publicationDate
stringlengths
1
2.79k
title
stringlengths
1
36.5k
abstract
stringlengths
1
37.3k
id
stringlengths
9
47
2021-03-31
Spin charge conversion in Rashba split ferromagnetic interfaces
We show here theoretically and experimentally that a Rashba-split electron state inside a ferromagnet can efficiently convert a dynamical spin accumulation into an electrical voltage. The effect is understood to stem from the Rashba splitting but with a symmetry linked to the magnetization direction. It is experimentally measured by spin pumping in a CoFeB/MgO structure where it is found to be as efficient as the inverse spin Hall effect at play when Pt replaces MgO, with the extra advantage of not affecting the damping in the ferromagnet.
2103.16867v1
2019-12-24
Large spin Hall angle and spin mixing conductance in highly resistive antiferromagnetic Mn2Au
Antiferromagnetic (AFM) materials recently have shown interest in the research in spintronics due to its zero stray magnetic field, high anisotropy, and spin orbit coupling. In this context, the bi-metallic AFM Mn2Au has drawn attention because it exhibits unique properties and its Neel temperature is very high. Here, we report spin pumping and inverse spin Hall effect investigations in Mn2Au and CoFeB bilayer system using ferromagnetic resonance. We found large spin Hall angle {\theta}_SH = 0.22
1912.11522v2
2008-09-20
Anomalous low-temperature magnetoelastic properties of nanogranular (CoFeB)$_{x}$-(SiO$_{2}$)$_{1-x}$
We report magnetostatic measurements for granulated films (CoFeB)$_{x}$-(SiO$_{2}$)$_{1-x}$ with fabrication induced intraplanar anisotropy. The measurements have been performed in the film plane in the wide temperature interval 4.5$\div$300 K. They demonstrate that above films have low-temperature anomaly below the percolation threshold for conductivity. The essence of the above peculiarity is that below 100 K the temperature dependence of coercive field for magnetization along easy direction deviates strongly from Neel-Brown law. At temperature lowering, the sharp increase of coercivity is observed, accompanied by the appearance of coercive field for magnetization along hard direction in the film plane. We establish that observed effect is related to the properties of individual ferromagnetic granules. The effect weakens as granules merge into conglomerates at $x$ higher then percolation threshold and disappears completely at $x>1$. We explain the above effect as a consequence of the difference in thermal expansion coefficients of granule and cover material. At temperature lowering this difference weakens the envelopment of an individual granule by the cover matrix material, thus permitting to realize the spontaneous magnetostriction of a granule. The latter induces an additional anisotropy with new easy axis of a granule magnetization along the external magnetic field direction. Our explanation is tested and corroborated by the ferromagnetic resonance measurements in the films at $T$ = 300 K and $T$ = 77 K.
0809.3499v1
2013-09-27
Structural and magnetic properties of Cr-diluted CoFeB
The crystallization process and the magnetization of Cr diluted CoFeB was investigated in both ribbon samples and thin film samples with Cr content up to 30 at. %. A primary crystallization of bcc phase from an amorphous precursor in ribbon samples was observed when the annealing temperature rose to between 421 oC and 456 oC, followed by boron segregation at temperatures between 518 oC and 573 oC. The two onset crystallization temperatures showed strong dependences on both Cr and B concentrations. The impact of Cr concentration on the magnetic properties including a reduced saturation magnetization and an enhanced coercive field was also observed. The magnetizations of both ribbon samples and thin film samples were well fitted using the generalized Slater-Pauling curve with modified moments for B (-0.94 {\mu}B) and Cr (-3.6 {\mu}B). Possible origins of the enhanced coercive field were also discussed. We also achieved a damping parameter in CoFeCrB thin films at the same level as Co40Fe40B20, much lower than the value reported for CoFeCrB films previously. The results suggest a possible advantage of CoFeCrB in reducing the critical switching current density in Spin Transfer Torque Random Access Memory (STT-RAM).
1309.7331v1
2014-01-15
Interface control of the magnetic chirality in CoFeB|MgO heterosctructures with heavy metal underlayers
Recent advances in the understanding of spin orbital effects in ultrathin magnetic heterostructures have opened new paradigms to control magnetic moments electrically. The Dzyaloshinskii-Moriya interaction (DMI) is said to play a key role in forming a Neel-type domain wall that can be driven by the spin Hall torque, a torque resulting from the spin current generated in a neighboring non-magnetic layer via the spin Hall effect. Here we show that the strength and sign of the DMI can be changed by modifying the adjacent heavy metal underlayer (X) in perpendicularly magnetized X|CoFeB|MgO heterstructures. Albeit the same spin Hall angle, a domain wall moves along or against the electron flow depending on the underlayer. We find that the sense of rotation of a domain wall spiral11 is reversed when the underlayer is changed from Hf to W and the strength of DMI varies as the number of 5d electrons of the heavy metal layer changes. The DMI can even be tuned by adding nitrogen to the underlayer, thus allowing interface engineering of the magnetic texture in ultrathin magnetic heterostructures.
1401.3568v1
2014-02-05
Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers
We present a comprehensive study of the current-induced spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO layers. The samples were annealed in steps up to 300 degrees C and characterized using x-ray absorption spectroscopy, transmission electron microscopy, resistivity, and Hall effect measurements. By performing adiabatic harmonic Hall voltage measurements, we show that the transverse (field-like) and longitudinal (antidamping-like) spin-orbit torques are composed of constant and magnetization-dependent contributions, both of which vary strongly with annealing. Such variations correlate with changes of the saturation magnetization and magnetic anisotropy and are assigned to chemical and structural modifications of the layers. The relative variation of the constant and anisotropic torque terms as a function of annealing temperature is opposite for the field-like and antidamping torques. Measurements of the switching probability using sub-{\mu}s current pulses show that the critical current increases with the magnetic anisotropy of the layers, whereas the switching efficiency, measured as the ratio of magnetic anisotropy energy and pulse energy, decreases. The optimal annealing temperature to achieve maximum magnetic anisotropy, saturation magnetization, and switching efficiency is determined to be between 240 degrees and 270 degrees C.
1402.0986v2
2014-02-26
Anomalous temperature dependence of current induced torques in CoFeB|MgO heterostructures with Ta based underlayers
We have studied the underlayer thickness and temperature dependences of the current induced effective field in CoFeB|MgO heterostructures with Ta based underlayers. The underlayer thickness at which the effective field saturates is found to be different between the two orthogonal components of the effective field, i.e. the damping-like term tends to saturate at smaller underlayer thickness than the field-like term. For large underlayer thickness films in which the effective field saturates, we find that the temperature significantly influences the size of the effective field. A striking difference is found in the temperature dependence of the two components: the damping-like term decreases whereas the field-like term increases with increasing temperature. Using a simple spin diffusion-spin transfer model, we find that all of these results can be accounted for provided the real and imaginary parts of an effective spin mixing conductance are negative. These results imply that either spin transport in this system is different from conventional metallic interfaces or effects other spin diffusion into the magnetic layer need to be taken account in order to model the system accurately.
1402.6388v1
2014-10-28
Current driven asymmetric magnetization switching in perpendicularly magnetized CoFeB/MgO heterostructures
The flow of in-plane current through ultrathin magnetic heterostructures can cause magnetization switching or domain wall nucleation owing to bulk and interfacial effects. Within the magnetic layer, the current can create magnetic instabilities via spin transfer torques (STT). At interface(s), spin current generated from the spin Hall effect in a neighboring layer can exert torques, referred to as the spin Hall torques, on the magnetic moments. Here, we study current induced magnetization switching in perpendicularly magnetized CoFeB/MgO heterostructures with a heavy metal (HM) underlayer. Depending on the thickness of the HM underlayer, we find distinct differences in the inplane field dependence of the threshold switching current. The STT is likely responsible for the magnetization reversal for the thinner underlayer films whereas the spin Hall torques cause the switching for thicker underlayer films. For the latter, we find differences in the switching current for positive and negative currents and initial magnetization directions. We find that the growth process during the film deposition introduces an anisotropy that breaks the symmetry of the system and causes the asymmetric switching. The presence of such symmetry breaking anisotropy enables deterministic magnetization switching at zero external fields.
1410.7473v2
2015-06-12
Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures
Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbital coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.
1506.04078v4
2016-05-07
Giant interfacial perpendicular magnetic anisotropy in MgO/CoFe/capping layer structures
Magnetic tunnel junction (MTJ) based on CoFeB/MgO/CoFeB structures is of great interest due to its application in the spin-transfer-torque magnetic random access memory (STT-MRAM). Large interfacial perpendicular magnetic anisotropy (PMA) is required to achieve high thermal stability. Here we use first-principles calculations to investigate the magnetic anisotropy energy (MAE) of MgO/CoFe/capping layer structures, where the capping materials include 5d metals Hf, Ta, Re, Os, Ir, Pt, Au and 6p metals Tl, Pb, Bi. We demonstrate that it is feasible to enhance PMA by using proper capping materials. Relatively large PMA is found in the structures with capping materials of Hf, Ta, Os, Ir and Pb. More importantly, the MgO/CoFe/Bi structure gives rise to giant PMA (6.09 mJ/m2), which is about three times larger than that of the MgO/CoFe/Ta structure. The origin of the MAE is elucidated by examining the contributions to MAE from each atomic layer and orbital. These findings provide a comprehensive understanding of the PMA and point towards the possibility to achieve advanced-node STT-MRAM with high thermal stability.
1605.02247v5
2017-08-14
Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance
Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 {\Omega}.{\mu}m2, which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high temperature diffusion during annealing. The switching critical current density could be lower than 3.0 MA.cm-2 for devices with a 45 nm radius.
1708.04111v3
2018-01-11
Efficient Charge-Spin Conversion and Magnetization Switching though Rashba Effect at Topological Insulator/Ag Interface
We report the observation of efficient charge-to-spin conversion in the three-dimensional topological insulator (TI) Bi2Se3 and Ag bilayer by the spin-torque ferromagnetic resonance technique. The spin orbit torque ratio in the Bi2Se3/Ag/CoFeB heterostructure shows a significant enhancement as the Ag thickness increases to ~2 nm and reaches a value of 0.5 for 5 nm Ag, which is ~3 times higher than that of Bi2Se3/CoFeB at room temperature. The observation reveals the interfacial effect of Bi2Se3/Ag exceeds that of the topological surface states (TSS) in the Bi2Se3 layer and plays a dominant role in the charge-to-spin conversion in the Bi2Se3/Ag/CoFeB system. Based on the first-principles calculations, we attribute our observation to the large Rashba-splitting bands which wrap the TSS band and has the same net spin polarization direction as TSS of Bi2Se3. Subsequently, we demonstrate for the first time the Rashba induced magnetization switching in Bi2Se3/Ag/Py with a low current density of 5.8 X 10^5 A/cm2.
1801.03689v1
2020-01-13
Large and Robust Charge-to-Spin Conversion in Sputtered Conductive WTex with Disorder
Topological materials with large spin-orbit coupling and immunity to disorder-induced symmetry breaking show great promise for efficiently converting charge to spin. Here, we report that long-range disordered sputtered WTex thin films exhibit local chemical and structural order as those of Weyl semimetal WTe2 and conduction behavior that is consistent with semi-metallic Weyl fermion. We find large charge-to-spin conversion properties and electrical conductivity in thermally annealed sputtered WTex films that are comparable with those in crystalline WTe2 flakes. Besides, the strength of unidirectional spin Hall magnetoresistance in annealed WTex/Mo/CoFeB heterostructure is 5 to 20 times larger than typical SOT layer/ferromagnet heterostructures reported at room temperature. We further demonstrate room temperature damping-like SOT-driven magnetization switching of in-plane magnetized CoFeB. These large charge-to-spin conversion properties that are robust in the presence of long-range disorder and thermal annealing pave the way for industrial application of a new class of sputtered semimetals.
