name
stringlengths 14
14
| lean4_statement
stringlengths 75
1.48k
β | informal_statement
stringlengths 47
898
β | informal_solution
stringlengths 16
303
β | tags
stringclasses 36
values | coq_statement
stringlengths 91
1.51k
β | isabelle_statement
stringlengths 160
2.65k
β | lean4_proof
float64 |
---|---|---|---|---|---|---|---|
putnam_1993_b1 | abbrev putnam_1993_b1_solution : β := sorry
-- 3987
theorem putnam_1993_b1
(nallmexk : β β Prop)
(hnallmexk : β n : β, nallmexk n = (n > 0 β§ β m β Set.Ioo 0 1993, β k : β€, (m / 1993 < (k : β) / n) β§ ((k : β) / n < (m + 1) / 1994)))
: nallmexk putnam_1993_b1_solution β§ (β n : β, nallmexk n β n β₯ putnam_1993_b1_solution) :=
sorry | Find the smallest positive integer $n$ such that for every integer $m$ with $0<m<1993$, there exists an integer $k$ for which $\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994}$. | Show that the smallest positive integer $n$ satisfying the condition is $n=3987$. | ['algebra'] | Section putnam_1993_b1.
Require Import Reals.
Open Scope R.
Definition putnam_1993_b1_solution : nat := 3987.
Theorem putnam_1993_b1:
let cond (n: nat) := forall (m: nat), and (lt 0 m) (lt m 1993) -> exists (k: nat), INR m / 1993 < INR k / INR n < INR (m + 1) / 1994 in
exists (mn: nat), cond mn /\ forall (n: nat), cond n -> ge n mn <->
mn = putnam_1993_b1_solution.
Proof. Admitted.
End putnam_1993_b1. | theory putnam_1993_b1 imports Complex_Main
begin
definition putnam_1993_b1_solution::nat where "putnam_1993_b1_solution \<equiv> undefined"
(* 3987 *)
theorem putnam_1993_b1:
fixes nallmexk::"nat\<Rightarrow>bool"
defines "nallmexk \<equiv> \<lambda>n::nat. (n > 0 \<and> (\<forall>m \<in> {0<..<1993}. (\<exists>k::int. (m / 1993 < k / n) \<and> (k / n < (m+1) / 1994))))"
shows "putnam_1993_b1_solution = (LEAST n. nallmexk n)"
sorry
end | null |
putnam_1993_b4 | theorem putnam_1993_b4
(K : β Γ β β β)
(f g : β β β)
(Kpos : β x y : Set.Icc (0 : β) 1, K (x, y) > 0)
(Kcont : ContinuousOn K {(x, y) : β Γ β | x β Set.Icc 0 1 β§ y β Set.Icc 0 1})
(fgpos : β x : Set.Icc (0 : β) 1, f x > 0 β§ g x > 0)
(fgcont : ContinuousOn f (Set.Icc 0 1) β§ ContinuousOn g (Set.Icc 0 1))
(fgint : β x : Set.Icc (0 : β) 1, (β« y in Set.Ioo 0 1, f y * K (x, y)) = g x β§ (β« y in Set.Ioo 0 1, g y * K (x, y)) = f x)
: β x : Set.Icc (0 : β) 1, f x = g x :=
sorry | The function $K(x,y)$ is positive and continuous for $0 \leq x \leq 1,0 \leq y \leq 1$, and the functions $f(x)$ and $g(x)$ are positive and continuous for $0 \leq x \leq 1$. Suppose that for all $x$, $0 \leq x \leq 1$, $\int_0^1 f(y)K(x,y)\,dy=g(x)$ and $\int_0^1 g(y)K(x,y)\,dy=f(x)$. Show that $f(x)=g(x)$ for $0 \leq x \leq 1$. | null | ['analysis'] | Section putnam_1993_b4.
Require Import Reals Coquelicot.Coquelicot.
Open Scope R.
Theorem putnam_1993_b4:
forall (K: (R * R) -> R) (f g: R -> R),
(forall (xy : R * R), let (x, y) := xy in 0 <= x <= 1 /\ 0 <= y <= 1 /\ K xy > 0 /\ continuous K xy) /\
(forall (x: R), 0 <= x <= 1 /\ f x > 0 /\ g x > 0 /\ continuity f /\ continuity g) ->
forall (x: R), 0 <= x <= 1 ->
(RInt (fun y => f y * K (x, y)) 0 1) = g x /\
RInt (fun y => g y * K (x, y)) 0 1 = f x ->
f = g.
Proof. Admitted.
