {i: set() for i in range(1, N + 1)}\nfor win, lose in zip(A, range(2, N + 1)):\n win_lose[win].add(lose)\n\nmemo = [-1] * (N + 1)\n\n\ndef rec(x):\n if memo[x] == -1:\n if win_lose[x] == set():\n memo[x] = 0\n else:\n memo[x] = max(a + b for a, b in zip(\n sorted(rec(y) for y in win_lose[x])[::-1], range(1, N + 1)))\n return memo[x]\n\n\nprint(rec(1))\nprint(memo)\n', 'N, *A = [int(_) for _ in open(0).read().split()]\nwin_lose = {i: set() for i in range(1, N + 1)}\nfor lose, win in enumerate(A):\n win_lose[win].add(lose + 2)\ns1 = [1]\ns2 = []\nwhile s1:\n a = s1.pop()\n s2 += [a]\n for b in win_lose[a]:\n s1 += [b]\ndp = [0] * (N + 1)\nfor x in s2[::-1]:\n if win_lose[x] == set():\n dp[x] = 0\n else:\n dp[x] = max(\n i + v + 1\n for i, v in enumerate(sorted(dp[y] for y in win_lose[x])[::-1]))\nprint(dp[1])\n'] | ['Runtime Error', 'Accepted'] | ['s759457794', 's237228626'] | [159976.0, 52916.0] | [651.0, 435.0] | [526, 489] |
p03830 | u102960641 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import array\nimport textwrap\nimport math\nmod = 10 ** 9 + 7\ndef prime(end, typecode="L"):\n assert end > 1\n \n \n \n is_prime = array.array("B", (True for i in range(end)))\n \n is_prime[0] = False\n is_prime[1] = False\n \n primes = array.array(typecode)\n \n for i in range(2, end):\n if is_prime[i]: \n primes.append(i) \n for j in range(2 * i, end, i): \n is_prime[j] = False \n return primes.tolist()\n\nn = int(input())\na = prime(n)\nans = 1\nprint(a)\nfor i in a:\n b = 0\n c = i\n while c <= n:\n b += n // c\n c = c * i\n ans *= b + 1\n ans %= mod\nprint(ans)', 'import array\nimport textwrap\nimport math\nmod = 10 ** 9 + 7\ndef prime(end, typecode="L"):\n assert end > 1\n \n \n \n is_prime = array.array("B", (True for i in range(end)))\n \n is_prime[0] = False\n is_prime[1] = False\n \n primes = array.array(typecode)\n \n for i in range(2, end):\n if is_prime[i]: \n primes.append(i) \n for j in range(2 * i, end, i): \n is_prime[j] = False \n return primes.tolist()\n\nn = int(input())\na = prime(n)\nans = 1\nfor i in a:\n b = 0\n c = i\n while c <= n:\n b += n // c\n c = c * i\n b += 1\n ans *= b\n ans %= mod\nprint(ans)', 'import array\nimport textwrap\nimport math\nmod = 10 ** 9 + 7\ndef prime(end, typecode="L"):\n assert end > 1\n \n \n \n is_prime = array.array("B", (True for i in range(end)))\n \n is_prime[0] = False\n is_prime[1] = False\n \n primes = array.array(typecode)\n \n for i in range(2, end):\n if is_prime[i]: \n primes.append(i) \n for j in range(2 * i, end, i): \n is_prime[j] = False \n return primes.tolist()\n\nn = int(input())\na = prime(n+1)\nans = 1\nfor i in a:\n b = 0\n c = i\n while c <= n:\n b += n // c\n c = c * i\n b += 1\n ans *= b\n ans %= mod\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s052052726', 's125253858', 's115256704'] | [3316.0, 3316.0, 3316.0] | [21.0, 21.0, 21.0] | [1003, 999, 1001] |
p03830 | u172386990 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['from collections import Counter\n\ndef factoring(N, factor_prev):\n \n \n factor_list = factor_prev\n N_dict = {}\n \n while True:\n if N == 1:\n return N_dict, factor_list\n \n for factor in factor_prev:\n if N % factor == 0:\n N = N // factor\n \n \n if factor in N_dict:\n N_dict[factor] += 1\n break\n \n else:\n N_dict[factor] = 1\n break\n \n \n if factor == factor_prev[-1] and N % factor != 0:\n factor_list.append(N)\n N_dict[N] = 1\n return N_dict, factor_list\n\ndef factorial_factoring(N):\n \n if N == 1:\n return {2: 0}\n \n else:\n factorial_factoring_dict = {}\n \n for i in range(2, N+1):\n if i == 2:\n N_dict = {2: 1}\n factor_prev = [2]\n factorial_factoring_dict = Counter(factorial_factoring_dict) + Counter(N_dict)\n else:\n N_dict, factor_prev = factoring(i, factor_prev)\n factorial_factoring_dict = Counter(factorial_factoring_dict) + Counter(N_dict)\n \n return(factorial_factoring_dict)\n \ndivisor = 1\nmod = 1000000007\nfor _, v in factorial_factoring(1000).items():\n divisor = divisor * (v + 1)\nprint(divisor % mod)', 'from collections import Counter\n\ndef factoring(N, factor_prev):\n \n \n factor_list = factor_prev\n N_dict = {}\n \n while True:\n if N == 1:\n return N_dict, factor_list\n \n for factor in factor_prev:\n if N % factor == 0:\n N = N // factor\n \n \n if factor in N_dict:\n N_dict[factor] += 1\n break\n \n else:\n N_dict[factor] = 1\n break\n \n \n if factor == factor_prev[-1] and N % factor != 0:\n factor_list.append(N)\n N_dict[N] = 1\n return N_dict, factor_list\n \ndef factorial_factoring(N):\n \n if N == 1:\n return {2: 0}\n \n else:\n factorial_factoring_dict = {}\n \n for i in range(2, N+1):\n if i == 2:\n N_dict = {2: 1}\n factor_prev = [2]\n factorial_factoring_dict = Counter(factorial_factoring_dict) + Counter(N_dict)\n else:\n N_dict, factor_prev = factoring(i, factor_prev)\n factorial_factoring_dict = Counter(factorial_factoring_dict) + Counter(N_dict)\n \n return(factorial_factoring_dict)\n \ndivisor = 1\nmod = 1000000007\nN = int(input())\nfor _, v in factorial_factoring(N).items():\n divisor = divisor * (v + 1)\nprint(divisor % mod)'] | ['Wrong Answer', 'Accepted'] | ['s466863861', 's849315539'] | [3316.0, 3316.0] | [93.0, 92.0] | [1820, 1848] |
p03830 | u185325486 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import math\n\ndef isPrime(num):\n \n if num < 2: return False\n \n elif num == 2: return True\n \n elif num % 2 == 0: return False\n\n for i in range(3, math.floor(math.sqrt(num))+1, 2):\n if num % i == 0:\n return False\n return True\n\n \nN = int(input())\ntotal = 1\nmod = 10**9+7\nkaijo_ = math.factorial(N)\nprint(kaijo_)\nfor i in range(1,N+1):\n cnt = 0\n n = kaijo_\n if isPrime(i):\n while n % i == 0:\n n = n // i\n cnt += 1\n print(i,cnt)\n total = (total*(cnt+1))%mod\nprint(total)', 'import math\n\ndef isPrime(num):\n \n if num < 2: return False\n \n elif num == 2: return True\n \n elif num % 2 == 0: return False\n\n for i in range(3, math.floor(math.sqrt(num))+1, 2):\n if num % i == 0:\n return False\n return True\n\n \nN = int(input())\ntotal = 1\nmod = 10**9+7\nkaijo_ = math.factorial(N)\nfor i in range(1,N+1):\n cnt = 0\n n = kaijo_\n if isPrime(i):\n while n % i == 0:\n n = n // i\n cnt += 1\n total = (total*(cnt+1))%mod\nprint(total)'] | ['Wrong Answer', 'Accepted'] | ['s549029703', 's418073744'] | [3064.0, 3064.0] | [41.0, 42.0] | [641, 606] |