2001.04054v2
2021-07-16
Large Unidirectional Magnetoresistance in Metallic Heterostructures in the Spin Transfer Torque Regime
A large unidirectional magnetoresistance (UMR) ratio of UMR/$R_{xx}\sim$ $0.36\%$ is found in W/CoFeB metallic bilayer heterostructures at room temperature. Three different regimes in terms of the current dependence of UMR ratio are identified: A spin-dependent-scattering mechanism regime at small current densities $J \sim$ $10$$^{9}$A/m$^{2}$ (UMR ratio $\propto$ $J$), a spin-magnon-interaction mechanism regime at intermediate $J \sim$ $10$$^{10}$A/m$^{2}$ (UMR ratio $\propto$ $J$$^{3}$), and a spin-transfer torque (STT) regime at $J \sim$ $10$$^{11}$A/m$^{2}$ (UMR ratio independent of $J$). We verify the direct correlation between this large UMR and the transfer of spin angular momentum from the W layer to the CoFeB layer by both field-dependent and current-dependent UMR characterizations. Numerical simulations further confirm that the large STT-UMR stems from the tilting of the magnetization affected by the spin Hall effect-induced spin-transfer torques. An alternative approach to estimate damping-like spin-torque efficiencies from magnetic heterostructures is also proposed.
2107.07780v1
2017-05-18
Magnetization dynamics and its scattering mechanism in thin CoFeB films with interfacial anisotropy
Studies of magnetization dynamics have incessantly facilitated the discovery of fundamentally novel physical phenomena, making steady headway in the development of magnetic and spintronics devices. The dynamics can be induced and detected electrically, offering new functionalities in advanced electronics at the nanoscale. However, its scattering mechanism is still disputed. Understanding the mechanism in thin films is especially important, because most spintronics devices are made from stacks of multilayers with nanometer thickness. The stacks are known to possess interfacial magnetic anisotropy, a central property for applications, whose influence on the dynamics remains unknown. Here, we investigate the impact of interfacial anisotropy by adopting CoFeB/MgO as a model system. Through systematic and complementary measurements of ferromagnetic resonance (FMR), on a series of thin films, we identify narrower FMR linewidths at higher temperatures. We explicitly rule out the temperature dependence of intrinsic damping as a possible cause, and it is also not expected from existing extrinsic scattering mechanisms for ferromagnets. We ascribe this observation to motional narrowing, an old concept so far neglected in the analyses of FMR spectra. The effect is confirmed to originate from interfacial anisotropy, impacting the practical technology of spin-based nanodevices up to room temperature.
1705.06624v1
2019-01-26
Low spin-polarization in the heavy metal\ferromagnet structures detected through the domain wall motion by synchronized magnetic field and current
CoFeB is a very soft material, in which Domain Wall (DW) can be moved easily under a weak magnetic field. However, it is very difficult to move DWs in Ta\CoFeB\MgO nanowires with interfacial perpendicular magnetic anisotropy through a spin-polarized current, and this limits the perspectives of racetrack memory driven by the current-in-plane mechanism. To investigate this phenomenon, we performed experiments of DW velocity measurement by applying a magnetic field and a current simultaneously. Working in the precessional regime, we have been able to see a very important effect of the spin-polarized current, which allows evaluating the polarization rate of the charge carriers. An unexpected quite low spin polarization rate down to 0.26 have been obtained, which can explain the low efficiency of DW motion induced by the spin-polarized current. Possible reasons for this low rate are analyzed, such as the spin relaxation in the Ta layer.
1901.09256v1
2018-12-06
Optimization of high performance spintronic terahertz sources
To achieve high efficiency and good performance of spintronic terahertz sources, we propose and corroborate a remnant magnetization method to radiate continuously and stably terahertz pulses from W/CoFeB/Pt magnetic nanofilms without carrying magnets on the transmitters driven by femtosecond laser pulses. We systematically investigate the influences of the pumping central wavelength and find out the optimal wavelength for a fixed sample thickness. We also optimize the incidence angle of the pumping laser and find the emission efficiency is enhanced under oblique incidence. Combing the aforementioned optimizations, we finally obtain comparable radiation efficiency and broadband spectra in W/CoFeB/Pt heterostructures compared with that from 1 mm thick ZnTe nonlinear crystals via optical rectification under the same pumping conditions of 100 fs pulse duration from a Ti:sapphire laser oscillator, which was not previously demonstrated under such pulse duration. We believe our observations not only benefit for a deep insight into the physics of femtosecond spin dynamics, but also help develop novel and cost-effective ultrabroadband spintronic terahertz emitters.
1812.02286v2
2020-08-04
Ultrathin perpendicular free layers for lowering the switching current in STT-MRAM
The critical current density $J_{c0}$ required for switching the magnetization of the free layer (FL) in a spin-transfer torque magnetic random access memory (STT-MRAM) cell is proportional to the product of the damping parameter, saturation magnetization and thickness of the free layer, $\alpha M_S t_F$. Conventional FLs have the structure CoFeB/nonmagnetic spacer/CoFeB. By reducing the spacer thickness, W in our case, and also splitting the single W layer into two layers of sub-monolayer thickness, we have reduced $t_F$ while minimizing $\alpha$ and maximizing $M_S$, ultimately leading to lower $J_{c0}$ while maintaining high thermal stability. Bottom-pinned MRAM cells with device diameter in the range of 55-130 nm were fabricated, and $J_{c0}$ is lowest for the thinnest (1.2 nm) FLs, down to 4 MA/cm$^2$ for 65 nm devices, $\sim$30% lower than 1.7 nm FLs. The thermal stability factor $\Delta_{\mathrm{dw}}$, as high as 150 for the smallest device size, was determined using a domain wall reversal model from field switching probability measurements. With high $\Delta_{\mathrm{dw}}$ and lowest $J_{c0}$, the thinnest FLs have the highest spin-transfer torque efficiency.
2008.01343v1
2021-03-08
Anisotropic magnon-magnon coupling in synthetic antiferromagnets
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. Here we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric thickness of two magnetic layers and thus introduce a magnon-magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir(tIr=0.6 nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field (~ 20 Oe) makes the magnon-magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for tIr =0.6 nm, and between nearly zero to 1.4 GHz for tIr = 1.2 nm, respectively. Our results demonstrate a feasible way to induce the magnon-magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon-magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena.
2103.04512v2
2017-02-01
Continuous Tuning the Magnitude and Direction of Spin-Orbit Torque Using Bilayer Heavy Metals
Spin-orbit torques (SOTs) have opened a new path to switch the magnetization in perpendicularly magnetized films and are of great interest due to their potential applications in novel data storage technology, such as the magnetic random access memory (MRAM). The effective manipulation of SOT has thus become an important step towards these applications. Here, current induced spin-orbit effective fields and magnetization switching are investigated in Pt/Ta/CoFeB/MgO structures with bilayer heavy metals. With a fixed thickness (1 nm) of the Ta layer, the magnitude and sign of current induced spin-orbit effective fields can be continuously tuned by changing the Pt layer thickness, consistent with the current induced magnetization switching data. The ratio of longitudinal to transverse spin-orbit effective fields is found to be determined by the Ta/CoFeB interface and can be continuously tuned by changing the Pt layer thickness. The Dzyaloshinskii-Moriya interaction (DMI) is found to be weak and shows an insignificant variation with the Pt thickness. The results demonstrate an effective method to tune SOTs utilizing bilayer heavy metals without affecting the DMI, a desirable feature which will be useful for the design of SOT-based devices.
1702.00147v1
2017-06-19
Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires
Recent studies have shown that material structures, which lack structural inversion symmetry and have high spin-orbit coupling can exhibit chiral magnetic textures and skyrmions which could be a key component for next generation storage devices. The Dzyaloshinskii-Moriya Interaction (DMI) that stabilizes skyrmions is an anti-symmetric exchange interaction favoring non-collinear orientation of neighboring spins. It has been shown that material systems with high DMI can lead to very efficient domain wall and skyrmion motion by spin-orbit torques. To engineer such devices, it is important to quantify the DMI for a given material system. Here we extract the DMI at the Heavy Metal (HM) /Ferromagnet (FM) interface using two complementary measurement schemes namely asymmetric domain wall motion and the magnetic stripe annihilation. By using the two different measurement schemes, we find for W(5 nm)/Co20Fe60B20(0.6 nm)/MgO(2 nm) the DMI to be 0.68 +/- 0.05 mJ/m2 and 0.73 +/- 0.5 mJ/m2, respectively. Furthermore, we show that this DMI stabilizes skyrmions at room temperature and that there is a strong dependence of the DMI on the relative composition of the CoFeB alloy. Finally we optimize the layers and the interfaces using different growth conditions and demonstrate that a higher deposition rate leads to a more uniform film with reduced pinning and skyrmions that can be manipulated by Spin-Orbit Torques.
1706.05987v1
2018-04-30
Field-Free Switching of Perpendicular Magnetic Tunnel Junction via Voltage-Gated Spin Hall Effect for Low-Power Spintronic Memory
Spin Hall effect (SHE) and voltage-controlled magnetic anisotropy (VCMA) are two promising methods for low-power electrical manipulation of magnetization. Recently, magnetic field-free switching of perpendicular magnetization through SHE has been reported with the aid of an exchange bias from an antiferromagnetic IrMn layer. In this letter, we experimentally demonstrate that the IrMn/CoFeB/MgO structure exhibits a VCMA effect of 39 fJ/Vm, which is comparable to that of the Ta/CoFeB/MgO structure. Magnetization dynamics under a combination of the SHE and VCMA are modeled and simulated. It is found that, by applying a voltage of 1.5 V, the critical SHE switching current can be decreased by 10 times owing to the VCMA effect, leading to low-power operations. Furthermore, a high-density spintronic memory structure can be built with multiple magnetic tunnel junctions (MTJs) located on a single IrMn strip. Through hybrid CMOS/MTJ simulations, we demonstrate that fast-speed write operations can be achieved with power consumption of only 8.5 fJ/bit. These findings reveal the possibility to realize high-density and low-power spintronic memory manipulated by voltage-gated SHE.
1804.11025v1
2020-06-04
Defect-Correlated Skyrmions and Controllable Generation in Perpendicularly Magnetized CoFeB Ultrathin Films
Skyrmions have attracted significant interest due to their topological spin structures and fascinating physical features. The skyrmion phase arises in materials with Dzyaloshinskii-Moriya (DM) interaction at interfaces or in volume of non-centrosymmetric materials. However, although skyrmions were generated experimentally, one critical intrinsic relationship between fabrication, microstructures, magnetization and the existence of skyrmions remains to be established. Here, two series of CoFeB ultrathin films with controlled atomic scale structures are employed to reveal this relationship. By inverting the growth order, the amount of defects can be artificially tuned, and skyrmions are shown to be preferentially formed at defect sites. The stable region and the density of the skyrmions can be efficiently controlled in the return magnetization loops by utilizing first-order reversal curves to reach various metastable states. These findings establish the general and intrinsic relationship from sample preparation to skyrmion generation, offering an universal method to control skyrmion density.
2006.02864v1
2020-07-27
Magnonic band structure in vertical meander-shaped CoFeB thin films
The dispersion of spin waves in vertical meander-shaped CoFeB thin films consisting of segments located at 90{\deg} angles with respect to each other is investigated by Brillouin light scattering spectroscopy. We reveal the periodic character of several dispersive branches as well as alternating frequency ranges where spin waves are allowed or forbidden to propagate. Noteworthy is the presence of the frequency band gaps between each couple of successive modes only for wave numbers k=n$\pi$/a, where n is an even integer number and a is the size of the meander unit cell, whereas the spectra show propagating modes in the orthogonal film segments for the other wavenumbers. The micromagnetic simulations and analytical calculations allow us to understand and explain the results in terms of the mode spatial localization and symmetry. The obtained results demonstrate the wave propagation in three dimensions opening the path for multi-level magnonic architectures for signal processing.