End putnam_1993_b4. | theory putnam_1993_b4 imports Complex_Main "HOL-Analysis.Interval_Integral"
begin
theorem putnam_1993_b4:
fixes K::"(real\<times>real) \<Rightarrow> real" and f g::"real\<Rightarrow>real"
assumes Kpos : "\<forall>x::real \<in> {0..1}. \<forall>y::real \<in> {0..1}. K (x, y) > 0"
and Kcont : "continuous_on {(x::real, y::real). x \<in> {0..1} \<and> y \<in> {0..1}} K"
and fgpos : "\<forall>x::real \<in> {0..1}. f x > 0 \<and> g x > 0"
and fgcont : "continuous_on {0..1::real} f \<and> continuous_on {0..1::real} g"
and fgint : "\<forall>x::real \<in> {0..1}. interval_lebesgue_integral lebesgue 0 1 (\<lambda>y. f y * K (x, y)) = g x \<and>
interval_lebesgue_integral lebesgue 0 1 (\<lambda>y. g y * K (x, y)) = f x"
shows "\<forall>x::real \<in> {0..1}. f x = g x"
sorry
end | null |
putnam_1993_b5 | theorem putnam_1993_b5
(pdists : (Fin 4 β (Fin 2 β β)) β Prop)
(hpdists: β p : Fin 4 β (Fin 2 β β), pdists p = β i j : Fin 4, i β j β (Euclidean.dist (p i) (p j) = round (Euclidean.dist (p i) (p j)) β§ Odd (round (Euclidean.dist (p i) (p j)))))
: Β¬β p : Fin 4 β (Fin 2 β β), pdists p :=
sorry | Show there do not exist four points in the Euclidean plane such that the pairwise distances between the points are all odd integers. | null | ['geometry', 'number_theory', 'linear_algebra'] | null | theory putnam_1993_b5 imports Complex_Main "HOL-Analysis.Linear_Algebra"
begin
theorem putnam_1993_b5:
fixes pdist::"(real \<times> real) \<Rightarrow> (real \<times> real) \<Rightarrow> (real \<times> real) \<Rightarrow> (real \<times> real) \<Rightarrow> bool"
defines "pdist \<equiv> \<lambda>A. \<lambda>B. \<lambda>C. \<lambda>D. (dist A B) \<in> \<int> \<and> (dist A C) \<in> \<int> \<and> (dist A D) \<in> \<int> \<and>
(dist B C) \<in> \<int> \<and> (dist B D) \<in> \<int> \<and> (dist C D) \<in> \<int> \<and>
odd (round (dist A B)) \<and> odd (round (dist A C)) \<and> odd (round (dist A D)) \<and>
odd (round (dist B C)) \<and> odd (round (dist B D)) \<and> odd (round (dist C D))"
shows "\<not>(\<exists>A B C D. pdist A B C D)"
sorry
end | null |
putnam_1993_b6 | theorem putnam_1993_b6
(S : Fin 3 β β)
(f : Fin 3 β Fin 3 β (Fin 3 β β) β (Fin 3 β β))
(Spos : β i : Fin 3, S i > 0)
(hf : β i j k : Fin 3, (i β j β§ i β k β§ j β k) β β S' : Fin 3 β β, if S' i β€ S' j then ((f i j S') i = 2 * S' i β§ (f i j S') j = S' j - S' i β§ (f i j S') k = S' k) else (f i j S' = S'))
: β (Ss : β β (Fin 3 β β)) (N : β), Ss 0 = S β§ (β i : Fin 3, Ss N i = 0) β§ (β n : Fin N, β i j : Fin 3, i β j β§ f i j (Ss n) = Ss ((n : β) + 1)) :=
sorry | Let $S$ be a set of three, not necessarily distinct, positive integers. Show that one can transform $S$ into a set containing $0$ by a finite number of applications of the following rule: Select two of the three integers, say $x$ and $y$, where $x \leq y$ and replace them with $2x$ and $y-x$. | null | ['algebra'] | null | theory putnam_1993_b6 imports Complex_Main
begin
(* Note: Boosted domain to infinite set *)
theorem putnam_1993_b6:
fixes S::"nat\<Rightarrow>nat" and f::"nat \<Rightarrow> nat \<Rightarrow> (nat\<Rightarrow>nat) \<Rightarrow> (nat\<Rightarrow>nat)"
assumes Spos : "\<forall>i \<in> {0..<3}. S i > 0"
and hf : "\<forall>i \<in> {0..<3}. \<forall>j \<in> {0..<3}. \<forall>k \<in> {0..<3}. (i \<noteq> j \<and> i \<noteq> k \<and> j \<noteq> k) \<longrightarrow> (\<forall>S'::nat\<Rightarrow>nat.
if (S' i \<le> S' j) then ( (f i j S') i = 2 * S' i \<and> (f i j S') j = S' j - S' i \<and> (f i j S') k = S' k) else (f i j S' = S'))"
shows "\<exists>N::nat. \<exists>Ss::nat\<Rightarrow>(nat\<Rightarrow>nat). Ss 0 = S \<and> (\<exists>i \<in> {0..<3}. Ss N i = 0) \<and>
(\<forall>n \<in> {0..<N}. \<exists>i \<in> {0..<3}. \<exists>j \<in> {0..<3}. (i \<noteq> j \<and> f i j (Ss n) = Ss (n+1)))"
sorry
end | null |
putnam_2015_a2 | abbrev putnam_2015_a2_solution : β := sorry
-- 181
theorem putnam_2015_a2
(a : β β β€)
(abase : a 0 = 1 β§ a 1 = 2)
(arec : β n β₯ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd putnam_2015_a2_solution β§ putnam_2015_a2_solution.Prime β§ ((putnam_2015_a2_solution : β€) β£ a 2015) :=
sorry | Let $a_0=1$, $a_1=2$, and $a_n=4a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of $a_{2015}$. | Show that one possible answer is $181$. | ['number_theory'] | Section putnam_2015_a2.
Require Import Nat Reals Znumtheory. From mathcomp Require Import div.
