Datasets:
Tasks:
Object Detection
Modalities:
Image
Languages:
English
Size:
10K<n<100K
ArXiv:
Libraries:
FiftyOne
File size: 5,028 Bytes
32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 fe60c17 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 32ed0f0 ee34aa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
annotations_creators: []
language: en
size_categories:
- 10K<n<100K
task_categories:
- object-detection
task_ids: []
pretty_name: GQA-35k
tags:
- fiftyone
- image
- object-detection
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = fouh.load_from_hub("Voxel51/GQA-Scene-Graph")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for GQA-35k
![image](gqa.png)
The GQA (Visual Reasoning in the Real World) dataset is a large-scale visual question answering dataset that includes scene graph annotations for each image.
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
Note: This is a 35,000 sample subset which does not contain questions, only the scene graph annotations as detection-level attributes.
You can find the recipe notebook for creating the dataset [here](https://colab.research.google.com/drive/1IjyvUSFuRtW2c5ErzSnz1eB9syKm0vo4?usp=sharing)
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/GQA-Scene-Graph")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
## Scene Graph Annotations
- Each of the 113K images in GQA is associated with a detailed scene graph describing the objects, attributes and relations present.
- The scene graphs are based on a cleaner version of the Visual Genome scene graphs.
- For each image, the scene graph is provided as a dictionary (sceneGraph) containing:
- Image metadata like width, height, location, weather
- A dictionary (objects) mapping each object ID to its name, bounding box coordinates, attributes, and relations[6]
- Relations are represented as triples specifying the predicate (e.g. "holding", "on", "left of") and the target object ID[6]
- **Curated by:** Drew Hudson & Christopher Manning
- **Shared by:** [Harpreet Sahota](https://x.com/datascienceharp), Hacker-in-Residence at Voxel51
- **Language(s) (NLP):** en
- **License:**
- GQA annotations (scene graphs, questions, programs) licensed under CC BY 4.0
- Images sourced from Visual Genome may have different licensing terms
### Dataset Sources
- **Repository:** https://cs.stanford.edu/people/dorarad/gqa/
- **Paper :** https://arxiv.org/pdf/1902.09506
- **Demo:** https://cs.stanford.edu/people/dorarad/gqa/vis.html
## Dataset Structure
Here's the information presented as a markdown table:
| Field | Type | Description |
|-------|------|-------------|
| location | str | Optional. The location of the image, e.g. kitchen, beach. |
| weather | str | Optional. The weather in the image, e.g. sunny, cloudy. |
| objects | dict | A dictionary from objectId to its object. |
| object | dict | A visual element in the image (node). |
| name | str | The name of the object, e.g. person, apple or sky. |
| x | int | Horizontal position of the object bounding box (top left). |
| y | int | Vertical position of the object bounding box (top left). |
| w | int | The object bounding box width in pixels. |
| h | int | The object bounding box height in pixels. |
| attributes | [str] | A list of all the attributes of the object, e.g. blue, small, running. |
| relations | [dict] | A list of all outgoing relations (edges) from the object (source). |
| relation | dict | A triple representing the relation between source and target objects. |
Note: I've used non-breaking spaces (` `) to indent the nested fields in the 'Field' column to represent the hierarchy. This helps to visually distinguish the nested structure within the table.
## Citation
**BibTeX:**
```bibtex
@article{Hudson_2019,
title={GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering},
ISBN={9781728132938},
url={http://dx.doi.org/10.1109/CVPR.2019.00686},
DOI={10.1109/cvpr.2019.00686},
journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
publisher={IEEE},
author={Hudson, Drew A. and Manning, Christopher D.},
year={2019},
month={Jun}
}
``` |