2007.13707v2
2020-09-14
Memristive control of mutual SHNO synchronization for neuromorphic computing
Synchronization of large spin Hall nano-oscillators (SHNO) arrays is an appealing approach toward ultra-fast non-conventional computing based on nanoscale coupled oscillator networks. However, for large arrays, interfacing to the network, tuning its individual oscillators, their coupling, and providing built-in memory units for training purposes, remain substantial challenges. Here, we address all these challenges using memristive gating of W/CoFeB/MgO/AlOx based SHNOs. In its high resistance state (HRS), the memristor modulates the perpendicular magnetic anisotropy (PMA) at the CoFeB/MgO interface purely by the applied electric field. In its low resistance state (LRS), and depending on the voltage polarity, the memristor adds/subtracts current to/from the SHNO drive. The operation in both the HRS and LRS affects the SHNO auto-oscillation mode and frequency, which can be tuned up to 28 MHz/V. This tuning allows us to reversibly turn on/off mutual synchronization in chains of four SHNOs. We also demonstrate two individually controlled memristors to tailor both the coupling strength and the frequency of the synchronized state. Memristor gating is therefore an efficient approach to input, tune, and store the state of the SHNO array for any non-conventional computing paradigm, all in one platform.
2009.06594v1
2021-02-15
Controlling Domain-Wall Nucleation in Ta/CoFeB/MgO Nanomagnets via Local Ga+ Ion Irradiation
Comprehensive control of the domain wall nucleation process is crucial for spin-based emerging technologies ranging from random-access and storage-class memories over domain-wall logic concepts to nanomagnetic logic. In this work, focused Ga+ ion-irradiation is investigated as an effective means to control domain-wall nucleation in Ta/CoFeB/MgO nanostructures. We show that analogously to He+ irradiation, it is not only possible to reduce the perpendicular magnetic anisotropy but also to increase it significantly, enabling new, bidirectional manipulation schemes. First, the irradiation effects are assessed on film level, sketching an overview of the dose-dependent changes in the magnetic energy landscape. Subsequent time-domain nucleation characteristics of irradiated nanostructures reveal substantial increases in the anisotropy fields but surprisingly small effects on the measured energy barriers, indicating shrinking nucleation volumes. Spatial control of the domain wall nucleation point is achieved by employing focused irradiation of pre-irradiated magnets, with the diameter of the introduced circular defect controlling the coercivity. Special attention is given to the nucleation mechanisms, changing from a Stoner-Wohlfarth particle's coherent rotation to depinning from an anisotropy gradient. Dynamic micromagnetic simulations and related measurements are used in addition to model and analyze this depinning-dominated magnetization reversal.
2102.07540v1
2021-06-12
Spin pumping and inverse spin Hall effect in CoFeB/C$_{60}$ bilayers
Pure spin current based research is mostly focused on ferromagnet (FM)/heavy metal (HM) system. Because of the high spin orbit coupling (SOC) these HMs exhibit short spin diffusion length and therefore possess challenges for device application. Low SOC (elements of light weight) and large spin diffusion length make the organic semiconductors (OSCs) suitable for future spintronic applications. From theoretical model it is explained that, due to $\pi$ - $\sigma$ hybridization the curvature of the C$_{60}$ molecules may increase the SOC strength. Here, we have investigated spin pumping and inverse spin hall effect (ISHE) in CoFeB/C$_{60}$ bilayer system using coplanar wave guide based ferromagnetic resonance (CPW-FMR) set-up. We have performed angle dependent ISHE measurement to disentangle the spin rectification effects for example anisotropic magnetoresistance, anomalous Hall effect etc. Further, effective spin mixing conductance (g$_{eff}^{\uparrow\downarrow}$) and spin Hall angle ($\theta_{SH}$) for C$_{60}$ have been reported here. The evaluated value for $\theta_{SH}$ is 0.055.
2106.06829v2
2022-06-29
Tailoring the switching efficiency of magnetic tunnel junctions by the fieldlike spin-orbit torque
Current-induced spin-orbit torques provide a versatile tool for switching magnetic devices. In perpendicular magnets, the dampinglike component of the torque is the main driver of magnetization reversal. The degree to which the fieldlike torque assists the switching is a matter of debate. Here we study the switching of magnetic tunnel junctions with a CoFeB free layer and either W or Ta underlayers, which have a ratio of fieldlike to dampinglike torque of 0.3 and 1, respectively. We show that the fieldlike torque can either assist or hinder the switching of CoFeB when the static in-plane magnetic field required to define the polarity of spin-orbit torque switching has a component transverse to the current. In particular, the non-collinear alignment of the field and current can be exploited to increase the switching efficiency and reliability compared to the standard collinear alignment. By probing individual switching events in real-time, we also show that the combination of transverse magnetic field and fieldlike torque can accelerate or decelerate the reversal onset. We validate our observations using micromagnetic simulations and extrapolate the results to materials with different torque ratios. Finally, we propose device geometries that leverage the fieldlike torque for density increase in memory applications and synaptic weight generation.
2206.14587v2
2022-08-17
Magnetic domain scanning imaging using phase-sensitive THz-pulse detection
In our study, we determine the alignment of magnetic domains in a CoFeB layer using THz radiation. We generate THz-pulses by fs-laser-pulses in magnetized CoFeB/Pt heterostructures, based on spin currents. An LT-GaAs Auston switch detects the radiation phase-sensitively and allows to determine the magnetization alignment. Our scanning technique with motorized stages with step sizes in the sub-micrometer range, allows to image two dimensional magnetic structures. Theoretically the resolution is restricted to half of the wavelength if focusing optics in the far-field limit are used. By applying near-field imaging, the spatial resolution is enhanced to the single digit micrometer range. For this purpose, spintronic emitters in diverse geometric shapes, e.g. circles, triangles, squares, and sizes are prepared to observe the formation of magnetization patterns. The alignment of the emitted THz radiation can be influenced by applying unidirectional external magnetic fields. We demonstrate how magnetic domains with opposite alignment and different shapes divided by domain walls are created by demagnetizing the patterns using minor loops and imaged using phase sensitive THz radiation detection. For analysis, the data is compared to Kerr microscope images. The possibility to combine this method with THz range spectroscopic information of magnetic texture or antiferromagnets in direct vicinity to the spintronic emitter, makes this detection method interesting for much wider applications probing THz excitation in spin systems with high resolution beyond the Abbe diffraction limit, limited solely by the laser excitation area.
2208.08219v1
2022-08-19
Revealing nanoscale disorder in W/CoFeB/MgO ultra-thin films using domain wall motion
Disorder in ultra-thin magnetic films can significantly hinder domain wall motion. One of the main issues on the path towards efficient domain wall based devices remains the characterization of the pinning landscape at the nanoscale. In this paper, we study domain wall motion in W/CoFeB/MgO thin films with perpendicular magnetic anisotropy crystallized by annealing at 400$^{\circ}$C and a process based on He$^{+}$ irradiation combined with elevated temperatures. Magnetic properties are similar for the whole series of samples, while the magnetic domain wall mobility is critically improved in the irradiated samples. By using an analytical model to extract nanoscale pinning parameters, we reveal important variations in the disorder of the crystallized samples. This work offers a unique opportunity to selectively analyze the effects of disorder on the domain wall dynamics, without the contribution of changes in the magnetic properties. Our results highlight the importance of evaluating the nanoscale pinning parameters of the material when designing devices based on domain wall motion, which in return can be a powerful tool to probe the disorder in ultra-thin magnetic films.
2208.09280v1
2022-09-05
Nonlocal detection of interlayer three-magnon coupling
A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency ones with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially separated magnetic systems, viz. a CoFeB nanowire and an yttrium iron garnet (YIG) thin film. Above a certain threshold power of an applied microwave field, a CoFeB Kittel magnon splits into a pair of counter-propagating YIG magnons that induce voltage signals in Pt electrodes on each side, in excellent agreement with model calculations based on the interlayer dipolar interaction. The excited YIG magnon pairs reside mainly in the first excited (n=1) perpdendicular standing spin-wave mode. With increasing power, the n=1 magnons successively scatter into nodeless (n=0) magnons through a four-magnon process. Our results help to assess non-local scattering processes in magnonic circuits that may enable quantum entanglement between distant magnons for quantum information applications.
2209.01875v1
2022-10-04
Strain Coupled Domains in BaTiO3(111)-CoFeB Heterostructures
Domain pattern transfer from ferroelectric to ferromagnetic materials is a critical step for the electric field control of magnetism and has the potential to provide new schemes for low-power data storage and computing devices. Here we investigate domain coupling in BaTiO$_3$(111)/CoFeB heterostructures by direct imaging in a wide-field Kerr microscope. The magnetic easy axis is found to locally change direction as a result of the underlying ferroelectric domains and their polarisation. By plotting the remanent magnetisation as a function of angle in the plane of the CoFeB layer, we find that the magnetic easy axes in adjacent domains are angled at 60$^\circ$ or 120$^\circ$, corresponding to the angle of rotation of the polarisation from one ferroelectric domain to the next, and that the magnetic domain walls may be charged or uncharged depending on the magnetic field history. Micromagnetic simulations show that the properties of the domain walls vary depending on the magnetoelastic easy axis configuration and the charged or uncharged nature of the wall. The configuration where the easy axis alternates by 60$^\circ$ and a charged wall is initialised exhibits the largest change in domain wall width from 192 nm to 119 nm as a function of in-plane magnetic field. Domain wall width tuning provides an additional degree of freedom for devices that seek to manipulate magnetic domain walls using strain coupling to ferroelectrics.
2210.01511v1
2023-03-10
Field-driven collapsing dynamics of skyrmions in magnetic multilayers
Magnetic skyrmions are fascinating topological particle-like textures promoted by a trade-off among interfacial properties (perpendicular anisotropy and Dzyaloshinskii-Moriya interaction (DMI)) and dipolar interactions. Depending on the dominant interaction, complex spin textures, including pure N\'eel and hybrid skyrmions have been observed in multilayer heterostructures. A quantification of these different spin textures typically requires a depth-reoslved magnetic imaging or scattering techniques. In the present work, we will show qualitatively different collapsing dynamics for pure N\'eel and hybrid skyrmions induced by a perpendicular magnetic field in two representative systems, [Pt/Co/Ir]15 and [Ta/CoFeB/MgO]15 multilayers. Skyrmions in the former stack undergo two morphological transitions, upon reversing the perpendicular field direction. Skyrmions in [Ta/CoFeB/MgO]15 multilayers exhibit a continuous transition, which is mainly linked to a reversible change of the skyrmion size. A full micromagnetic phase diagram is presented to identify these two collapsing mechanisms as a function of material parameters. Since the two distinct collapsing dynamics rely on the detailed layer-dependent spin structures of skyrmions, they could be used as potential fingerprints for identifying the skyrmion type in magnetic multilayers. Our work suggests the employment of pure and hybrid skyrmions for specific applications, due to the strong correlation between the skyrmion dynamics and 3-dimentional spin profiles.
2303.05988v1
2023-07-05
Comparative Analysis of THz Signal Emission from SiO$_2$/CoFeB/Metal Heterostructures: Wideband and High-Frequency THz Signal Advantage of PtBi-based Emitter
Spintronic THz emitters have attracted much attention due to their desirable properties, such as affordability, ultra-wideband capability, high efficiency, and tunable polarization. In this study, we investigate the characteristics of THz signals, including their frequency, bandwidth, and amplitude, emitted from a series of heterostructures with ferromagnetic (FM) and nonmagnetic (NM) materials. The FM layer consists of a wedge-shaped CoFeB layer with a thickness of 0 to 5 nm, while the NM materials include various metals such as Pt, Au, W, Ru, Pt$_{\%92}$Bi$_{\%8}$, and Ag$_{\%90}$Bi$_{\%10}$ alloys. Our experiments show that the emitter with Pt-NM layer has the highest amplitude of the emitted THz signal. However, the PtBi-based emitter exhibits a higher central THz peak and wider bandwidth, making it a promising candidate for broadband THz emitters. These results pave the way for further exploration of the specific compositions of Pt$_{1-x}$Bi$_{x}$ for THz emitter design, especially with the goal of generating higher frequency and wider bandwidth THz signals. These advances hold significant potential for applications in various fields such as high-resolution imaging, spectroscopy, communications, medical diagnostics, and more.