Definition putnam_2015_a2_solution : nat := 181.
Theorem putnam_2015_a2:
let A :=
fix a (n: nat) : nat :=
match n with
| O => 1%nat
| S O => 2%nat
| S ((S n'') as n') => sub (4*(a n')) (a n'')
end in
odd putnam_2015_a2_solution = true /\ prime (Z.of_nat putnam_2015_a2_solution) /\ (putnam_2015_a2_solution %| A 2015%nat) = true.
Proof. Admitted.
End putnam_2015_a2. | theory putnam_2015_a2 imports Complex_Main
"HOL-Computational_Algebra.Primes"
begin
(* there are several possible correct solutions; this is the one shown on the solutions document *)
definition putnam_2015_a2_solution :: nat where "putnam_2015_a2_solution \<equiv> undefined"
(* 181 *)
theorem putnam_2015_a2:
fixes a :: "nat \<Rightarrow> nat"
assumes abase: "a 0 = 1 \<and> a 1 = 2"
assumes arec: "\<forall>n::nat\<ge>2. a n = 4 * a (n-1) - a (n-2)"
shows "odd putnam_2015_a2_solution \<and> prime putnam_2015_a2_solution \<and> putnam_2015_a2_solution dvd (a 2015)"
sorry
end
| null |
putnam_2015_a3 | abbrev putnam_2015_a3_solution : β := sorry
-- 13725
theorem putnam_2015_a3
: Complex.log (β a : Fin 2015, β b : Fin 2015, (1 + Complex.exp (2 * Real.pi * Complex.I * (a.1 + 1) * (b.1 + 1) / 2015))) / Complex.log 2 = putnam_2015_a3_solution :=
sorry | Compute $\log_2 \left( \prod_{a=1}^{2015}\prod_{b=1}^{2015}(1+e^{2\pi iab/2015}) \right)$. Here $i$ is the imaginary unit (that is, $i^2=-1$). | Show that the answer is $13725$. | ['number_theory', 'algebra'] | Section putnam_2015_a3.
Require Import Reals ROrderedType Coquelicot.Coquelicot.
Local Open Scope C.
Definition putnam_2015_a3_solution : C := RtoC 13725.
Theorem putnam_2015_a3:
let Carg (z : C) : R := if Reqb (Im z) 0 then (if Rlt_dec (Re z) 0 then PI else R0) else atan ((Im z)/(Re z)) in
let Clog (n: nat) (z : C) : C := (Re (ln (Cmod z) / ln (INR n)), Carg z) in
let HCprod2_aux :=
fix Cprod2_aux (f : nat -> nat -> C) (n m : nat) {struct m} : C :=
match m with
| O => f n O
| S m' => Cmult (f n m') (Cprod2_aux f n m')
end in
let HCprod2 :=
fix Cprod2 (f : nat -> nat -> C) (n m : nat) {struct n}: C :=
match n with
| O => 1%R
| S n' => Cmult (HCprod2_aux f n m) (Cprod2 f n' m)
end in
let f (a b: nat) : C := Clog 2%nat (Re (1 + cos (2*PI*INR(a+1)*INR(b+1)/2015)), sin (2*PI*INR(a+1)*INR(b+1)/2015)) in
HCprod2 f 2015%nat 2015%nat = putnam_2015_a3_solution.
Proof. Admitted.
End putnam_2015_a3. | theory putnam_2015_a3 imports Complex_Main
begin
definition putnam_2015_a3_solution :: complex where "putnam_2015_a3_solution \<equiv> undefined"
(* 13725 *)
theorem putnam_2015_a3:
shows "log 2 (Re (\<Prod>a::nat=1..2015. \<Prod>b::nat=1..2015. (1 + exp (2*pi*\<i>*a*b/2015)))) = putnam_2015_a3_solution"
sorry
end
| null |
putnam_2015_a4 | abbrev putnam_2015_a4_solution : β := sorry
-- 4 / 7
theorem putnam_2015_a4
(S : β β Set β := fun x β¦ {n : β | n > 0 β§ Even βn * xβ})
(f : β β β := fun x β¦ β' n : S x, 1 / 2 ^ (n : β))
(p : β β Prop := fun l β¦ β x β Set.Ico 0 1, f x β₯ l)
(L : β)
(hpL : p L)
(hLub : β l : β, p l β l β€ L)
: (L = putnam_2015_a4_solution) :=
sorry | For each real number $x$, let
\[
f(x) = \sum_{n\in S_x} \frac{1}{2^n},
\]
where $S_x$ is the set of positive integers $n$ for which $\lfloor nx \rfloor$ is even. What is the largest real number $L$ such that $f(x) \geq L$ for all $x \in [0,1)$? (As usual, $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$.) | Prove that $L = \frac{4}{7}$. | ['analysis'] | Section putnam_2015_a4.
Require Import Nat List Reals. From Coquelicot Require Import Coquelicot Hierarchy Rcomplements.
Definition putnam_2015_a4_solution : R := 4/7.
Theorem putnam_2015_a4:
let f (x: R) := Series (fun n => if even (Z.to_nat (floor ((INR n)*x))) then 1/(2^n) else R0) in
exists (L: R), forall (x: R), 0 <= x < 1 -> ((f x >= L) /\ forall (M: R), f x >= M -> L >= M)
<-> L = putnam_2015_a4_solution.
