|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {makeup-detection-dataset}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of photos featuring the same individuals captured in two |
|
distinct scenarios - *with and without makeup*. The dataset contains a diverse |
|
range of individuals with various *ages, ethnicities and genders*. The images |
|
themselves would be of high quality, ensuring clarity and detail for each |
|
subject. |
|
In photos with makeup, it is applied **to only specific parts** of the face, |
|
such as *eyes, lips, or skin*. |
|
In photos without makeup, individuals have a bare face with no visible |
|
cosmetics or beauty enhancements. These images would provide a clear contrast |
|
to the makeup images, allowing for significant visual analysis. |
|
""" |
|
_NAME = 'makeup-detection-dataset' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class MakeupDetectionDataset(datasets.GeneratorBasedBuilder): |
|
"""Small sample of image-text pairs""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'no_makeup': datasets.Image(), |
|
'with_makeup': datasets.Image(), |
|
'part': datasets.Value('string'), |
|
'gender': datasets.Value('string'), |
|
'age': datasets.Value('int8'), |
|
'country': datasets.Value('string') |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
no_makeup = dl_manager.download(f"{_DATA}no_makeup.tar.gz") |
|
with_makeup = dl_manager.download(f"{_DATA}with_makeup.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
no_makeup = dl_manager.iter_archive(no_makeup) |
|
with_makeup = dl_manager.iter_archive(with_makeup) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"no_makeup": no_makeup, |
|
'with_makeup': with_makeup, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, no_makeup, with_makeup, annotations): |
|
annotations_df = pd.read_csv(annotations, sep=';') |
|
|
|
for idx, ((image_path, image), |
|
(mask_path, mask)) in enumerate(zip(no_makeup, with_makeup)): |
|
yield idx, { |
|
"no_makeup": { |
|
"path": image_path, |
|
"bytes": image.read() |
|
}, |
|
"with_makeup": { |
|
"path": mask_path, |
|
"bytes": mask.read() |
|
}, |
|
'part': |
|
annotations_df.loc[annotations_df['no_makeup'].str.lower() == |
|
image_path.lower()]['part'].values[0], |
|
'gender': |
|
annotations_df.loc[annotations_df['no_makeup'].str.lower() == |
|
image_path.lower()]['gender'].values[0], |
|
'age': |
|
annotations_df.loc[annotations_df['no_makeup'].str.lower() == |
|
image_path.lower()]['age'].values[0], |
|
'country': |
|
annotations_df.loc[annotations_df['no_makeup'].str.lower() == |
|
image_path.lower()]['country'].values[0] |
|
} |
|
|