2307.02232v1
2023-09-06
Mid-infrared optical properties of non-magnetic-metal/CoFeB/MgO heterostructures
We report on the optical characterization of non-magnetic metal/ferromagnetic (Co$_{20}$Fe$_{60}$B$_{20}$)/MgO heterostructures and interfaces by using mid infrared spectroscopic ellipsometry at room temperature. We extracted for the mid-infrared range the dielectric function of Co$_{20}$Fe$_{60}$B$_{20}$, that is lacking in literature, from a multisample analysis. From the optical modelling of the heterostructures we detected and determined the dielectric tensor properties of a two-dimensional gas (2DEG) forming at the non-magnetic metal and the CoFeB interface. These properties comprise independent Drude parameters for the in-plane and out-of plane tensor components, with the latter having an epsilon-near-zero frequency within our working spectral range. A feature assigned to spin-orbit coupling (SOC) is identified. Furthermore, it is found that both, the interfacial properties, 2DEG Drude parameters and SOC strength, and the apparent dielectric function of the MgO layer depend on the type of the underlying nonmagnetic metal, namely, Pt, W, or Cu. The results reported here should be useful in tailoring novel phenomena in such types of heterostructures by assessing their optical response noninvasively, complementing existing characterization tools such as angle-resolved photoemission spectroscopy, and those related to electron/spin transport.
2309.02981v1
2023-12-10
Magnetoelectric Coupling in Pb(Zr,Ti)O3/CoFeB Nanoscale Waveguides Studied by Propagating Spin-Wave Spectroscopy
This study introduces a method for the characterization of the magnetoelectric coupling in nanoscale Pb(Zr,Ti)O3/CoFeB thin film composites based on propagating spin-wave spectroscopy. Finite element simulations of the strain distribution in the devices indicated that the magnetoelastic effective field in the CoFeB waveguides was maximized in the Damon - Eshbach configuration. All-electrical broadband propagating spin-wave transmission measurements were conducted on Pb(Zr,Ti)O3/CoFeB magnetoelectric waveguides with lateral dimensions down to 700 nm. The results demonstrated that the spin-wave resonance frequency can be modulated by applying a bias voltage to Pb(Zr,Ti)O3. The modulation is hysteretic due to the ferroelastic behavior of Pb(Zr,Ti)O3. An analytical model was then used to correlate the change in resonance frequency to the induced magnetoelastic field in the magnetostrictive CoFeB waveguide. We observe a hysteresis magnetoelastic field strength with values as large as 5.61 mT, and a non-linear magnetoelectric coupling coefficient with a maximum value of 1.69 mT/V.
2312.05819v1
2018-01-12
Anomalous Nernst effect on the nanometer scale: Exploring three-dimensional temperature gradients in magnetic tunnel junctions
Localized laser heating creates temperature gradients in all directions and thus leads to three-dimensional electron flux in metallic materials. Temperature gradients in combination with material magnetization generate thermomagnetic voltages. The interplay between these direction-dependent temperature gradients and the magnetization along with their control enable to manipulate the generated voltages, e.g. in magnetic nanodevices. We identify the anomalous Nernst effect (ANE) generated on a nanometer length scale by micrometer sized temperature gradients in magnetic tunnel junctions (MTJs). In a systematic study, we extract the ANE by analyzing the influence of in-plane temperature gradients on the tunnel magneto-Seebeck effect (TMS) in three dimensional devices. To investigate these effects, we utilize in-plane magnetized MTJs based on CoFeB electrodes with an MgO tunnel barrier. Due to our measurement configuration, there is no necessity to disentangle the ANE from the spin Seebeck effect in inverse spin-Hall measurements. The temperature gradients are created by a tightly focused laser spot. The spatial extent of the measured effects is defined by the MTJ size, while the spatial resolution is given by the laser spot size and the step size of its lateral translation. This method is highly sensitive to low voltages and yields an ANE coefficient of $K_N\approx 1.6\cdot 10^{-8}\,\mathrm{V/TK}$ for CoFeB. In general, TMS investigations in MTJs are motivated by the usage of otherwise wasted heat in magnetic memory devices for read/write operations. Here, the additionally generated ANE effect allows to expand the MTJs' functionality from simple memory storage to nonvolatile logic devices and opens new application fields such as direction dependent temperature sensing with the potential for further downscaling.
1801.04186v1
2021-03-14
Perpendicular magnetic anisotropy in ultra-thin Cu$_2$Sb-type (Mn-Cr)AlGe films onto thermally oxidized silicon substrates
Perpendicularly magnetized films showing small saturation magnetization, $M_\mathrm{s}$, are essential for spin-transfer-torque writing type magnetoresistive random access memories, STT-MRAMs. An intermetallic compound, {(Mn-Cr)AlGe} of the Cu$_2$Sb-type crystal structure was investigated, in this study, as a material showing the low $M_\mathrm{s}$ ($\sim 300$ kA/m) and high-perpendicular magnetic anisotropy, $K_\mathrm{u}$. The layer thickness dependence of $K_\mathrm{u}$ and effects of Mg-insertion layers at top and bottom (Mn-Cr)AlGe$|$MgO interfaces were studied in film samples fabricated onto thermally oxidized silicon substrates to realize high-$K_\mathrm{u}$ in the thickness range of a few nanometer. Optimum Mg-insertion thicknesses were 1.4 and 3.0 nm for the bottom and the top interfaces, respectively, which were relatively thick compared to results in similar insertion effect investigations on magnetic tunnel junctions reported in previous studies. The cross-sectional transmission electron microscope images revealed that the Mg-insertion layers acted as barriers to interdiffusion of Al-atoms as well as oxidization from the MgO layers. The values of $K_\mathrm{u}$ were about $7 \times 10^5$ and $2 \times 10^5$ J/m$^3$ at room temperature for 5 and 3 nm-thick (Mn-Cr)AlGe films, respectively, with the optimum Mg-insertion thicknesses. The $K_\mathrm{u}$ at a few nanometer thicknesses is comparable or higher than those reported in perpendicularly magnetized CoFeB films which are conventionally used in MRAMs, while the $M_\mathrm{s}$ value is one third or less smaller than those of the CoFeB films. The developed (Mn-Cr)AlGe films are promising from the viewpoint of not only the magnetic properties, but also the compatibility to the silicon process in the film fabrication.
2103.07847v2
2019-12-08
Multifilamentary character of anticorrelated capacitive and resistive switching in memristive structures based on (CoFeB)x(LiNbO3)100-x nanocomposite
Resistive and capacitive switching in capacitor metal/nanocomposite/metal (M/NC/M) structures based on (CoFeB)x(LiNbO3)100-x NC fabricated by ion-beam sputtering with metal content x $\approx$ 8-20 at. % is studied. The peculiarity of the structure synthesis was the use of increased oxygen content ($\approx$ 2*10^-5 Torr) at the initial stage of the NC growth. The NC films, along with metal nanogranules of 3-6 nm in size, contained a large number of dispersed Co (Fe) atoms (up to ~10^22 cm^-3). Measurements were performed both in DC and AC (frequency range 5-13 MHz) regimes. When switching structures from high-resistance (Roff) to low-resistance (Ron) state, the effect of a strong increase in their capacity was found, which reaches 8 times at x $\approx$ 15 at. % and the resistance ratio Roff/Ron $\approx$ 40. The effect is explained by the synergetic combination of the multifilamentary character of resistive switching (RS) and structural features of the samples associated, in particular, with the formation of high-resistance and strongly polarizable LiNbO3 layer near the bottom electrode of the structures. The proposed model is confirmed by investigations of RS of two-layer nanoscale M/NC/LiNbO3/M structures as well as by studies of the magnetization of M/NC/M structures in the pristine state and after RS.
1912.03726v3
2023-05-13
Temperature dependence of magnetic anisotropy and domain wall tuning in BaTiO3(111)/CoFeB multiferroics
Artificial multiferroics consist of two types of ferroic materials, typically a ferroelectric and ferromagnet, often coupled interfacially by magnetostriction induced by the lattice elongations in the ferroelectric. In BaTiO3 the magnitude of strain induced by these elongations is heavily temperature dependent, varying greatly between each of the polar crystal phases and exerting a huge influence over the properties of a coupled magnetic film. Here we demonstrate that temperature, and thus strain, is an effective means of controlling the magnetic anisotropy in BaTiO3(111)/CoFeB heterostructures. We investigate the three polar phases of BaTiO3: tetragonal (T) at room temperature, orthorhombic (O) below 280 K and rhombohedral (R) below 190 K, across a total range of 77 K to 420 K. We find two distinct responses; a step-like change in the anisotropy across the low-temperature phase transitions, and a sharp high-temperature reduction around the ferroelectric Curie temperature, measured from hard axis hysteresis loops. Using our measurements of this anisotropy strength we are then able to show by micromagnetic simulation the behaviour of all possible magnetic domain wall states and determine their scaling as a function of temperature. The most significant changes occur in the head-to-head domain wall states, with a maximum change of 210 nm predicted across the entire range effectively doubling the size of the domain wall as compared to room temperature. Notably, similar changes are seen for both high and low temperatures which suggest different routes for potential control of magnetic anisotropy and elastically pinned magnetic domain walls.
2305.07879v1
2006-07-21
Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films
We report on the functionalization of multiferroic BiFeO3 epitaxial films for spintronics. A first example is provided by the use of ultrathin layers of BiFeO3 as tunnel barriers in magnetic tunnel junctions with La2/3Sr1/3MnO3 and Co electrodes. In such structures, a positive tunnel magnetoresistance up to 30% is obtained at low temperature. A second example is the exploitation of the antiferromagnetic spin structure of a BiFeO3 film to induce a sizeable (~60 Oe) exchange bias on a ferromagnetic film of CoFeB, at room temperature. Remarkably, the exchange bias effect is robust upon magnetic field cycling, with no indications of training.
0607563v2
2006-08-25
Dependence of tunnel magnetoresistance on ferromagnetic electrode materials in MgO-barrier magnetic tunnel junctions
We investigated the relationship between the tunnel magnetoresistance (TMR) ratio and the electrode structure in MgO-barrier magnetic tunnel junctions (MTJs). The TMR ratio in a MTJ with Co40Fe40B20 reference and free layers reached 355% at the post-deposition annealing temperature of Ta=400 degree C. When Co50Fe50 or Co90Fe10 is used for the reference layer material, no high TMR ratio was observed. The key to have high TMR ratio is to have highly oriented (001) MgO barrier/CoFeB crystalline electrodes. The highest TMR ratio obtained so far is 450% at Ta = 450 degree C in a pseudo spin-valve MTJ.
0608551v1
2007-03-22
Spin-Torque Ferromagnetic Resonance Measurements of Damping in Nanomagnets
We measure the magnetic damping parameter a in thin film CoFeB and permalloy (Py) nanomagnets at room temperature using ferromagnetic resonance driven by microwave frequency spin-transfer torque. We obtain $\alpha_{CoFeB} = 0.014 \pm 0.003$ and $\alpha_{Py}=0.010 \pm 0.002$, values comparable to measurements for extended thin films, but significantly less than the effective damping determined previously for similar nanomagnets by fits to time-domain studies of large-angle magnetic excitations and magnetic reversal. The greater damping found for the large amplitude nanomagnet dynamics is attributed to the nonlinear excitation of non-uniform magnetic modes.