Proof. Admitted.
End putnam_2015_a4. | theory putnam_2015_a4 imports Complex_Main
"HOL-Analysis.Infinite_Sum"
begin
definition putnam_2015_a4_solution::real where "putnam_2015_a4_solution \<equiv> undefined"
(* 4/7 *)
theorem putnam_2015_a4:
fixes S::"real\<Rightarrow>(nat set)" and f::"real\<Rightarrow>real" and p::"real\<Rightarrow>bool"
defines "S \<equiv> \<lambda>x::real. {n::nat. n > 0 \<and> even (\<lfloor>n * x\<rfloor>)}"
and "f \<equiv> \<lambda>x::real. \<Sum>\<^sub>\<infinity>n \<in> S x. 1 / (2 ^ n)"
shows "putnam_2015_a4_solution = (GREATEST l::real. \<forall>x \<in> {0..<1}. f x \<ge> l)"
sorry
end
| null |
putnam_2015_a5 | theorem putnam_2015_a5
(q : β)
(Nq : β)
(qodd : Odd q)
(qpos : q > 0)
(hNq : Nq = {a : β | 0 < a β§ a < (q : β) / 4 β§ Nat.gcd a q = 1}.encard)
: Odd Nq β β p k : β, q = p ^ k β§ k > 0 β§ p.Prime β§ (p % 8 = 5 β¨ p % 8 = 7) :=
sorry | Let $q$ be an odd positive integer, and let $N_q$ denote the number of integers $a$ such that $0<a<q/4$ and $\gcd(a,q)=1$. Show that $N_q$ is odd if and only if $q$ is of the form $p^k$ with $k$ a positive integer and $p$ a prime congruent to $5$ or $7$ modulo $8$. | null | ['number_theory'] | Section putnam_2015_a5.
Require Import Nat Reals Arith Znumtheory Ensembles Finite_sets.
Local Open Scope nat_scope.
Theorem putnam_2015_a5:
forall (q: nat), odd q = true ->
forall (Nq: Ensemble nat),
forall (a: nat),
(
and (Rle R0 (INR a)) (Rle (INR a) (Rdiv (INR q) (INR 4)))
/\ gcd a q = 1
<-> Nq a
)
-> exists (Nq_size: nat), cardinal nat Nq Nq_size /\ odd Nq_size = true <-> exists (p k: nat), prime (Z.of_nat p) /\ (p mod 8 = 5 \/ p mod 8 = 7) /\ q = p^k.
Proof. Admitted.
End putnam_2015_a5. | theory putnam_2015_a5 imports Complex_Main
"HOL-Computational_Algebra.Primes"
begin
theorem putnam_2015_a5:
fixes q :: nat
and Nq :: nat
assumes qodd: "odd q"
and qpos: "q > 0"
and hNq: "Nq = card {a::nat. 0 < a \<and> a < (real q)/4 \<and> gcd a q = 1}"
shows "odd Nq \<longleftrightarrow> (\<exists>p k::nat. q = p^k \<and> k > 0 \<and> prime p \<and> (p mod 8 = 5 \<or> p mod 8 = 7))"
sorry
end
| null |
putnam_2015_a6 | theorem putnam_2015_a6
(n : β)
(A B M : Matrix (Fin n) (Fin n) β)
(npos : n > 0)
(hmul : A * M = M * B)
(hpoly : Matrix.charpoly A = Matrix.charpoly B)
: β X : Matrix (Fin n) (Fin n) β, (A - M * X).det = (B - X * M).det :=
sorry | Let $n$ be a positive integer. Suppose that $A$, $B$, and $M$ are $n \times n$ matrices with real entries such that $AM = MB$, and such that $A$ and $B$ have the same characteristic polynomial. Prove that $\det(A-MX)=\det(B-XM)$ for every $n \times n$ matrix $X$ with real entries. | null | ['linear_algebra'] | Section putnam_2015_a6.
Theorem putnam_2015_a6: True.
Proof. Admitted.
End putnam_2015_a6. | theory putnam_2015_a6 imports Complex_Main
"HOL-Analysis.Determinants"
"HOL-Computational_Algebra.Polynomial"
begin
theorem putnam_2015_a6:
fixes n :: nat
and A B M :: "real^'n^'n"
and charpoly :: "real^'n^'n \<Rightarrow> (real poly)"
assumes npos: "n > 0"
and pncard: "CARD('n) = n"
and hmul: "A ** M = M ** B"
and hcharpoly: "\<forall>A'::real^'n^'n. charpoly A' = det (mat (monom 1 1) - map_matrix (\<lambda>a::real. monom a 0) A')"
and hpoly: "charpoly A = charpoly B"
shows "\<forall>X::real^'n^'n. det (A - M**X) = det (B - X**M)"
sorry
end
| null |
putnam_2015_b1 | theorem putnam_2015_b1
(f : β β β)
(nzeros : (β β β) β β β Prop)
(fdiff : ContDiff β 2 f β§ Differentiable β (iteratedDeriv 2 f))
(hnzeros : β f' : β β β, β n : β, nzeros f' n = ({x : β | f' x = 0}.encard β₯ n))
(fzeros : nzeros f 5)
: nzeros (f + 6 * deriv f + 12 * iteratedDeriv 2 f + 8 * iteratedDeriv 3 f) 2 :=
sorry | Let $f$ be a three times differentiable function (defined on $\mathbb{R}$ and real-valued) such that $f$ has at least five distinct real zeros. Prove that $f+6f'+12f''+8f'''$ has at least two distinct real zeros. | null | ['analysis'] | Section putnam_2015_b1.
