|
from skimage.exposure import match_histograms |
|
from skimage import io |
|
import os |
|
from PIL import Image |
|
import torch |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
|
|
def normalize(): |
|
MEAN = [0.485, 0.456, 0.406] |
|
STD = [0.229, 0.224, 0.225] |
|
return transforms.Normalize(mean = MEAN, std = STD) |
|
|
|
def denormalize(): |
|
|
|
MEAN = [0.485, 0.456, 0.406] |
|
STD = [0.229, 0.224, 0.225] |
|
MEAN = [-mean/std for mean, std in zip(MEAN, STD)] |
|
STD = [1/std for std in STD] |
|
return transforms.Normalize(mean=MEAN, std=STD) |
|
|
|
def transformer(imsize = None, cropsize = None): |
|
transformer = [] |
|
if imsize: |
|
transformer.append(transforms.Resize(imsize)) |
|
if cropsize: |
|
transformer.append(transforms.RandomCrop(cropsize)) |
|
|
|
transformer.append(transforms.ToTensor()) |
|
transformer.append(normalize()) |
|
return transforms.Compose(transformer) |
|
|
|
def load_img(path, imsize = None, cropsize = None): |
|
transform = transformer(imsize = imsize, cropsize = cropsize) |
|
|
|
return transform(Image.open(path).convert("RGB")).unsqueeze(0) |
|
|
|
def tensor_to_img(tensor): |
|
denormalizer = denormalize() |
|
if tensor.device == "cuda": |
|
tensor = tensor.cpu() |
|
|
|
tensor = torchvision.utils.make_grid(denormalizer(tensor.squeeze())) |
|
image = transforms.functional.to_pil_image(tensor.clamp_(0., 1.)) |
|
return image |
|
|
|
def save_img(tensor, path): |
|
pass |
|
|
|
def histogram_matching(image, reference): |
|
""" |
|
img: style image |
|
reference: original img |
|
output: style image that resembles original img's color histogram |
|
""" |
|
device = image.device |
|
reference = reference.cpu().permute(1, 2, 0).numpy() |
|
image = image.cpu().permute(1, 2, 0).numpy() |
|
output = match_histograms(image, reference, multichannel = True) |
|
return torch.Tensor(output).permute(2, 0, 1).to(device) |
|
|
|
def batch_histogram_matching(images, reference): |
|
""" |
|
images of shape BxCxHxW |
|
reference of shape 1xCxHxW |
|
""" |
|
reference = reference.squeeze() |
|
output = torch.zeros_like(images, dtype = images.dtype) |
|
B = images.shape[0] |
|
for i in range(B): |
|
output[i] = histogram_matching(images[i], reference) |
|
return output |
|
|
|
def statistics(f, inverse = False, eps = 1e-10): |
|
c, h, w = f.shape |
|
f_mean = torch.mean(f.view(c, h*w), dim=1, keepdim=True) |
|
f_zeromean = f.view(c, h*w) - f_mean |
|
f_cov = torch.mm(f_zeromean, f_zeromean.t()) |
|
|
|
u, s, v = torch.svd(f_cov) |
|
|
|
k = c |
|
for i in range(c): |
|
if s[i] < eps: |
|
k = i |
|
break |
|
if inverse: |
|
p = -0.5 |
|
else: |
|
p = 0.5 |
|
|
|
f_covsqrt = torch.mm(torch.mm(u[:, 0:k], torch.diag(s[0:k].pow(p))), v[:, 0:k].t()) |
|
return f_mean, f_covsqrt |
|
|
|
def whitening(f): |
|
c, h, w = f.shape |
|
f_mean, f_inv_covsqrt = statistics(f, inverse = True) |
|
whitened_f = torch.mm(f_inv_covsqrt, f.view(c, h*w) - f_mean) |
|
return whitened_f.view(c, h, w) |
|
|
|
def batch_whitening(f): |
|
b, c, h, w = f.shape |
|
whitened_f = torch.zeros(size = (b, c, h, w), dtype = f.dtype, device = f.device) |
|
for i in range(b): |
|
whitened_f[i] = whitening(f[i]) |
|
return whitened_f |
|
|
|
def coloring(style, content): |
|
s_c, s_h, s_w = style.shape |
|
c_mean, c_covsqrt = statistics(content, inverse = False) |
|
colored_s = torch.mm(c_covsqrt, whitening(style).view(s_c, s_h * s_w)) + c_mean |
|
return colored_s.view(s_c, s_h, s_w) |
|
|
|
def batch_coloring(styles, content): |
|
colored_styles = torch.zeros_like(styles, dtype = styles.dtype, device = styles.device) |
|
for i, style in enumerate(styles): |
|
colored_styles[i] = coloring(style, content[i]) |
|
|
|
return colored_styles |
|
|
|
def batch_wct(styles, content): |
|
whitened_styles = batch_whitening(styles) |
|
return batch_coloring(whitened_styles, content) |
|
|
|
class Image_Set(torch.utils.data.Dataset): |
|
def __init__(self, root_path, imsize, cropsize): |
|
super(Image_Set, self).__init__() |
|
self.root_path = root_path |
|
self.files = sorted(os.listdir(self.root_path)) |
|
self.transformer = transformer(imsize, cropsize) |
|
|
|
def __len__(self): |
|
return len(self.file_names) |
|
|
|
def __getitem__(self, index): |
|
image = Image.open(os.path.join(self.root_path + self.file_names[index])).convert("RGB") |
|
return self.transformer(image) |
|
|
|
|