Datasets:
annotations_creators: []
language: en
license: unknown
size_categories:
- 10K<n<100K
task_categories:
- image-segmentation
task_ids: []
pretty_name: DUTS
tags:
- fiftyone
- image
- image-segmentation
exists_ok: true
dataset_summary: >
![image/png](dataset_preview.jpg)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15572
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/DUTS")
# Launch the App
session = fo.launch_app(dataset)
```
Dataset Card for DUTS
This is a FiftyOne dataset with 15572 samples.
Installation
If you haven't already, install FiftyOne:
pip install -U fiftyone
Usage
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/DUTS")
# Launch the App
session = fo.launch_app(dataset)
Dataset Details
Dataset Description
DUTS is a saliency detection dataset containing 10,553 training images and 5,019 test images. All training images are collected from the ImageNet DET training/val sets, while test images are collected from the ImageNet DET test set and the SUN data set. Both the training and test set contain very challenging scenarios for saliency detection. Accurate pixel-level ground truths are manually annotated by 50 subjects.
- Curated by: Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, Dong Wang, Baocai Yin, and Xiang Ruan
- Language(s) (NLP): en
- License: unknown
Dataset Structure
Name: DUTS
Media type: image
Num samples: 15572
Persistent: False
Tags: []
Sample fields:
id: fiftyone.core.fields.ObjectIdField
filepath: fiftyone.core.fields.StringField
tags: fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
metadata: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
ground_truth: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Segmentation)
The dataset has 2 splits: "train" and "test". Samples are tagged with their split.
Dataset Creation
Introduced by Wang et al. in Learning to Detect Salient Objects With Image-Level Supervision
Citation
BibTeX:
@inproceedings{wang2017,
title={Learning to Detect Salient Objects with Image-level Supervision},
author={Wang, Lijun and Lu, Huchuan and Wang, Yifan and Feng, Mengyang
and Wang, Dong, and Yin, Baocai and Ruan, Xiang},
booktitle={CVPR},
year={2017}
}
Dataset Card Authors
Dataset conversion and data card contributed by Rohith Raj Srinivasan.