0703577v1
2007-08-27
Determination of Penetration Depth of Transverse Spin Current in Ferromagnetic Metals by Spin Pumping
Spin pumping in nonmagnetic/ferromagnetic metal multilayers is studied both theoretically and experimentally. We show that the line widths of the ferromagnetic resonance (FMR) spectrum depend on the thickness of the ferromagnetic metal layers, which must not be in resonance with the oscillating magnetic field. We also show that the penetration depths of the transverse spin current in ferromagnetic metals can be determined by analyzing the line widths of their FMR spectra. The obtained penetration depths in NiFe, CoFe and CoFeB were 3.7 [nm], 2.5 [nm] and 12.0 [nm], respectively.
0708.3528v3
2007-10-10
Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films
We have combined neutron scattering and piezoresponse force microscopy to study the relation between the exchange bias observed in CoFeB/BiFeO3 heterostructures and the multiferroic domain structure of the BiFeO3 films. We show that the exchange field scales with the inverse of the ferroelectric and antiferromagnetic domain size, as expected from Malozemoff's model of exchange bias extended to multiferroics. Accordingly, polarized neutron reflectometry reveals the presence of uncompensated spins in the BiFeO3 film at the interface with the CoFeB. In view of these results we discuss possible strategies to switch the magnetization of a ferromagnet by an electric field using BiFeO3.
0710.2025v1
2009-10-22
MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers
The authors studied an effect of ferromagnetic (Co20Fe60B20 or Fe) layer insertion on tunnel magnetoresistance (TMR) properties of MgO-barrier magnetic tunnel junctions (MTJs) with CoFe/Pd multilayer electrodes. TMR ratio in MTJs with CoFeB/MgO/Fe stack reached 67% at an-nealing temperature (Ta) of 200 degree C and then decreased rapidly at Ta over 250 degree C. The degradation of the TMR ratio may be related to crystallization of CoFe(B) into fcc(111) or bcc(011) texture result-ing from diffusion of B into Pd layers. MTJs which were in-situ annealed at 350oC just after depo-siting bottom CoFe/Pd multilayer showed TMR ratio of 78% by post annealing at Ta =200 degree C.
0910.4204v1
2010-08-09
Detection of bottom ferromagnetic electrode oxidation in magnetic tunnel junctions by magnetometry measurements
Surface oxidation of the bottom ferromagnetic (FM) electrode, one of the major detrimental factors to the performance of a Magnetic Tunnel Junction (MTJ), is difficult to avoid during the fabrication process of the MTJ's tunnel barrier. Since Co rich alloys are commonly used for the FM electrodes in MTJs, over-oxidation of the tunnel barrier results in the formation of a CoO antiferromagnetic (AF) interface layer which couples with the bottom FM electrode to form a typical AF/FM exchange bias (EB) system. In this work, surface oxidation of the CoFe and CoFeB bottom electrodes was detected via magnetometry measurements of exchange-bias characterizations including the EB field, training effect, uncompensated spin density, and coercivity. Variations of these parameters were found to be related to the surface oxidation of the bottom electrode, among them the change of coercivity is most sensitive. Annealed samples show evidence for an oxygen migration back to the MgO tunnel barrier by annealing.
1008.1493v1
2011-03-16
Spin-Torque Diode Measurements of MgO-Based Magnetic Tunnel Junctions with Asymmetric Electrodes
We present a detailed study of the spin-torque diode effect in CoFeB/MgO/CoFe/NiFe magnetic tunnel junctions. From the evolution of the resonance frequency with magnetic field at different angles, we clearly identify the free-layer mode and find an excellent agreement with simulations by taking into account several terms for magnetic anisotropy. Moreover, we demonstrate the large contribution of the out-of-plane torque in our junctions with asymmetric electrodes compared to the in-plane torque. Consequently, we provide a way to enhance the sensitivity of these devices for the detection of microwave frequency.
1103.3207v1
2013-04-09
Paramagnetic Fe_xTa_{1-x} alloys for engineering of perpendicularly magnetized tunnel junctions
Exchange coupling between two magnetic layers through an interlayer is of broad interest for numerous recent applications of nano-magnetic systems. In this Letter we study ferromagnetic exchange coupling through amorphous paramagnetic Fe-Ta alloys. We show that the exchange coupling depends exponentially on spacer thickness and scales with the Fe-Ta susceptibility, which can be tuned via the alloy composition and/or temperature. Such materials are of high interest for the engineering of perpendicularly magnetized CoFeB-MgO based tunnel junctions as it enables ferromagnetic coupling of magnetic layers with differing crystalline lattices, suppresses dead layers and can act as an inter-diffusion barrier during annealing.
1304.2763v1
2013-08-29
Control of Propagating Spin Waves via Spin Transfer Torque in a Metallic Bilayer Waveguide
We investigate the effect of a direct current on propagating spin waves in a CoFeB/Ta bilayer structure. Using the micro-Brillouin light scattering technique, we observe that the spin wave amplitude may be attenuated or amplified depending on the direction of the current and the applied magnetic field. Our work suggests an effective approach for electrically controlling the propagation of spin waves in a magnetic waveguide and may be useful in a number of applications such as phase locked nano-oscillators and hybrid information processing devices.
1308.6357v2
2014-01-29
Nonreciprocal Dispersion of Spin Waves in Ferromagnetic Thin Films Covered with a Finite-Conductivity Metal
We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon-Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allow us to define a structure based on a 30 nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.
1401.7454v1
2014-02-18
Switching Properties in Magnetic Tunnel Junctions with Interfacial Perpendicular Anisotropy: Micromagnetic Study
The role of universal memory can be successfully satisfied by magnetic tunnel junctions (MTJs) where the writing mechanism is based on spin-transfer torque (STT). An improvement in the switching properties (lower switching current density maintaining the thermal stability) has been achieved in MTJs with interfacial perpendicular anisotropy (IPA) at the interface between CoFeB and MgO. In this paper, micromagnetic simulations point out the influence of IPA and saturation magnetization (MS) on the properties of fast magnetization reversal achieved in 5, 10 and 20 ns. Both cases of in-plane and out-of-plane free layer are considered. In addition, the thermal effect is included for the in-plane switching at 20 ns and a complete analysis of energy dissipation during the switching is illustrated. This study can provide useful information for the design of STT-based memories.
1402.4352v1
2014-07-23
Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
1407.6137v1
2014-11-19
Universal domain wall dynamics under electric field in Ta/CoFeB/MgO devices with perpendicular anisotropy
Electric field effects in ferromagnetic/oxide dielectric structures provide a new route to control domain wall (DW) dynamics with low power dissipation. However, electric field effects on DW velocities have only been observed so far in the creep regime where DW velocities are low due to strong interactions with pinning sites. Here, we show gate voltage modulation of DW velocities ranging from the creep to the flow regime in Ta/Co40Fe40B20/MgO/TiO2 structures with perpendicular magnetic anisotropy. We demonstrate a universal description of the role of applied electric fields in the various pinning dependent regimes by taking into account an effective magnetic field being linear with the electric field. In addition, the electric field effect is found to change sign in the Walker regime. Our work opens new opportunities for the study and optimization of electric field effect at ferromagnetic metal/insulator interfaces.
1411.5267v2
2015-03-02
Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicron resolution
We present a new approach to infer the surface density of magnetic moments $I_s$ in ultrathin ferromagnetic films with perpendicular anisotropy. It relies on quantitative stray field measurements with an atomic-size magnetometer based on the nitrogen-vacancy center in diamond. The method is applied to microstructures patterned in a 1-nm-thick film of CoFeB. We report measurements of $I_s$ with a few percent uncertainty and a spatial resolution in the range of $(100$ nm)$^2$, an improvement by several orders of magnitude over existing methods. As an example of application, we measure the modifications of $I_s$ induced by local irradiation with He$^+$ ions in an ultrathin ferromagnetic wire. This method offers a new route to study variations of magnetic properties at the nanoscale.
1503.00705v1
2015-03-25
Spin Hall torque driven chiral domain walls in magnetic heterostructures
The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The domain wall moves along or against the current flow depending on the underlayer material. The direction to which the domain wall moves is associated with the chirality of the domain wall spiral formed in these heterostructures. The one-dimensional model is used to describe the experimental results and extract parameters such as the Dzyaloshinskii-Moriya exchange constant which is responsible for the formation of the domain wall spiral. Fascinating effects arising from the control of interfaces in magnetic heterostructures are described.
1503.07250v1
2015-03-31
Spin Hall magnetoresistance in metallic bilayers
Spin Hall magnetoresistance (SMR) is studied in metallic bilayers that consist of heavy metal (HM) layer and a ferromagnetic metal (FM) layer. We find nearly a ten-fold increase of SMR in W/CoFeB compared to previously studied HM/ferromagnetic insulator (FI) systems. The SMR increases with decreasing temperature despite the negligible change in the W layer resistivity with temperature. A model is developed to account for the absorption of the longitudinal spin current to the FM layer, one of the key characteristics of a metallic ferromagnet. We find that the model not only quantitatively describes the HM layer thickness dependence of SMR, allowing accurate estimation of the spin Hall angle and the spin diffusion length of the HM layer, but also can account for the temperature dependence of SMR by assuming a temperature dependent spin polarization of the FM layer. These results illustrate the unique role a metallic ferromagnetic layer plays in defining spin transmission across the HM/FM interface.
1503.08903v2
2015-08-18
Quasistatic and Pulsed Current-Induced Switching with Spin-Orbit Torques in Ultrathin Films with Perpendicular Magnetic Anisotropy
Spin-orbit interaction derived spin torques provide a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. A basic and critical question for applications is the speed and efficiency of switching with nanosecond current pulses. Here we investigate and contrast the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micron scale Hall crosses consisting of very thin ($<1$ nm) perpendicularly magnetized CoFeB layers on $\beta$-Ta. While complete magnetization reversal is found at a threshold current density in the quasistatic case, short duration ($\leq 10$ ns) larger amplitude pulses ($\simeq 10 \times$ the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. We associate the partial reversal with the limited time for reversed domain expansion during the pulse.
1508.04336v1
2015-08-24
Origin of robust interaction of spin waves with a single skyrmion in perpendicularly magnetized nanostripes
We studied interactions between propagating spin waves (SWs) and a single skyrmion in a perpendicularly magnetized CoFeB nanostripe where the magnetic layer is interfaced with W and MgO. Micromagnetic numerical calculations revealed that robust interactions between the incident SWs and the skyrmion give rise to considerable forward skyrmion motions for specific SW frequencies (e.g., here: fsw = 12 - 19 GHz). Additionally, it was found that there exists a sufficiently low threshold field amplitude, e.g., 0.1 kOe for the fsw = 15 GHz SWs. This frequency-dependent interaction originated from the robust coupling of the SWs with the internal modes of the skyrmion, through the SWs' linear momentum transfer torque acting on the skyrmion. This work provides for all-magnetic control of skyrmion motions without electronic currents, and facilitates further understanding of the interactions between magnons and topological solitons in constricted geometries.
1508.05682v1
2015-12-11
Correlation between the spin Hall angle and the structural phases of early 5d transition metals
We have studied the relationship between the structure and the spin Hall angle of the early 5d transition metals in X/CoFeB/MgO (X=Hf, Ta, W, Re) heterostructures. Spin Hall magnetoresistance (SMR) is used to characterize the spin Hall angle of the heavy metals. Transmission electron microscopy images show that all underlayers are amorphous-like when their thicknesses are small, however, crystalline phases emerge as the thickness is increased for certain elements. We find that the heavy metal layer thickness dependence of the SMR reflects these changes in structure. The spin Hall angle largest |\theta$_{SH}$| of Hf, Ta, W and Re (~0.11, 0.10, 0.23 and 0.07, respectively) is found when the dominant phase is amorphous-like. We find that the amorphous-like phase not only possesses large resistivity but also exhibits sizeable spin Hall conductivity, which both contribute to the emergence of the large spin Hall angle.