Require Import Reals List Coquelicot.Derive.
Local Open Scope R_scope.
Theorem putnam_2015_b1 :
forall (f: R -> R),
continuity (Derive_n f 3) ->
exists (l: list R), length l = 5%nat /\ NoDup l /\ forall x, In x l -> f x = 0 ->
let g (x: R):= f x + 6 * (Derive_n f 1) x + 12 * (Derive_n f 2) x + 8 * (Derive_n f 3) x in
exists (l': list R), length l = 2%nat /\ NoDup l' /\ forall x, In x l' -> g x = 0.
Proof. Admitted.
End putnam_2015_b1. | theory putnam_2015_b1 imports Complex_Main
"HOL-Analysis.Derivative"
begin
theorem putnam_2015_b1:
fixes f :: "real \<Rightarrow> real"
and nzeros :: "(real \<Rightarrow> real) \<Rightarrow> nat \<Rightarrow> bool"
assumes fdiff: "f C1_differentiable_on UNIV \<and> (deriv f) C1_differentiable_on UNIV \<and> ((deriv^^2) f) differentiable_on UNIV"
and hnzeros: "\<forall>(f'::real\<Rightarrow>real)(n::nat). nzeros f' n = (card {x::real. f' x = 0} \<ge> n)"
and fzeros: "nzeros f 5"
shows "nzeros (\<lambda>x::real. f x + (6*deriv f x) + (12*(deriv^^2) f x) + (8*(deriv^^3) f x)) 2"
sorry
end
| null |
putnam_2015_b3 | abbrev putnam_2015_b3_solution : Set (Matrix (Fin 2) (Fin 2) β) := sorry
-- {A : Matrix (Fin 2) (Fin 2) β | (β Ξ± : β, β i j : Fin 2, A i j = Ξ± * 1) β¨ (β Ξ² : β, A 0 0 = Ξ² * -3 β§ A 0 1 = Ξ² * -1 β§ A 1 0 = Ξ² * 1 β§ A 1 1 = Ξ² * 3)}
theorem putnam_2015_b3
(S : Set (Matrix (Fin 2) (Fin 2) β))
(M : Matrix (Fin 2) (Fin 2) β)
(MinS : Prop)
(hS : S = {M' : Matrix (Fin 2) (Fin 2) β | (M' 0 1 - M' 0 0 = M' 1 0 - M' 0 1) β§ (M' 0 1 - M' 0 0 = M' 1 1 - M' 1 0)})
(hMinS : MinS = (M β S β§ (β k > 1, M ^ k β S)))
: MinS β M β putnam_2015_b3_solution :=
sorry | Let $S$ be the set of all $2 \times 2$ real matrices $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ whose entries $a,b,c,d$ (in that order) form an arithmetic progression. Find all matrices $M$ in $S$ for which there is some integer $k>1$ such that $M^k$ is also in $S$. | Show that matrices of the form $\alpha A$ or $\beta B$, where $A=\left(\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix}\right)$, $B=\left(\begin{smallmatrix} -3 & -1 \\ 1 & 3 \end{smallmatrix}\right)$, and $\alpha,\beta \in \mathbb{R}$, are the only matrices in $S$ that satisfy the given condition. | ['linear_algebra'] | null | theory putnam_2015_b3 imports Complex_Main
"HOL-Analysis.Finite_Cartesian_Product"
begin
definition putnam_2015_b3_solution :: "(real^2^2) set" where "putnam_2015_b3_solution \<equiv> undefined"
(* {M::real^2^2. (\<exists>\<alpha> \<beta>::real. M$1$1 = \<alpha>*1 + \<beta>*-3 \<and> M$1$2 = \<alpha>*1 + \<beta>*-1 \<and> M$2$1 = \<alpha>*1 + \<beta>*1 \<and> M$2$2 = \<alpha>*1 + \<beta>*3)} *)
theorem putnam_2015_b3:
fixes S :: "(real^2^2) set"
and M :: "real^2^2"
and Mpow :: "real^2^2 \<Rightarrow> nat \<Rightarrow> real^2^2"
and MinS :: bool
assumes hS: "S \<equiv> {M'::real^2^2. (M'$1$2 - M'$1$1 = M'$2$1 - M'$1$2) \<and> (M'$1$2 - M'$1$1 = M'$2$2 - M'$2$1)}"
and hMpow: "\<forall>A::real^2^2. Mpow A 0 = mat 1 \<and> (\<forall>k::nat>0. Mpow A k = Mpow A (k-1) ** A)"
and hMinS: "MinS \<equiv> (M \<in> S \<and> (\<exists>k::nat>1. Mpow M k \<in> S))"
shows "MinS \<longleftrightarrow> M \<in> putnam_2015_b3_solution"
sorry
end
| null |
putnam_2015_b4 | abbrev putnam_2015_b4_solution : β€ Γ β := sorry
-- (17, 21)
theorem putnam_2015_b4
(quotientof : β β (β€ Γ β))
(hquotientof : β q : β, quotientof q = (q.num, q.den))
: quotientof (β' t : (Fin 3 β β€), if (β n : Fin 3, t n > 0) β§ t 0 < t 1 + t 2 β§ t 1 < t 2 + t 0 β§ t 2 < t 0 + t 1
then 2^(t 0)/(3^(t 1)*5^(t 2)) else 0) = putnam_2015_b4_solution :=
sorry | Let $T$ be the set of all triples $(a,b,c)$ of positive integers for which there exist triangles with side lengths $a,b,c$. Express
\[
\sum_{(a,b,c) \in T} \frac{2^a}{3^b 5^c}
\]
as a rational number in lowest terms. | The answer is $17/21$. | ['algebra'] | Section putnam_2015_b4.