p03830 | u196697332 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['N = int(input())\n\nfrom math import factorial\nnum_divide = factorial(N)\n\ndivided = False\n\nfactor_dict = {}\n\nfor i in range(2, N + 1):\n for t in range(2, i + 1):\n \n while i % t == 0:\n \n i /= t\n if t not in factor_dict:\n factor_dict[t] = 1\n else:\n factor_dict[t] += 1\n\n if i == 1:\n break\n\ncount = 1\nfor value in factor_dict.values():\n count *= value + 1\n \ncount % (10e9 + 7)', 'N = int(input())\n\nfrom math import factorial\nnum_divide = factorial(N)\n\ndivided = False\n\nfactor_dict = {}\n\nfor i in range(2, N + 1):\n for t in range(2, i + 1):\n \n while i % t == 0:\n \n i /= t\n if t not in factor_dict:\n factor_dict[t] = 1\n else:\n factor_dict[t] += 1\n\n if i == 1:\n break\n\ncount = 1\nfor value in factor_dict.values():\n count *= value + 1\n \nprint(count % (10e9 + 7))', 'N = int(input())\n\nfrom math import factorial\nnum_divide = factorial(N)\n\ndivided = False\n\nfactor_dict = {}\n\nfor i in range(2, N + 1):\n for t in range(2, i + 1):\n \n while i % t == 0:\n \n i /= t\n if t not in factor_dict:\n factor_dict[t] = 1\n else:\n factor_dict[t] += 1\n\n if i == 1:\n break\n\ncount = 1\nfor value in factor_dict.values():\n count *= value + 1\n \ncount % 10e9 + 7', 'N = int(input())\n\nfrom math import factorial\nnum_divide = factorial(N)\n\ndivided = False\n\nfactor_dict = {}\n\nfor i in range(2, N + 1):\n for t in range(2, i + 1):\n \n while i % t == 0:\n \n i /= t\n if t not in factor_dict:\n factor_dict[t] = 1\n else:\n factor_dict[t] += 1\n\n if i == 1:\n break\n\ncount = 1\nfor key, value in factor_dict.items():\n count *= value + 1\n count %= (1000000007)\n print(count)', 'N = int(input())\n\nfrom math import factorial\nnum_divide = factorial(N)\n\ndivided = False\n\nfactor_dict = {}\n\nfor i in range(2, N + 1):\n for t in range(2, i + 1):\n \n while i % t == 0:\n \n i /= t\n if t not in factor_dict:\n factor_dict[t] = 1\n else:\n factor_dict[t] += 1\n\n if i == 1:\n break\n\ncount = 1\nfor key, value in factor_dict.items():\n count *= value + 1\n count %= (1000000007)\nprint(count)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s224087380', 's229169626', 's825013908', 's967214944', 's234032592'] | [3064.0, 3064.0, 3064.0, 3064.0, 3064.0] | [46.0, 52.0, 47.0, 49.0, 45.0] | [482, 489, 480, 505, 501] |
p03830 | u271469978 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import math\n\ndef is_prime(n):\n if n == 2 or n == 3: return True\n if n%2 == 0 or n < 2: return False\n for i in range(3, int(n**0.5)+1, 2):\n if n%i == 0:\n return False\n return True\n\nN = int(input())\nans = 1\nfor p in [i for i in range(N) if is_prime(i)]:\n e = 0\n for n in range(1, N+1):\n while n % p == 0:\n n //= p\n e += 1\n ans *= e + 1\nans %= 10**9 + 7\nprint(ans)', 'import math\n\ndef is_prime(n):\n if n == 2 or n == 3: return True\n if n%2 == 0 or n < 2: return False\n for i in range(3, int(n**0.5)+1, 2):\n if n%i == 0:\n return False\n return True\n\nN = int(input())\nans = 1\nfor p in [i for i in range(N+1) if is_prime(i)]:\n e = 0\n for n in range(1, N+1):\n while n % p == 0:\n n //= p\n e += 1\n ans *= e + 1\nans %= 10**9 + 7\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s513576175', 's611643442'] | [3188.0, 3188.0] | [38.0, 42.0] | [429, 431] |
p03830 | u334712262 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['N = int(input())\nNM = 1000\nfs = [list() for _ in range(NM+1)]\n\nfrom collections import Counter\nC = Count()\nfor i in range(2):\n if len(fs[i]) == 0:\n for j in range(i, NM+1, i):\n d = j\n while j % i == 0:\n fs[j].append(i)\n j //= i\n C[j] += 1\n\nM = 10**9 + 7\nans = 1\nfor v in C.values():\n ans = (ans * v) % M\nprint(ans)\n \n ', 'N = int(input())\nNM = 1000\nfs = [list() for _ in range(NM+1)]\n\nfrom collections import Counter\nC = Counter()\nfor i in range(2, N+1):\n if len(fs[i]) == 0:\n for j in range(i, N+1, i):\n d = j\n while j % i == 0:\n fs[j].append(i)\n j //= i\n C[i] += 1\n\nM = 10**9 + 7\nans = 1\nfor v in C.values():\n ans = (ans * (v+1)) % M\nprint(ans)\n \n \n'] | ['Runtime Error', 'Accepted'] | ['s713649283', 's040458590'] | [3316.0, 3444.0] | [21.0, 24.0] | [362, 373] |
p03830 | u397496203 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import sys\ninput = sys.stdin.readline\n\n\n\ndef get_prime(N, prime):\n if N < 2:\n return {1: 1}\n\n i = 2\n while i * i <= N:\n while N % i == 0:\n if i in prime.keys():\n prime[i] += 1\n else:\n prime[i] = 1\n N = N // i\n i += 1\n if N != 1:\n prime[N] = 1\n return prime\n\n\ndef main():\n N = int(input().strip())\n div_table = [1] * (N + 1)\n MOD = 10**9 + 7\n ans = 0\n for i in range(2, N + 1):\n for j in range(i, N + 1, i):\n div_table[j] += 1\n\n prime = dict()\n prime[1] = 1\n\n for i in range(1, N + 1):\n if div_table[i] == 2:\n prime = get_prime(i, prime)\n ans = 1\n for k, v in prime:\n ans *= v\n ans %= MOD\n\n print(ans)\n\n\nif __name__ == "__main__":\n main()\n', 'import sys\ninput = sys.stdin.readline\n\n\n\ndef get_prime(N):\n prime = dict()\n prime[1] = 1\n i = 2\n while i * i <= N:\n while N % i == 0:\n if i in prime.keys():\n prime[i] += 1\n else:\n prime[i] = 1\n N = N // i\n i += 1\n if N != 1:\n prime[N] = 1\n return prime\n\n\ndef main():\n N = int(input().strip())\n div_table = [0] * (N + 1)\n MOD = 10**9 + 7\n ans = 1\n for i in range(2, N + 1):\n for j in range(i, N + 1, i):\n div_table[j] += 1\n\n prime = dict()\n for i in range(2, N + 1):\n if div_table[i] == 1:\n prime[i] = 0\n\n for i in range(2, N + 1):\n _prime = get_prime(i)\n for k, v in _prime.items():\n if k == 1:\n continue\n prime[k] += v\n\n for k, v in prime.items():\n ans *= v + 1\n ans %= MOD\n\n print(ans)\n\n\nif __name__ == "__main__":\n main()\n'] | ['Runtime Error', 'Accepted'] | ['s574175484', 's440146194'] | [9156.0, 9160.0] | [25.0, 30.0] | [861, 992] |