1512.03529v1
2016-02-24
Exchange stiffness in ultrathin perpendicularly-magnetized CoFeB layers determined using spin wave spectroscopy
We measure the frequencies of spin waves in nm-thick perpendicularly magnetized FeCoB systems, and model the frequencies to deduce the exchange stiffness of this material in the ultrathin limit. For this, we embody the layers in magnetic tunnel junctions patterned into circular nanopillars of diameters ranging from 100 to 300 nm and we use magneto-resistance to determine which rf-current frequencies are efficient in populating the spin wave modes. Micromagnetic calculations indicate that the ultrathin nature of the layer and the large wave vectors used ensure that the spin wave frequencies are predominantly determined by the exchange stiffness, such that the number of modes in a given frequency window can be used to estimate the exchange. For 1 nm layers the experimental data are consistent with an exchange stiffness A= 20 pJ/m, which is slightly lower that its bulk counterpart. The thickness dependence of the exchange stiffness has strong implications for the numerous situations that involve ultrathin films hosting strong magnetization gradients, and the micromagnetic description thereof.
1602.07421v1
2016-04-15
Twist in the bias-dependence of spin-torques in magnetic tunnel junctions
The spin-torque in magnetic tunnel junctions possesses two components that both depend on the applied voltage. Here, we develop a new method for the accurate extraction of this bias-dependence from experiments over large voltage ranges. We study several junctions with different magnetic layer structures of the top electrode. Our results obtained on junctions with symmetric CoFeB electrodes agree well with theoretical calculations. The bias-dependences of asymmetric samples, with top electrodes containing NiFe, however, are twisted compared to the quadratic form generally assumed. Our measurements reveal the complexity of spin-torque mechanisms at large bias.
1604.04517v1
2016-04-16
A broadband Ferromagnetic Resonance dipper probe for magnetic damping measurements from 4.2 K to 300 K
A dipper probe for broadband Ferromagnetic Resonance (FMR) operating from 4.2 K to room temperature is described. The apparatus is based on a 2-port transmitted microwave signal measurement with a grounded coplanar waveguide. The waveguide generates a microwave field and records the sample response. A 3-stage dipper design is adopted for fast and stable temperature control. The temperature variation due to FMR is in the milli-Kelvin range at liquid helium temperature. We also designed a novel FMR probe head with a spring-loaded sample holder. Improved signal-to-noise ratio and stability compared to a common FMR head are achieved. Using a superconducting vector magnet we demonstrate Gilbert damping measurements on two thin film samples using a vector network analyzer with frequency up to 26 GHz: 1) A Permalloy film of 5 nm thickness and 2) a CoFeB film of 1.5 nm thickness. Experiments were performed with the applied magnetic field parallel and perpendicular to the film plane.
1604.04688v1
2016-05-18
Electrical control over perpendicular magnetization switching driven by spin-orbit torques
Flexible control of magnetization switching by electrical manners is crucial for applications of spin-orbitronics. Besides of a switching current that is parallel to an applied field, a bias current that is normal to the switching current is introduced to tune the magnitude of effective damping-like and field-like torques and further to electrically control magnetization switching. Symmetrical and asymmetrical control over the critical switching current by the bias current with opposite polarities is both realized in Pt/Co/MgO and $\alpha$-Ta/CoFeB/MgO systems, respectively. This research not only identifies the influences of field-like and damping-like torques on switching process but also demonstrates an electrical method to control it.
1605.05569v1
2016-09-14
Rashba-Edelstein Magnetoresistance in Metallic Heterostructure
We report the observation of magnetoresistance originating from Rashba spin-orbit coupling (SOC) in a metallic heterostructure: the Rashba-Edelstein (RE) magnetoresistance. We show that the simultaneous action of the direct and inverse RE effects in a Bi/Ag/CoFeB trilayer couples current-induced spin accumulation to the electric resistance. The electric resistance changes with the magnetic-field angle, reminiscent of the spin Hall magnetoresistance, despite the fact that bulk SOC is not responsible for the magnetoresistance. We further found that, even when the magnetization is saturated, the resistance increases with increasing the magnetic-field strength, which is attributed to the Hanle magnetoresistance in this system.
1609.04122v1
2016-11-03
Scalable synchronization of spin-Hall oscillators in out-of-plane field
A strategy for a scalable synchronization of an array of spin-Hall oscillators (SHOs) is illustrated. In detail, we present micromagnetic simulations of two and five SHOs realized by means of couples of triangular golden contacts on the top of a Pt/CoFeB/Ta trilayer. Results highlight that the synchronization occurs for the whole current region that gives rise to the excitation of self-oscillations. This is linked to the role of the magnetodipolar coupling, which is the phenomenon driving the synchronization when the distance between oscillators is not too large. Synchronization turns out to be also robust against geometrical differences of the contacts, simulated by considering variable distances between the tips ranging from 100nm to 200nm. Besides, it entails an enlargement of the radiation pattern that can be useful for the generation of spin-waves in magnonics applications. Simulations performed to study the effect of the interfacial Dzyaloshinskii-Moriya interaction show nonreciprocity in spatial propagation of the synchronized spin-wave. The simplicity of the geometry and the robustness of the achieved synchronization make this design of array of SHOs scalable for a larger number of synchronized oscillators.
1611.01227v1
2017-01-23
Understanding stability diagram of perpendicular magnetic tunnel junctions
Perpendicular magnetic tunnel junctions (MTJ) with a bottom pinned reference layer and a composite free layer (FL) are investigated. Different thicknesses of the FL were tested to obtain an optimal balance between tunneling magnetoresistance (TMR) ratio and perpendicular magnetic anisotropy. After annealing at 400 $^\circ$C, the TMR ratio for 1.5 nm thick CoFeB sublayer reached 180 % at room temperature and 280 % at 20 K with an MgO tunnel barrier thickness corresponding to the resistance area product RA = 10 Ohm$\mathrm{\mu}$m$^2$. The voltage vs. magnetic field stability diagrams measured in pillar-shaped MTJs with 130 nm diameter indicate the competition between spin transfer torque (STT), voltage controlled magnetic anisotropy (VCMA) and temperature effects in the switching process. An extended stability phase diagram model that takes into account all three parameters and the effective damping measured independently using broadband ferromagnetic resonance technique enabled the determination of both STT and VCMA coefficients that are responsible for the FL magnetization switching.
1701.06411v1
2017-03-29
Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm$^{-1}$ from a metallic spintronic emitter
To explore the capabilities of metallic spintronic thin-film stacks as a source of intense and broadband terahertz electromagnetic fields, we excite a W/CoFeB/Pt trilayer on a large-area glass substrate (diameter of 7.5 cm) by a femtosecond laser pulse (energy 5.5 mJ, duration 40 fs, wavelength 800 nm). After focusing, the emitted terahertz pulse is measured to have a duration of 230 fs, a peak field of 300 kV cm$^{-1}$ and an energy of 5 nJ. In particular, the waveform exhibits a gapless spectrum extending from 1 to 10 THz at 10% of amplitude maximum, thereby facilitating nonlinear control over matter in this difficult-to-reach frequency range and on the sub-picosecond time scale.
1703.09970v1
2017-07-15
Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference
Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities also underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference.
1707.04687v2
2017-09-08
Tunneling magnetoresistance of perpendicular CoFeB-based junctions with exchange bias
Recently, magnetic tunnel junctions with perpendicular magnetized electrodes combined with exchange bias films have attracted large interest. In this paper we examine the tunnel magnetoresistance of Ta/Pd/IrMn/Co-Fe/Ta/Co-Fe-B/MgO/Co-Fe-B/capping/Pd magnetic tunnel junctions in dependence on the capping layer, i.e., Hf or Ta. In these stacks perpendicular exchange bias fields of -500\,Oe along with perpendicular magnetic anisotropy are combined. A tunnel magnetoresistance of $(47.2\pm 1.4)\%$ for the Hf-capped sample was determined compared to the Ta one $(42.6\pm 0.7)\%$ at room temperature. Interestingly, this observation is correlated to the higher boron absorption of Hf compared to Ta which prevents the suppression of $\Delta_{\textrm{1}}$ channel and leads to higher tunnel magnetoresistance values. Furthermore, the temperature dependent coercivities of the soft electrodes of both samples are mainly described by the Stoner-Wohlfarth model including thermal fluctuations. Slight deviations at low temperatures can be attributed to a torque on the soft electrode that is generated by the pinned magnetic layer system.
1709.02607v1
2017-09-12
Scaling of Dzyaloshinskii Moriya interaction at heavy metal and ferromagnetic metal interfaces
The Dzyaloshinskii Moriya Interaction (DMI) at the heavy metal (HM) and ferromagnetic metal (FM) interface has been recognized as a key ingredient in spintronic applications. Here we investigate the chemical trend of DMI on the 5d band filling (5d^3~5d^10) of the HM element in HM/CoFeB/MgO multilayer thin films. DMI is quantitatively evaluated by measuring asymmetric spin wave dispersion using Brillouin light scattering. Sign reversal and 20 times modification of the DMI coefficient D have been measured as the 5d HM element is varied. The chemical trend can be qualitatively understood by considering the 5d and 3d bands alignment at the HM/FM interface and the subsequent orbital hybridization around the Fermi level. Furthermore, a positive correlation is observed between DMI and spin mixing conductance at the HM/FM interfaces. Our results provide new insights into the interfacial DMI for designing future spintronic devices.
1709.03961v1
2017-11-09
Room Temperature Giant Charge-to-Spin Conversion at SrTiO3/LaAlO3 Oxide Interface
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the 2DEG layer is reported. However, the direct effect of charge-to-spin conversion, an essential ingredient for spintronic devices in a current induced spin-orbit torque scheme, has not been demonstrated yet. Here we show, for the first time, a highly efficient spin generation with the efficiency of ~6.3 in the STO/LAO/CoFeB structure at room temperature by using spin torque ferromagnetic resonance. In addition, we suggest that the spin transmission through the LAO layer at high temperature range is attributed to the inelastic tunneling via localized states in the LAO band gap. Our findings may lead to potential applications in the oxide insulator based spintronic devices.
1711.03268v1
2017-12-05
Studies of CoFeB crystalline structure grown on PbSnTe topological insulator substrate
Co40Fe40B20 layers were grown on the Pb0.71Sn0.29Te topological insulator substrates by laser molecular beam epitaxy (LMBE) method, and the growth conditions were studied. The possibility of growing epitaxial layers of a ferromagnet on the surface of a topological insulator was demonstrated for the first time. The Co40Fe40B20 layers obtained have a bcc crystal structure with a crystalline (111) plane parallel to the (111) PbSnTe plane. The use of three-dimensional mapping in the reciprocal space of reflection high electron diffraction (RHEED) patterns made it possible to determine the epitaxial relationship of main crystallographic axes between the film and the substrate of topological insulator. Quenching of some reflections in diffraction pattern allows confirmation of the substrate stoichiometry.
1712.01585v3
2017-12-23
Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions
Nanoscale magnetic tunnel junction plays a pivotal role in magnetoresistive random access memories. Successful implementation depends on a simultaneous achievement of low switching current for the magnetization switching by spin-transfer torque and high thermal stability, along with a continuous reduction of junction size. Perpendicular-easy-axis CoFeB/MgO stacks possessing interfacial anisotropy have paved the way down to 20-nm scale, below which a new approach needs to be explored. Here we show magnetic tunnel junctions that satisfy the requirements at ultrafine scale by revisiting shape anisotropy, which is a classical part of magnetic anisotropy but has not been fully utilized in the current perpendicular systems. Magnetization switching solely driven by current is achieved for junctions smaller than 10 nm where sufficient thermal stability is provided by shape anisotropy without adopting new material systems. This work is expected to push forward the development of magnetic tunnel junctions towards single-digit-nm-scale nano-magnetics/spintronics.