Require Import Nat List Reals Coquelicot.Coquelicot. From mathcomp Require Import div.
Open Scope nat_scope.
Definition putnam_2015_b4_solution := (17, 21).
Theorem putnam_2015_b4:
let fix exprl2 (l : list nat) : R :=
match l with
| a :: b :: c :: _ => Rdiv (2 ^ a) (3 ^ b * 5 ^ c)
| _ => R0
end in
let fix exprl (l : list (list nat)) : list R :=
match l with
| nil => nil
| h :: t => exprl2 h :: exprl t
end in
forall (E: list (list nat)) (l: list nat), (In l E <-> (length l = 3 /\ let a := nth 0 l 0 in let b := nth 1 l 0 in let c := nth 2 l 0 in a > 0 /\ b > 0 /\ c > 0 /\ a < c + b /\ b < a + c /\ c < a + b)) ->
exists (p q: nat), coprime p q = true /\ fold_left Rplus (exprl E) R0 = Rdiv (INR p) (INR q) /\ (p, q) = putnam_2015_b4_solution.
Proof. Admitted.
End putnam_2015_b4. | theory putnam_2015_b4 imports Complex_Main
"HOL-Analysis.Infinite_Sum"
"HOL-Analysis.Finite_Cartesian_Product"
begin
definition putnam_2015_b4_solution :: "int \<times> int" where "putnam_2015_b4_solution \<equiv> undefined"
(* (17,21) *)
theorem putnam_2015_b4:
shows "\<exists>q::rat. (\<Sum>\<^sub>\<infinity>t::nat^3. if ((t$1 > 0 \<and> t$2 > 0 \<and> t$3 > 0) \<and> t$1 < t$2 + t$3 \<and> t$2 < t$3 + t$1 \<and> t$3 < t$1 + t$2)
then (2^(t$1) / (3^(t$2)*5^(t$3))) else 0) = q \<and> quotient_of q = putnam_2015_b4_solution"
sorry
end
| null |
putnam_2015_b5 | abbrev putnam_2015_b5_solution : β := sorry
-- 4
theorem putnam_2015_b5
(P : β β β := fun n β¦ {pi : Finset.Icc 1 n β Finset.Icc 1 n | Bijective pi β§ β i j : Finset.Icc 1 n, Nat.dist i j = 1 β Nat.dist (pi i) (pi j) β€ 2}.ncard)
: (β n : β, n β₯ 2 β (P (n + 5) : β€) - (P (n + 4) : β€) - (P (n + 3) : β€) + (P n : β€) = putnam_2015_b5_solution) :=
sorry | Let $P_n$ be the number of permutations $\pi$ of $\{1,2,\dots,n\}$ such that
\[
|i-j| = 1 \mbox{ implies } |\pi(i) -\pi(j)| \leq 2
\]
for all $i,j$ in $\{1,2,\dots,n\}$. Show that for $n \geq 2$, the quantity
\[
P_{n+5} - P_{n+4} - P_{n+3} + P_n
\]
does not depend on $n$, and find its value. | Prove that answer is $4$. | ['algebra'] | Section putnam_2015_b5.
Require Import Reals. From mathcomp Require Import fintype perm ssrbool.
Open Scope nat_scope.
Definition putnam_2015_b5_solution := 4.
Theorem putnam_2015_b5:
let cond (n: nat) (Ο: {perm 'I_n}) : bool :=
forallb (fun i =>
forallb (fun j =>
if Z.to_nat (Z.abs (Z.of_nat (nat_of_ord i) - Z.of_nat (nat_of_ord j))) =? 1 then
Z.to_nat (Z.abs (Z.of_nat (nat_of_ord (Ο i)) - Z.of_nat (nat_of_ord (Ο j)))) <=? 2
else true
) (ord_enum n)
) (ord_enum n) in
let P (n : nat) : nat :=
let perms := enum 'S_n in
let valid_perms := filter (fun Ο => cond n Ο) perms in
length valid_perms in
forall (n: nat), n >= 2 ->
P (n+5) - P (n+4) - P (n+3) + P n = putnam_2015_b5_solution.
Proof. Admitted.