p03830 | u442810826 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['N = int(input())\n\nMOD = 10**9+7\n\nNN = [0 for _ in range(1001)]\nAA = [0 for _ in range(1001)]\n\n\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n # if NN[temp] != 0:\n # arr.append(NN[temp][0])\n # return arr\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n\n return arr\n\nans = 1\nfor i in range(1, N+1):\n chin = factorization(i)\n # NN[i] = chin\n # print(chin)\n for x,y in chin:\n AA[x] += y\nfor i in range(2, N):\n if AA[i] > 0:\n ans *= (AA[i]+1) % MOD\n ans %= MOD\nprint(ans)\n', 'N = int(input())\n\nMOD = 10**9+7\n\nNN = [0 for _ in range(1001)]\nAA = [0 for _ in range(1001)]\n\n\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n # if NN[temp] != 0:\n # arr.append(NN[temp][0])\n # return arr\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n\n return arr\n\nans = 1\nfor i in range(1, N+1):\n chin = factorization(i)\n # NN[i] = chin\n # print(chin)\n for x,y in chin:\n AA[x] += y\nfor i in range(2, N+1):\n if AA[i] > 0:\n # print(i, AA[i])\n ans *= (AA[i]+1) % MOD\n ans %= MOD\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s159160827', 's991646208'] | [3188.0, 3188.0] | [22.0, 22.0] | [777, 805] |
p03830 | u489959379 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['MOD = 10 ** 9 + 7\nn = int(input())\n\nres = 1\nex = [0 for _ in range(n + 1)]\nfor i in range(1, n + 1):\n for j in range(2, i + 1):\n if i % j == 0:\n while i % j == 0:\n ex[j] += 1\n i //= j\n\nans = 1\nfor i in range(n):\n ans *= (ex[i] + 1)\n ans %= MOD\n\nprint(ans)\n', "import sys\n\nsys.setrecursionlimit(10 ** 7)\ninput = sys.stdin.readline\nf_inf = float('inf')\nmod = 10 ** 9 + 7\n\n\ndef prime_factorization(n):\n res = []\n for i in range(2, int(pow(n, 0.5)) + 1):\n if n % i == 0:\n ex = 0\n while n % i == 0:\n ex += 1\n n //= i\n res.append([i, ex])\n if n != 1:\n res.append([n, 1])\n\n return res\n\n\ndef resolve():\n n = int(input())\n\n P = [0] * 1000\n for i in range(1, n + 1):\n t = prime_factorization(i)\n for num, ex in t:\n P[num] += ex\n\n res = 1\n for p in P:\n res *= p + 1\n res % mod\n\n print(res % mod)\n\n\nif __name__ == '__main__':\n resolve()\n"] | ['Wrong Answer', 'Accepted'] | ['s659255942', 's387287122'] | [3064.0, 3064.0] | [69.0, 22.0] | [313, 714] |
p03830 | u506287026 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['from collections import Counter\n\n\ndef prime_factorize(n):\n p = 2\n fct = []\n \n while n >= p ** 2:\n if n % p == 0:\n \n \n n //= p\n fct.append(p)\n p += 1\n if n > 1:\n fct.append(n)\n return fct\n\n\nN = int(input())\nMOD = 1000000007\nnumbers = [prime_factorize(i) for i in range(1, N+1)]\n\ncount_numbers = Counter(numbers)\nans = 1\nfor n in count_numbers.values():\n ans *= ((n+1) % MOD)\n\nprint(ans % MOD)\n', 'from collections import Counter\n\n\ndef prime_factorize(n):\n p = 2\n fct = []\n \n \n\n \n \n \n \n \n while n >= p ** 2:\n while n % p == 0:\n n //= p\n fct.append(p)\n p += 1\n if n > 1:\n fct.append(n)\n return fct\n\n\nN = int(input())\nMOD = 1000000007\nnumbers = []\nfor i in range(1, N+1):\n numbers += prime_factorize(i)\n\ncount_numbers = Counter(numbers)\nans = 1\nfor n in count_numbers.values():\n ans *= ((n+1) % MOD)\n\nprint(ans % MOD)\n'] | ['Runtime Error', 'Accepted'] | ['s965866493', 's759736137'] | [3444.0, 3316.0] | [25.0, 25.0] | [630, 946] |
p03830 | u532966492 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['n=int(input())\ndef soinsuu(a):\n yakusuu=[]\n j=2\n while(a>1):\n for i in range(j,int(a**0.5)+1):\n if a%i==0:\n yakusuu.append(i)\n a=a//i\n j=i\n break\n else:\n yakusuu.append(a)\n break\n yakusuu.sort()\n return yakusuu\nans=[]\nfrom collections import Counter\nfor i in range(2,n+1):\n ans+=soinsuu(i)\nans2=1\nmod=10**9+7\nfor i in Counter(ans).values():\n ans2=(ans2*(i+1))%mod\nans2', 'n=int(input())\ndef soinsuu(a):\n yakusuu=[]\n j=2\n while(a>1):\n for i in range(j,int(a**0.5)+1):\n if a%i==0:\n yakusuu.append(i)\n a=a//i\n j=i\n break\n else:\n yakusuu.append(a)\n break\n yakusuu.sort()\n return yakusuu\nans=[]\nfrom collections import Counter\nfor i in range(2,n+1):\n ans+=soinsuu(i)\nans2=1\nmod=10**9+7\nfor i in Counter(ans).values():\n ans2=(ans2*(i+1))%mod\nprint(ans2)'] | ['Wrong Answer', 'Accepted'] | ['s987833413', 's629538467'] | [3316.0, 3316.0] | [26.0, 25.0] | [496, 503] |
p03830 | u543954314 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['from collections import defaultdict as dd\nprimes = dd(int)\nn = int(input())\nfor i in range(2,n+1):\n for j in range(2,int(i**.5)+1):\n while i%j == 0:\n i //= j\n primes[i] += 1\n if i > 1:\n primes[i] += 1\ncnt = 1\nmod = 10**9+7\nfor x in primes:\n cnt *= primes[x]+1\n cnt %= mod\nprint(cnt)', 'from collections import defaultdict as dd\nprimes = dd(int)\nn = int(input())\nfor i in range(2,n+1):\n for j in range(2,int(i**.5)+2):\n while i%j == 0:\n i //= j\n primes[j] += 1\n if i > 1:\n primes[i] += 1\ncnt = 1\nmod = 10**9+7\nfor x in primes:\n cnt *= primes[x]+1\n cnt %= mod\nprint(cnt)'] | ['Wrong Answer', 'Accepted'] | ['s304652707', 's748825702'] | [3444.0, 3316.0] | [28.0, 25.0] | [306, 302] |
p03830 | u556589653 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import math\ndef factorization(n):\n i = 2\n factors = []\n while i <= math.floor(math.sqrt(n)):\n print(i,n)\n if n%i == 0:\n factors.append(i)\n n //= i\n else:\n i += 1\n if n > 1:\n factors.append(n)\n return factors\nN = int(input())\nS = math.factorial(N)\nprint(S)\nprint(factorization(S))', 'def factorization(n):\n i = 2\n factors = []\n while i <= math.floor(n**0.5):\n if n%i == 0:\n factors.append(i)\n n //= i\n else:\n i += 1\n if n>1:\n factors.append(n)\n return factors\n\nN = int(input())\nls = []\nfor i in range(1,N+1):\n ls.extend(factorization(i))\nls.sort()\nans = 1\nnow = 1\nnow_2 = 0\nfor i in range(len(ls)):\n if i == 0:\n now_2 = ls[i]\n else:\n if ls[i] == now_2:\n now += 1\n else:\n ans *= (now+1)\n now = 1\n now_2 = ls[i]\nans *= (now+1)\nprint(ans%(10**9+7))', 'import math\n\ndef prime_factorization(n):\n i = 2\n factors = []\n while i <= math.floor(n**0.5):\n if n%i == 0:\n factors.append(i)\n n //= i\n else:\n i += 1\n if n>1:\n factors.append(n)\n return factors\nN = int(input())\nls = []\n\nif N == 1:\n print(1)\nelse:\n for i in range(1,N+1):\n \n ls.extend(prime_factorization(i))\n ls.sort()\n ans = 1 \n now = 1 \n now_2 = 0 \n for i in range(len(ls)):\n if i == 0:\n now_2 = ls[i]\n else:\n if ls[i] == now_2:\n now += 1\n else:\n ans *= (now+1)\n now = 1\n now_2 = ls[i]\n ans *= (now+1)\n print(ans%(10**9+7))\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s077850578', 's918302046', 's291782052'] | [3060.0, 3064.0, 3188.0] | [18.0, 17.0, 26.0] | [355, 617, 950] |
