metadata
license: mit
task_categories:
- time-series-forecasting
language:
- en
size_categories:
- 1M<n<1B
tags:
- finance
Timeseries Data Processing
This repository contains a script for loading and processing timeseries data using the datasets
library and converting it to a pandas DataFrame for further analysis.
Dataset
The dataset used in this example is Weijie1996/load_timeseries
, which contains timeseries data with the following features:
id
datetime
target
category
Requirements
- Python 3.6+
datasets
librarypandas
library
You can install the required libraries using pip:
pip install datasets pandas
Usage
The following example demonstrates how to load the dataset and convert it to a pandas DataFrame.
from datasets import load_dataset
ds = load_dataset("Weijie1996/load_timeseries")
# Print the category of the dataset
print(set(ds['category']))
print(set(ds['id']))
# Filter the dataset that category is 15m and id is GE_1
ds = ds.filter(lambda x: x['category'] == '30m' and x['id'] == 'GE_1')
# Transform the dataset to a pandas dataframe
df = ds.to_pandas()
Output
id datetime target category
0 NL_1 2013-01-01 00:00:00 0.117475 60m
1 NL_1 2013-01-01 01:00:00 0.104347 60m
2 NL_1 2013-01-01 02:00:00 0.103173 60m
3 NL_1 2013-01-01 03:00:00 0.101686 60m
4 NL_1 2013-01-01 04:00:00 0.099632 60m