End putnam_2015_b5. | theory putnam_2015_b5 imports Complex_Main
"HOL-Combinatorics.Permutations"
begin
definition putnam_2015_b5_solution::nat where "putnam_2015_b5_solution \<equiv> undefined"
(* 4 *)
theorem putnam_2015_b5:
fixes P::"nat\<Rightarrow>nat"
defines "P \<equiv> \<lambda>n. card ({pi::nat\<Rightarrow>nat. pi permutes {1..n} \<and> (\<forall>i\<in>{1..n}. \<forall>j\<in>{1..n}. abs(i - j) = 1 \<longrightarrow> abs(pi i - pi j) \<le> 2)})"
shows "\<forall>n::nat \<ge> 2. P (n+5) - P (n+4) - P(n+3) + P n = putnam_2015_b5_solution"
sorry
end
| null |
putnam_2015_b6 | abbrev putnam_2015_b6_solution : β := sorry
-- Real.pi ^ 2 / 16
theorem putnam_2015_b6
(A : β β β)
(hA : β k > 0, A k = {j : β | Odd j β§ j β£ k β§ j < Real.sqrt (2 * k)}.encard)
: β' k : Set.Ici 1, (-1 : β) ^ ((k : β) - 1) * (A k / (k : β)) = putnam_2015_b6_solution :=
sorry | For each positive integer $k$, let $A(k)$ be the number of odd divisors of $k$ in the interval $[1,\sqrt{2k})$. Evaluate $\sum_{k=1}^\infty (-1)^{k-1}\frac{A(k)}{k}$. | Show that the sum converges to $\pi^2/16$. | ['analysis', 'number_theory'] | null | theory putnam_2015_b6 imports Complex_Main
"HOL-Analysis.Infinite_Sum"
begin
definition putnam_2015_b6_solution :: real where "putnam_2015_b6_solution \<equiv> undefined"
(* pi^2 / 16 *)
theorem putnam_2015_b6:
fixes A :: "nat \<Rightarrow> nat"
assumes hA: "\<forall>k::nat>0. A k = card {j::nat. odd j \<and> j dvd k \<and> j < sqrt (2*k)}"
shows "(\<Sum>\<^sub>\<infinity>k::nat\<in>{1..}. (-1)^(k-1) * (A k / k)) = putnam_2015_b6_solution"
sorry
end
| null |
putnam_1996_a1 | null | null | null | [] | Section putnam_1996_a1.
Require Import Reals Coquelicot.Coquelicot.
Open Scope R.
Theorem putnam_1996_a1:
exists (minA: R), forall (A: R),
let packable (n1 n2 a1 a2: R) := (n1 + n2) <= Rmax a1 a2 /\ Rmax n1 n2 <= Rmin a1 a2 in
forall (n1 n2: R), pow n1 2 + pow n2 2 = 1 ->
exists (a1 a2: R), a1 * a2 = minA /\ packable n1 n2 a1 a2 /\
exists (a1 a2: R), a1 * a2 = A /\ packable n1 n2 a1 a2 ->
minA <= A.
Proof. Admitted.
End putnam_1996_a1. | null | null |
putnam_2009_a2 | null | null | null | [] | Section putnam_2009_a2.
Require Import Reals Coquelicot.Coquelicot.
Definition putnam_2009_a2_solution : (R -> R) := fun x => Rpower 2 (-1 / 12) * (sin (6 * x + PI / 4) / (cos (6 * x + PI / 4)) ^ 2) ^ (1 / 6).
Theorem putnam_2009_a2:
forall (f g h: R -> R),
exists (a b: R), a < b /\
forall (x: R), a < x < b ->
(ex_derive f x /\ ex_derive g x /\ ex_derive h x /\
Derive f x = 2 * f (f (g (h x))) + 1 / g (h x) /\ f 0 = 1 /\
Derive g x = 2 * f (g (g (h x))) + 4 / f (h x) /\ g 0 = 1 /\
Derive h x = 3 * f (g (h (h x))) + 1 / f (g x) /\ h 0 = 1) ->
f = putnam_2009_a2_solution.
Proof. Admitted.
End putnam_2009_a2. | null | null |
putnam_1975_a5 | null | null | null | [] | Section putnam_1975_a5.
Require Import Basics Factorial Reals Coquelicot.Series.
Open Scope R.
Theorem putnam_1975_a5:
let f0 (x: R) := Rpower (exp 1) x in
let fix compose_n {A: Type} (f : A -> A) (n : nat) :=
match n with
| O => fun x => x
| S n' => compose f (compose_n f n')
end in
Series (fun n => ((compose_n f0 n) 1)/(INR (fact n))) = Rpower (exp 1) (exp 1).
Proof. Admitted.
End putnam_1975_a5. | null | null |
putnam_1975_b6 | null | null | null | [] | Section putnam_1975_b6.
Require Import Reals Coquelicot.Coquelicot.
Open Scope R.
Theorem putnam_1975_b6
(h : nat -> R := fun n => sum_n (fun r => 1 / (INR r + 1)) n)
: forall (n: nat), gt n 2 -> INR n * INR (n + 1) ^ (1 / n) < h n < INR n - INR (n - 1) * Rpower (INR n) (-R1 / INR (n - 1)) .
Proof. Admitted.
End putnam_1975_b6. | null | null |
putnam_1997_a1 | null | null | null | [] | Section putnam_1997_a1.
Require Import Reals Rgeom ZArith
GeoCoq.Main.Tarski_dev.Ch16_coordinates_with_functions
GeoCoq.Main.Annexes.midpoint_theorems
GeoCoq.Main.Highschool.circumcenter.