1712.08774v1
2018-01-17
Hartman effect for spin waves in exchange regime
Hartman effect for spin waves tunnelling through a barrier in a thin magnetic film is considered theoretically. The barrier is assumed to be created by a locally increased magnetic anisotropy field. The considerations are focused on a nanoscale system operating in the exchange-dominated regime. We derive the formula for group delay $\tau_{gr}$ of spin wave package and show that $\tau_{gr}$ saturates with increasing barrier width, which is a signature of the Hartman effect predicted earlier for photonic and electronic systems. In our calculations we consider the general boundary exchange conditions which take into account different strength of exchange coupling between the barrier and its surrounding. As a system suitable for experimental observation of the Hartman effect we propose a CoFeB layer with perpendicular magnetic anisotropy induced by a MgO overlayer.
1801.05876v3
2018-03-22
Voltage Control of Magnetic Monopoles in Artificial Spin Ice
Current research on artificial spin ice (ASI) systems has revealed unique hysteretic memory effects and mobile quasi-particle monopoles controlled by externally applied magnetic fields. Here, we numerically demonstrate a strain-mediated multiferroic approach to locally control the ASI monopoles. The magnetization of individual lattice elements is controlled by applying voltage pulses to the piezoelectric layer resulting in strain-induced magnetic precession timed for 180 degree reorientation. The model demonstrates localized voltage control to move the magnetic monopoles across lattice sites, in CoFeB, Ni, and FeGa based ASI$'$s. The switching is achieved at frequencies near ferromagnetic resonance and requires energies below 620 aJ. The results demonstrate that ASI monopoles can be efficiently and locally controlled with a strain-mediated multiferroic approach.
1803.08598v1
2018-05-09
Programmable control of spin-wave transmission in a domain-wall spin valve
Active manipulation of spin waves is essential for the development of magnon-based technologies. Here, we demonstrate programmable spin-wave filtering by resetting the spin structure of a pinned 90$^\circ$ N\'{e}el domain wall in a continuous CoFeB film with abrupt rotations of uniaxial magnetic anisotropy. Using phase-resolved micro-focused Brillouin light scattering and micromagnetic simulations, we show that broad 90$^\circ$ head-to-head or tail-to-tail magnetic domain walls are transparent to spin waves over a broad frequency range. In contrast, magnetic switching to a 90$^\circ$ head-to-tail configuration produces much narrower domain walls at the same pinning locations. Spin waves are strongly reflected by a resonance mode in these magnetic domain walls. Based on these results, we propose a magnetic spin-wave valve with two parallel domain walls. Switching the spin-wave valve from an open to a close state changes the transmission of spin waves from nearly 100% to 0% at the resonance frequency. This active control over spin-wave transport could be utilized in magnonic logic devices or non-volatile memory elements.
1805.03470v1
2018-05-10
Anomalous spin Hall magnetoresistance in Pt/Co bilayers
We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers with thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer its origin is associated with a particular property of Co.
1805.03843v1
2019-04-25
Low damping magnetic properties and perpendicular magnetic anisotropy with strong volume contribution in the Heusler alloy Fe1.5CoGe
We present a study of the dynamic magnetic properties of TiN-buffered epitaxial thin films of the Heusler alloy Fe$_{1.5}$CoGe. Thickness series annealed at different temperatures are prepared and the magnetic damping is measured, a lowest value of $\alpha=2.18\times 10^{-3}$ is obtained. The perpendicular magnetic anisotropy properties in Fe$_{1.5}$CoGe/MgO are also characterized. The evolution of the interfacial perpendicular anisotropy constant $K^{\perp}_{\rm S}$ with the annealing temperature is shown and compared with the widely used CoFeB/MgO interface. A large volume contribution to the perpendicular anisotropy of $(4.3\pm0.5)\times 10^{5}$ $\rm J/m^3$ is also found, in contrast with vanishing bulk contribution in common Co- and Fe-based Heusler alloys.
1904.11247v1
2019-10-11
Investigation of spin orbit torque driven dynamics in ferromagnetic heterostructures
We use time-resolved (TR) measurements based on the polar magneto-optical Kerr effect (MOKE) to study the magnetization dynamics excited by spin orbit torques in Py (Permalloy)/Pt and Ta/CoFeB bilayers. The analysis reveals that the field-like (FL) spin orbit torque (SOT) dominates the amplitude of the first oscillation cycle of the magnetization precession and the damping-like (DL) torque determines the final steady-state magnetization. In our bilayer samples, we have extracted the effective fields, hFL and hDL, of the two SOTs from the time-resolved magnetization oscillation spectrum. The extracted values are in good agreement with those extracted from time-integrated DCMOKE measurements, suggesting that the SOTs do not change at high frequencies. We also find that the amplitude ratio of the first oscillation to steady state is linearly proportional to the ratio hFL/hDL. The first oscillation amplitude is inversely proportional to, whereas the steady state value is independent of, the applied external field along the current direction.
1910.04945v1
2019-10-28
The spin Hall effect of Bi-Sb alloys driven by thermally excited Dirac-like electrons
We have studied the charge to spin conversion in Bi$_{1-x}$Sb$_x$/CoFeB heterostructures. The spin Hall conductivity (SHC) of the sputter deposited heterostructures exhibits a high plateau at Bi-rich compositions, corresponding to the topological insulator phase, followed by a decrease of SHC for Sb-richer alloys, in agreement with the calculated intrinsic spin Hall effect of Bi$_{1-x}$Sb$_x$ alloy. The SHC increases with increasing thickness of the Bi$_{1-x}$Sb$_x$ alloy before it saturates, indicating that it is the bulk of the alloy that predominantly contributes to the generation of spin current; the topological surface states, if present in the films, play little role. Surprisingly, the SHC is found to increase with increasing temperature, following the trend of carrier density. These results suggest that the large SHC at room temperature, with a spin Hall efficiency exceeding 1 and an extremely large spin current mobility, is due to increased number of Dirac-like, thermally-excited electrons in the $L$ valley of the narrow gap Bi$_{1-x}$Sb$_x$ alloy.
1910.12433v1
2018-02-07
Breaking the current density threshold in spin-orbit-torque magnetic random access memory
Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem of SOT-MRAM is now solved by using a current density of constant magnitude and varying flow direction that reduces the reversal current density threshold by a factor of more than the Gilbert damping coefficient. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse are derived for an arbitrary magnetic cell. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are respectively of the order of $10^5$ A/cm$^2$ and $10^6$ A/cm$^2$ far below $10^7$ A/cm$^2$ and $10^8$ A/cm$^2$ in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.
1802.02415v1
2018-12-05
Single spin sensing of domain wall structure and dynamics in a thin film skyrmion host
Skyrmions are nanoscale magnetic structures with features promising for future low-power memory or logic devices. In this work, we demonstrate novel scanning techniques based on nitrogen vacancy center magnetometry that simultaneously probe both the magnetic dynamics and structure of room temperature skyrmion bubbles in a thin film system Ta/CoFeB/MgO. We confirm the handedness of the Dzyaloshinskii-Moriya interaction in this material and extract the helicity angle of the skyrmion bubbles. Our measurements also show that the skyrmion bubbles in this material change size in discrete steps, dependent on the local pinning environment, with their average size determined dynamically as their domain walls hop between pinning sites. In addition, an increase in magnetic field noise is observed near all skyrmion bubble domain walls. These measurements highlight the importance of interactions between internal degrees of freedom of skyrmion bubble domain walls and pinning sites in thin film systems. Our observations have relevance for future devices based on skyrmion bubbles where pinning interactions will determine important aspects of current-driven motion.
1812.01764v1
2019-06-04
High frequency voltage-induced ferromagnetic resonance in magnetic tunnel junctions
Voltage-induced ferromagnetic resonance (V-FMR) in magnetic tunnel junctions (MTJs) with a W buffer is investigated. Perpendicular magnetic anisotropy (PMA) energy is controlled by both thickness of a CoFeB free layer deposited directly on the W buffer and a post-annealing process at different temperatures. The PMA energy as well as the magnetization damping are determined by analysing field-dependent FMR signals in different field geometries. An optimized MTJ structure enabled excitation of V-FMR at frequencies exceeding 30 GHz. The macrospin modelling is used to analyse the field- and angular-dependence of the V-FMR signal and to support experimental magnetization damping extraction.
1906.01301v1
2022-02-01
Numerical Model Of Harmonic Hall Voltage Detection For Spintronic Devices
We present a numerical macrospin model for harmonic voltage detection in multilayer spintronic devices. The core of the computational backend is based on the Landau-Lifshitz-Gilbert-Slonczewski equation, which combines high performance with satisfactory, for large-scale applications, agreement with the experimental results. We compare the simulations with the experimental findings in Ta/CoFeB bilayer system for angular- and magnetic field-dependent resistance measurements, electrically detected magnetisation dynamics, and harmonic Hall voltage detection. Using simulated scans of the selected system parameters such as the polar angle $\theta$, magnetisation saturation ($\mu_\textrm{0}M_\textrm{s}$) or uniaxial magnetic anisotropy ($K_\textrm{u}$) we show the resultant changes in the harmonic Hall voltage, demonstrating the dominating influence of the $\mu_\textrm{0}M_\textrm{s}$ on the first and second harmonics. In the spin-diode ferromagnetic resonance (SD-FMR) technique resonance method the ($\mu_\textrm{0}M_\textrm{s}$, $K_\textrm{u}$) parameter space may be optimised numerically to obtain a set of viable curves that fit the experimental data.
2202.00364v1
2022-02-03
Element Doping Enhanced Charge-to-Spin Conversion Efficiency in Amorphous PtSn4 Dirac Semimetal
Topological semimetals (TSs) are promising candidates for low-power spin-orbit torque (SOT) devices due to their large charge-to-spin conversion efficiency. Here, we investigated the charge-to-spin conversion efficiency of amorphous PtSn4 (5 nm)/CoFeB (2.5-12.5 nm) layered structures prepared by a magnetron sputtering method at room temperature. The charge-to-spin ratio of PtSn4/CoFeB bilayers was 0.08, characterized by a spin torque ferromagnetic resonance (ST-FMR) technique. This ratio can further increase to 0.14 by inducing dopants, like Al and CoSi, into PtSn4. The dopants can also decrease (Al doping) or increase (CoSi doping) the resistivity of PtSn4. The work proposed a way to enhance the spin-orbit coupling (SOC) in amorphous TSs with dopants.
2202.01384v1
2022-02-04
A Magnetoelectric Memory Device Based on Pseudo-Magnetization
We propose a new type of magnetoelectric memory device that stores magnetic easy-axis information or pseudo-magnetization, rather than a definite magnetization direction, in piezoelectric/ferromagnetic (PE/FM) heterostructures. Theoretically, we show how a PE/FM combination can lead to non-volatility in pseudo-magnetization exhibiting ferroelectric-like behavior. The pseudo-magnetization can be manipulated by extremely low voltages especially when the FM is a low-barrier nanomagnet. Using a circuit model benchmarked against experiments, we determine the switching energy, delay, switching probability and retention time of the envisioned 1T/1C memory device in terms of magnetic and circuit parameters and discuss its thermal stability in terms of a key parameter called back-voltage vm which is an electrical measure of the strain-induced magnetic field. Taking advantage of ferromagnetic resonance (FMR) measurements, we experimentally extract values for vm in CoFeB films and circular nano-magnets deposited on Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) which agree well with the theoretical values. Our experimental findings indeed indicate the feasibility of the proposed novel device and confirm the assumed parameters in our modeling effort.