p03830 | u594244257 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['\nprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]\npi_100 = len(primes)\n\nmod = 10**9+7\n\nprime_vector = [0]*pi_100\n\nN = int(input())\nfor n in range(2,N+1):\n ret = (get_div_num(n)*ret)%mod\n \n for i in range(pi_100):\n while n % primes[i] == 0:\n prime_vector[i] += 1\n n = n//primes[i]\n\nret = 1\n\n\nfor i in range(pi_100):\n ret = (ret * (prime_vector[i]+1)) % mod\n\nprint(ret)', '\nprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]\npi_100 = len(primes)\n\nmod = 10**9+7\n\nprime_vector = [0]*pi_100\n\nN = int(input())\nfor n in range(2,N+1):\n \n for i in range(pi_100):\n while n % primes[i] == 0:\n prime_vector[i] += 1\n n = n//primes[i]\n\nret = 1\n\n\nfor i in range(pi_100):\n ret = (ret * (prime_vector[i]+1)) % mod\n\nprint(ret)'] | ['Runtime Error', 'Accepted'] | ['s419819824', 's402044539'] | [3192.0, 3192.0] | [18.0, 40.0] | [1245, 1210] |
p03830 | u655975843 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import sys\nimport collections\nns = lambda: sys.stdin.readline().rstrip()\nni = lambda: int(ns())\nnm = lambda: map(int, sys.stdin.readline().split())\nnl = lambda: list(nm())\nnsl = lambda: map(str, sys.stdin.readline().split())\n\n\ndef era(n):\n data = [i for i in range(2, n + 1)]\n for d in data:\n data = [x for x in data if (x == d or x % d != 0)]\n data1 = []\n for d in data:\n data1.append([d, 1])\n return data1\n\n\nmod = 10 ** 9 + 7\nn = ni()\nlis = era(n)\nprint(lis)\nfor i in range(1, n + 1):\n for j in range(len(lis)):\n if i < lis[j][0]:\n break\n elif i % lis[j][0] == 0:\n count = 0\n m = i\n while(m % lis[j][0] == 0):\n m = m // lis[j][0]\n count += 1\n lis[j][1] += count\nans = 1\nfor i in range(len(lis)):\n ans *= lis[i][1]\n ans %= mod\nprint(ans)\n', 'import sys\nimport collections\nns = lambda: sys.stdin.readline().rstrip()\nni = lambda: int(ns())\nnm = lambda: map(int, sys.stdin.readline().split())\nnl = lambda: list(nm())\nnsl = lambda: map(str, sys.stdin.readline().split())\n\n\ndef era(n):\n data = [i for i in range(2, n + 1)]\n for d in data:\n data = [x for x in data if (x == d or x % d != 0)]\n data1 = []\n for d in data:\n data1.append([d, 1])\n return data1\n\n\nmod = 10 ** 9 + 7\nn = ni()\nlis = era(n)\nfor i in range(1, n + 1):\n for j in range(len(lis)):\n if i < lis[j][0]:\n break\n elif i % lis[j][0] == 0:\n count = 0\n m = i\n while(m % lis[j][0] == 0):\n m = m // lis[j][0]\n count += 1\n lis[j][1] += count\nans = 1\nfor i in range(len(lis)):\n ans *= lis[i][1]\n ans %= mod\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s279322647', 's303156343'] | [3436.0, 3316.0] | [64.0, 65.0] | [876, 865] |
p03830 | u672220554 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['n = int(input())\nprime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]\nres = 1\n\nnprime = [p for p in prime if p <= n]\n\nfor p in prime:\n tempn = n\n tres = 1\n while tempn > p:\n tempn = tempn // p\n tres += tempn\n res *= tres\n if res > 10**9+7:\n res %= (10**9+7)\n\nprint(res)', 'n = int(input())\nprime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]\nres = 1\n\nnprime = [p for p in prime if p <= n]\n\nfor p in prime:\n tempn = n\n tres = 1\n while tempn >= p:\n tempn = tempn // p\n tres += tempn\n res *= tres\n if res > 10**9+7:\n res %= (10**9+7)\n\nprint(res)'] | ['Wrong Answer', 'Accepted'] | ['s366083277', 's164824381'] | [3188.0, 3188.0] | [18.0, 18.0] | [1072, 1073] |
p03830 | u686036872 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import math\n\nN = int(input())\n\nans=0\nx = math.factorial(N)\nfor i in range(1, x//2+1):\n if N%i == 0:\n ans += 1\nprint(ans%(10**9+7))', 'import math\n\nN = int(input())\nx = math.factorial(N)\n\nans=1\nfor i in range(2, 1+int(x**(1/2))):\n cnt = 1\n while x%i == 0:\n x //= i\n cnt += 1\n ans *= cnt\n \nprint(ans%(10**9+7))', 'import math\n\nN = int(input())\nx = math.factorial(N)\n\nans = 1\ni = 2\nwhile i <= x:\n cnt = 1\n while x%i == 0:\n x //= i\n cnt += 1\n ans *= cnt\n i += 1\n \nprint(ans%(10**9+7))'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s041438075', 's268386518', 's727608783'] | [3060.0, 3060.0, 3060.0] | [2104.0, 17.0, 35.0] | [140, 212, 209] |
p03830 | u729133443 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import math\nn=math.factorial(int(input()))\na=i=1\nwhile i*i<=n:\n c=1\n while n%i==0:\n c+=1\n n//=i\n a*=c\n i+=1\nprint(a*2**(n!=1)%(10**9+7))', 'import math\nn=math.factorial(int(input()))\na,i=1,2\nwhile i*i<=n:\n c=1\n while n%i==0:\n c+=1\n n//=i\n a*=c\n i+=1\nprint(a*2**(n!=1)%(10**9+7))'] | ['Time Limit Exceeded', 'Accepted'] | ['s591412422', 's921014598'] | [3060.0, 3060.0] | [2104.0, 35.0] | [146, 148] |
p03830 | u767664985 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['def factorization(n):\n res = []\n tmp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if tmp % i == 0:\n cnt = 0\n while tmp % i == 0:\n cnt += 1\n tmp //= i\n res.append([i, cnt])\n if tmp != 1:\n res.append([tmp, 1])\n if res == []:\n res.append([n, 1])\n return res\n\n\n\n\nN = int(input())\nMOD = 10**9 + 7\nfact = [[0, 0]]\n\nfor i in range(1, N+1):\n for fi in factorization(i):\n if fi[0] in fact[:][0]:\n fact[fi[0]][1] += fi[1]\n else:\n fact.append(fi)\n\nans = 1\nfor f in fact:\n ans *= (f[1] + 1)\n ans %= MOD\n\nprint(ans)\n', 'def factorization(n):\n res = []\n tmp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if tmp % i == 0:\n cnt = 0\n while tmp % i == 0:\n cnt += 1\n tmp //= i\n res.append([i, cnt])\n if tmp != 1:\n res.append([tmp, 1])\n if res == []:\n res.append([n, 1])\n return res\n\n\nN = int(input())\nMOD = 10**9 + 7\nfact = [[0, 0]]\n\nfor i in range(2, N+1):\n for fi in factorization(i):\n primes = [f[0] for f in fact]\n if fi[0] in primes:\n ind = primes.index(fi[0])\n fact[ind][1] += fi[1]\n else:\n fact.append(fi)\n\nans = 1\nfor f in fact:\n ans *= (f[1] + 1)\n ans %= MOD\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s734478919', 's798998344'] | [3188.0, 3064.0] | [34.0, 34.0] | [652, 720] |