Context `{T2D:Tarski_2D} `{TE:@Tarski_euclidean Tn TnEQD}.
Open Scope R.
Definition putnam_1997_a1_solution := 28.
Theorem putnam_1997_a1
(pt_to_R : Tpoint -> (R * R))
(dist : Tpoint -> Tpoint -> R := fun A B => let (a, b) := pt_to_R A in let (c, d) := pt_to_R B in dist_euc a b c d)
(A B C : Tpoint)
(Hp Op Mp Fp : Tpoint)
(l1 : dist Hp Op = 11)
(l2 : dist Op Mp = 5)
(s : Rectangle Hp Op Mp Fp)
(hHp : Bet A Fp Hp) (* H as the intersection of the altitudes *)
(hOp : is_circumcenter Op A B C) (* O the center of the circumscribed circle *)
(hMp : Midpoint B C Mp) (* M the midpoint of BC *)
(hFp : Perp A C B Fp /\ Col A C Fp) (* foot of the altitude *)
: dist B C = putnam_1997_a1_solution.
Proof. Admitted.
End putnam_1997_a1. | null | null |
putnam_2003_b5 | null | null | null | [] | Section putnam_2003_b5.
Require Import Reals
GeoCoq.Main.Tarski_dev.Ch16_coordinates_with_functions
GeoCoq.Axioms.Definitions
GeoCoq.Main.Highschool.triangles.
Context `{T2D:Tarski_2D} `{TE:@Tarski_euclidean Tn TnEQD}.
Open Scope R.
Definition putnam_2003_b5_solution (pt_to_R : Tpoint -> (R * R)) (dist : Tpoint -> Tpoint -> R) (P Op : Tpoint) := sqrt 3 * (1 - (dist P Op) ^ 2 - 1).
Theorem putnam_2003_b5
(pt_to_R : Tpoint -> (R * R))
(F_to_R : F -> R)
(dist : Tpoint -> Tpoint -> R := fun A B => let (a, b) := pt_to_R A in let (c, d) := pt_to_R B in dist_euc a b c d)
(Triangle : Tpoint -> Tpoint -> Tpoint -> Prop := fun x y z => ~ Col x y z) (* copied from GeoCoq.Axioms.euclidean_axioms *)
(A B C Op Op' P: Tpoint)
(fixpoint : dist Op Op' = R1)
(hABC : OnCircle A Op Op' /\ OnCircle B Op Op' /\ OnCircle C Op Op')
(hABC' : Main.Highschool.triangles.equilateral A B C)
(hp : InCircle P Op Op')
(a : R := dist P A)
(b : R := dist P B)
(c : R := dist P C)
: exists (A' B' C' : Tpoint) (D: Cs O E A' B' C'),
Triangle A' B' C' /\ dist A' B' = a /\ dist B' C' = b /\ dist C' A' = c /\
F_to_R (signed_area A' B' C' D A' B' C') = (putnam_2003_b5_solution pt_to_R dist P Op).
Proof. Admitted.
End putnam_2003_b5. | null | null |
putnam_2014_a4 | null | null | null | [] | Section putnam_2014_a4.
From mathcomp.analysis Require Import probability.
From mathcomp Require Import all_ssreflect.
From mathcomp Require Import ssralg poly ssrnum ssrint interval finmap.
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality fsbigop.
From HB Require Import structures.
From mathcomp.analysis Require Import exp numfun lebesgue_measure lebesgue_integral.
From mathcomp.analysis Require Import reals ereal signed topology normedtype sequences esum measure.
From mathcomp.analysis Require Import exp numfun lebesgue_measure lebesgue_integral kernel.
Context d (T : measurableType d) (R : realType) (P : probability T R).
Definition putnam_2014_a4_solution : R := 1 / 3.
Local Open Scope ring_scope.
Theorem putnam_2014_a4
(X : {RV P >-> R})
(ed := @expectation _ _ _ P X = 1%:E)
(ed2 := @expectation _ _ _ P (X * X) = 2%:E)
(ed3 := @expectation _ _ _ P (X * X * X) = 5%:E)
(minval : R)
(de := distribution P X)
: forall (P : probability T R), (minval <= (pmf X 0) /\ exists (P : probability T R), minval = (pmf X 0)) <-> minval = putnam_2014_a4_solution.
Proof. Admitted.
End putnam_2014_a4. | null | null |
putnam_1987_a3 | null | null | null | [] | Section putnam_1987_a3.
Require Import Reals Coquelicot.Coquelicot.
Open Scope R.
Definition putnam_1987_a3_solution1 := False.
Definition putnam_1987_a3_solution2 := True.
Theorem putnam_1987_a3:
exists (f g: R -> R) (x: R),
((Derive_n f 2) x - 2 * (Derive_n f 1) x + f x = 2 * exp x /\ forall (x: R), f x > 0) ->
forall (x: R), Derive_n f 1 x > 0 <-> putnam_1987_a3_solution1 /\
((Derive_n g 2) x - 2 * (Derive_n g 1) x + g x = 2 * exp x /\ forall (x: R), Derive_n g 1 x > 0) ->
forall (x: R), g x > 0 <-> putnam_1987_a3_solution2.
Proof. Admitted.
End putnam_1987_a3. | null | null |