muharaf-public / README.md
aamijar's picture
Update README.md
4069c10 verified
---
language:
- ar
license: cc-by-nc-sa-4.0
task_categories:
- image-to-text
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 1274826565.992
num_examples: 22092
- name: validation
num_bytes: 60515423.616
num_examples: 1069
- name: test
num_bytes: 71481336.008
num_examples: 1334
download_size: 1317284681
dataset_size: 24495
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- ocr
- htr
- historic
---
# Muharaf-public line images
This dataset contains 24,495 line images of Arabic handwriting and the corresponding text. The images are Manuscripts from the 19th to 21st century.
See the official code, paper, and zenodo archive below. Our work has been accepted to NeurIPS 2024.
[![Code](https://img.shields.io/badge/Code-black?style=flat-square&logo=github)](https://github.com/MehreenMehreen/muharaf) | [![Paper](https://img.shields.io/badge/Paper-black?style=flat-square&logo=arxiv)](https://arxiv.org/abs/2406.09630) | [![Dataset](https://img.shields.io/badge/Dataset-black?style=flat-square&logo=zenodo&logoColor=white&logoSize=auto)](https://zenodo.org/records/11492215)
:-------------------------:|:-------------------------:|:----
# How to use
```python
from datasets import load_dataset
ds = load_dataset("aamijar/muharaf-public")
# remember to index into the row first to avoid decoding all images at once (https://huggingface.co/docs/datasets/en/image_load#load-image-data)
print(ds["train"][0]["image"])
# instead of
```
<strike>
```python
print(ds["train"]["image"][0])
```
</strike>
# Citation
If you are using this dataset in your work, please cite our paper below.
```
@misc{saeed2024muharafmanuscriptshandwrittenarabic,
title={Muharaf: Manuscripts of Handwritten Arabic Dataset for Cursive Text Recognition},
author={Mehreen Saeed and Adrian Chan and Anupam Mijar and Joseph Moukarzel and Georges Habchi and Carlos Younes and Amin Elias and Chau-Wai Wong and Akram Khater},
year={2024},
eprint={2406.09630},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2406.09630},
}
```