p03830 | u821588465 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['from math import factorial\nfrom collections import Counter\n\ndef prime_factorize(n):\n a = []\n while n%2 == 0:\n a.append(2)\n n //=2\n f = 3\n while f*f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\n\ndef prime_factoring(n):\n from collections import Counter\n a = prime_factorize(n)\n return Counter(a)\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n //i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\nn = int(input())\nmod = 10**9+7\nN =factorial(n)\nimport numpy as np\nList = np.array(list(prime_factoring(N).values()))+1\nList = List%mod\nprint(List)\nprint(np.prod(List)%mod)', 'from math import factorial\nN = factorial(int(input()))\nmod = 10**9 + 7\nans = 1\ni = 2\n\nwhile i*i <= N:\n cnt = 1\n while N%i == 0:\n cnt += 1\n N //= i\n ans *= cnt\n i += 1\n\nif N != 1:\n ans *= 2\nprint(int(ans%mod))\n'] | ['Wrong Answer', 'Accepted'] | ['s997404640', 's645576000'] | [27356.0, 9184.0] | [131.0, 36.0] | [847, 238] |
p03830 | u859897687 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['n=int(input())\nans=1\nd=dict()\nfor i in range(1,n+1):\n k=1\n for j in range(1,i+1):\n if j==0 or j==i:\n continue\n if i%j==0:\n k=0\n if k:\n d[i]=0\n n0=n\n while n0:\n d[i]+=n0//i\n n0//=i\nfor i in d.values():\n ans*=i+1\nprint(ans)', 'n=int(input())\nd=dict()\nfor i in range(1,n+1):\n for j in range(1,i+1):\n while i%j==0:\n if j not in d:\n d[j]=1\n else:\n d[j]+=1\n i//=j\nans=1\nfor i in d.values():\n ans*=i+1\nprint(ans%1000000007)\n', 'n=int(input())\nd=dict()\nif n==1:\n print(1)\nelse:\n for i in range(2,n+1):\n for j in range(2,i+1):\n if i%j==0:\n if j not in d:\n d[i]=1\n else:\n d[i]+=1\n ans=1\n for i in d.values():\n ans*=i+1', 'n=int(input())\nd=dict()\nm=[2,3,5,7,11,13,17,19,23,29,31]\nfor i in m:\n d[i]=0\n nn=n\n while nn:\n d[i]+=nn//i\n nn//=i\nans=1\nfor i in dict.values():\n ans*=i+1\nprint(ans)\n', 'n=int(input())\nd=dict()\nfor i in range(1,n+1):\n for j in range(1,i+1):\n if j==1:\n continue\n while i%j==0:\n if j not in d:\n d[j]=1\n else:\n d[j]+=1\n i//=j\nans=1\nfor i in d.values():\n ans*=i+1\nprint(ans%1000000007)\n'] | ['Time Limit Exceeded', 'Time Limit Exceeded', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s086032081', 's149814557', 's633123376', 's951593801', 's038463490'] | [3060.0, 2940.0, 3060.0, 3060.0, 3060.0] | [2104.0, 2104.0, 17.0, 17.0, 78.0] | [260, 226, 234, 176, 254] |
p03830 | u927534107 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['n=int(input())\nif n==1:print(1);exit()\nl=[i for i in range(1,n+1) if isPrime(i)==True]\nans=1\nINF=10**9+7\nfor i in l:\n tmp=0\n tmpi=i\n while n//i>0:\n tmp+=n//i\n i*=tmpi\n ans=(ans*(tmp+1))%INF\nprint(ans)', 'import math\ndef isPrime(num):\n if num < 2: return False\n elif num == 2: return True\n for i in range(2,math.floor(math.sqrt(num))+1):\n if num % i == 0:\n return False\n return True\n\nn=int(input())\nif n==1:print(1);exit()\nl=[i for i in range(1,n+1) if isPrime(i)==True]\nans=1\nINF=10**9+7\nfor i in l:\n tmp=0\n tmpi=i\n while n//i>0:\n tmp+=n//i\n i*=tmpi\n ans=(ans*(tmp+1))%INF\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s521908071', 's855974095'] | [3064.0, 3064.0] | [17.0, 19.0] | [226, 435] |
p03830 | u932465688 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['import math\nN = math.factorial(int(input()))\ni = 2\nans = 1\nM = 10**9+7\nwhile i**2 <= N:\n cnt=1\n while N%i == 0:\n cnt+=1\n N = N//i\n ans = ans*cnt\n i += 1\nif N != 1 :\n ans = 2\nprint(ans%M)', 'import math\nN = math.factorial(int(input()))\nans = 1\nM = 10**9+7\ncnt = 1\nfor i in range(2,1001):\n while N%i == 0:\n cnt += 1\n N = N//i\n ans = ans*cnt\n i += 1\n cnt = 1\nprint(ans%M)\n'] | ['Wrong Answer', 'Accepted'] | ['s142200993', 's357014525'] | [3060.0, 3060.0] | [23.0, 34.0] | [201, 189] |
p03830 | u984351908 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['from math import factorial\n\ndef prime_decomposition(n):\n i = 2\n table = []\n while i * i <= n:\n while n % i == 0:\n n /= i\n table.append(int(i))\n i += 1\n if n > 1:\n table.append(int(n))\n return table\n\ndef __main__():\n n = int(input())\n if n == 1:\n print(1)\n return\n i = 2\n prime_factors_count = [0] * 1001\n while i <= n:\n prime_factors = prime_decomposition(i)\n for j in range(prime_factors[-1] + 1):\n c = prime_factors.count(j)\n prime_factors_count[j] += c\n i += 1\n c = 1\n for i in range(1001):\n if prime_factors_count[i] != 0:\n c *= prime_factors_count[i] + 1\n print(c)\n print(c % (10**9 + 7))\n\n__main__()\n', 'from math import factorial\n\ndef prime_decomposition(n):\n i = 2\n table = []\n while i * i <= n:\n while n % i == 0:\n n /= i\n table.append(int(i))\n i += 1\n if n > 1:\n table.append(int(n))\n return table\n\ndef __main__():\n n = int(input())\n if n == 1:\n print(1)\n return\n i = 2\n prime_factors_count = [0] * 1001\n while i <= n:\n prime_factors = prime_decomposition(i)\n for j in range(prime_factors[-1] + 1):\n c = prime_factors.count(j)\n prime_factors_count[j] += c\n i += 1\n c = 1\n for i in range(1001):\n if prime_factors_count[i] != 0:\n c *= prime_factors_count[i] + 1\n print(c % (10**9 + 7))\n\n__main__()\n'] | ['Wrong Answer', 'Accepted'] | ['s484606381', 's227022830'] | [3064.0, 3064.0] | [46.0, 46.0] | [766, 753] |