2202.02203v2
2016-03-09
Evolution of perpendicular magnetized tunnel junctions upon annealing
We study the evolution of perpendicularly magnetized tunnel junctions under 300 to 400 $^{\circ}$C annealing. The hysteresis loops do not evolve much during annealing and they are not informative of the underlying structural evolutions. These evolutions are better revealed by the frequencies of the ferromagnetic resonance eigenmodes of the tunnel junction. Their modeling provides the exchange couplings and the layers' anisotropies within the stack which can serve as a diagnosis of the tunnel junction state after each annealing step. The anisotropies of the two CoFeB-based parts and the two Co/Pt-based parts of the tunnel junction decay at different rates during annealing. The ferromagnet exchange coupling through the texture-breaking Ta layer fails above 375$^{\circ}$C. The Ru spacer meant to promote a synthetic antiferromagnet behavior is also insufficiently robust to annealing. Based on these evolutions we propose optimization routes for the next generation tunnel junctions.
1603.02824v1
2017-06-02
Dzyaloshinskii Moriya interaction across antiferromagnet / ferromagnet interface
The antiferromagnet (AFM) / ferromagnet (FM) interfaces are of central importance in recently developed pure electric or ultrafast control of FM spins, where the underlying mechanisms remain unresolved. Here we report the direct observation of Dzyaloshinskii Moriya interaction (DMI) across the AFM/FM interface of IrMn/CoFeB thin films. The interfacial DMI is quantitatively measured from the asymmetric spin wave dispersion in the FM layer using Brillouin light scattering. The DMI strength is enhanced by a factor of 7 with increasing IrMn layer thickness in the range of 1- 7.5 nm. Our findings provide deeper insight into the coupling at AFM/FM interface and may stimulate new device concepts utilizing chiral spin textures such as magnetic skyrmions in AFM/FM heterostructures.
1706.00535v1
2017-06-26
Enhancement of thermovoltage and tunnel magneto-Seebeck effect in CoFeB based magnetic tunnel junctions by variation of the MgAl$_2$O$_4$ and MgO barrier thickness
We investigate the influence of the barrier thickness of Co$_{40}$Fe$_{40}$B$_{20}$ based magnetic tunnel junctions on the laser-induced tunnel magneto-Seebeck effect. Varying the barrier thickness from 1nm to 3nm, we find a distinct maximum in the tunnel magneto-Seebeck effect for 2.6nm barrier thickness. This maximum is independently measured for two barrier materials, namely MgAl$_2$O$_4$ and MgO. Additionally, samples with an MgAl$_2$O$_4$ barrier exhibit a high thermovoltage of more than 350$\mu$V in comparison to 90$\mu$V for the MTJs with MgO barrier when heated with the maximum laser power of 150mW. Our results allow for the fabrication of improved stacks when dealing with temperature differences across magnetic tunnel junctions for future applications in spin caloritronics, the emerging research field that combines spintronics and themoelectrics.
1706.08287v1
2018-04-11
Broadband voltage rectifier induced by linear bias dependence in CoFeB/MgO magnetic tunnel junctions
In this paper, the perpendicular magnetic anisotropy (PMA) is tailored by changing the thickness of the free layer with the objective of producing MTJ nano-pillars with smooth linear resistance dependence with both in-plane magnetic field and DC bias. We furthermore demonstrate how this linear bias dependence can be used to create a zero-threshold broadband voltage rectifier, a feature which is important for rectification in wireless charging and energy harvesting applications. By carefully balancing the amount of PMA acting in the free layer the measured RF to DC voltage conversion efficiency can be made as large as 11%.
1804.04104v1
2018-04-14
Correlation between Dzyaloshinskii Moriya interaction and spin mixing conductance at antiferromagnet / ferromagnet interface
The rich interaction phenomena at antiferromagnet (AFM)/ ferromagnet (FM) interfaces are key ingredients in AFM spintronics, where many underlying mechanisms remain unclear. Here we report a correlation observed between interfacial Dzyaloshinskii-Moriya interaction (DMI) Ds and effective spin mixing conductance g at IrMn/CoFeB interface. Both Ds and g are quantitatively determined with Brillouin light scattering measurements, and increase with IrMn thickness in the range of 2.5~7.5 nm. Such correlation likely originates from the AFM-states-mediated spin-flip transitions in FM, which promote both interfacial DMI and spin pumping effect. Our findings provide deeper insight into the AFM-FM interfacial coupling for future spintronic design.
1804.05151v2
2018-04-18
Ferromagnetic resonance linewidth in coupled layers with easy-plane and perpendicular magnetic anisotropies
Magnetic bilayers with different magnetic anisotropy directions are interesting for spintronic appli- cations as they offer the possibility to engineer tilted remnant magnetization states. We investigate the ferromagnetic resonance (FMR) linewidth of modes associated with two interlayer exchange- coupled ferromagnetic layers, the first a CoNi multilayer with a perpendicular magnetic anisotropy, and the second a CoFeB layer with an easy-plane anisotropy. For antiferromagnetic interlayer ex- change coupling, elevated FMR linewidths are observed below a characteristic field. This is in contrast to what is found in uncoupled, ferromagnetically coupled and single ferromagnetic layers in which the FMR linewidth increases monotonically with field. We show that the characteristic field at which there is a dramatic increase in FMR linewidth can be understood using a macrospin model with Heisenberg-type exchange coupling between the layers.
1804.06796v1
2019-03-01
Individual skyrmion manipulation by local magnetic field gradients
Magnetic skyrmions are topologically protected spin textures, stabilised in systems with strong Dzyaloshinskii-Moriya interaction (DMI). Several studies have shown that electrical currents can move skyrmions efficiently through spin-orbit torques. While promising for technological applications, current-driven skyrmion motion is intrinsically collective and accompanied by undesired heating effects. Here we demonstrate a new approach to control individual skyrmion positions precisely, which relies on the magnetic interaction between sample and a magnetic force microscopy (MFM) probe. We investigate perpendicularly magnetised X/CoFeB/MgO multilayers, where for X = W or Pt the DMI is sufficiently strong to allow for skyrmion nucleation in an applied field. We show that these skyrmions can be manipulated individually through the local field gradient generated by the scanning MFM probe with an unprecedented level of accuracy. Furthermore, we show that the probe stray field can assist skyrmion nucleation. Our proof-of-concepts results offer current-free paradigms to efficient individual skyrmion control.
1903.00367v1
2019-03-04
Thermoelectric microscopy of magnetic skyrmions
The magnetic skyrmion is a nanoscale topological object characterized by the winding of the magnetic moments, appearing in magnetic materials with broken inversion symmetry. Because of its low current threshold for driving, the skyrmions have been intensely studied toward novel storage applications by using electron-beam, X-ray, and visible light microscopies. Here, we show that the skyrmions can be imaged via thermoelectric signals of spin-caloritronic phenomena in combination with focused heating. We applied a local temperature gradient to a CoFeB/Ta/W multilayer film with scanning a heating position and, by exploiting a Hall bar structure, mapped the magnitude as well as the direction of the resultant thermoelectric current distributions, which link to skyrmions' inner magnetic textures. This method also enables the observation of skyrmion dynamics under driving current pulses, being a useful imaging technique for the development of skyrmion devices.
1903.01037v2
2019-03-08
MFM and FORC+ study of switching mechanism in Co$_{25}$Pd$_{75}$ films
Recent research on CoPd alloys with perpendicular magnetic anisotropy (PMA) has suggested that they might be useful as the pinning layer in CoFeB/MgO-based perpendicular magnetic tunnel junctions (pMTJ's) for various spintronic applications such as spin-torque transfer random access memory (STT-RAM). We have previously studied the effect of seed layer and composition on the structure (by XRD, SEM, AFM and TEM) and performance (coercivity) of these CoPd films. These films do not switch coherently, so the coercivity is determined by the details of the switching mechanism, which was not studied in our previous paper. In the present paper, we show that information can be obtained about the switching mechanism from magnetic force microscopy (MFM) together with first order reversal curves (FORC), despite the fact that MFM can only be used at zero field. We find that these films switch by a mechanism of domain nucleation and dendritic growth into a labyrinthine structure, after which the unreversed domains gradually shrink to small dots and then disappear.
1903.03568v2
2020-03-26
Bipolar spin Hall nano-oscillators
We demonstrate a novel type of spin Hall nano-oscillator (SHNO) that allows for efficient tuning of magnetic auto-oscillations over an extended range of gigahertz frequencies, using bipolar direct currents at constant magnetic fields. This is achieved by stacking two distinct ferromagnetic layers with a platinum interlayer. In this device, the orientation of the spin polarised electrons accumulated at the top and bottom interfaces of the platinum layer is switched upon changing the polarity of the direct current. As a result, the effective anti-damping required to drive large amplitude auto-oscillations can appear either at the top or bottom magnetic layer. Tuning of the auto-oscillation frequencies by several gigahertz can be obtained by combining two materials with sufficiently different saturation magnetization. Here we show that the combination of NiFe and CoFeB can result in 3 GHz shifts in the auto-oscillation frequencies. Bipolar SHNOs as such may bring enhanced synchronisation capabilities to neuromorphic computing applications.
2003.11776v1
2020-06-02
Spin pumping and inverse spin Hall effect in iridium oxide
Large charge-to-spin conversion (spin Hall angle) and spin Hall conductivity are prerequisites for development of next generation power efficient spintronic devices. In this context, heavy metals (e.g. Pt, W etc.), topological insulators, antiferromagnets are usually considered because they exhibit high spin-orbit coupling (SOC). In addition to the above materials, 5d transition metal oxide e.g. Iridium Oxide (IrO 2 ) is a potential candidate which exhibits high SOC strength. Here we report a study of spin pumping and inverse spin Hall effect (ISHE), via ferromagnetic resonance (FMR), in IrO 2 /CoFeB system. We identify the individual contribution of spin pumping and other spin rectification effects in the magnetic layer, by investigating the in-plane angular dependence of ISHE signal. Our analysis shows significant contribution of spin pumping effect to the ISHE signal. We show that polycrystalline IrO 2 thin film exhibits high spin Hall conductivity and spin Hall angle which are comparable to the values of Pt.
2006.01865v2
2020-06-03
Giant voltage control of spin Hall nano-oscillator damping
Spin Hall nano-oscillators (SHNOs) are emerging spintronic devices for microwave signal generation and oscillator based neuromorphic computing combining nano-scale footprint, fast and ultra-wide microwave frequency tunability, CMOS compatibility, and strong non-linear properties providing robust large-scale mutual synchronization in chains and two-dimensional arrays. While SHNOs can be tuned via magnetic fields and the drive current, neither approach is conducive for individual SHNO control in large arrays. Here, we demonstrate electrically gated W/CoFeB/MgO nano-constrictions in which the voltage-dependent perpendicular magnetic anisotropy, tunes the frequency and, thanks to nano-constriction geometry, drastically modifies the spin-wave localization in the constriction region resulting in a giant 42 % variation of the effective damping over four volts. As a consequence, the SHNO threshold current can be strongly tuned. Our demonstration adds key functionality to nano-constriction SHNOs and paves the way for energy-efficient control of individual oscillators in SHNO chains and arrays for neuromorphic computing.
2006.02151v1
2020-07-04
Entropy-reduced retention times in magnetic memory elements: A case of the Meyer-Neldel Compensation Rule
We compute mean waiting times between thermally-activated magnetization reversals in a nanodisk with parameters similar to a free CoFeB layer used in magnetic random access memories. By combining Langer's theory and forward flux sampling simulations, we show that the Arrhenius prefactor can take values up to 10$^{21}$ Hz, orders of magnitude beyond the value of 10$^{9}$ Hz typically assumed, and varies drastically as a function of material parameters. We show that the prefactor behaves like an exponential of the activation energy, which highlights a case of the Meyer-Neldel compensation rule. This suggests that modeling information retention times with a barrier-independent prefactor in such magnetic storage elements is not justified.
2007.02152v1