p03830 | u998771223 | 2,000 | 262,144 | You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. | ['S=input();\ns=[];\nx=[];\nX=[];\nso=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,83,89,97,101,107,109,113,127,131,137,139,149,151,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,809,811,821,823,827,829,839,853,857,859,863,877,881,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];\nans=1;\nfor h in range(S):\n Y=h+1;\n for i in so:\n j=0;\n while Y%i==0:\n Y=Y/i;\n s=s+[i];\n j+=1;\nfor i in so:\n x=x+[s.count(i)];\nX=[X+1 for X in x];\nprint(X);\nfor i in X:\n ans=ans*i;\nprint(ans%1000000007);', 'S=input();\ns=[];\nx=[];\nX=[];\nso=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,83,89,97,101,107,109,113,127,131,137,139,149,151,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,809,811,821,823,827,829,839,853,857,859,863,877,881,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];\nans=1;\nfor h in range(S):\n Y=h+1;\n for i in so:\n j=0;\n while Y%i==0:\n Y=Y/i;\n s=s+[i];\n j+=1;\nfor i in so:\n x=x+[s.count(i)];\nX=[X+1 for X in x];\nfor i in X:\n ans=ans*i;\nprint(ans%1000000007);', 'S=int(input());\ns=[];\nx=[];\nX=[];\nso=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];\nans=1;\nfor h in range(S):\n Y=h+1;\n for i in so:\n j=0;\n while Y%i==0:\n Y=Y/i;\n s=s+[i];\n j+=1;\nfor i in so:\n x=x+[s.count(i)];\nX=[X+1 for X in x];\nfor i in X:\n ans=ans*i;\nprint(ans%1000000007);'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s036298139', 's259048045', 's770043779'] | [3316.0, 3192.0, 3192.0] | [18.0, 17.0, 69.0] | [920, 910, 934] |
p03831 | u085717502 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['a', '#!/usr/bin/env python\n# coding: utf-8\n\n# In[1]:\n\n\nN,A,B = map(int, input().split())\nX = list(map(int, input().split()))\n\n\n# In[2]:\n\n\nc = 0\nfor i in range(N-1):\n dist = X[i+1] - X[i]\n if dist*A > B:\n c += B\n else:\n c += dist*A\nprint(c)\n\n\n# In[ ]:\n\n\n\n\n'] | ['Runtime Error', 'Accepted'] | ['s086852997', 's723038449'] | [9132.0, 19992.0] | [21.0, 84.0] | [1, 273] |
p03831 | u143509139 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['N, A, B = map(int, input().split())\nans = 0\nx = list(map(int, input().split()))\nfor i in range(len(x)-1):\n ans += min(B, x[i+1]-x[i])\nprint(ans)', 'N, A, B = map(int, input().split())\nans = 0\nx = list(map(int, input().split()))\nfor i in range(len(x)-1):\n ans += min(B, (x[i+1]-x[i]) * A)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s047788918', 's891688953'] | [14480.0, 14228.0] | [91.0, 89.0] | [145, 151] |
p03831 | u225388820 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['n,a,b=map(int,input().split())\nx=list(map(int,input().split()))\nans=0\nfor i in range(n-1):\n ans+=min(a*(x[i+1]-x[i]),b)', 'n,a,b=map(int,input().split())\nx=list(map(int,input().split()))\nans=0\nfor i in range(n-1):\n ans+=min(a*(x[i+1]-x[i]),b)\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s876598244', 's305581759'] | [14252.0, 14224.0] | [96.0, 95.0] | [120, 131] |
p03831 | u303059352 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['n, a, b = map(int, input().split())\nans = 0\nfor i in range(n):\n v = int(input())\n if i:\n ans += min(a * (v - last), b);\n last = v\nprint(ans)', 'n, a, b = map(int, input().split())\nans = 0\nv = list(map(int, input().split()))\nfor i in range(n):\n if i:\n ans += min(a * (v[i] - last), b);\n last = v[i]\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s148910190', 's649097304'] | [5028.0, 14484.0] | [23.0, 94.0] | [146, 170] |
p03831 | u414809621 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['\ndef main():\n [n,a,b] = list(map(int,input().split()))\n m = list(map(int,input().split()))\n cost = 0\n for i in range(1,n+1):\n cost += min(a*(m[i]-m[i-1]), b)\n print(cost)\n\n\nif __name__ == "__main__":\n main()', '\ndef main():\n [n,a,b] = list(map(int,input().split()))\n m = list(map(int,input().split()))\n cost = 0\n for i in range(1,n+1):\n cost += min(a*(m[i]-m[i-1]), b)\n print(cost)\n\n\nif __name__ == "__main__":\n import sys\n import os\n if len(sys.argv) > 1:\n if sys.argv[1] == "-d":\n filename = "input1.txt"\n fd = os.open(filename, os.O_RDONLY)\n os.dup2(fd, sys.stdin.fileno())\n main()\n else:\n main()', '\ndef main():\n [n, a, b] = list(map(int,input().split()))\n m = list(map(int,input().split()))\n cost = 0\n for i in range(1, n):\n cost += min([a*(m[i]-m[i-1]), b])\n print(cost)\n\n\nif __name__ == "__main__":\n import sys\n import os\n if len(sys.argv) > 1:\n if sys.argv[1] == "-d":\n filename = "input1.txt"\n fd = os.open(filename, os.O_RDONLY)\n os.dup2(fd, sys.stdin.fileno())\n main()\n else:\n main()'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s026328433', 's789049279', 's834428994'] | [14224.0, 14252.0, 14224.0] | [104.0, 91.0, 97.0] | [232, 480, 483] |
p03831 | u512873531 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['n, a, b = map(int, input().split())\nx = list(map(int, input().split()))\nans = 0\nfor i in range(1, n): ans+=min((x[i+1]-x[i])*a, b)\nprint(ans)', 'n, a, b = map(int, input().split())\nx = list(map(int, input().split()))\nans = 0\nfor i in range(1, n): ans+=min((x[i]-x[i-1])*a, b)\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s991749668', 's442144575'] | [19952.0, 19976.0] | [83.0, 87.0] | [141, 141] |
p03831 | u536034761 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['n, a, b = map(int, input().split())\nX = list(map(int, input().split()))\np = X[0]\nans = 0\nfor x in X[1:]:\n d = x - p\n if d * a <= b:\n ans += d\n else:\n ans += b\n p = x\nprint(ans)\n', 'n, a, b = map(int, input().split())\nX = list(map(int, input().split()))\np = X[0]\nans = 0\nfor x in X[1:]:\n d = x - p\n if d * a <= b:\n ans += d * a\n else:\n ans += b\n p = x\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s548391202', 's159475863'] | [20116.0, 19992.0] | [76.0, 81.0] | [203, 207] |
p03831 | u595893956 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['n,a,b=map(int,input().split())\nx=list(map(int,input().split()))\nret=0\nfor i in range(n-1):\n ret+=min(a*(x[i+1]-x[i]),b)\nprint ret', 'n,a,b=map(int,input().split())\nx=list(map(int,input().split()))\nret=0\nfor i in range(n-1):\n ret+=min(a*(x[i+1]-x[i]),b)\nprint(ret)\n'] | ['Runtime Error', 'Accepted'] | ['s113641923', 's548870124'] | [2940.0, 14252.0] | [17.0, 90.0] | [130, 132] |
p03831 | u827202523 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['n,a,b = map(int,input().split())\n\nnums=list(map(int,input().split))\ntmp=nums[0]\nans=0\nfor num in nums[1:]:\n if (nuw-tmp)*a<=b: \n ans+=(num-tmp!)*a\n else:\n ans+=b\n tmp=num\n\nprint(ans)', 'n,a,b = map(int,input().split())\n\nnums=list(map(int,input().split()))\ntmp=nums[0]\nans=0\nfor num in nums[1:]:\n if (num-tmp)*a<=b: \n ans+=(num-tmp)*a\n else:\n ans+=b\n tmp=num\n\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s541870207', 's485472821'] | [2940.0, 14224.0] | [17.0, 75.0] | [191, 193] |
p03831 | u888092736 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['N, A, B = map(int, input().split())\nX = map(int, input().split())\ncurr = next(X)\nans = 0\nfor x in X:\n if (x - curr) * A <= B:\n ans += x - curr\n else:\n ans += B\n curr = x\nprint(ans)\n', 'import numpy as np\n\n\nN, A, B = map(int, input().split())\nX = np.array(list(map(int, input().split())))\nprint(np.minimum((X[1:] - X[:-1]) * A, B).sum())\n'] | ['Wrong Answer', 'Accepted'] | ['s484061022', 's675992452'] | [17020.0, 37992.0] | [69.0, 142.0] | [204, 152] |
p03831 | u940061594 | 2,000 | 262,144 | There are N towns on a line running east-west. The towns are numbered 1 through N, in order from west to east. Each point on the line has a one- dimensional coordinate, and a point that is farther east has a greater coordinate value. The coordinate of town i is X_i. You are now at town 1, and you want to visit all the other towns. You have two ways to travel: * Walk on the line. Your _fatigue level_ increases by A each time you travel a distance of 1, regardless of direction. * Teleport to any location of your choice. Your fatigue level increases by B, regardless of the distance covered. Find the minimum possible total increase of your fatigue level when you visit all the towns in these two ways. | ['n, a, b = map(int,input().split())\nx = list(map(int,input().split()))\n\nd = []\nfor i in range(n-1):\n d.append(x[i+1]-x[i])\n\nf = 0\nfor i in range(n-1):\n if d[i]*a <= b:\n f += d*a\n else:\n f += b\n \nprint(f)', 'n, a, b = map(int,input().split())\nx = list(map(int,input().split()))\n\nd = []\nfor i in range(n-1):\n d.append(x[i+1]-x[i])\n\nf = 0\nfor i in range(n-1):\n if d[i]*a <= b:\n f += d[i]*a\n else:\n f += b\n \nprint(f)\n'] | ['Runtime Error', 'Accepted'] | ['s581843338', 's655212180'] | [14252.0, 14252.0] | [86.0, 98.0] | [214, 218] |
p03834 | u000770457 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = input()\n\ns.replace(","," ")\n\nprint(s)', 's=input()\n\nprint(s.replace(","," "))'] | ['Wrong Answer', 'Accepted'] | ['s801608766', 's644450493'] | [2940.0, 2940.0] | [17.0, 17.0] | [41, 36] |
p03834 | u016323272 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['#ABC051.A\ns = input()\nans = s.replace(",","")\nprint(ans)', '#ABC051.A\ns = input()\nans = s.replace(","," ")\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s630944917', 's605936435'] | [2940.0, 2940.0] | [18.0, 17.0] | [56, 57] |
p03834 | u019566983 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["print(*input().split(',')", "print(*input().split(','))"] | ['Runtime Error', 'Accepted'] | ['s111389458', 's467107536'] | [2940.0, 2940.0] | [17.0, 17.0] | [25, 26] |
p03834 | u019584841 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a,b,c=input().split(,)\nprint(a+" "+b+" "+c)', "s = input().split(',')\ns = ' '.join(s)\nprint(s)\n"] | ['Runtime Error', 'Accepted'] | ['s166340503', 's428352451'] | [2940.0, 2940.0] | [17.0, 17.0] | [43, 48] |
p03834 | u021114240 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=input()\na=list(input.split(","))\nprint(*a)', 's=input()\na=list(s.split(","))\nprint(*a)'] | ['Runtime Error', 'Accepted'] | ['s915570087', 's595585561'] | [3064.0, 2940.0] | [18.0, 17.0] | [44, 40] |
p03834 | u027929618 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = input().split(",")\nprint(" ".join(s))⏎', 's = input().split(",")\nprint(" ".join(s))'] | ['Runtime Error', 'Accepted'] | ['s185334259', 's235992925'] | [2940.0, 2940.0] | [17.0, 17.0] | [44, 41] |
p03834 | u031852574 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['x,y,z = map(int,input().split())\nprint(z,x,y)', 'a,b,c = input().split(",")\nprint(a,b,c)\n'] | ['Runtime Error', 'Accepted'] | ['s948151074', 's652185755'] | [8980.0, 8872.0] | [26.0, 31.0] | [45, 40] |
p03834 | u045408189 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a,b,c=input().split(,)\nprint(a,b,c)', 'a,b,c=input().split(,)\nprint(a,b,c)', "a,b,c=input().split(',')\nprint(a,b,c)"] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s450527686', 's730755335', 's008509336'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [35, 35, 37] |
p03834 | u045953894 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["a,b,c = input().split(',')\n\nprint(a,b,c,sep='')", "s=input()\ns=s.replace(',','')\nprint(s)", "a,b,c = input().split(',')\n\nprint(a,b,c,sep=' ')\n"] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s682004670', 's787587393', 's140743843'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 18.0] | [47, 38, 49] |
p03834 | u046313635 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = input().split(",")\n\nprint(s)', 's = input().split()\n\ns[6], s[14] = ""\n\nprint(s)', 'a, b, c = input().split(",")\n\nprint(a,b,c)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s472683899', 's644378835', 's050908631'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [32, 47, 42] |
p03834 | u055941944 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['sx,sy,tx,ty=map(int,input().split())\nx=tx-sx\ny=ty-sy\nans=""\n\nans="U"*x + "R"*y\nans+="D"*x + "L"*y\n\nans+="L"+"U"*(x+1)+"R"*(x+1)+"D"\nans+="R"+"D"*(x+1)+"L"*(y+1)+"U"\nprint(ans)\n', '# -*- coding utf-8 -*-\n\na,b,c = map(str,input().split(","))\n\nprint(a,b,c)\n'] | ['Runtime Error', 'Accepted'] | ['s650737546', 's843974257'] | [3064.0, 2940.0] | [17.0, 18.0] | [176, 74] |
p03834 | u056599756 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=input()\n\nss=s.replace(",", " ")\n\nss', 's=input()\nss=s.replace(",", " ")\nprint(ss)'] | ['Wrong Answer', 'Accepted'] | ['s695398534', 's930620634'] | [2940.0, 2940.0] | [17.0, 17.0] | [37, 42] |
p03834 | u072717685 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = input()\nprint(s)\ns2 = " ".join(s.split(","))\nprint(s2)', 's = input()\ns2 = " ".join(s.split(","))\nprint(s2)'] | ['Wrong Answer', 'Accepted'] | ['s935560597', 's886019329'] | [2940.0, 2940.0] | [17.0, 17.0] | [58, 49] |
p03834 | u073251521 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['x, y, z = input.split(",")\n\nprint(x, y, z)', 'x, y, z = input().split(",")\nprint(x, y, z)'] | ['Runtime Error', 'Accepted'] | ['s450921071', 's556423343'] | [8968.0, 9024.0] | [24.0, 25.0] | [42, 43] |
p03834 | u074338678 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['print(*input().split())\n', 's = input()\nprint(s, s.replace(",", " "))', 'a,b,c = input().split(",")\nprint(a,b,c)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s530951646', 's725252489', 's647024431'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [24, 41, 39] |
p03834 | u076764813 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['S=list(input())\n\nfor i in range(len(S)):\n if S[i] == ",":\n S[i] = " "\n\nprint(*S)\n', 'S=list(input())\n\nfor i in range(len(S)):\n if S[i] == ",":\n S[i] = " "\n\nprint(*S, sep="")\n'] | ['Wrong Answer', 'Accepted'] | ['s784540874', 's275677260'] | [2940.0, 2940.0] | [17.0, 17.0] | [91, 99] |
p03834 | u088488125 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=input()\nprint(s.replace("," " ")', 's=input()\nprint(s.replace(",", " ")\n', 's=input()\nprint(s.replace(",", " "))\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s526233991', 's805061295', 's891296135'] | [8952.0, 8996.0, 8980.0] | [27.0, 21.0, 25.0] | [34, 36, 37] |
p03834 | u089142196 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=input()\n\nprint(s[0:5],s[7:14],s[15:20])', 's=input()\n\nprint(s[0:5],s[6:13],s[14:21])'] | ['Wrong Answer', 'Accepted'] | ['s212599849', 's854390957'] | [2940.0, 2940.0] | [17.0, 18.0] | [41, 41] |
p03834 | u089230684 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['word = "Hello,world ,in my program"\ny = word.replace(\',\' , \' \')\nprint(y)\n', 's=str(input())\ncadena=""\nfor i in range(len(s)):\n if i==5 or i==13:\n cadena+=" "\n else:\n cadena+=s[i]\nprint(cadena)'] | ['Wrong Answer', 'Accepted'] | ['s702017168', 's952555968'] | [3060.0, 2940.0] | [19.0, 17.0] | [73, 123] |
p03834 | u093033848 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s = input()\n\nprint(s.replace(' ', ','))", "s = input()\n\nprint(s.replace(',', ' '))"] | ['Wrong Answer', 'Accepted'] | ['s505691119', 's950976569'] | [2940.0, 2940.0] | [17.0, 17.0] | [39, 39] |
p03834 | u093500767 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a = input().str()\n\na = a.replace(",", " ")\n\nprint(a)', 'a = input()\na = a.replace(",", " ")\nprint(a)'] | ['Runtime Error', 'Accepted'] | ['s983808922', 's088082597'] | [2940.0, 2940.0] | [17.0, 18.0] | [52, 44] |
p03834 | u102242691 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['\nl = list(map(int,input().split()))\n\ncount = 0\n\nfor x in range(l[0] + 1):\n for y in range(l[0] + 1):\n for z in range(l[0] + 1):\n if x + y + z == l[1]:\n count += 1\n print(x,y,z)\n\nprint(count)\n\n', '\na,b,c = input().split(",")\nprint(a + " " + b + " " + c)\n'] | ['Runtime Error', 'Accepted'] | ['s417216376', 's366355138'] | [2940.0, 2940.0] | [17.0, 17.0] | [243, 57] |
p03834 | u108377418 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["\n#include <string>\nusing namespace std;\n\nint main(){\n string input_str;\n\n cin >> input_str;\n\n input_str[5] = ' ', input_str[13] = '';\n\n cout << input_str << endl;\n\n return 0;\n}\n", "\n#include <string>\nusing namespace std;\n\nint main(){\n string input_str;\n\n cin >> input_str;\n\n for (int i=0; i < input_str.size(); i++){\n if (input_str[i] == ',') input_str[i] = ' ';\n }\n\n cout << input_str << endl;\n\n return 0;\n}\n", 'def main():\n s = input()\n print(s.replace(",", " "))\n\nif __name__ == "__main__":\n main()\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s305161926', 's690117356', 's861309397'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [211, 272, 98] |
p03834 | u111365959 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['k,s = input().split()\na = 0\nn = 0\nwhile a <= k:\n b = 0\n while b <= k:\n c = 0\n while c <= k:\n if (a+b+c) == s:\n n += 1\n c += 1\n b += 1\n a += 1\nprint(n)\n', 'k,s = [int(x) for x in input().split()]\nans = 0\nfor x in range(k+1):\n for y in range(x, k+1):\n z = s - x - y\n if x <= y <= z <= k:\n ans += [ None, 1, 3, 6 ][ len(set([ x, y, z ])) ]', 'k,s = [int(x) for x in input().split()]\na = 0\nn = 0\nwhile a <= k:\n b = 0\n while b <= k:\n z = s-a-b\n if 0<=z and z <= k:\n n += 1\n b += 1\n a += 1\nprint(n)\n', "print(input().replace(',',' '))"] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s207929744', 's324554109', 's335180584', 's752522832'] | [2940.0, 3060.0, 2940.0, 2940.0] | [18.0, 18.0, 19.0, 17.0] | [180, 209, 170, 31] |
p03834 | u113255362 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['S= input()\nres1 = S[0:4]\nres2 = S[6:12]\nres3 = S[14:19]\nprint(res1,res2,res3)', 'S= input()\nres1 = S[0:5]\nres2 = S[6:13]\nres3 = S[14:19]\nprint(res1,res2,res3)'] | ['Wrong Answer', 'Accepted'] | ['s975436728', 's935792132'] | [9040.0, 9100.0] | [26.0, 31.0] | [77, 77] |
p03834 | u113971909 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["print(input().replace(',',' ')", "print(input().replace(',',' '))"] | ['Runtime Error', 'Accepted'] | ['s069439518', 's435913740'] | [2940.0, 2940.0] | [17.0, 17.0] | [30, 31] |
p03834 | u115877451 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["a=input()\nprint(a.replace(',',' ')", "a=input()\nprint(a.replace(',',' '))"] | ['Runtime Error', 'Accepted'] | ['s013088718', 's085657447'] | [2940.0, 2940.0] | [17.0, 17.0] | [34, 35] |